
Intel® Debugger (IDB) Manual
Legal Notices

Copyright © 2002 Intel Corporation, portions © 2001 Compaq Information Technologies Group, L.P.
All Rights Reserved

Disclaimer: Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

This Intel® Debugger Manual as well as the software described in it is furnished under license and may only be used or copied in accordance with the
terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in
this document or any software that may be provided in association with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon, and VTune are trademarks
or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Table of Contents
● About This Manual

❍ What Capabilities Does The Debugger Provide?
❍ Obtaining an Install Kit
❍ Audience
❍ Organization
❍ Related Documentation
❍ Reporting Problems
❍ Conventions

● Part I: A Quick Introduction to Using IDB
❍ Chapter 1 — Overview

■ 1.1 Preparing a Program for Debugging
■ 1.2 Starting the Debugger
■ 1.3 Entering Debugger Commands
■ 1.4 Scripting or Repeating Previous Commands
■ 1.5 Context for Executing Commands
■ 1.6 Running the Program Under Debugger Control
■ 1.7 Pausing the Process at the Problem
■ 1.8 Examining the Paused Process

■ 1.8.1 Looking at the Source Files
■ 1.8.2 Looking at the Threads
■ 1.8.3 Looking at the Call Stack
■ 1.8.4 Looking at the Data
■ 1.8.5 Looking at the Signal State
■ 1.8.6 Looking at the Generated Code

■ 1.9 Continuing Execution of the Process
■ 1.10 Snapshots as an Undo Mechanism

● Part II: A Guide to Using IDB
❍ Chapter 2 — Preparing a Program for Debugging

■ 2.1 Preparing Your Source Code
■ 2.2 Preparing the Compiler and Linker Environment

❍ Chapter 3 — Starting the Debugger
■ 3.1 Starting the Debugger from a Shell
■ 3.2 Starting the Debugger Using Emacs
■ 3.3 Ending a Debugging Session

■ 3.4 Getting Help
❍ Chapter 4 — Giving Commands to the Debugger

■ 4.1 Debugger's Command Processing Structure
■ 4.2 Interrupting a Debugger Action
■ 4.3 Entering and Editing Command Lines

■ 4.3.1 History Replacement of the Line
■ 4.3.2 Alias Expansion of the Line
■ 4.3.3 Environment Variable Expansion

■ 4.4 Syntax of Commands
■ 4.4.1 Lexical Elements of Commands
■ 4.4.2 Grammar of Commands
■ 4.4.3 Categories of Commands
■ 4.4.4 Keywords Within Commands
■ 4.4.5 Using Braces to Make a Composite Command
■ 4.4.6 Conditionalizing Command Execution
■ 4.4.7 Debugger Variables

■ 4.5 Scripting or Repeating Previous Commands
■ 4.5.1 Recording Input and Output
■ 4.5.2 Viewing the Command History

■ 4.6 Defining Aliases
■ 4.7 Executing Shell Commands
■ 4.8 Invoking Your Editor

❍ Chapter 5 — Context for Executing Commands
■ 5.1 Multiple Processes
■ 5.2 Creating Processes
■ 5.3 Multiple Call Frames, Threads, and Sources

❍ Chapter 6 — Running the Program Under Debugger Control
■ 6.1 Running the Program as a Child Process
■ 6.2 Attaching to a Process
■ 6.3 The load, unload, and file Commands
■ 6.4 The run and rerun Commands
■ 6.5 The kill Command
■ 6.6 The attach and the detach Commands
■ 6.7 Controlling the Process Environment
■ 6.8 Multiprocess Debugging
■ 6.9 Processes That Use fork()
■ 6.10 Processes That Use exec()
■ 6.11 Core File Debugging

❍ Chapter 7 — Locating the Site of a Problem
■ 7.1 Breakpoint Definitions

■ 7.1.1 Disposition
■ 7.1.2 The quiet Specifier
■ 7.1.3 Detectors
■ 7.1.4 Thread Filter
■ 7.1.5 Logical Filter
■ 7.1.6 Breakpoint Actions
■ 7.1.7 When Multiple Breakpoints Trigger at Once
■ 7.1.8 Recursive Breakpoints
■ 7.1.9 Breakpoints and C++
■ 7.1.10 Special Signal Breakpoints
■ 7.1.11 Breakpoint Interactions with exec(), fork(), dlopen(), and dlclose() System Calls
■ 7.1.12 Obsolete Breakpoint Commands

■ 7.2 Breakpoint Tables
■ 7.2.1 Showing Breakpoint Status
■ 7.2.2 Enabling, Disabling, and Deleting Breakpoints

❍ Chapter 8 — Looking Around at the Code, the Data, and Other Process Information
■ 8.1 Looking at the Source Files

■ 8.1.1 How the Debugger Finds Source Files
■ 8.1.2 How the Debugger Chooses Which Source File to List
■ 8.1.3 Listing Source Files
■ 8.1.4 Searching the Content of Source Files

■ 8.2 Looking at the Threads
■ 8.2.1 Thread Levels
■ 8.2.2 Thread Manipulation Commands
■ 8.2.3 Thread Display Commands
■ 8.2.4 Mutex Queries

■ 8.2.5 Condition Variable Queries
■ 8.2.6 Other Thread Commands
■ 8.2.7 Undocumented pthread Support

■ 8.3 Looking at the Call Stack
■ 8.3.1 Navigating the Call Stack
■ 8.3.2 The pop Command
■ 8.3.3 Call Frames and Optimized Code
■ 8.3.4 Call Frames and Machine Code Correlation
■ 8.3.5 Special C++ Issues

■ 8.4 Looking at the Data
■ 8.4.1 The print Command
■ 8.4.2 The printf Command
■ 8.4.3 The printi Command
■ 8.4.4 The printregs Command
■ 8.4.5 The printt Command
■ 8.4.6 The dump Command
■ 8.4.7 The call Command
■ 8.4.8 The whatis Command
■ 8.4.9 The whereis Command
■ 8.4.10 The which Command
■ 8.4.11 Notes on C++ Debugging
■ 8.4.12 The display Command

■ 8.5 Looking at the Generated Code
■ 8.5.1 Memory Display Commands
■ 8.5.2 Machine-Level Debugging

■ 8.6 Looking at Shared Libraries
❍ Chapter 9 — Modifying the Process

■ 9.1 The assign and the set variable Commands
■ 9.2 The patch Command

❍ Chapter 10 — Continuing Execution of the Process
■ 10.1 The step and stepi Commands
■ 10.2 The next and nexti Commands
■ 10.3 The return Command
■ 10.4 The cont Command
■ 10.5 The goto Command
■ 10.6 The finish Command

❍ Chapter 11 — Using Snapshots as an Undo Mechanism
■ 11.1 The save snapshot Command
■ 11.2 The clone snapshot Command
■ 11.3 The show snapshot Command
■ 11.4 The delete snapshot Command
■ 11.5 Snapshot Limitations

❍ Chapter 12 — Debugging Optimized Code
❍ Chapter 13 — Support Limitations

■ 13.1 Limitations on Support for C++
■ 13.2 Limitations on Support for Fortran

■ 13.2.1 Limitations on Procedure Invocations
● Part III: Advanced Topics

❍ Chapter 14 — Preparing Your Program for Debugging
■ 14.1 Modifying Your Program to Wait For the Debugger

❍ Chapter 15 — Debugger's Command Processing Structure
■ 15.1 Lexical Elements of Commands

■ 15.1.1 Lexical States
■ 15.1.2 Identifiers
■ 15.1.3 Embedded Keywords
■ 15.1.4 Leading Keywords
■ 15.1.5 Reserved Identifiers
■ 15.1.6 Lexemes Shared by All Languages

■ 15.1.6.1 Common Elements of Lexemes
■ 15.1.6.2 Whitespace and Command-Separating Lexemes Shared by All Languages
■ 15.1.6.3 LNORM Lexemes Shared by All Languages
■ 15.1.6.4 LBPT Lexemes Shared by All Languages
■ 15.1.6.5 LFILE Lexemes Shared by All Languages
■ 15.1.6.6 LKEYWORD Lexemes Shared by All Languages
■ 15.1.6.7 LLINE Lexemes Shared by All Languages
■ 15.1.6.8 LWORD Lexemes Shared by All Languages

■ 15.1.6.9 LSIGNAL Lexemes Shared by All Languages
■ 15.1.6.10 LSETENV and LEXPORT Lexemes Shared by All Languages

■ 15.1.7 Lexemes That Are Represented Differently in Each Language
■ 15.1.7.1 LKEYWORD Lexemes Specific to C++
■ 15.1.7.2 LNORM Lexemes Specific to C and C++
■ 15.1.7.3 LNORM Lexemes Specific to Fortran

■ 15.2 Grammar of Commands
■ 15.2.1 Names and Expressions Within Commands
■ 15.2.2 Expressions Specific to C
■ 15.2.3 Expressions Specific to C++
■ 15.2.4 Expressions Specific to Fortran

❍ Chapter 16 — Debugging Core Files
■ 16.1 Invoking the Debugger on a Core File
■ 16.2 Debugging a Core File
■ 16.3 Transporting a Core File
■ 16.4 Core File Debugging Example
■ 16.5 Quick Reference for Transporting a Core File

❍ Chapter 17 — Kernel Debugging
❍ Chapter 18 — Machine-Level Debugging

■ 18.1 Examining Memory Addresses
■ 18.1.1 Using the Examine Commands
■ 18.1.2 Using Pointer Arithmetic
■ 18.1.3 Examining Machine-Level Registers

■ 18.2 Stepping at the Machine Level
❍ Chapter 19 — Debugging Parallel Applications

■ 19.1 Overview
■ 19.2 Starting a Parallel Debugging Session
■ 19.3 Using Commands in a Parallel Debugging Session
■ 19.4 Working with Sets of Application Processes

■ 19.4.1 Using Debugger Variables to Store Process Sets and Ranges
■ 19.4.2 Process Set Operations
■ 19.4.3 Changing the Current Set with the focus Command

■ 19.5 Working with Aggregated Messages
■ 19.6 Parallel Debugging Tips
■ 19.7 Parallel Debugging Example
■ 19.8 Using the mpirun_dbg.idb Startup File

● Appendixes
❍ Appendix 1: Debugger Variables
❍ Appendix 2: Debugger Aliases
❍ Appendix 3: corefile_listobj.c Example
❍ Appendix 4: Array Navigation Example

About This Manual
What Capabilities Does The Debugger Provide?
The debugger provides a choice of command-line or graphical user interface.

The debugger provides extensive support for debugging programs written in C, C++, and Fortran (77 and 90).

Obtaining an Install Kit
Kits, manuals, and answers to the frequently asked questions (FAQs) are available from the following sources:

● TBD

Audience
This manual is intended for programmers who have a basic understanding of one of the programming languages that IDB supports (C, C++, Fortran).

Organization

This manual is organized as follows:

● Part I contains a quick introduction to the debugger.
❍ Chapter 1 contains all the information you need to make simple use of the debugger.

● Part II contains most of the information you need to make expert use of the debugger.
❍ Chapter 2 describes preparing your program for debugging.
❍ Chapter 3 describes starting the debugger.
❍ Chapter 4 describes giving commands to the debugger.
❍ Chapter 5 describes context for executing commands.
❍ Chapter 6 describes running your program under debugger control.
❍ Chapter 7 describes locating the site of the problem.
❍ Chapter 8 describes how to examine the code, the data, and previously obtained information
❍ Chapter 9 describes modifying the process.
❍ Chapter 10 describes continuing execution of the process.
❍ Chapter 11 describes snapshots as an undo mechanism.
❍ Chapter 13 describes support limitations.

● Part III contains advanced reference information.
❍ Chapter 14 describes preparing a program for debugging.
❍ Chapter 15 describes the debugger's syntax and grammar.
❍ Chapter 16 describes debugging core files.
❍ Chapter 18 describes machine-level debugging.
❍ Chapter 19 describes parallel debugging.

● The appendixes contain the following information:
❍ Appendix 1 describes the debugger variables.
❍ Appendix 2 describes the debugger aliases.
❍ Appendix 3 contains the corefile_listobj.c example.
❍ Appendix 4 contains the array navigation example.

Related Documentation
The following documents contain related information:

● Man pages for the various compilers

Reporting Problems
TBD.

What to Report
Please provide the following information when you enter your problem report. Doing so will make it easier for us to reproduce and analyze your problem. If you
do not provide this information, we may have to ask you for it.

● A description of the problem. The clearer and more detailed the description, the easier it will be for us to reproduce and analyze your problem.

● A transcript of the debugger output. You can obtain this by using the record io debugger command or by using the script(1) system command.

● Operating system and version information. The output of uname -a is best.

● Version information. The version number is in the welcome banner that displays when you invoke the debugger. You can also obtain the version number
by invoking the debugger with the idb -V command.

● The smallest source code example possible; build instructions (a Makefile is preferable); source languages, compiler versions, and so forth; and a pointer
to a tar file containing sources or binaries that reproduce the problem. To obtain compiler versions, you can use the -V option if your compiler supports
it (see the reference page for your compiler). Alternatively, you can generate the output of /usr/sbin/setld -i showing the installed compiler
subsets.

● The exact debugger commands that cause the problem to occur.

● Any other information that you think would be helpful.

The debugger development team can use ftp to fetch sources and executables if you can place them in an anonymous FTP area. If not, you may be asked to
use another method.

Conventions
The following conventions are used in this manual:

Convention Meaning
% A percent sign represents the C shell system prompt.
A pound sign represents the default superuser prompt.
UPPERCASE
lowercase

The operating system differentiates between lowercase and uppercase characters. On the operating system level, you must
type examples, syntax descriptions, function definitions, and literal strings that appear in text exactly as shown.

Ctrl/C This symbol indicates that you must press the Ctrl key while you simultaneously press another key (in this case, C).

monospaced text This typeface indicates a routine, partition, pathname, directory, file, or non-terminal name. This typeface is also used in
interactive examples.

monospaced bold text In interactive examples, this typeface indicates input that you enter. In syntax statements and text, this typeface indicates the
exact name of a command or keyword.

monospaced italic text
Monospaced italic type indicates variable values, place holders, and function argument names.
In syntax definitions, monospaced italic text indicates non-terminal names. When a non-terminal name consists of more than
one word, the words are joined using the underscore (_), for example, breakpoint_command.

italic text Italic type indicates book names or emphasized terms.

foo_bar
 : item1
 | item2
 | item3

A colon (:) starts the syntax definition of a non-terminal name (in this example, foo_bar. Vertical bars (|) separating items
that appear in syntax definitions indicate that you choose one item from among those listed.

[] In syntax definitions, brackets indicate items that are optional.
option ;...
option ,...
option ...

A set of three horizontal ellipses indicates that you can enter additional parameters, options, or values. A semicolon, comma,
or space preceding the ellipses indicates successive items must be separated by semicolons, commas, or spaces.

setld(8)
Cross-references to online reference pages include the appropriate section number in parentheses. For example, setld(8)
indicates that you can find the material on the setld command in Section 8 of the reference pages. The man command %
man 8 setld shows the reference page for this command.

Part I
A Quick Introduction to Using IDB
Part I provides all the information you need to make simple use of the debugger.

Chapter 1 — Overview
IDB supports DBX and GDB modes. In the GDB mode, IDB operates like the GNU* Debugger (GDB*). See the Starting the Debugger section to get to know
how to launch the debugger in the required mode.

You look for a bug by doing the following:

1. Find a repeatable reproducer of the bug - the simpler the reproducer is, the simpler the following steps will be to do.
2. Prepare your program for debugging.
3. Start the debugger.
4. Give commands to the debugger.

❍ Command the debugger to either
■ Prepare to create a process running the program, or
■ Attach to and interrupt a process that you created using normal operating system specific methods.

❍ Command the debugger to create breakpoints that will pause the process as close as possible to where the bug happened.
❍ If you are using the debugger to create the process, tell it to create the process now.

5. Do whatever it takes to reproduce the bug, so that the breakpoints will stop the process close to where the bug has caused something detectably wrong
to happen.

6. Look around to determine the location of the bug:
❍ If the bug is in code where the debugger has stopped the process, exit the debugger and fix the bug.
❍ If the bug has not happened yet, remove any breakpoints that are triggering too often, create other breakpoints that work better at locating the

problem, and continue the process.
❍ If the bug has already occurred, take the same steps of creating breakpoints and so on, except with the process running backward. Unfortunately,

reverse execution is a difficult problem (how do you un-erase that disk?) so the compilers and the debugger do not support it. Instead, you have to

http://www.gnu.org/software/gdb/gdb.html

rerun from an earlier position (a snapshot if you made one, or else the beginning of the program), first creating breakpoints that stop the process
sooner.

1.1 Preparing a Program for Debugging
Compile and link your program using the -g switch.

If the problem only occurs in optimized code, use the -g3 switch.

% cc -g tmp.c

1.2 Starting the Debugger
Before you start the debugger, make sure that you have correctly set the size information for your terminal; otherwise, the debugger's command line editing
support may act unpredictably. For example, if your terminal is 47x80, you may need to set the following:

% stty rows 47 ; setenv LINES 47
% stty cols 80 ; setenv COLS 80

Following are four basic alternatives for running the debugger on a process (see examples below):

1. Have the debugger create the process using the shell command line to identify the executable to run. (dbx) (gdb)
2. Have the debugger create the process using the debugger commands to identify the executable to run. (dbx) (gdb)
3. Have the debugger attach to a running process using the shell command line to identify the process and the executable file that process is running. (dbx)

(gdb)
4. Have the debugger attach to a running process using the debugger commands to identify the process and the executable file that process is running.

(dbx) (gdb)

DBX Mode
IDB starts operating in DBX mode by default, so you do not have to specify any special options in the shell command line.

Examples:

1. Creating the process using the shell command line.

% idb a.out
Linux Application Debugger for ..., Version ..., Build ...

object file name: a.out
Reading symbolic information ...done
(idb) stop in main
[#1: stop in int main(void)]
(idb) run

2. Creating the process using the debugger commands.

% idb
Linux Application Debugger for ..., Version ..., Build ...
(idb) load a.out
Reading symbolic information ...done
(idb) stop in main
[#1: stop in int main(void)]
(idb) run

3. Ataching to a running process using shell command line.

% ./a.out &
[1] 27859
% jobs
[1]+ Running ./a.out &
% idb a.out -pid 27859
Linux Application Debugger for ..., Version ..., Build ...

Reading symbolic information ...done

Attached to process id 27859

Press Ctrl/C to interrupt the process.

4. Attaching to the process using the debugger commands.

% ./a.out &
[1] 27859
% jobs
[1]+ Running ./a.out &
% idb
Linux Application Debugger for ..., Version ..., Build ...
(idb) attach 27859 a.out
Reading symbolic information ...done
Attached to process id 27859

Press Ctrl/C to interrupt the process.

GDB Mode
To start the debugger in the GDB mode, specify -gdb option in the shell command line.

Examples:

1. Creating the process using the shell command line.

% idb -gdb a.out
Linux Application Debugger for ..., Version ..., Build ...

object file name: a.out
Reading symbols from a.out...done
(idb) break main
Breakpoint 1 at 0x80484f6: file qwerty.c, line 9.
(idb) run

2. Creating the process using the debugger commands.

% idb -gdb
Linux Application Debugger for ..., Version ..., Build ...
(idb) file a.out
Reading symbols from a.out...done.
(idb) break main
Breakpoint 1 at 0x80484f6: file qwerty.c, line 9.
(idb) run

3. Ataching to a running process using shell command line.

% ./a.out &
[1] 27859
% jobs
[1]+ Running ./a.out &
% idb -gdb a.out -pid 27859
Linux Application Debugger for ..., Version ..., Build ...

object file name: a.out
Reading symbols from a.out...done.
Attached to process id 27859

Press Ctrl/C to interrupt the process.

4. Attaching to the process using the debugger commands.

% ./a.out &
[1] 27859
% jobs
[1]+ Running ./a.out &

% idb -gdb
Linux Application Debugger for ..., Version ..., Build ...
(ldb) file a.out
Reading symbols from a.out...done.
(idb) attach 27859
Attached to process id 27859

Press Ctrl/C to interrupt the process.

Note: In the case of Fortran, routine main at which your program stops is not your main program unit. Rather, it is a main routine supplied by the Fortran
system that performs some initialization and then calls your code. Just step forward using the step command a couple of times (probably twice) and you will
soon step into your code.

1.3 Entering Debugger Commands
The debugger issues a prompt when it is ready for the next command from the terminal:

(idb) you type here

When you enter commands, you use the left and right arrow keys to move within the line and the up and down arrow keys to recall previous commands for
editing. When you finish entering a command, press the Enter key to submit the completed line to the debugger for processing.

You can continue a line by ending the line to be continued with a backslash (\) character.

On a blank line, press the Enter key to re-execute the most-recent valid command.

Following are two very useful commands available in both modes:

(idb) help
(idb) quit

1.4 Scripting or Repeating Previous Commands

DBX Mode
To execute debugger commands from a script, use the source command as follows:

(idb) source filename

The source command causes the debugger to read and execute debugger commands from filename.

GDB Mode
The source command is not yet available in the GDB mode.

1.5 Context for Executing Commands
Although the debugger supports debugging multiple processes, it operates only on a single process at a time, known as the current process.

Processes contain one or more threads of execution. The threads execute functions. Functions are sequences of instructions that come from source lines within
source files.

As you enter debugger commands to manipulate your process, it would be very tedious to have to repeatedly specify which thread, source file, and so on you
wish the command to be applied to. To prevent this, each time the debugger stops the process, it re-establishes a static context and a dynamic context for your
commands. The components of the static context are independent of this run of your program; the components of the dynamic context are dependent on this
run.

● The static context consists of the following:
❍ A current program
❍ A current file
❍ A current line

● The dynamic context consists of the following:

❍ A current call frame
❍ A current thread
❍ The particular thread executing the event that caused the debugger to gain control of the process

You can change most of these individually to point to other instances, as described in the relevant portions of this manual, and the debugger will modify the rest
of the static and dynamic context to keep the various components consistent.

1.6 Running a Program Under Debugger Control
As was shown previously, you can tell the debugger to create a process or to attach to an existing process.

After you specify the program (either on the shell command line or by using the load(dbx) or file(gdb) command), but before you have requested the
debugger to create the process, you can still do things that seem to require a running process; for example, you can create breakpoints and examine sources.
Any breakpoints that you create will be inserted into the process as soon as possible after it executes your program.

To have the debugger create a process (rather than attach to an existing process), you request it to run, specifying, if necessary, any arguments and input and
output redirection as follows:

% idb a.out
Linux Application Debugger for ..., Version ..., Build ...
...
(idb) run

or

(idb) run arguments

or

(idb) run arguments > output-file

or

(idb) run arguments < input-file > output-file

The result of using any of the preceding command variations is similar to having attached to a running process.

DBX Mode
The rerun command repeats the previous run command with the same arguments and file redirection.

GDB Mode
The run command without arguments repeats the previous run (with the same arguments, input and output redirections).

r is a shortcut for the run command.

1.7 Pausing the Process at the Problem
Following are the four most common ways to pause a process:

1. Press Ctrl/C. (dbx) (gdb)
2. Wait until the process raises some signal. It will do this when there is an arithmetic exception, an illegal instruction, or an unsatisfiable memory access,

such as an attempt to write to memory for which protection is set to read-only. (dbx) (gdb)
3. Create a breakpoint before you run or continue the process. (dbx) (gdb)
4. Create a watchpoint before you run or continue the process. (dbx) (gdb)

DBX Mode
1. Pressing Ctrl/C.

(idb) run
^C
Interrupt (for process)

Stopping process localhost:27903 (a.out).
Thread received signal INT
stopped at [int main(int):5 0x120001138]
 5 while (argc < 2 && i < 10000000)

2. Waiting until the process raises some signal.

(idb) run
Thread received signal SEGV
stopped at [void buggy(char*, char*):13 0x8048b79]
 13 output[k] = input[k];

3. Creating a breakpoint before running or continuing the process.

(idb) stop in main
[#1: stop in int main(void)]
(idb) run
[1] stopped at [int main(void):182 0x1200023f8]
 182 List<Node> nodeList;

4. Creating a watchpoint before running or continuing the process.

(idb) watch variable nodeList._firstNode write
[#2: watch variable nodeList._firstNode write]
(idb) cont
[2] Address 0xbffff0fc was accessed at:
List<Node>::List(void): x_list.cxx
 [line 121, 0x8057edd] _ZN4ListI4NodeEC1Ev(...)+0xf: movl $0x0, (%eax)
 0xbffff0fc: Old value = 0x080b0ba4
 0xbffff0fc: New value = 0x00000000
[2] stopped at [List<Node>::List(void):123 0x8057ee3]
 123 }

GDB Mode
1. Pressing Ctrl/C.

(idb) run
^C
Interrupt (for process)

Stopping process localhost:27903 (a.out).
Thread received signal INT
main(argc=1) at x_whatHappensOnControlC.cxx: 5
5 while (argc < 2 && i < 10000000)

2. Waiting until the process raises some signal.

(idb) run
Starting program: /usr/examples/x_segv
Thread received signal SEGV
buggy (input=0xbffff2f1 "/usr/examples/x_segv", output=0x0) at x_segv.cxx:13
13 output[k] = input[k];

3. Creating a breakpoint before running or continuing the process.

(idb) break main
Breakpoint 1 at 0x8049f70: file x_list.cxx, line 182.
(idb) run
Starting program: /usr/examples/x_list

Breakpoint 1, main () at x_list.cxx:182

182 List<Node> nodeList;

4. Creating a watchpoint before running or continuing the process.

(idb) watch nodeList._firstNode
Hardware watchpoint 2: nodeList._firstNode
(idb) continue
Continuing.
Old value = 0x80c0c044
New value = 0x00000000

Breakpoint 2, List<Node>::List (this=<no value>) at x_list.cxx:123
123 }

1.8 Examining the Paused Process
This section describes how to examine components of the paused process.

1.8.1 Looking at the Source Files
You can perform the following operations on source files:

● Tell the debugger where your sources are, if it cannot find them.
● Find out the name of the current source file.
● Switch to a different source file.
● List lines in a source file.
● Search within a source file.

DBX Mode

Following is an example that shows listing lines and using the / command to search for a string:

(idb) file
x_list.cxx
(idb) list 180: 10
 180 main()
 181 {
 182 List<Node> nodeList;
 183
 184 // add entries to list
 185 //
> 186 IntNode* newNode = new IntNode(1);
 187 nodeList.append(newNode);
 188
 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
(idb) /CompoundNode
 192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);

Aliases are shorthand forms of longer commands. This example shows using the W alias, which lists up to 20 lines around the current line. Note that a right
bracket (>) marks the current line.

(idb) alias W
W list $curline - 10:20
(idb) W
 176
 177
 178 // The driver for this test
 179 //
 180 main()
 181 {
 182 List<Node> nodeList;
 183
 184 // add entries to list
 185 //
> 186 IntNode* newNode = new IntNode(1);
 187 nodeList.append(newNode);
 188

 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
 190 nodeList.append(cNode);
 191
 192 nodeList.append(new IntNode(3));
 193
 194 IntNode* newNode2 = new IntNode(4);
 195 nodeList.append(newNode2);

GDB Mode

Use info source, info line, and list comands for looking at source files:

(idb) info source
Current source file is x_list.cxx
(idb) list 180,10
180 main()
181 {
182 List<Node> nodeList;
183
184 // add entries to list
185 //
186 IntNode* newNode = new IntNode(1);
187 nodeList.append(newNode);
188
189 CompoundNode* cNode = new CompoundNode(12.345, 2);
(idb) forward-search CompoundNode
192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);

1.8.2 Looking at the Threads

DBX Mode

In a multithreaded application, you can obtain information about the thread that stopped or about all the threads, and you can then change the context to
look more closely at a different thread. Note that a right bracket (>) marks the current thread.

(idb) thread
 Thread Name State Substate Policy Pri
 ------ ------------------------- --------------- ----------- ------------ ---
>* 1 default thread running VP 3 SCHED_OTHER 19

(idb) show thread
 Thread Name State Substate Policy Pri
 ------ ------------------------- --------------- ----------- ------------ ---
>* 1 default thread running VP 3 SCHED_OTHER 19
 -1 manager thread blk SCS SCHED_RR 19
 -2 null thread for slot 0 running VP 1 null thread -1
 -3 null thread for slot 1 ready VP 3 null thread -1
 -4 null thread for slot 2 new new null thread -1
 -5 null thread for slot 3 new new null thread -1
 2 threads(0x140000798) blocked cond 3 SCHED_OTHER 19
 3 threads+8(0x1400007a0) blocked cond 3 SCHED_OTHER 19
 4 threads+16(0x1400007a8) blocked cond 3 SCHED_OTHER 19
 5 threads+24(0x1400007b0) blocked cond 3 SCHED_OTHER 19
 6 threads+32(0x1400007b8) blocked cond 3 SCHED_OTHER 19

You can select any thread to be the focus of commands that show things. For example:

(idb) thread 2
 Thread Name State Substate Policy Pri
 ------ ------------------------- --------------- ----------- ------------ ---
> 2 threads(0x140000798) blocked cond 3 SCHED_OTHER 19

1.8.3 Looking at the Call Stack
You can examine the call stack of any thread. Even if you are not using threads explicitly, your process will have one thread running your code. You can move

up and down the stack, and examine the source being executed at each call.

DBX Mode

(idb) where 4
>0 0x804a519 in ((Node*)0x80c38f0)->Node::Node() "x_list.cxx":79
#1 0x804a568 in ((IntNode*)0x80c38f0)->IntNode::IntNode(data=2) "x_list.cxx":88
#2 0x804a61f in ((CompoundNode*)0x80c38f0)-
>CompoundNode::CompoundNode(fdata=12.3450003, idata=2) "x_list.cxx":103
#3 0x804a09e in main() "x_list.cxx":189
(idb) up 2
>2 0x804a61f in ((CompoundNode*)0x80c38f0)-
>CompoundNode::CompoundNode(fdata=12.3450003, idata=2) "x_list.cxx":103
 103 IntNode(idata),
(idb) list $curline - 10: 20
 93 cout << " type is integer, value is ";
 94 cout << _data << endl;
 95 }
 96
 97
 98
//===
 99 // CompoundNode definition
 100 //
 101 CompoundNode::CompoundNode(float fdata, int idata)
 102 :
> 103 IntNode(idata),
 104 _fdata (fdata)
 105 {
 106 }
 107 void CompoundNode::printNodeData() const
 108 {
 109 cout << " type is compound, value is ";
 110 cout << _fdata << endl;
 111 cout << " parent ";
 112 IntNode::printNodeData();
(idb) down 1
>1 0x804a568 in ((IntNode*)0x80c38f0)->IntNode::IntNode(data=2) "x_list.cxx":88
 88 IntNode::IntNode(int data) : _data(data)

GDB Mode

(idb) backtrace 4
>0 0x804a519 in ((Node*)(class Node *) 0x80c38f0)->Node::Node(this=(class Node *)
0x80c38f0) "x_list.cxx":79
#1 0x804a568 in ((IntNode*)(class IntNode *) 0x80c38f0)-
>IntNode::IntNode(this=(class IntNode *) 0x80c38f0, data=2) "x_list.cxx":88
#2 0x804a61f in ((CompoundNode*)(class CompoundNode *) 0x80c38f0)-
>CompoundNode::CompoundNode(this=(class CompoundNode *) 0x80c38f0, fdata=12.345,
idata=2) "x_list.cxx":103
#3 0x804a09e in main() "x_list.cxx":189
(idb) up 2
>2 0x804a61f in ((CompoundNode*)(class CompoundNode *) 0x80c38f0)-
>CompoundNode::CompoundNode(this=(class CompoundNode *) 0x80c38f0, fdata=12.345,
idata=2) "x_list.cxx":103
103 IntNode(idata),
(idb) list 93,112
93 cout << " type is integer, value is ";
94 cout << _data << endl;
95 }
96
97
98
//===
99 // CompoundNode definition
100 //
101 CompoundNode::CompoundNode(float fdata, int idata)
102 :
103 IntNode(idata),
104 _fdata (fdata)

105 {
106 }
107 void CompoundNode::printNodeData() const
108 {
109 cout << " type is compound, value is ";
110 cout << _fdata << endl;
111 cout << " parent ";
112 IntNode::printNodeData();
(idb) down 1
>1 0x804a568 in ((IntNode*)(class IntNode *) 0x80c38f0)-
>IntNode::IntNode(this=(class IntNode *) 0x80c38f0, data=2) "x_list.cxx":88
88 IntNode::IntNode(int data) : _data(data)

1.8.4 Looking at the Data
You can look at variables and evaluate expressions involving them by using the print command.

DBX Mode

(idb) print fdata
12.3450003
(idb) print idata
2
(idb) print idata + 59
61
(idb) print this
0x80c3670
(idb) print *this
class CompoundNode {
 _fdata = 0;
 _data = 0; // class IntNode
 _nextNode = 0x0; // class IntNode::Node
}

GDB Mode

(idb) print fdata
$2 = 12.345
(idb) print idata
$3 = 2
(idb) print idata + 59
$4 = 61
(idb) print this
$5 = (class CompoundNode *) 0x80c3670
(idb) print *this
$6 = {<IntNode> = {<Node> = {_nextNode = 0x0}, _data = 0}, _fdata = 0}

The p is a shortcut, and the inspect command is a synonym for the print command.

1.8.5 Looking at the Signal State
The debugger shows you the signal that stopped the thread.

DBX Mode

(idb) run
Thread received signal SEGV
stopped at [void buggy(char*, char*):13 0x8048b79]
 13 output[k] = input[k];

Information: idb allows you to restart the execution of your program
from saved positions. Enter "help snapshot" for details.

GDB Mode

(idb) run
Starting program: /usr/examples/x_segv
Thread received signal SEGV
buggy (input=0xbffff2f1 "/usr/examples/x_segv", output=0x0) at x_segv.cxx:13
13 output[k] = input[k];

Information: idb allows you to restart the execution of your program
from saved positions. Enter "help snapshot" for details.

1.8.6 Looking at the Generated Code
You can print memory as instructions or as data.

DBX Mode

In the following example, the wi alias lists machine instructions before and after the current instruction. Note that the asterisk (*) marks the current
instruction.

(idb) alias wi
wi ($curpc - 20)/10 i
(idb) wi
CompoundNode::CompoundNode(float, int): x_list.cxx
 [line 105, 0x120002348] cpys $f17,$f17,$f0
 [line 105, 0x12000234c] bis r31, r18, r8
 [line 101, 0x120002350] bis r31, r19, r16
 [line 101, 0x120002354] bis r31, r8, r17
 [line 101, 0x120002358] bsr r26, IntNode::IntNode(int)
*[line 101, 0x12000235c] ldq r18, -32712(gp)
 [line 101, 0x120002360] lda r18, 48(r18)
 [line 101, 0x120002364] stq r18, 8(r19)
 [line 101, 0x120002368] sts $f0, 24(r19)
 [line 106, 0x12000236c] bis r31, r19, r0
(idb) $pc/10x
0x12000235c: 0x8038 0xa65d 0x0030 0x2252 0x0008 0xb653 0x0018 0x9813
0x12000236c: 0x0400 0x47f3
(idb) $pc/6xx
0x12000235c: 0xa65d8038 0x22520030 0xb6530008 0x98130018
0x12000236c: 0x47f30400 0x47f5041a
(idb) $pc/2X
0x12000235c: 0x22520030a65d8038 0x98130018b6530008

GDB Mode

Use x command to dump memory in various formats. The disassemble command also provides disassembling capability.

(idb) x /10i $pc
Dump of assembler code for function CompoundNode::CompoundNode(class CompoundNode *
const, float, int):
0x804a60e <_ZN12CompoundNodeC1Efi(...)+24>: addl $-8, %esp
0x804a611 <_ZN12CompoundNodeC1Efi(...)+27>: movl -12(%ebp), %eax
0x804a614 <_ZN12CompoundNodeC1Efi(...)+30>: movl %eax, (%esp)
0x804a617 <_ZN12CompoundNodeC1Efi(...)+33>: movl -4(%ebp), %eax
0x804a61a <_ZN12CompoundNodeC1Efi(...)+36>: movl %eax, 0x4(%esp)
0x804a61e <_ZN12CompoundNodeC1Efi(...)+40>: call 0x804a54e
<_ZN7IntNodeC1Ei(...)>
0x804a623 <_ZN12CompoundNodeC1Efi(...)+45>: addl $0x8, %esp
0x804a626 <_ZN12CompoundNodeC1Efi(...)+48>: movl -12(%ebp), %eax
0x804a629 <_ZN12CompoundNodeC1Efi(...)+51>: movl $0x8087834, (%eax)
0x804a62f <_ZN12CompoundNodeC1Efi(...)+57>: movl -12(%ebp), %eax
(idb) x /10x $pc
0x804a60e: 0xc483 0x8bf8 0xf445 0x0489 0x8b24 0xfc45 0x4489 0x0424
0x804a61e: 0x2be8 0xffff
(idb) x /6w $pc
0x804a60e: 0x8bf8c483 0x0489f445 0xfc458b24 0x04244489
0x804a61e: 0xffff2be8 0x08c483ff

(idb) x /2g $pc
0x804a60e: 0x000000008bf8c483 0x00000000fc458b24

To examine individual registers, use the print command with name of register prepended with dollar ($). Commands showing all (or subset of) the registers,
are specific for the mode, see examples below.

DBX Mode

To look at all the registers, use the printregs command. For example:

(idb) print $eax
134942544
(idb) printx $eax
0x80b0f50
(idb) printregs
$eax 0x80b0f50 134942544
$ecx 0xa1 161
$edx 0x0 0
$ebx 0x401ae9e4 1075505636
$esp [$sp] 0xbffff53c -1073744580
$ebp 0xbffff55c -1073744548
$esi 0x40016b64 1073834852
$edi 0xbffff6bc -1073744196
$eip [$pc] 0x804a628 134522408
$eflags 0x287 647
$cs 0x23 35
$ss 0x2b 43
$ds 0x2b 43
$es 0x2b 43
$fs 0x0 0
$gs 0x0 0
$orig_eax 0xffffffff -1
$fctrl 0x37f 895
$fstat 0x0 0
$ftag 0x0 0
$fiseg 0x23 35
$fioff 0x804a619 134522393
$foseg 0x2b 43
$fooff 0xbffff554 -1073744556
$fop 0x0 0
$f0 0x00000000000000000000000000000000 0
$f1 0x0000000000003ffdf13a8dc3008792a0 0.47115
$f2 0x00000000000000000000000000000000 0
$f3 0x00000000000000000000000000000000 0
$f4 0x00000000000000000000000000000000 0
$f5 0x00000000000000000000000000000000 0
$f6 0x0000000000003ffb9700000000000000 0.0737305
$f7 0x0000000000004002c5851f0000000000 12.345
$xmm0 0x00000000000000000000000000000000
$xmm1 0x00000000000000000000000000000000
$xmm2 0x00000000000000000000000000000000
$xmm3 0x00000000000000000000000000000000
$xmm4 0x00000000000000000000000000000000
$xmm5 0x00000000000000000000000000000000
$xmm6 0x00000000000000000000000000000000
$xmm7 0x00000000000000000000000000000000
$mxcsr 0x1f80 8064
$vfp 0xbffff55c 0xbffff55c

GDB Mode

Following commands allow you to examine sets of registers:

● info registers

For example:

(idb) print $eax

$11 = 134942544
(idb) print $eax
$12 = 0x80b0f50
(idb) info registers
$eax 0x80b0f50 134942544
$ecx 0xa1 161
$edx 0x0 0
$ebx 0x401ae9e4 1075505636
$esp [$sp] 0xbffff53c -1073744580
$ebp 0xbffff55c -1073744548
$esi 0x40016b64 1073834852
$edi 0xbffff6bc -1073744196
$eip [$pc] 0x804a628 134522408
$eflags 0x287 647
$cs 0x23 35
$ss 0x2b 43
$ds 0x2b 43
$es 0x2b 43
$fs 0x0 0
$gs 0x0 0
$orig_eax 0xffffffff -1
$fctrl 0x37f 895
$fstat 0x0 0
$ftag 0x0 0
$fiseg 0x23 35
$fioff 0x804a619 134522393
$foseg 0x2b 43
$fooff 0xbffff554 -1073744556
$fop 0x0 0
$f0 0x00000000000000000000000000000000 0
$f1 0x0000000000003ffdf13a8dc3008792a0 0.47115
$f2 0x00000000000000000000000000000000 0
$f3 0x00000000000000000000000000000000 0
$f4 0x00000000000000000000000000000000 0
$f5 0x00000000000000000000000000000000 0
$f6 0x0000000000003ffcdcd8000000000000 0.215668
$f7 0x0000000000004002c5851f0000000000 12.345
$xmm0 0x00000000000000000000000000000000
$xmm1 0x00000000000000000000000000000000
$xmm2 0x00000000000000000000000000000000
$xmm3 0x00000000000000000000000000000000
$xmm4 0x00000000000000000000000000000000
$xmm5 0x00000000000000000000000000000000
$xmm6 0x00000000000000000000000000000000
$xmm7 0x00000000000000000000000000000000
$mxcsr 0x1f80 8064
$vfp 0xbffff55c 0xbffff55c

1.9 Continuing Execution of the Process
After you are satisfied that you understand what is going on, you can move the process forward and see what happens. The following table shows the aliases
and commands you can use to do this.

Desired Behavior Alias Command Can Take Repeat Count

Continue until another interesting thing happens c cont Yes*

Single step by line, but step over calls n next Yes
Single step to a new line, stepping into calls s step Yes
Continue until control returns to the caller None return(dbx), finish(gdb) No
Single step by instruction, over calls ni nexti Yes
Single step by instruction, into calls si stepi Yes

* In GDB mode repeat count has a differen meaning for the cont command. For the other commands repat count has the same meaning in both modes.

The following examples demonstrate stepping through lines of source code (dbx) (gdb) and stepping at the instruction level (dbx) (gdb).

DBX Mode

Stepping through lines of source code:

(idb) list $curline - 10: 20
 172
 173 if (i == 1) cout << "The list is empty ";
 174 cout << endl << endl;
 175 }
 176
 177
 178 // The driver for this test
 179 //
 180 main()
 181 {
> 182 List<Node> nodeList;
 183
 184 // add entries to list
 185 //
 186 IntNode* newNode = new IntNode(1);
 187 nodeList.append(newNode);
 188
 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
 190 nodeList.append(cNode);
 191
(idb) next
stopped at [int main(void):186 0x8049f82]
 186 IntNode* newNode = new IntNode(1);
(idb) next 10
stopped at [int main(void):201 0x804a3e0]
 201 nodeList.append(cNode2);
(idb) step
stopped at [void List<Node>::append(struct Node* const):148 0x805800a]
 148 if (!_firstNode)
(idb) list $curline - 2: 6
 146 {
 147
> 148 if (!_firstNode)
 149 _firstNode = node;
 150 else {
 151 Node* currentNode = _firstNode;
(idb) step
stopped at [void List<Node>::append(struct Node* const):151 0x805801d]
 151 Node* currentNode = _firstNode;
(idb) list $curline - 2: 5
 149 _firstNode = node;
 150 else {
> 151 Node* currentNode = _firstNode;
 152 while (currentNode->getNextNode())
 153 currentNode = currentNode->getNextNode();
(idb) return
stopped at [int main(void):201 0x804a3f8]
 201 nodeList.append(cNode2);
(idb) step
stopped at [int main(void):203 0x804a3fb]
 203 nodeList.print();
(idb) step
stopped at [void List<Node>::print(void):162 0x8058092]
 162 Node* currentNode = _firstNode;
(idb) list $curline: 8
> 162 Node* currentNode = _firstNode;
 163
 164 int i = 1;
 165 cout << "The list is: " << endl;
 166 while (currentNode) {
 167 cout << "Node " << i ;
 168 currentNode->printNodeData();
 169 currentNode = currentNode->getNextNode();
(idb) step 2
stopped at [void List<Node>::print(void):165 0x80580a1]
 165 cout << "The list is: " << endl;

Stepping at the instruction level:

(idb) $curpc - 20/14i
void List<Node>::print(void): x_list.cxx
 [line 161, 0x805808d] print+0x1: movl %esp, %ebp
 [line 161, 0x805808f] print+0x3: subl $0x1c, %esp
 [line 162, 0x8058092] print+0x6: movl 0x8(%ebp), %eax
 [line 162, 0x8058095] print+0x9: movl (%eax), %eax
 [line 162, 0x8058097] print+0xb: movl %eax, -12(%ebp)
 [line 164, 0x805809a] print+0xe: movl $0x1, -8(%ebp)
*[line 165, 0x80580a1] print+0x15: addl $-8, %esp
 [line 165, 0x80580a4] print+0x18: movl $0x80c2f54, (%esp)
 [line 165, 0x80580ab] print+0x1f: movl $0x8085814, 0x4(%esp)
 [line 165, 0x80580b3] print+0x27: call std::operator<<(struct
std::basic_ostream<char,std::char_traits<char>>&, const char*)
 [line 165, 0x80580b8] print+0x2c: addl $0x8, %esp
 [line 165, 0x80580bb] print+0x2f: movl %eax, -28(%ebp)
 [line 165, 0x80580be] print+0x32: addl $-8, %esp
 [line 165, 0x80580c1] print+0x35: movl -28(%ebp), %eax
(idb) stepi 2
stopped at [void List<Node>::print(void):165 0x80580ab] print+0x1f: movl
$0x8085814, 0x4(%esp)
(idb) nexti
stopped at [void List<Node>::print(void):165 0x80580b3] print+0x27: call
std::operator<<(struct std::basic_ostream<char,std::char_traits<char>>&, const char*)
(idb) nexti
stopped at [void List<Node>::print(void):165 0x80580b8] print+0x2c: addl
$0x8, %esp

GDB Mode
Stepping through lines of source code:

(idb) list
172
173 if (i == 1) cout << "The list is empty ";
174 cout << endl << endl;
175 }
176
177
178 // The driver for this test
179 //
180 main()
181 {
182 List<Node> nodeList;
183
184 // add entries to list
185 //
186 IntNode* newNode = new IntNode(1);
187 nodeList.append(newNode);
188
189 CompoundNode* cNode = new CompoundNode(12.345, 2);
190 nodeList.append(cNode);
191
(idb) next
186 IntNode* newNode = new IntNode(1);
(idb) next 10
201 nodeList.append(cNode2);
(idb) step
List<Node>::append (this=(struct List<Node> *) 0xbfffed0c, node=(struct Node *)
0x80ba1c0) at x_list.cxx:148
148 if (!_firstNode)
(idb) list -2,+6
141 }
142
143
144 template <class NODETYPE>
145 void List<NODETYPE>::append(NODETYPE* const node)
146 {
147
(idb) step
151 Node* currentNode = _firstNode;
(idb) list -2,+5

144 template <class NODETYPE>
145 void List<NODETYPE>::append(NODETYPE* const node)
146 {
147
148 if (!_firstNode)
149 _firstNode = node;
(idb) finish
main () at x_list.cxx:201
201 nodeList.append(cNode2);
(idb) step
203 nodeList.print();
(idb) step
List<Node>::print (this=(const struct List<Node> *) 0xbfffed0c) at x_list.cxx:162
162 Node* currentNode = _firstNode;
(idb) set listsize 8
(idb) list ,8
162 Node* currentNode = _firstNode;
163
164 int i = 1;
165 cout << "The list is: " << endl;
166 while (currentNode) {
167 cout << "Node " << i ;
168 currentNode->printNodeData();
169 currentNode = currentNode->getNextNode();
(idb) step 2
165 cout << "The list is: " << endl;

Stepping at the instruction level:

(idb) x /14i $pc
Dump of assembler code for function void List<Node>::print(const struct List<Node> *
const):
0x804aaf9 <print+21>: add $0xfffffff8,%esp
0x804aafc <print+24>: movl $0x80b9e14,(%esp,1)
0x804ab03 <print+31>: movl $0x8085994,0x4(%esp,1)
0x804ab0b <print+39>: call 0x80503c4 <std::operator<<>
0x804ab10 <print+44>: add $0x8,%esp
0x804ab13 <print+47>: mov %eax,0xffffffe4(%ebp)
0x804ab16 <print+50>: add $0xfffffff8,%esp
0x804ab19 <print+53>: mov 0xffffffe4(%ebp),%eax
0x804ab1c <print+56>: mov %eax,(%esp,1)
0x804ab1f <print+59>: movl $0x8050860,0x4(%esp,1)
0x804ab27 <print+67>: call 0x804c864 <operator<<>
0x804ab2c <print+72>: add $0x8,%esp
0x804ab2f <print+75>: mov 0xfffffff4(%ebp),%eax
0x804ab32 <print+78>: test %eax,%eax
(idb) stepi 2
165 cout << "The list is: " << endl;
(idb) nexti
165 cout << "The list is: " << endl;
(idb) nexti
165 cout << "The list is: " << endl;

1.10 Snapshots as an Undo Mechanism
Often when you move the process forward, you accidentally go too far. For example, you may step over a call that you should have stepped into.

In a program that does not use multiple threads, you can use snapshots to save your state before you step over the call. Then clone that snapshot to position
another process just before the call so you can step into it.

The following example shows the stages of a snapshot being used in this way:

1. The first stage is to build the program and start debugging.

2. The next stage is to stop the process just before the call and take a snapshot. You can see you are just before the call because the right bracket (>) to
the left of the source list shows the line about to be executed.

(idb) next 2
stopped at [int main(void):187 0x1200024b8]
 187 nodeList.append(newNode);

(idb) list $curline - 10: 20
 177
 178 // The driver for this test
 179 //
 180 main()
 181 {
 182 List<Node> nodeList;
 183
 184 // add entries to list
 185 //
 186 IntNode* newNode = new IntNode(1);
> 187 nodeList.append(newNode);
 188
 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
 190 nodeList.append(cNode);
 191
 192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);
 193 nodeList.append(cNode1);
 194
 195 nodeList.append(new IntNode(3));
 196
(idb) save snapshot
1 saved at 08:41:46 (PID: 1012).
 stopped at [int main(void):187 0x1200024b8]
 187 nodeList.append(newNode);

3. You now step over the call. The execution is now after the call, shown by the right bracket (>) being on the following source line.

(idb) next
stopped at [int main(void):189 0x1200024d0]
 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
(idb) list $curline - 10: 20
 179 //
 180 main()
 181 {
 182 List<Node> nodeList;
 183
 184 // add entries to list
 185 //
 186 IntNode* newNode = new IntNode(1);
 187 nodeList.append(newNode);
 188
> 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
 190 nodeList.append(cNode);
 191
 192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);
 193 nodeList.append(cNode1);
 194
 195 nodeList.append(new IntNode(3));
 196
 197 IntNode* newNode2 = new IntNode(4);
 198 nodeList.append(newNode2);

4. Oh, how you wish you hadn't done that! No problem, just clone that snapshot you made.

(idb) clone snapshot
Process has exited
Process 1009 cloned from Snapshot 1.
1 saved at 08:41:46 (PID: 1012).
 stopped at [int main(void):187 0x1200024b8]
 187 nodeList.append(newNode);

5. Now you are in a new process before the call is executed.

(idb) list $curline - 10: 20
 177
 178 // The driver for this test
 179 //
 180 main()
 181 {
 182 List<Node> nodeList;

 183
 184 // add entries to list
 185 //
 186 IntNode* newNode = new IntNode(1);
> 187 nodeList.append(newNode);
 188
 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
 190 nodeList.append(cNode);
 191
 192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);
 193 nodeList.append(cNode1);
 194
 195 nodeList.append(new IntNode(3));
 196

Note: fork() was used by the debugger both to create the snapshot and to clone it.

Part II
A Guide to Using IDB
Part II provides most of the information needed to make expert use of the debugger.

Some additional details have been moved to Part III: Advanced Topics so they do not hinder the reading of this section.

Chapter 2 — Preparing a Program for Debugging
To facilitate debugging, you can prepare your source code and the compiler and linker environment.

2.1 Preparing Your Source Code
You do not need to make changes to the source code to debug the program. However, you can do the following to make debugging easier:

● If the source code has functions that can be called to output data structures, you can call them from the debugger; you may want to create such
functions.

● It is a good idea to make the following items part of your source code:
❍ An initial stall point if you cannot create the process easily from within the debugger.
❍ Assertions sprinkled liberally through the sources to help locate errors early.

2.2 Preparing the Compiler and Linker Environment
Debugging information is put into .o files by compilers. The level of information is controlled by compiler switches. See the reference page for your compiler.
The switch is probably -g.

The debugging information is propagated into the a.out (executable) or .so (shared library) by the ld command. It is removed by the strip command. If you
strip your programs, keep the unstripped version to use with the debugger.

The debugging information can cause .o files to be very large, causing long link times, but even so it can also be incomplete.

If you are debugging C++ applications and you have unused variables in your code, or if opaque classes, structs, or unions keep showing up in your debugging,
you may want to compile particular files with the cxx -gall and -gall_pattern switches. See cxx(1).

If you are debugging optimized code, refer to the appropriate compiler documentation for information about various -g switches and their relationship to
optimization.

Chapter 3 — Starting the Debugger
You can start the debugger in the following ways:

● From a shell.
● From within Emacs.

This chapter also discusses the following topics:

● Ending a debugging session.
● Getting help.

3.1 Starting the Debugger from a Shell
When you invoke the debugger from a shell, you can bring a program or core file under debugger control, or you can attach to a running process.

The following is the shell syntax to invoke the debugger using the idb command:

idb
 [-c file]
 [-gui]
 [-gdb]
 [-i file]
 [-I directory]
 [-interactive]
 [-k]
 [-line serial_line]
 [-nosharedobjs]
 [-parallel]
 [-pid process_id]
 [-prompt string]
 [-remote]
 [-rp remote_debug_protocol]
 [-tty terminal_device]
 [-quiet]
 [-V]
 [executable_file [core_file]]

The following table describes the idb command options and parameters:

Options and Parameters Description

-c file
Specifies an initialization command file. The default initialization file is .dbxinit. During startup, the debugger searches for this
file in the current directory. If it is not there, the debugger searches your home directory. This file is processed after the target
process has been loaded or attached to.

-gdb Start working in the GDB mode.

-i file
Specifies a pre-initialization command file. The default pre-initialization file is .idbrc. The debugger searches for this file during
startup, first in the current directory and then in your home directory. This file is processed before the debugger has connected to
the application being debugged, so that commands such as set $stoponattach = 1 will have taken effect when the
connection is made.

-I directory
Specifies the directory containing the source code for the target program, in a manner similar to the use command. Use multiple -
I options to specify more than one directory. The debugger searches directories in the order in which they were specified on the
command line.

-interactive
Causes the debugger to act as though stdin is isatty(), regardless of whether or not it is. This flag is sometimes useful when
using rsh to run the debugger. Currently, the only effect is to cause the debugger to output the prompt to stdout when it is ready
for the next line of input.

-nosharedobjs Prevents the reading of symbol table information for any shared objects loaded when the process executes. Later in the debug
session, you can enter the readsharedobj command to read the symbol table information for a specified object.

-pid process_id Specifies the process ID of the process to be debugged.
Specifies a debugger prompt. If the prompt argument contains spaces or special characters, enclose the argument in quotes ("").
You can specify a debugger prompt when you start the debugger from a shell with the -prompt option. The default debugger
prompt is (idb).

% idb -prompt ">> " sample
>> quit

DBX Mode

You can also change the prompt by setting the $prompt debugger variable. For example:

(idb) set $prompt = "newPrompt>> "
newPrompt>>

-prompt string
GDB Mode

Use set prompt prompt to specify a new prompt to use henceforth. To see the prompt used by the debugger, type the show
prompt command.

(idb) set prompt (gdb mode)
(gdb mode) show prompt
IDB's prompt is "(gdb mode) ".
(gdb mode)

Note: There is a space at the end of the first line of the example above. If space is missed, example will look like following:

(idb) set prompt (gdb mode)
(gdb mode)show prompt
IDB's prompt is "(gdb mode)".
(gdb mode)

-quiet Causes the debugger to start but do not print sign-on message.
-V Causes the debugger to print its version number and exit without starting a debugging session.
executable_file Specifies the program executable file.
core_file Specifies the core file.

For example, to invoke the debugger on an executable file named a.out:

% idb a.out

To invoke the debugger on a core file:

% idb a.out core

To invoke the debugger and attach to a running process:

% idb -pid 8492 a.out

To invoke the debugger and attach to a running process when you do not know what file it is executing:

% idb -pid 8492

3.2 Starting the Debugger Using Emacs
You can control your debugger process entirely through the Emacs Grand Unified Debugger (GUD) buffer mode, which is a variant of shell mode. All the
debugger commands are available, and you can use the shell mode history commands to repeat them.

The debugger supports:

● GNU Emacs Version 19 and higher.
● Lucid XEmacs Version 19.14 and higher.

The information in the following sections assumes you are familiar with Emacs and are using the Emacs notation for naming keys and key sequences.

For each Emacs session, before you can invoke the debugger, you must load the IDB-specific Emacs LISP code, as follows:

M-x load-file

At the Load file: prompt, type the path to the IDB-specific Emacs LISP file, which is located in the IDB installation directory. For example:

/opt/intel/compiler70/ia32/bin/idb.el

You can also place a load-file call in your Emacs initialization file (~/.emacs). For example:

(load-file "/opt/intel/compiler70/ia32/bin/idb.el")

To start the debugger with Emacs, type:

M-x idb

The following invocation line displays:

Run the debugger (like this): idb

Edit the invocation line by typing the target program and pressing Return. Emacs remembers the invocation. To debug the same program again, you need only
press Return.

Emacs displays the GUD buffer and runs the debugger within it; the debugger starts and displays its (idb) prompt, indicating readiness. The GUD buffer
saves all of the commands you type and the program output for you to edit. In general, interact with the debugger in the GUD buffer as you would with a
debugger started from a shell.

One of the benefits of running the debugger from within Emacs is a closer correlation between program execution and source. When your program stops, for
example at a breakpoint, Emacs displays the source of your program in a second buffer (source buffer) and indicates the current execution line with =>.

Note: If the source is already loaded into a buffer, Emacs often finds that buffer. However, in some NFS mounting situations, Emacs may use an alternate
name for some directories and will create a second buffer for your source (often with <2> appended to the name). Be careful that you do not modify the original
buffer or kill it outright.

By default, Emacs sets its current working directory to be the directory containing the target program. Because the debugger does not do this when invoked
directly, you may need to change the source code search path when using the debugger from within Emacs. To set an alternate source code search path, use
the debugger map source directory command.

All Emacs editing functions and GUD key bindings are available. For example:

● You can execute a step command by typing the command in the GUD buffer.

● You can select a line of code in the current source buffer and type a command to set a breakpoint at that position:

C-x SPC

For more information on Emacs functionality and key bindings, see the Emacs documentation. For example:

M-x info

Then select the Emacs menu, then the Debuggers menu.

XEmacs will come up with the source buffer displayed. Use C-x 2 and a buffer menu to select the control buffer.

3.3 Ending a Debugging Session

DBX Mode
To exit the debugger, use the quit command:

quit_command
 : quit

Alternatively, you can type exit, which is a pre-defined alias for quit.

GDB Mode
Use the quit command (q is a shorter equivalent) to exit the debugger.

quit_command
 : quit [exit_status]
 | q [exit_status]

exit_status
 : expression

Optionally you can specify debugger exit status. Example:

(idb) quit 3
% echo $?
3
%

3.4 Getting Help
To access the online help about debugger commands, use the help command.

DBX Mode

help_command
 : help [topic]

Enter help to see a list of help topics. Enter help command to see a list of debugger commands. Enter help idb to see a list of function-oriented
debugger commands.

GDB Mode

help_command
 : help [topic]
 | h [topic]
 | complete [args]

If you do not specify any arguments, the help command will display a short list of named classes of commands. Use the help command with a name of
class or a name of particular command to get more detailed help.

h is a synonym for the help command.

You may also use the complete args command to list all the possible completions for the beginning of a command. Use args to specify the beginning of
the command you want completed.

Chapter 4 — Giving Commands to the Debugger
The debugger has several different mechanisms you can use to direct its behavior. It receives input from:

● Environment variables
● Shell command line
● stdin, which is usually one of the following:

❍ A terminal
❍ A file
❍ A pipe connecting the debugger to an editor (usually Emacs)

● Other files:
1. At startup, before attaching to or starting the target executable and before processing command line qualifiers, commands in:

a. ./.idbrc, if available, otherwise
b. ~/.idbrc, if available

2. Just before accepting command input from you:
a. ./.dbxinit, if available, otherwise
b. ~/.dbxinit, if available

3. Files specified in the source command

Some examples of the difference between .idbrc and .dbxinit are shown in the following table:

Example Command If Used in .idbrc If Used in .dbxinit

Assume the command "set $stoponattach = 1" is in one of these files and you invoked the
debugger as:

% idb -pid process_id executable_file

The debugger attaches
and stops.

The debugger attaches
and waits for you to
press Ctrl/C; subsequent
attaches will stop.

Assume the command "stop in main" is in one of these files.

The debugger
generates a message
that there is no main in
which to place a
breakpoint, because
there is no target yet.

The debugger sets the
breakpoint (assuming
there is a main in the
target).

This chapter discusses the following topics:

● The debugger's command processing structure
● Interrupting a debugger action
● Entering and editing command lines
● Syntax of commands
● Using scripts and aliases
● Executing shell commands
● Invoking your editor

4.1 Debugger's Command Processing Structure
The debugger processes commands as follows:

1. Prompts for input.
2. Obtains a complete line from the input file and performs:

❍ History replacement of the line
❍ Alias expansion of the line

3. Parses the entire line according to the parsing rules for the current language.
4. Executes the commands.

4.2 Interrupting a Debugger Action
To interrupt program execution or to abort a debugger action, press Ctrl/C. This returns the debugger to the prompt.

4.3 Entering and Editing Command Lines
The debugger reads lines from stdin. The debugger supports command line editing when processing stdin if stdin is a terminal and the debugger variable
$editline is non-zero (the default; see the set command to change it). For this to work correctly, you must set the terminal width to the correct value. After
editing, press the Return key to send the line to the debugger.

● Use the left and right arrow keys to edit parts of the line.
● Use the up and down arrow keys to recall and edit earlier commands.

Note: When you use the up and down arrow keys, the debugger skips duplicate commands. To see a complete list of the commands you have entered, use the
history command.

The debugger copies each line from stdin to the record input file, if you have requested that file.

The debugger scans each line from the beginning, looking for backslash (\) characters, which 'quote' the immediately following character. If the line ends in a
quoted newline, then another line is similarly processed from stdin and appended to the first one, with the quoted newline removed.

Whether or not command line editing is enabled, you can always use your terminal's cut-and-paste function to avoid excessive typing while entering input.

4.3.1 History Replacement of the Line
Leading spaces and tabs are removed from the assembled line.

For assembled lines that begin with an exclamation point (!), the following rules apply:

● If the second character is also an exclamation point (!), the assembled line is replaced by the most-recent entry from the history list. Any remaining
characters after the digits or ! are appended to the assembled line.

● Otherwise, spaces and tabs are skipped, and one of the following actions occurs:
❍ If the next character is a digit, then the digits are read as a decimal number, and the assembled line is replaced by that line from the history list,

with 1 being the oldest entry.
❍ If the next character is a hyphen (-), then the digits following it are read as a decimal number, and the assembled line is replaced by that line from

the history list, with -1 being the most-recent entry.
❍ Otherwise, the rest of the line is used to find the most-recent command that starts with those characters, and the assembled line is replaced by that

line from the history list.
In the first two cases, any remaining characters after the digits are appended to the assembled line.

For lines that begin with a caret (^), these rules apply:

● The line is analyzed to extract the following:
1. The characters following the first caret but before a second caret, or until the end of line. These characters are the target string.
2. If there is a second caret, the characters following it but before a third caret, or until the end of line. These characters are the replacement string.
3. If there is a third caret, the characters following it to the end of the line. These characters are the append string.

● The most-recent entry from the history list is checked to see if it has an occurrence of the target string. If it does not, an error is reported.
● The assembled line is replaced by this most-recent entry, except that the first occurrence of the target string is replaced by the replacement string

(possibly zero length), and the append string is appended to the assembled line.

The assembled line is now appended to the history list.

Exclamation points and carets cannot be used in command lists built with braces ({}); for example, {print3; !!3} will not parse. They may be used in
scripts.

History in a command list is not limited by braces, but goes all the way back. For example:

(idb) print 1
1
(idb) stop in main { print 2; history 3}
[#1: stop in int main(void) { print 2; history 3}]
(idb) run
2
11: print 1
12: stop in main {print 2; history 3}
13: run
[1] stopped at [int main(void):182 0x8049f70]
 182 List<Node> nodeList;

Note: Commands in breakpoint action lists are not entered into the history list.

4.3.2 Alias Expansion of the Line (DBX Mode only)
The assembled line is now subjected to alias expansion. This is done by scanning the line, looking for pound (#), semicolon (;), and left brace ({)
characters that are not inside strings.

● Strings are recognized by their opening and closing double or single quotes. Backslash quotation causes a quote character not to terminate the
string.

● Pound (#) characters and all that follow to the end of the line are discarded, unless the pound character is the very first character in the line. If that is
the case, the pound character is not discarded because a completely empty line has special meaning. An exception is made for pound (#) characters
that are surrounded by non-whitespace characters, such as "file#name". This is needed because the tmpnam standard library function generates file
and directory names containing pound (#) characters.

The debugger performs alias expansion as follows:

1. At the beginning of the line, and immediately after semicolon (;) or left brace ({) characters not inside strings, the debugger checks for the
occurrence of an alias identifier.

2. If it finds an alias identifier, it associates the formal parameters of the alias with the specified actual parameters.

If the alias has no formal parameters, this match consumes no more of the input.

a. If there are formal parameters, white space is skipped, and then a '(' character is checked for and skipped. The characters following the '(' up
to the first non-nested ',' or ')' character are associated with the formal parameter.

Again, the characters within strings are not tested. Nesting is caused by '(' and ')' characters outside of strings.

b. If there are more formal parameters, the ',' character is treated as the terminator of the actual parameter. It is skipped and processing
continues as for the first parameter.

3. After the alias and the correct number of actuals have been identified, all the characters from the start of the alias identifier to its end (no parameters)
or the trailing ')' (one or more parameters) are replaced by the expansion.

4. Within the definition of the alias, all occurrences of the formal parameter are replaced by the actual parameter, regardless of whether or not it is in a
string.

4.3.3 Environment Variable Expansion
The debugger expands environment variables and the leading tilde (~) in the following cases:

● As part of a command in which a file name or a directory is expected.
● In the arguments to run or rerun(dbx).

As in any shell, you can group an environment variable name using a pair of curly braces ({}), and quote a dollar sign ($) by preceding it with a backslash (\).

The following table shows how various environment variables expand. It assumes that the home directory is /usr/users/hercules and the environment
variable BIN is /usr/users/hercules/bin.

Command with Environment Variable Expands into
load ~/a.out load /usr/users/hercules/a.out
load $BIN/a.out load /usr/users/hercules/bin/a.out
load ${BIN}2/a\$b load /usr/users/hercules/bin2/a$b
map source directory $BIN ${BIN}2 map source directory /usr/users/hercules/bin /usr/users/hercules/bin2
stop at "$BIN/a.out":20 stop at "/usr/users/hercules/bin/a.out":20
run $BIN/a.out ~/core run /usr/users/hercules/bin/a.out /usr/users/hercules/core

4.4 Syntax of Commands
The debugger has different parsing rules for each of the different languages it supports. A line is processed according to the current language, even if executing
the line will change the current language.

4.4.1 Lexical Elements of Commands
For the debugger to parse the line, it must first turn the line into a sequence of tokens, a process called "tokenizing" or "lexical analysis". Tokenizing is done with
a state machine.

As the debugger starts tokenizing a line into a command, it starts processing the characters using the lexical state LKEYWORD. It uses the rules for lexical
tokens in this state, recognizing the longest sequence of characters that forms a lexical token.

After the lexical token is recognized, the debugger appends it to the tokenized form of the line, perhaps changes the state of the tokenizer, and starts on the
next token.

For more detailed information on lexical elements, see Lexical Elements of Commands in Part III.

4.4.2 Grammar of Commands

Some pieces of the grammar were modified from a grammar originally written by James A. Roskind, and covered by a copyright that requires a
statement that... Portions Copyright (c) 1989, 1990 James A. Roskind

Each command line must parse as one of the following:

input
 : command_list
 | comment

A command_list is a sequence of commands that are executed one after the other.

command_list
 : command ;...
 | command ;
 | command

A comment is a line that begins with a pound (#) character.

comment
 : #

Any text after an unquoted pound character is ignored by the debugger. If the first non-whitespace character on a line is a pound character, the whole line is
ignored.

Note: The difference between a blank command line and a command line that is a comment is that a blank line entered from the keyboard will cause the
debugger to repeat the previous command and the comment line will not. Blank lines not entered from the keyboard are treated as comment lines.

4.4.3 Categories of Commands
Commands usually start with, and often contain, keywords. These keywords must be lowercase.

DBX Mode

Following is a list of debugger command categories:

command
 : alias_command
 | attach_command
 | braced_command_list
 | breakpoint_command
 | browse_source_command
 | call_stack_command
 | command_repetition_command
 | continue_command
 | detach_command
 | dbgvar_command
 | edit_file_command
 | environment_variable_command
 | execute_commands_from_file_command
 | execute_shell_command
 | guion_command
 | help_command
 | history_command
 | if_command
 | kill_command
 | load_command
 | look_around_command
 | machinecode_level_command
 | modifying_command
 | multiprocess_command
 | parallel_debugging_command
 | quit_command
 | record_command
 | run_command
 | snapshot_command
 | shared_library_command
 | thread_command
 | unload_command

4.4.4 Keywords Within Commands
If the identifiers thread, in, at, and if occur within the expression in the following commands, the debugger treats them as keywords unless they are
enclosed within parentheses (()).

● where expression
● stopi expression
● trace expression
● tracei expression
● wheni expression

For example, if your program has thread defined as an integer, enter the following command to inspect the first thread levels of the stack.

For example:

(idb) where 3
>0 0x8049a6c in c() "x_whereAmbigParse.c":7
#1 0x8049a8f in b() "x_whereAmbigParse.c":12
#2 0x8049aa2 in a() "x_whereAmbigParse.c":13
(idb)
(idb)
(idb)
(idb) where three(3)
>0 0x8049a6c in c() "x_whereAmbigParse.c":7
#1 0x8049a8f in b() "x_whereAmbigParse.c":12
#2 0x8049aa2 in a() "x_whereAmbigParse.c":13
(idb)
(idb)
(idb)
(idb) where thread (1)
Stack trace for thread 1
>0 0x8049a6c in c() "x_whereAmbigParse.c":7
#1 0x8049a8f in b() "x_whereAmbigParse.c":12
#2 0x8049aa2 in a() "x_whereAmbigParse.c":13
#3 0x8049abe in main() "x_whereAmbigParse.c":17
#4 0x400dd177 in __libc_start_main(...) in /lib/i686/libc.so.6
#5 0x8049929 in _init(...) in /usr/examples/x_whereAmbigParse

(idb)
(idb)
(idb)
(idb) where three(3) thread (1)
Stack trace for thread 1
>0 0x8049a6c in c() "x_whereAmbigParse.c":7
#1 0x8049a8f in b() "x_whereAmbigParse.c":12
#2 0x8049aa2 in a() "x_whereAmbigParse.c":13

(idb)
(idb)
(idb)
(idb) where (thread(3))
>0 0x8049a6c in c() "x_whereAmbigParse.c":7
#1 0x8049a8f in b() "x_whereAmbigParse.c":12
#2 0x8049aa2 in a() "x_whereAmbigParse.c":13
(idb)
(idb)
(idb)

4.4.5 Using Braces to Make a Composite Command
It is possible to surround a command_list with braces to make it work like a single command. Some places require a braced_command_list just for
readability, or to assist the debugger in understanding your input.

braced_command_list
 : { command_list }

4.4.6 Conditionalizing Command Execution
The debugger provides the if command, whose behavior depends on the value of an expression.

if_command
 : if expression braced_command_list [else_clause]

else_clause
 : else braced_command_list

In this command, the first braced_command_list is executed if expression evaluates to a non-zero value; otherwise, the braced_command_list in the
else_clause is executed, if specified.

For example:

(idb) set $c = 1
(idb) assign pid = 0
(idb) if (pid < $c) { print "Greater" } else { print "Lesser" }
Greater

4.4.7 Debugger Variables
Debugger variables are pseudovariables that exist within the debugger instead of within your program. They have the following uses:

● Support some limited programming capabilities within the debugger command language
● Allow you to examine and change various debugger options
● Allow you to find out exactly what various debugger commands did

The following table lists the three different varieties of debugger variables:

Kind of variable Purpose
User-defined variables You create these and can set them to a value of any type.

Preference variables You modify these to change debugger behavior. You can only set a preference variable to a value that is valid for that particular
variable.

Display/state variables These variables display the parts of the current debugger state. You cannot modify them.

For more information about debugger variables, see Appendix 1 — Debugger Variables.

The following commands deal specifically with debugger variables:

dbgvar_command
 : set dbgvar_name = expression
 | set dbgvar_name
 | set
 | unset dbgvar_name

The dbgvar_name should not exist anywhere in your program, or you may confuse yourself about which of the occurrences you are actually dealing with. The
predefined debugger variables all start with a dollar sign ($), to help avoid this confusion. It is strongly recommended that you follow the same practice; in a
future release, all debugger variables will be required to start with a dollar sign.

Note: If a debugger variable exists that shares a name with a program variable, and you print an expression involving that name, which of the two variables the
debugger finds is undefined.

The first form creates the debugger variable if it does not already exist. It then sets the value of the debugger variable to the result of evaluating the expression.
For example:

(idb) set $myLoopCounter = 0
(idb) print $myLoopCounter
0

The second form is equivalent to the command set dbgvar_name = 1. For example:

(idb) print $stoponattach
0
(idb) set $stoponattach
(idb) print $stoponattach
1

The set form shows all the debugger variables and their values:

(idb) set
$ascii = 0
$beep = 1
$catchexecs = 0
$catchforkinfork = 0
$catchforks = 0
$childprocess = 0
$cmdset = "idb"
$curevent = 0

$curfile = "x_list.cxx"
$curfilepath = "../src/x_list.cxx"
$curline = 182
$curpc = 0x8049f4c
$curprocess = 30078
$cursrcline = 182
$cursrcpc = 0x8049f4c
$curthread = 1
$dbxoutputformat = 0
$dbxuse = 0
$debuggerpid = 30076
$decints = 0
$disasm_shows_unwind = 0
$doverbosehelp = 1
$editline = 1
$eventecho = 1
$floatshrinking = 1
$framesearchlimit = 0
$funcsig = 1
$givedebughints = 1
$hasmeta = 0
$hexints = 0
$historylines = 20
$indent = 1
$lang = "C++"
$lasteventmade = 0
$lc_ctype = "en_US.ISO8859-1"
$listwindow = 20
$main = "\"x_list.cxx\"`main"
$maxarrlen = 1024
$maxstrlen = 128
$memorymatchall = 0
$myLoopCounter = 0
$octints = 0
$overloadmenu = 1
$page = 1
$pagewindow = 0
$parentprocess = 0
$pimode = 1
$prompt = "(idb) "
$readtextfile = 0
$regstyle = 1
$repeatmode = 1
$reportsotrans = 0
$showlineonstartup = 0
$showwelcomemsg = 1
$stackargs = 1
$statusargs = 1
$stepg0 = 0
$stoponattach = 1
$stopparentonfork = 0
$symbolsearchlimit = 100
$threadlevel = "native"
$usedynamictypes = 1
$verbose = 0

To see the value of just one debugger variable, print it. For example:

(idb) print $catchexecs
0

The unset form deletes the debugger variable. Some predefined debugger variables either cannot be deleted or are automatically recreated in the future when
needed. For example:

(idb) unset $myLoopCounter
(idb) print $myLoopCounter
Symbol "$myLoopCounter" is not defined.
(idb) unset $catchforks
Warning: The debugger variable "$catchforks" was not unset because it is an idb
predefined variable

4.5 Scripting or Repeating Previous Commands
To repeat the last command line, enter two exclamation points (!) or press the Return key. You can also enter !-1.

command_repetition_command
 : !!
 | ! integer
 | !- integer
 | ! string

To repeat a command line entered during the current debugging session, enter an exclamation point followed by the integer associated with the command line.
(Use the history command to see a list of commands used.) For example, to repeat the seventh command used in the current debugging session, enter !7.
Enter !-3 to repeat the third-to-the-last command. See also History replacement of the line.

To repeat the most-recent command starting with a string, use the last form of the command. For example, to repeat a command that started with bp, enter
!bp.

Following are other ways to reuse old commands and save typing effort:

● Use a completely empty line to repeat the last command but not the last line, which could have been a comment or a syntactically invalid attempt at a
command. Immediately pressing the Return key is the recommended way of doing this.

● Use command line editing to recall and modify commands you have already entered.
● It is often useful to have a text editor up and running while debugging, and use it to assemble short scripts that you can copy and paste to the debugger.

Keep a separate text file that has such scripts in it, as well as other notes you wish to keep. This provides continuity from one debugging session to the
next, and from one day to the next.

If you place commands in a file, you can execute them directly from the file rather than cutting and pasting them to the terminal. For example:

execute_commands_from_file_command
 : source filename
 | playback input filename

Use the source command to read and execute commands from a file. (You can also execute debugger commands when you invoke the debugger by creating
an initialization file named .dbxinit.) These commands can be nested, and as each comes to an end, reading resumes from where it left off in the previous
file.

Be aware, however, that blank lines in these files do not repeat the last command, unlike what blank lines do when entered from the terminal. Format the
commands as if they were entered at the debugger prompt.

Use the pound character (#) to create comments to format your scripts.

The following is an example debugger script:

(idb) sh cat ../src/myscript
step
where 2

The following example shows how to execute it:

(idb) run
[1] stopped at [int main(void):182 0x8049f48]
 182 List<Node> nodeList;
(idb) source ../src/myscript
stopped at [List<Node>::List(void):121 0x8057e56]
 121 List<NODETYPE>::List() : _firstNode(NULL)
>0 0x8057e56 in ((List<Node>*)<bad value>)->List<Node>::List() "x_list.cxx":121
#1 0x8049f57 in main() "x_list.cxx":182

When a command file is executed, the value of the $pimode debugger variable determines whether the commands are echoed. If the $pimode variable is set
to 1, commands are echoed; if $pimode is set to 0 (the default), commands are not echoed. The debugger output resulting from the commands is always
echoed.

4.5.1 Recording Input and Output
To help you make command files, as well as to help you see what has happened before, the debugger can write both its input and its output to files, as follows:

record_command
 : record io [filename]
 | record input [filename]
 | record output [filename]
 | unrecord io
 | unrecord input
 | unrecord output

Use record input to save debugger commands to a file. The commands in the file can be executed using the source command or the playback input
command.

If no file name is specified, the debugger creates a file with a random file name in /tmp as the record file. The debugger issues a message giving the name of
that file.

To stop recording debugger input or output, redirect as shown in the following example, use the appropriate version of the unrecord command, or exit the
debugger:

(idb) record input /dev/null
(idb) record output /dev/null

The following example shows how to use the record input command to record a series of debugger commands in a file named myscript:

(idb) record input myscript
(idb) stop in main
[#1: stop in int main(void)]
(idb) run
[1] stopped at [int main(void):182 0x8049f48]
 182 List<Node> nodeList;
(idb) record input /dev/null

This example results in the following recorded input in myscript:

(idb) sh cat myscript
stop in main
run
record input /dev/null

The record output command saves the debugger output to a file. The output is simultaneously written to stdout (normal output) or stderr (error
messages). For example:

(idb) record output myscript
(idb) stop in List<Node>::append
[#2: stop in void List<Node>::append(struct Node* const)]
(idb) cont
[2] stopped at [void List<Node>::append(struct Node* const):148 0x8058026]
 148 if (!_firstNode)
(idb) next
stopped at [void List<Node>::append(struct Node* const):149 0x805802f]
 149 _firstNode = node;

After the above commands are executed, myscript contains the following:

(idb) sh cat myscript
[#2: stop in void List<Node>::append(struct Node* const)]
[2] stopped at [void List<Node>::append(struct Node* const):148 0x8058026]
 148 if (!_firstNode)
stopped at [void List<Node>::append(struct Node* const):149 0x805802f]
 149 _firstNode = node;

The record io command saves both input to and output from the debugger. For example:

(idb) record io myscript
(idb) stop in main
[#1: stop in int main(void)]
(idb) run
[1] stopped at [int main(void):12 0x120001130]

 12 int i;
(idb) quit
% cat myscript
(idb) stop in main
[#1: stop in int main(void)]
(idb) run
[1] stopped at [int main(void):12 0x120001130]
 12 int i;
(idb) quit

If input or output is already being recorded, a new record input command will close the old file and record to a new one, rather than record simultaneously
to two files. In that connection, note that record io is equivalent to the combination of record input and record output, and will cause any open
recording files to be closed.

Note that the prompt itself is only recorded for record io.

4.5.2 Viewing the Command History
You can see all the commands you have already entered by using the history command. Use history_number to indicate how many commands to show,
starting with the most recent. If you do not specify $historylines, the 20 previous commands are shown. See also History replacement of the line.

history_command
 : history [integer_constant]

For example:

(idb) history 6
18: stop in main
19: run
20: stop at 103
21: cont
22: print "history_EXAMPLE START"
23: history 6

4.6 Defining Aliases (DBX mode only)
You can extend the set of debugger commands by defining aliases.

When the debugger is tokenizing a command line, it expands aliases and then retokenizes the expansion.

alias_command
 : alias [alias_name]
 | alias alias_name [(argument_name, ...)] string
 | unalias alias_name

The following example shows how to define and use an alias:

(idb) alias cs
alias cs is not defined
(idb) alias cs "stop at 186; run"
(idb) cs
[#1: stop at "x_list.cxx":186]
[1] stopped at [int main(void):186 0x120002420]
 186 IntNode* newNode = new IntNode(1);

The following example further modifies the cs alias to specify the breakpoint's line number when you enter the cs command:

(idb) alias cs (x) "stop at x; run"
(idb) cs(186)
[#2: stop at "x_list.cxx":186]
Process has exited
[2] stopped at [int main(void):186 0x120002420]
 186 IntNode* newNode = new IntNode(1);

Note: No warning is given if the alias_name already has a definition as an alias. The old definition will be replaced by the new one.

Use the unalias command followed by an alias name to delete the specified alias.

4.7 Executing Shell Commands
You can have the debugger execute a call to the operating system's system function. This function is documented in system(3). The call results in the sh(dbx)
or shell(gdb) commands.

DBX Mode

execute_shell_command
 : sh string

For example, you can execute a system command through a shell from the debugger by issuing the following command:

(idb) sh uname -m
i686
(idb)

To execute more than one command at the specified shell, spawn a shell as follows, for example:

(idb) sh csh -f
% ls out
out
% ls *.b
recio.b
stdio.b
% exit
(idb)

GDB Mode

execute_shell_command
 : shell string

For example:

(idb) shell uname -m
i686
(idb)

To execute more than one command at the shell, spawn a shell as follows:

(idb) shell bash --norc
$ ls out
out
$ ls *.b
recio.b
stdio.b
$ exit
(idb)

4.8 Invoking Your Editor (DBX Mode only)
You can use the edit command to invoke the editor defined by the EDITOR environment variable.

edit_file_command
 : edit [string]

The editor is given the string as the file name to edit. If no file name is specified, the editor is given the current file. If no current file exists, the editor is
started without a file.

If the EDITOR environment variable is undefined, the debugger invokes the vi editor.

The following example invokes the Emacs editor on the file chars.c:

(idb) sh printenv EDITOR
emacs
(idb) file
chars.c
(idb) edit

The following example invokes the nedit editor on the file ~/foo/bar.f:

(idb) sh printenv EDITOR
nedit
(idb) edit ~/foo/bar.f

Chapter 5 — Context for Executing Commands
This chapter discusses the following topics:

● Multiple processes
● Creating processes
● Multiple call frames, threads, and sources

5.1 Multiple Processes
The debugger supports debugging multiple processes at a time, but at any given time is only operating on a single process, known as the current process. The
debugger variable $curprocess contains the process id for this process. Naming and switching the debugger between processes is described in Multiprocess
Debugging.

5.2 Creating Processes
The debugger can find and control the following:

● Processes that you may request it to create later
● Processes that are currently running

Specifying an executable file on the shell command line or executing the load(dbx) or file(gdb) command causes the debugger to gain control of a process
that you may request it to create later.

Note: In the background, the debugger immediately creates a process executing the program, stalls it, and uses it to answer questions about which shared
libraries are mapped, and so on. This process never continues, and is killed when:

● The debugger exits.
● You unload this executable file.
● You try to run the program.

Using the run command on such a potential process causes the debugger to create a process that is identified as currently running and recreatable.

Specifying a pid on the shell command line or executing the attach command causes the debugger to know about the process as currently running and not
recreatable.

Catching a fork() causes the new child process to be identified as currently running and not recreatable.

5.3 Multiple Call Frames, Threads, and Sources
Processes contain one or more threads of execution. The threads execute functions. Functions are sequences of instructions that are generated by compilers
from source lines within source files.

As you enter the debugger commands to manipulate your process, it would be very tedious to have to repeatedly specify which thread, source file, and so on,

you wish the command to be applied to. To prevent this, each time the debugger stops the process, it re-establishes a static context and a dynamic context for
your commands. The components of the static context are independent of this run of your program; the components of the dynamic context are dependent on
this run.

Some pieces of these contexts are available as debugger variables.

● The static context consists of the following:
❍ Current program
❍ Current file - $curfile
❍ Current line - $curline

● The dynamic context consists of the following:
❍ Current call frame
❍ Current process - $curprocess
❍ Current thread - $curthread
❍ The thread executing the event that caused the debugger to gain control of the process

You can switch most of these individually to point to other instances, as described in the relevant portions of this manual, and the debugger will modify the rest
of the static and dynamic context to keep the various components consistent.

Chapter 6 — Running the Program Under Debugger Control
Often, running the program in a process just requires forking a process and executing the program within it with the right environment variables, argc/argv, file
descriptors, and so on. This is what usually happens when you run your program from a shell command line.

However, sometimes the program requires more context, or a process may already have been created. Perhaps it is part of a pipe, perhaps it is a long-running
process, or perhaps it is created from a shell script or makefile.

Hence, the following situations are possible:

● Running your program as a child process of the debugger process.
● Using the debugger's ability to attach to any process it has access to.

6.1 Running the Program as a Child Process
If your program has a simple command line, and only requires stdin, stdout, and stderr connected, you can run it as a child process of the debugger
process. For example:

DBX Mode

% idb a.out

or

% idb
(idb) load a.out

GDB Mode

% idb -gdb a.out

or

% idb -gdb
(idb) file a.out

6.2 Attaching to a Process
If your program is any of the following, you can use the debugger's ability to attach to any process to which it has access:

● Already running in a process
● Has a complex command line
● Is part of a pipe

● Is started by a script that is difficult to modify

Examples:

DBX Mode

% idb -pid 8492 a.out

or

% idb
(idb) attach 8492 a.out

GDB Mode

% idb -gdb -pid 8492 a.out

or

% idb -gdb
(idb) file a.out
(idb) attach 8492

When you do this, the process continues execution until it raises a signal that the debugger intercepts, for example, SEGV. If you have set the $stoponattach
preference variable, it stops immediately.

One method you can use to make attaching to a process work in a predictable way is to modify your program to loop in a known function until the debugger
interrupts it, for example, when you use Ctrl/C:

1. Add some code such as the following to your application:

volatile int endStallForDebugger=0;

void stallForDebugger()
{
 while (!endStallForDebugger) ;
}

int main()
{
 ...
 stallForDebugger();
 ...
}

2. Run this version of your program.

3. Attach the debugger to the running process as described above.

4. Stop the program with Ctrl/C or by use of $stoponattach.

5. Use the debugger to assign to the stallForDebugger variable, and continue the execution of the process, so that it exits from the loop:

(idb) assign endStallForDebugger = 1
(idb) # set any needed breakpoints, and so on
(idb) cont

6.3 The load, unload, and file Commands
Using the load(dbx) and file(gdb) commands, you can tell the debugger which executable file you intend to execute in some process. These commands read
the symbol table information of an executable file. The load(dbx) command can optionally load a core file. (This is done automatically when you give the
debugger a file name on the shell command line.)

DBX Mode

load_command
 : load filename [filename]

The second file name is used to specify a core file. If you specify a core file, the debugger acts as though it is attached to the process at the point just before
it died, except that you cannot execute commands that require a runnable process, such as commands that try to continue the process or evaluate function
calls.

Examples:

% idb /usr/examples/x_list

(idb) listobj
Program is not active
(idb) load /usr/examples/x_list
Reading symbolic information ...done
(idb) listobj
 section Start Addr End Addr
--
/usr/examples/x_list
 .text 0x8048000 0x8084c4b
 .data 0x8085c60 0x80b0683
 .bss 0x80b0684 0x80b0e3f

/lib/i686/libm.so.6
 .text 0x4002d000 0x4004eac2
 .data 0x4004fad0 0x4004fc93
 .bss 0x4004fc94 0x4004fcf3

/opt/intel/cc-7.0b-015/compiler70/ia32/lib/libcxa.so.1
 .text 0x40050000 0x40071029
 .data 0x40072040 0x40081687
 .bss 0x40081688 0x40081713

/lib/i686/libc.so.6
 .text 0x40082000 0x401b3665
 .data 0x401b4680 0x401b8d87
 .bss 0x401b8d88 0x401bcf67

/lib/ld-linux.so.2
 .text 0x40000000 0x40015228
 .data 0x40016240 0x4001653f
 .bss 0x40016540 0x40016997

GDB Mode

file_command
 : file [filename]

If filename is specified, the debugger loads specified exacutable. Without an argument the debugger unloads current executable file.

Example:

% idb -gdb /usr/examples/x_list

or:

(idb) info files
(idb) file /usr/examples/x_list
Reading symbols from /usr/examples/x_list...done.
(idb) info files
Symbols from "/usr/examples/x_list".
Unix child process:
 Using the running image of child process 10951.

 While running this, idb does not access memory from...
Local exec file:
 '/usr/examples/x_list', file type <unknown>
 0x8048000 - 0x8084d50 is .text
 0x8085000 - 0x80b8da4 is .data
 0x80b8da4 - 0x80b9520 is .bss

Creating a process both creates the debugger's knowledge of it and makes it the current process that the debugger is controlling.

The opposite of loading an executable file is unloading an executable file, when the debugger removes all related symbol table information that the debugger
associated with the process being debugged.

DBX Mode

unload_command
 : unload [pid ,...]
 | unload [filename]

pid
 : integer_constant

Process for unloading can be specified by either a process id or an executable file name.

(idb) listobj
 section Start Addr End Addr
--
/usr/examples/x_list
 .text 0x8048000 0x8084c4b
 .data 0x8085c60 0x80b0683
 .bss 0x80b0684 0x80b0e3f

/lib/i686/libm.so.6
 .text 0x4002d000 0x4004eac2
 .data 0x4004fad0 0x4004fc93
 .bss 0x4004fc94 0x4004fcf3

/opt/intel/cc-7.0b-015/compiler70/ia32/lib/libcxa.so.1
 .text 0x40050000 0x40071029
 .data 0x40072040 0x40081687
 .bss 0x40081688 0x40081713

/lib/i686/libc.so.6
 .text 0x40082000 0x401b3665
 .data 0x401b4680 0x401b8d87
 .bss 0x401b8d88 0x401bcf67

/lib/ld-linux.so.2
 .text 0x40000000 0x40015228
 .data 0x40016240 0x4001653f
 .bss 0x40016540 0x40016997

(idb) unload
Process has exited
(idb) listobj
Program is not active

GDB Mode
Use the file comand without an argument to unload an executable file.

(idb) info files
Symbols from "/usr/examples/x_list".
Unix child process:
 Using the running image of child process 10950.
 While running this, idb does not access memory from...
Local exec file:
 '/usr/examples/x_list', file type <unknown>
 0x8048000 - 0x8084d50 is .text

 0x8085000 - 0x80b8da4 is .data
 0x80b8da4 - 0x80b9520 is .bss
(idb) file
No symbol file now.
(idb) info files

6.4 The run and rerun Commands
After you have loaded a program, you can create a process executing this program using either of the following forms of the run command:

DBX Mode

run_command
 : run [argument_string] [io_redirection ...]
 | rerun [argument_string] [io_redirection ...]

If the rerun command is specified without arguments, the arguments and io_redirection arguments of the most recent run command entered with
arguments are used. If there was no previous run command, the rerun command defaults to run.

GDB Mode

run_command
 : run [argument_string] [io_redirection ...]
 | r [argument_string] [io_redirection ...]

arg_commands
 : set_args_command
 | show_args_command

set_args_command
 : set args [argument_string] [io_redirection ...]

show_args_command
 : show args

The r command is a synonym for the run command.

If the run command does not specify any arguments, default arguments are used. Default arguments are specified by the previous run command with
arguments or by set args command. To inspect default arguments use the show args command.

Note: The set args commands does not affect process currently running. New arguments will affect only next run.

If the last modification time or size of the binary file or any of the shared objects used by the binary file has changed since the last run or rerun(dbx) command
was issued, the debugger automatically rereads the symbol table information. If this happens, the old breakpoint settings may no longer be valid after the new
symbol table information is read.

The argument_string provides both the argc and argv for the created process in the same way a shell does.

The debugger breaks up the argument_string into words, and supports several shell features, including tilde (~) and environment variable expansion,
wildcard substitution, single quote ('), double quote ("), and single character quote (\).

The io_redirection argument allows you to change stdin, stdout, and stderr, which are otherwise inherited from the debugger process:

io_redirection
 : < filename
 | > filename
 | 1> filename
 | 2> filename
 | >& filename

The various forms have the same effect as in the csh(1) shell.

Note: Although the grammar currently allows more than the following forms of redirection, you should only use the following forms because the grammar may
change in a future release of the debugger.

 > filename Redirect stdout
 1> filename Redirect stdout
 2> filename Redirect stderr
 >& filename Redirect stdout and stderr
 1> filename 2> filename Redirect stdout and stderr to different files

Examples:

DBX Mode

(idb) stop in main
[#1: stop in int main(void)]
(idb) run -s > prog.output
[1] stopped at [int main(void):182 0x1200023f8]
 182 List<Node> nodeList;

GDB Mode

(idb) break main
Breakpoint 1 at 0x804a0a0: file x_list.cxx, line 182.
(idb) show args
Argument list to give program being debugged when it is started is "".
(idb) run
Starting program: /usr/examples/x_list

Breakpoint 1, main () at x_list.cxx:182
182 List<Node> nodeList;
(idb) continue
Continuing.
The list is:
Node 1 type is integer, value is 1
Node 2 type is compound, value is 12.345
 parent type is integer, value is 2
Node 3 type is compound, value is 3.1415
 parent type is integer, value is 7
Node 4 type is integer, value is 3
Node 5 type is integer, value is 4
Node 6 type is compound, value is 10.123
 parent type is integer, value is 5

Destroying nodes...
All nodes destroyed

Program terminated normally with exit code 0
(idb) set args -s > prog.output
(idb) show args
Argument list to give program being debugged when it is started is " -s >
prog.output".
(idb) run
Starting program: /usr/examples/x_list

Breakpoint 1, main () at x_list.cxx:182
182 List<Node> nodeList;

Information: idb allows you to restart the execution of your program
from saved positions. Enter "help snapshot" for details.

6.5 The kill Command
You can kill the current process:

kill_command
 : kill

Killing a process leaves the debugger running. Any breakpoints previously set are retained. You can later rurun the program by the rerun(dbx) or the run(gdb)
commands. For example:

DBX Mode

(idb) show process
Current Process: localhost:24048 (/usr/examples/x_list) paused.
(idb) kill
Process has exited
(idb) rerun
[1] stopped at [int main(void):182 0x8049f48]
 182 List<Node> nodeList;

Information: idb allows you to restart the execution of your program
from saved positions. Enter "help snapshot" for details.

GDB Mode

(idb) info program
 Using the running image of child process 10952.
Program stopped at 0x804a0a0.
It stopped at breakpoint 1.
(idb) kill
Program terminated normally
(idb) info program
The "info program" command has failed because there is no running program.
(idb) run
Starting program: /usr/examples/x_list

Breakpoint 1, main () at x_list.cxx:182
182 List<Node> nodeList;

Information: idb allows you to restart the execution of your program
from saved positions. Enter "help snapshot" for details.

6.6 The attach and the detach Commands
If a process already exists, you can have the debugger attach to it:

DBX Mode

attach_command
 : attach pid [filename]

GDB Mode

attach_command
 : attach pid

Note: The attach command requires the name of executable to be specified before attaching to the process. Use the file command or shell command
line to specify the filename.

The process is specified by its pid:

pid

 : expression

For example:

DBX Mode

(idb) attach 12345 a.out

GDB Mode

(idb) file a.out
Reading symbols from a.out...done.
(idb) attach 12345

The file name must be an executable file that the process is executing, or a copy of it, or an unstripped copy of it. If file name is not specified, the current
executable is used.

Attaching to a process both creates the debugger's knowledge of it and makes it the current process that the debugger is controlling. When you do this, the
process continues execution until it raises a signal that the debugger intercepts. Usually you do this by pressing Ctrl/C or by using the shell command kill in
another window. Any other mechanism for raising a signal within the process will also do. You can set the debugger variable $stoponattach to 1 to direct the
debugger to immediately stop any process that it attaches to:

(idb) ^C
Interrupt (for process)

Stopping process localhost:16077 (loop.out).
Thread received signal INT
stopped at [int main(void):3 0x120001100]
 3 while (1) ;

The opposite of attaching to a process is detaching from a process. When you detach the debugger from a process, all breakpoints are removed and the
process continues to run, but the debugger can no longer identify or control it:

DBX Mode

detach_command
 : detach pid ,...

For example:

(idb) detach 12345, 789

GDB Mode

detach_command
 : detach

The detach command detaches the debugger from a current process and, therefore, does nor require pid.

6.7 Controlling the Process Environment
You can set and unset environment variables for processes created in the future to set up an environment different from the environment of the debugger and
from the shell from which the debugger was invoked. When set, the environment variables apply to all new processes you debug.

Note: The environment commands have no effect on the environment of any currently running process. The environment commands do not change or show
the environment variables of the debugger or of the current process. They only affect the environment variables that will be used when a new process is
created.

environment_variable_command
 : show_environment_variable_command
 | set_environment_variable_command
 | unset_environment_variable_command

To print either all the environment variables that are currently set or a specific one, use a show_environment_variable_command.

DBX Mode

show_environment_variable_command
 : printenv [environment_variable_name]
 | export
 | setenv

Note: The export and setenv commands without any arguments are equivalent.

GDB Mode

show_environment_variable_command
 : show environment [environment_variable_name]
 | show env [environment_variable_name]

The show env is a synonym for the show environment command.

If you do not specify a name of environment variable to show, the debugger will print all the environment variables.

To add or change an environment variable, use a set_environment_variable_command. If the environment_variable_value is not specified, the
environment variable value is set to "".

DBX Mode

set_environment_variable_command
 : export environment_variable_name = environment_variable_value
 | setenv environment_variable_name environment_variable_value

GDB Mode

set_environment_variable_command
 : set environment environment_variable_name [[=]
environment_variable_value]
 | set env environment_variable_name [[=]
environment_variable_value]

environment_variable_value
 : string

To remove an environment variable, use the following commands:

DBX Mode

unset_environment_variable_command
 : unsetenv environment_variable_name
 | unsetenv *

If an asterisk (*) is specified, all environment variables are removed.

GDB Mode

unset_environment_variable_command
 : unset environment environment_variable_name
 | unset env environment_variable_name

Note: There is no command to simply return to the initial state the environment variables had when the debugger started. You must use
set_environment_variable commands and unset_environment_variable commands appropriately.

For example:

DBX

(idb) printenv TOOLDIRECTORY
Error: Environment variable 'TOOLDIRECTORY' was not found in the environment.
(idb) setenv TOOLDIRECTORY /usr/examples/tools
(idb) printenv TOOLDIRECTORY
TOOLDIRECTORY=/usr/examples/tools

GDB

(idb) show environment TOOLDIRECTORY
Environment variable "TOOLDIRECTORY" not defined.
(idb) set environment TOOLDIRECTORY /usr/examples/tools
(idb) show environment TOOLDIRECTORY
TOOLDIRECTORY=/usr/examples/tools
(idb) unset environment TOOLDIRECTORY
(idb) show environment TOOLDIRECTORY
Environment variable "TOOLDIRECTORY" not defined.

6.8 Multiprocess Debugging
The debugger can find and control more than one process at a time. The debugger can find and control a process for one of three reasons:

● It created the process.
● It attached to the process.
● A process that it was controlling executed a fork, and $catchforks was set.

At any one time, you can control only one of the processes that the debugger controls. The rest are stalled. You must explicitly switch the debugger to the
process you want to work with, stalling the one it was controlling:

multiprocess_command
 : show_process_command
 | switch_process_command

You can show the processes the debugger controls:

show_process_command
 : show process [all]
 | process

all
 : all
 | *

For example:

(idb) show process
>localhost:5351 (/usr/examples/x_list) loaded.

You can explicitly command the debugger to control a different process:

switch_process_command
 : process pid
 | process filename

The process you are switching away from remains stalled until either the debugger exits or until you switch to it and continue it.

The following example creates two processes and switches from one to the other:

(idb) process
There is no current process.
You may start one by using the `load' or `attach' commands.
(idb) load /usr/examples/x_list
Reading symbolic information ...done
(idb) process
>localhost:5352 (/usr/examples/x_list) loaded.
(idb) set $old_process = $curprocess
(idb) printf "$old_process=%d", $old_process
$old_process=5352
(idb) load /usr/examples/x_segv
Reading symbolic information ...done
(idb) process
 localhost:5352 (/usr/examples/x_list) loaded.
>localhost:5353 (/usr/examples/x_segv) loaded.
(idb) process 5352
(idb) process
>localhost:5352 (/usr/examples/x_list) loaded.
 localhost:5353 (/usr/examples/x_segv) loaded.

Both the load(dbx) command and the attach(dbx) command switch the debugger to the process on which they operate.

6.9 Processes That Use fork()
The debugger has the following predefined variables that you can set for debugging a program that forks:

● $catchforks — When set to a non-zero value, this variable instructs the debugger to stop the child process on exit out of the fork() or vfork()
calls. The parent process continues to run. The default is 0 (zero).

● $stopparentonfork — When set to a non-zero value, this variable instructs the debugger to stop the parent process on exiting out of the fork() or
vfork() calls after it forks a child process. The child process continues to run if $catchforks is 0; otherwise, it does not. The default is 0 (zero).

● $catchforkinfork — When set to a non-zero value, this variable instructs the debugger to stay in the fork routine after the fork and notifies you as
soon as the forked process is created; otherwise, you are notified when the call finishes. You can debug forking processes before any "atfork" handlers
are run by setting $catchforkinfork. Because the target stops inside the system call, you will need to issue up commands to get to user-written code.
The default is 0 (zero).

When a fork occurs, the debugger sets the debugger variables $childprocess and $parentprocess to the child and parent process IDs, respectively.

In the following example, the debugger notifies you that the child process has stopped. The parent process continues to run.

(idb) set $catchforks = 1
(idb) run
Process 29027 forked. The child process is 29023.
Process 29023 stopped on fork.
stopped at [int main(void):6 0x120001178]
 6 int pid = fork();
fork.c: I am the parent.
Process has exited with status 0
(idb) show process
>localhost:29028 (/usr/examples/fork) loaded.
 localhost:29023 (/usr/examples/fork) paused.

In the preceding example, note the following:

● The debugger indicates that the child process has stopped, and shows the line number at which it is stopped.
● The last two lines show that the child process has stopped and that the parent process has completed execution.

Continuing the previous example, the following shows how to switch the debugger to the child process. Listing the source code shows the source for the child

process.

(idb) process $childprocess
(idb) show process
 localhost:29028 (/usr/examples/fork) loaded.
>localhost:29023 (/usr/examples/fork) paused.
(idb) list
 7
 8 if (pid == 0)
 9 {
 10 printf("fork.c: I am the child.\n");
 11 }
 12 else
 13 {
 14 printf("fork.c: I am the parent.\n");
 15 }
 16 }

In the preceding example, note the following:

● The first line switches the current process context to the child process.
● The right angle bracket indicates the current process.
● The list command lists the source code for the current process.

Note: If you catch the child but not the parent, and the parent code tries to execute a wait on the child, the target will get stuck if you don't let the child run to
completion. This happens because the parent will be running but making no progress, and the child is stopped by the debugger. For example:

(idb) set $catchforks = 1
(idb) set $stopparentonfork = 0
(idb) list
 10 int new_pid = 0;
 11
 12 if (pid == 0) {
 13 printf("fork.c: I am the child.\n");
 14 fflush(stdout);
 15
 16 } else {
 17 printf("fork.c: I am the parent, about to wait.\n");
 18 fflush(stdout);
 19
 20 new_pid = wait(&status);
 21
 22 printf("fork.c: I am the parent, and my wait is finished\n");
 23
 24 if (new_pid != pid)
 25 printf("\tthere was some error\n");
 26 else {
 27 if (WIFEXITED(status))
 28 printf("\tthe child terminated normally\n");
 29
 30 else if (WIFSIGNALED(status))
(idb) sh cat ./x.c_fork_hang.txt
 If we 'cont' now, the process will fork; the child will be
 caught and the parent will run to the 'wait' call and wait
 for the child to terminate.

 At that time, the child will be under debugger control,
 but the current process will be the parent, which will be
 running but making no progress. Only a Ctrl/C will allow
 further progress.

 The example program has set up another process to simulate
 a Ctrl/C by the user. It will send SIGINT to the parent.

(idb) cont
Process 580893 forked. The child process is 580851.
Process 580851 stopped on fork.
stopped at [void test(void):9 0x120001318]
 9 int pid = fork();
fork.c: I am the parent, about to wait.

 :

 User is waiting here
 :
 :
 Sending SIGINT to parent process
 :

Thread received signal INT
stopped at [<opaque> __wait4(...) 0x3ff800d0918]

Information: An <opaque> type was presented during execution of the previous
command. For complete type information on this symbol, recompilation of the program
will be necessary. Consult the compiler man pages for details on producing full
symbol table information using the '-g' (and '-gall' for cxx) flags.

(idb) where
>0 0x3ff800d0918 in __wait4(...) in /usr/shlib/libc.so
#1 0x3ff800d668c in __wait(...) in /usr/shlib/libc.so
#2 0x120001398 in test() "c_fork_hang.c":20
#3 0x120001528 in main() "c_fork_hang.c":71
#4 0x1200012a8 in __start(...) in /usr/examples/c_fork_hang
(idb) show process
>localhost:580893 (/usr/examples/c_fork_hang) paused.
 _localhost:580851 (/usr/examples/c_fork_hang) paused.

6.10 Processes That Use exec()
Set $catchexecs to 1 to instruct the debugger to stop the process and notify you when an exec occurs. The process stops before executing any user
program code or static initializations. You can debug the newly executed process. The debugger keeps a history of the progression of the executed files.

In the following scenario, you set the predefined variables $catchforks and $catchexecs to 1. The debugger will notify you when an execution occurs.
Because $catchforks is set, you will also be tracking the child process and, therefore, you will be notified of any exec in the child process.

The following example shows an exec occurring on the current context and the child process stopped on the run-time loader entry point:

(idb) set $catchforks = 1
(idb) set $catchexecs = 1
(idb) run
Process 14839 forked. The child process is 14835.
Process 14835 stopped on fork.
stopped at [int main(void):8 0x1200011f8]
 8 if ((pid = fork()) == 0)
x_exec.c: I am the parent.
Process has exited with status 0
(idb) show process
>localhost:14918 (x_exec) loaded.
 localhost:14835 (x_exec) paused.
(idb) process $childprocess
(idb) list 6: 13
 6 int pid;
 7
> 8 if ((pid = fork()) == 0)
 9 {
 10 printf("About to exec \n");
 11 fflush(stdout); /* Make sure the output gets out! */
 12 execlp("announcer", "announcer", NULL);
 13 printf("After exec \n");
 14 }
 15 else
 16 {
 17 printf("x_exec.c: I am the parent.\n");
 18 }
(idb) cont
About to exec
The process 14835 has execed the image "./announcer".
Reading symbolic information ...done
stopped at [0x3ff8001bf48]
 5 printf("announcer.c: I am here!! \n");

Note the following:

● Use process $childprocess to set the current process context to the child process.

● Listing the source code, you can see the process is almost ready to execute.
● The debugger notifies you when the exec occurs.
● The child process is stopped on the run-time loader entry point. The source display shows the code in the main routine.

6.11 Core File Debugging
When the operating system encounters an unrecoverable error, for example, a segmentation violation (SEGV), the system creates a file named core and
places it in the current directory. The core file is not an executable file; it is a snapshot of the state of your process at the time the error occurred. It allows you to
analyze the process at the point it crashed. For more information on core file debugging, see Core File Debugging in Part III.

Chapter 7 — Locating the Site of a Problem
To determine why a problem is happening, you usually want to execute your program up to or just before the point at which you observe the first evidence of the
problem. Then you can examine the internal state of your program and try to identify something that explains the visible problem. Possibly you will see right
away how the problem occurs, in which case you are finished debugging. You then correct your program, recompile, relink, and confirm that the correction
works as intended.

Often, you will see something about the program state that is wrong but you will not see how it got that way. In that case, you need to make a guess at where
the mistake might have occurred. Then, repeat this whole process, trying to stop at or just before the possible trouble point.

For simple problems, it may be easy to describe the conditions under which you want to stop the program; for example, "the first time traverse is called" or
"when division_by_zero occurs". Other situations may require either more complex descriptions or repeated trial-and-error attempts to discover the critical
information needed to solve your problem.

Breakpoints provide the means by which you specify to the debugger an event or condition under which you want to intervene in the execution of your program
and what actions you want the debugger to take when that event is detected.

You can define breakpoints based on:

● Reaching a certain place in your program (such as entering a certain function or reaching code for a particular source line number)
● Accessing the contents of a variable or other memory when it is either read or written
● Raising a specified signal

You can also enable, disable, or delete breakpoints.

Breakpoint commands include the following:

breakpoint_command
 : breakpoint_definition_command
 | simple_stop_command
 | signal_command
 | obsolete_breakpoint_definition_command
 | breakpoint_table_command

This chapter discusses the following topics:

● Breakpoint definitions
● Breakpoint tables

7.1 Breakpoint Definitions
The following is a particularly common breakpoint:

DBX Mode

(idb) stop in main
[#1: stop in int main(void)]

GDB Mode

(idb) break main
Breakpoint 1 at 0x804a0a0: file x_list.cxx, line 182.

This command tells the debugger that when execution enters the function main, you want the debugger to suspend execution and return control to you.

The debugger responds to a breakpoint command by displaying how it recorded the request internally. The debugger assigns a number to the breakpoint (in
this case, it is 1), which it uses later to refer to that breakpoint. The debugger does not just repeat the command as you entered it; it provides a more complete
description of the function main to help you confirm that it has correctly identified the function you meant.

Later, after you cause the program to execute, if that event occurs, the debugger reports the event and then prompts you for what to do next. For example:

DBX Mode

(idb) run
[1] stopped at [int main(void):182 0x8049f48]
 182 List<Node> nodeList;

GDB Mode

(idb) run
Starting program: /usr/examples/x_list

Breakpoint 1, main () at x_list.cxx:182
182 List<Node> nodeList;

Both the event part and the action part of a breakpoint definition command consist of several subparts:

breakpoint_definition_command
 : disposition
 [quiet]
 detector
 [thread_filter]
 [logical_filter]
 [breakpoint_actions]

where the detector, thread_filter (if specified), and logical_filter (if specified) collectively specify the event part, and the disposition, quiet (if
specified) and breakpoint_actions (if specified) collectively specify the action part.

Note: Additional obsolete forms of breakpoint definition are retained only for backward compatibility with earlier versions of the debugger. These forms are
explained later. The obsolete forms may be eliminated in a future release.

There are three distinct points in time at which a breakpoint definition has an effect:

1. When the command is entered

The command is parsed, names and expressions that occur in any of the event parts are evaluated, and the breakpoint actions are parsed and checked
for correctness (but not evaluated).

2. When the debugger initiates program execution

For each breakpoint that is not disabled, appropriate modifications are made to the program to enable detection of the specified event.

3. When a detector triggers during program execution

The thread filter specification (if present) and logical filter (if present) are evaluated to determine whether the breakpoint as a whole has triggered. If not,
then execution is resumed (silently). If so, the breakpoint actions are performed, after which execution stops or resumes according to the specified
disposition.

7.1.1 Disposition

disposition
 : stop
 | when

The stop command specifies that when the event specified by the breakpoint occurs and all processing for that breakpoint has been completed, the debugger

should prompt for further commands.

The when command specifies that when the event specified by the breakpoint occurs and all processing for that breakpoint has been completed, the debugger
may resume execution of the program. See the section When Multiple Breakpoints Trigger at Once for an explanation of how the debugger determines when to
resume execution.

7.1.2 The quiet Specifier
By default, when an event is detected and the debugger determines that the breakpoint actions should be performed, the debugger prints a line that identifies
the breakpoint, for example:

(idb) when in main { stop }
[#1: when in int main(void) { stop }]
(idb) run
[1] when [int main(void):182 0x8049f48]
[1] stopped at [int main(void):182 0x8049f48]
 182 List<Node> nodeList;

The optional quiet specifier tells the debugger to omit this information.

(idb) when quiet in main { stop }
[#11: when quiet in int main(void) { stop }]
(idb) run
(idb) list $curline: 1
> 182 List<Node> nodeList;

7.1.3 Detectors
The debugger uses several kinds of detectors, each corresponding to a particular kind of event:

DBX Mode

detector
 : place_detector
 | watch_detector
 | signal_detector
 | unaligned_detector

A place detector specifies a place or location in your program. It can refer to the beginning of a function, a particular line in one of your source files, a specific
value of the PC (program counter), or certain sets of these.

A watch detector specifies a variable or other memory locations that should be monitored to detect certain kinds of access (read, write, and so on).

A signal detector specifies a set of signals to be monitored.

An unaligned access detector specifies any kind of memory access using an unaligned access.

This section describes each type of detector.

7.1.3.1 Place Detectors

You can use place detectors to determine when execution reaches a particular place or location in your program:

DBX Mode

place_detector
 : in function_name
 | in all function_name
 | pc address_expression
 | at line_specifier
 | every proc entry
 | every procedure entry
 | every instruction
 | expression

The in function_name detector specifies the event where execution reaches the entry of the named function. For example:

If the function name is ambiguous (more than one function can match the name in some languages, including C++), the debugger prompts you with a list of
alternatives from which to choose.

(idb) stop in foo
Select from
--
 1 int C::foo(double*)
 2 void C::foo(float)
 3 void C::foo(int)
 4 void C::foo(void)
 5 None of the above
--
2
[#4: stop in void C::foo(float)]

If you choose the last option ("None of the above"), then no function is selected and no breakpoint is defined.

The in all function_name detector is the same as in function_name except that it specifies all of the functions that match the given name, whether one
or more:

(idb) stop in all foo
[#3: stop in all foo]

The pc address_expression detector specifies the event where execution reaches the given machine address:

(idb) stop pc $pc + 8
[#7: stop PC == 0x804a539]

The at line_specifier detector specifies the event where code associated with a particular line of the source is reached:

(idb) stop at 190
[#8: stop at "x_list.cxx":190]

If no code is associated with the given line number, the debugger finds and substitutes the closest higher line number that has associated code.

The every procedure entry detector specifies that a breakpoint should be established for every function entry point in the program.

(idb) stop every procedure entry
[#9: stop every procedure entry]

Note: This command can be very time consuming because it searches your entire program — including all shared libraries that it references — and establishes
breakpoints for every entry point in every executable image. This can also considerably slow execution of your program as it runs.

A disadvantage of this command is that it establishes breakpoints for hundreds or even thousands of entry points about which you have little or no information.
For example, if you use stop every proc entry immediately after loading a program and then run it, the debugger will stop or trace over 100 entry points
before reaching your main entry point. About the only thing that you can do if execution stops at most such unknown places is continue until some function
relevant to your debugging is reached.

The every instruction detector specifies a breakpoint for every instruction in your entire program:

(idb) stop every instruction
[#10: stop every instruction]

When used with the stop disposition, a subsequent continue behaves essentially the same as a step by instruction command (see stepi).

When used with the when disposition, subsequent next and step commands allow you to trace all of the instructions that are executed as a result of those
stepping commands. Beware that even when next is used to step over a called routine, the trace output includes all of the instructions that are executed within
the called routine (and any routines that it calls).

Note: This command will slow execution of your program considerably.

The detector expression (that is, an expression not preceded by one of the keywords in, at, or pc) specifies either a function name or line number
depending on how the expression is parsed and evaluated. An expression that evaluates to the name of a function is handled just like the equivalent command
that uses in in the detector; otherwise, it is handled like the equivalent command that uses at in the detector.

7.1.3.2 Watch Detectors

You can use watch detectors to determine when a variable or other memory location is read or written and/or changed. Breakpoints with watch detectors are
also known as watchpoints.

watch_detector
 : basic_watch_detector watch_detector_modifiers

basic_watch_detector
 : variable expression
 | memory start_address_expression
 | memory start_address_expression , end_address_expression
 | memory start_address_expression : byte_count_expression

watch_detector_modifiers
 : [access_modifier] [within_modifier]

access_modifier
 : write
 | read
 | changed
 | any

within_modifier
 : within function_name

You can specify a variable whose memory is to be watched, or specify the memory directly. The accesses that are considered can be limited to those that write
(the default), read, write and actually change the value, or can include all accesses.

If you specify a variable, the memory to be watched includes all of the memory for that variable, as determined by the variable's type. The following example
watches for write access to variable _nextNode, which is allocated in the 8 bytes at the address shown in the last line of the example:

(idb) whatis _nextNode
struct Node* Node::_nextNode
(idb) print "sizeof(_nextNode) =", sizeof((_nextNode))
sizeof(_nextNode) = 4
(idb) stop variable _nextNode write
[#3: stop variable _nextNode write]

The specified variable is watched. If "p" is a pointer, watch variable p will watch the content of the pointer, not the memory pointed to by "p". Use watch
memory *p to watch the memory pointed to by "p".

If you specify memory directly in terms of its address, the memory to be watched is defined as follows:

● By default (no last address or size given), then 8 bytes beginning at the given start address:

(idb) when memory &_nextNode : 8 any
[#4: when memory &_nextNode : 8 any]

● If an end address is given, then all bytes of memory from the start address to and including the end address:

(idb) stop memory &_nextNode, ((long)&_nextNode) + 3 read
[#5: stop memory &_nextNode, ((long)&_nextNode) + 3 read]

This watches the 4 bytes specified on the command line.

● If you specify a byte count, then the given number of bytes starting at the given start address:

(idb) stop memory &_nextNode : 2 changed
[#6: stop memory &_nextNode : 2 changed]

This watches the 2 bytes specified on the command line for a change in contents.

If you specify the within modifier, then only those accesses that occur within the given function (but not any function it calls) are watched. For example:

(idb) whatis t
int t
(idb) stop variable t write within foo
[#2: stop variable t write within void C::foo(void)]
(idb) cont
[2] Address 0x804bbfc was accessed at:
void C::foo(void): x_overload.cxx
 [line 22, 0x8048af3] foo+0x6: movl $0x0, 0x804bbfc
 0x804bbfc: Old value = 0x0000000f
 0x804bbfc: New value = 0x00000000
[2] stopped at [void C::foo(void):22 0x8048afd]
 22 void C::foo() { t = 0; state++; return; }

7.1.3.3 Signal Detectors

You can use signal detectors to determine when a particular signal is raised:

signal_detector
 : signal signal_id ,...

signal_id
 : integer_constant
 | signal_name

You can specify signals by numeric value or by their conventional operating system names, without or without the leading "SIG":

(idb) stop signal SEGV, 3, SIGINT
[#2: stop signal SEGV, 3, SIGINT]

If the debugger catches a signal event, then a subsequent simple continue will resume execution without raising the signal again in your process. However, a
signal can be specified as part of the continue command to send the signal to your process when it resumes.

7.1.3.4 Unaligned Access Detectors
You can use an unaligned access detector to determine when an unaligned memory access occurs:

unaligned_detector
 : unaligned

Unaligned accesses may be automatically handled by the operating system. By default, an unaligned access results in an information message and then is
corrected so that your program can continue. (You or your system administrator can choose a different default. See uac(1) for more information.) This message
looks like this:

Unaligned access pid=30231 <x_signals> va=0x11ffff791 pc=0x120001af4 ra=0x120001b84
inst=0xa0220000

You can request the debugger to detect unaligned accesses:

(idb) stop unaligned access
[#1: stop unaligned access]
(idb) run
Thread encountered Unaligned Access
[1] stopped at [int unalignedAccess(void):27 0x120001af8]
 27 return y;

7.1.3.5 Unaligned Access Detector (Linux* Only)

Unaligned accesses are automatically handled and quietly corrected on Linux. The debugger cannot detect these events.

7.1.4 Thread Filter
A thread filter determines whether a detected event should be further considered for breakpoint processing.

thread_filter
 : thread thread_id ,...

The thread_id expressions are evaluated at the time the breakpoint command is entered, and each must yield an integer value.

A detected event is retained for further consideration only if the thread in which the event occurs matches one of the given threads. If not, the detection is quietly
ignored.

If the thread_filter does not indicate a match, then any related logical filter is not evaluated.

7.1.5 Logical Filter
A logical filter determines whether a detected event should be further considered for breakpoint processing:

logical_filter
 : if expression

A detected event is retained for further consideration only if the given expression evaluates to true. If not, the detection is quietly ignored.

The expression is checked syntactically in the context of the place where the breakpoint command is given: it must be syntactically valid according to the
language rules that apply there. However, the expression is not evaluated and names that occur in the expression need not be visible. After the syntax check,
the expression is remembered in an internal form and is not rechecked later when it is evaluated.

If an error occurs when the expression is evaluated, for example, because a name in the expression is not defined, then the error is reported and the value of
the expression is assumed to be true.

An error in the expression does not change the disposition. If continuation was specified, then that is still what occurs. For example:

(idb) when in List<Node>::append if x
[#5: when in void List<Node>::append(struct Node* const) if x]
(idb) cont
Symbol "x" is not defined.
[Error while evaluating breakpoint condition - taken as true]
[5] when [void List<Node>::append(struct Node* const):148 0x8058026]
Symbol "x" is not defined.
[Error while evaluating breakpoint condition - taken as true]
[5] when [void List<Node>::append(struct Node* const):148 0x8058026]
[4] stopped at [int main(void):195 0x804a1ad]
 195 nodeList.append(new IntNode(3));

It is valid for a logical filter expression to contain a call to another routine in your program. Such a call is evaluated in the same way as if it occurred in a call or
print command. However, execution of the called routine might result in triggering a breakpoint; this is called a recursive breakpoint.

7.1.6 Breakpoint Actions
The action part of a breakpoint command specifies actions to be performed when the event part has triggered (including passing any thread and/or logical
filters):

breakpoint_actions
 : { action_list }

action_list
 : command
 | command ;
 | command ;...

7.1.6.1 Special Commands

The following debugger commands behave differently in some fashion when used within a breakpoint action list:

● Simple stop

A simple_stop_command is a stop without any detector or other parameters:

simple_stop_command
 : stop

If used within a breakpoint action list, it specifies that the disposition for the breakpoint should be to stop after completion of action list processing, even if
the breakpoint was specified with the when disposition. If used outside an action list, it has no effect.

A simple stop command does not terminate action list processing; it only affects the disposition that applies later. For example:

(idb) when in List<Node>::print { stop ; print "*** stopped ***"}
[#6: when in void List<Node>::print(void) { stop ; print "*** stopped ***"}]
(idb) cont
[6] when [void List<Node>::print(void):162 0x80580ae]
*** stopped ***
[6] stopped at [void List<Node>::print(void):162 0x80580ae]
 162 Node* currentNode = _firstNode;

● History

The history command does not display commands that are performed as part of the action list of a breakpoint.

7.1.6.2 Commands to Use with Caution

You must be very careful when using some commands in breakpoint action lists. The following commands cause the debugger to resume execution of your
program in the midst of action list processing:

● call
● continue
● goto
● next
● return
● step
● Any command that contains an expression whose evaluation involves calling a function in your program

It is easy in such cases to lose track of just what state breakpoint processing is really in or where you really are in your program. Such confusion may mislead or
misdirect your debugging effort. For further discussion, see the section on Recursive breakpoints.

7.1.6.3 Commands to Avoid

You should avoid altogether some commands in breakpoint action lists. The following are commands that directly or indirectly change the process that the
debugger is controlling:

● attach and detach
● run and rerun
● process with an argument

The debugger does not explicitly prohibit these commands, but their behavior within action lists is implementation-defined and subject to change from release to
release. In very specialized cases, you may be able to obtain useful results by using them in action lists, but do not expect the same behavior over the long
term.

7.1.7 When Multiple Breakpoints Trigger at Once
It is possible for multiple breakpoints to specify the same event, or possibly overlapping events. Thus, more that one breakpoint detector may trigger at the
same time.

When more than one breakpoint detector triggers, the thread filters and logical filters of all the breakpoints involved are processed before the action part of any
breakpoint is performed.

After the set of breakpoints that trigger is determined, the action parts of each of them are performed in an undefined order.

After all action parts are performed, execution of the program is resumed only if all of the breakpoints so specify in their disposition. If any one of them specifies
a break, the debugger prompts you for further commands.

7.1.8 Recursive Breakpoints
The following commands cause the debugger to resume execution of your program while in the midst of action list processing:

● call
● continue
● goto
● next
● return

● step
● Any command that contains an expression whose evaluation involves calling a function in your program

In all of these cases, the debugger temporarily suspends processing of the current breakpoint to start your program executing again and then waits for that
execution to complete. As long as no new breakpoint is triggered during that execution, all will be fine. However, if a new breakpoint triggers, in particular one
with the stop disposition, then you may be prompted for new command input for the recursive breakpoint even before the initial breakpoint has completed.
Further, continuing execution may ultimately allow the original breakpoint to complete, at which time its disposition will come into play.

It is easy in such cases to lose track of just what state breakpoint processing is really in or where you really are in your program. Such confusion may mislead or
misdirect your debugging effort. See the call command example, which locates suspended execution in nested function calls.

7.1.9 Breakpoints and C++
This section describes how to use breakpoints when debugging C++ programs.

7.1.9.1 Member Functions

Setting breakpoints in C++ member functions is illustrated using the following program:

(idb) list 3: 25
 3 class C {
 4 public:
 5 void foo();
 6 void foo(int);
 7 void foo(float);
 8 int foo(double *);
 9 };
 10
 11 C o;
 12 C* p = new C;
 13 int t = 0;
 14 int state = 1;
 15
 16 main(){
 17 t++;
 18 o.foo();
 19
 20 }
 21
 22 void C::foo() { t = 0; state++; return; }
 23 void C::foo(int i) { state++; return; }
 24 void C::foo(float f) { state++; return; }
 25 int C::foo(double *) { return state;}

You must name member functions in a way that makes them visible at the current position, according to the normal C++ visibility rules. For example:

(idb) stop in main
[#1: stop in int main(void)]
(idb) run
[1] stopped at [int main(void):17 0x8048ad3]
 17 t++;
(idb) stop in foo
Symbol "foo" is not defined.
foo has no valid breakpoint address
Warning: Breakpoint not set

If not positioned within a member function of a class, it is generally necessary to name the desired member function using type qualification, an object of the
class type, or a pointer to an object of the class type. For example:

(idb) stop in C::foo
Select from
--
 1 int C::foo(double*)
 2 void C::foo(float)
 3 void C::foo(int)
 4 void C::foo(void)
 5 None of the above
--
3
[#5: stop in void C::foo(int)]

(idb) stop in o.foo
Select from
--
 1 int C::foo(double*)
 2 void C::foo(float)
 3 void C::foo(int)
 4 void C::foo(void)
 5 None of the above
--
1
[#6: stop in int C::foo(double*)]
(idb) stop in p->foo
Select from
--
 1 int C::foo(double*)
 2 void C::foo(float)
 3 void C::foo(int)
 4 void C::foo(void)
 5 None of the above
--
4
[#7: stop in void C::foo(void)]

You can avoid the ambiguity associated with an overloaded function by specifying a complete signature for the function name. For example:

(idb) stop in C::foo(void)
[#8: stop in void C::foo(void)]
(idb) stop in C::foo(int)
[#9: stop in void C::foo(int)]

7.1.9.2 Templates and Instantiations

The debugger has no knowledge of templates that may occur in your program. However, you can usually debug template instantiations the same way as the
equivalent non-instantiated class or function.

Debugging of template instantiations is illustrated using the following source text:

(idb) list 144: 13
 144 template <class NODETYPE>
 145 void List<NODETYPE>::append(NODETYPE* const node)
 146 {
 147
 148 if (!_firstNode)
 149 _firstNode = node;
 150 else {
 151 Node* currentNode = _firstNode;
 152 while (currentNode->getNextNode())
 153 currentNode = currentNode->getNextNode();
 154 currentNode->setNextNode(node);
 155 }
 156 }

Normal debugging commands then apply to the instantiation (not the template as such):

(idb) whatis List<Node>::append
void List<Node>::append(class Node* const)
(idb) stop in List<Node>::append
[#1: stop in void List<Node>::append(class Node* const)]
(idb) run
[1] stopped at [void List<Node>::append(class Node* const):148 0x120001d9c]
 148 if (!_firstNode)
(idb) where 2
>0 0x120001d9c in ((List<Node>*)0x11fffee68)->List<Node>::append(node=0x140002c00)
"x_list.cxx":148
#1 0x1200024a4 in main() "x_list.cxx":187

7.1.9.3 Exception Handlers

When working with exception handlers, you can set a breakpoint at the appropriate line to determine if an exception is thrown. In addition, you can set

breakpoints in these functions that are part of the C++ library support for exceptions:

terminate
Gains control when any unhandled exception occurs, which will result in program termination.

unexpected
Gains control when a function containing an exception specification tries to throw an exception that is not included in that specification.

These special library functions are illustrated using the following source:

(idb) list 30: 29
 30 // Throw an exception. The "throw(int)" syntax tells the compiler that
 31 // only integer exceptions can escape this method. This will result in
 32 // an unexpected exception from C++.
 33 //
 34 void throwAnException() throw(int)
 35 {
 36 throw "Bug";
 37 }
 38
 39 // Provide some depth to the stack, for demonstration purposes
 40 //
 41 void someOperation()
 42 {
 43 int z = unalignedAccess(); // Some tests ignore this exception
 44 throwAnException();
 45 }
 46
 47 main()
 48 {
 49 try {
 50 someOperation();
 51 }
 52 catch(char* str) {
 53 cout << "Caught exception [" << str << "]" << endl;
 54 }
 55 catch(...) {
 56 cout << "Caught something" << endl;
 57 }
 58 }

You can trace the flow of execution, as in the following:

(idb) stop at 52
[#1: stop at "x_signals.cxx":52]
(idb) stop in all terminate
[#2: stop in all terminate]
(idb) stop in all unexpected
[#3: stop in all unexpected]
(idb) run
[3] stopped at [<opaque> unexpected(void) 0x3ff802a064c]

Information: An <opaque> type was presented during execution of the previous
command. For complete type information on this symbol, recompilation of the program
will be necessary. Consult the compiler man pages for details on producing full
symbol table information using the '-g' (and '-gall' for cxx) flags.

(idb) where
>0 0x3ff802a064c in unexpected(...) in /usr/lib/cmplrs/cxx/libcxx.so
#1 0x120001b38 in throwAnException() "x_signals.cxx":36
#2 0x120001b88 in someOperation() "x_signals.cxx":44
#3 0x120001bc4 in main() "x_signals.cxx":50
#4 0x1200019c8 in __start(...) in /usr/examples/x_signals
(idb) cont
[3] stopped at [<opaque> unexpected(...) 0x3ff80287704]
(idb) where
>0 0x3ff80287704 in unexpected(...) in /usr/lib/cmplrs/cxx/libcxx.so
#1 0x3ff802a064c in unexpected(...) in /usr/lib/cmplrs/cxx/libcxx.so
#2 0x120001b38 in throwAnException() "x_signals.cxx":36
#3 0x120001b88 in someOperation() "x_signals.cxx":44
#4 0x120001bc4 in main() "x_signals.cxx":50
#5 0x1200019c8 in __start(...) in /usr/examples/x_signals
(idb) cont

[2] stopped at [<opaque> terminate(...) 0x3ff802875cc]
(idb) where
>0 0x3ff802875cc in terminate(...) in /usr/lib/cmplrs/cxx/libcxx.so
#1 0x3ff80287750 in unexpected(...) in /usr/lib/cmplrs/cxx/libcxx.so
#2 0x3ff802a064c in unexpected(...) in /usr/lib/cmplrs/cxx/libcxx.so
#3 0x120001b38 in throwAnException() "x_signals.cxx":36
#4 0x120001b88 in someOperation() "x_signals.cxx":44
#5 0x120001bc4 in main() "x_signals.cxx":50
#6 0x1200019c8 in __start(...) in /usr/examples/x_signals
(idb) cont
Thread received signal ABRT
stopped at [<opaque> __kill(...) 0x3ff800e1578]

7.1.10 Special Signal Breakpoints
Signals are operating-system-defined events that can be handled by the debugger.

7.1.10.1 The catch and ignore Commands

You can use two special breakpoint commands, catch and ignore, to handle signal events:

signal_command
 : catch_command
 | ignore_command

catch_command
 : catch [signal_id]

ignore_command
 : ignore [signal_id]

A catch command with an operand specifies that the debugger should catch and handle the given signal. You can specify the signal by integer number or by
standard signal name, with or without the leading "SIG". The catch command is equivalent to the breakpoint command:

(idb) catch BUS

or

(idb) stop signal SIGBUS
[#1: stop signal SIGBUS]

with these exceptions:

● No entry is made in the breakpoint table for a catch command.
● A catch for a signal that is already being caught does not create an additional breakpoint for that signal.

An ignore command with an operand specifies that the given signal should not be caught or handled by the debugger; rather, such a signal is passed to your
program. The ignore command is equivalent to deleting the breakpoint created by a catch command for that signal.:

(idb) ignore BUS

A catch command without an operand lists all signals that are currently being handled. Similarly, an ignore command without an operand lists the signals that
are currently being ignored. Together, the two lists show all signals known to the debugger.

You can issue these commands immediately after the debugger starts to show which signals are caught and which are ignored by default:

(idb) catch
INT, QUIT, ILL, TRAP, ABRT, FPE, BUS, SEGV, SIGSYS, PIPE, TERM, URG, STOP, TTIN,
TTOU, XCPU, XFSZ, PROF, USR1, USR2, VTALRM, RTMIN, RTMIN1, RTMIN2, RTMIN3, RTMIN4,
RTMIN5, RTMIN6, RTMIN7, RTMAX, RTMAX7, RTMAX6, RTMAX5, RTMAX4, RTMAX3, RTMAX2, RTMAX1
(idb) ignore
HUP, KILL, ALRM, TSTP, CONT, CLD, WINCH, POLL

7.1.10.2 Unaligned Accesses

You can request the debugger to catch unaligned accesses:

(idb) catch unaligned

This command is very much like the stop unaligned command:

Although this looks like a normal catch command, it differs in several respects:

● unaligned is not the name of a signal.
● There is no corresponding signal number.
● unaligned is never listed by either the catch or ignore commands without an argument.

Like other catch commands, the following rules apply:

● No entry is made in the breakpoint table for a catch command.
● Repeating the command does not create an additional breakpoint.

Note: You cannot specify unaligned in a signal detector of a normal breakpoint definition.

You can request the debugger to ignore unaligned accesses when catch unaligned is in effect (the default) by using the following command:

(idb) ignore unaligned

However, if a breakpoint was defined using an unaligned access detector, then it must be disabled using a disable or delete breakpoint command.

7.1.10.3 Unaligned Accesses (Linux Only)

Unaligned accesses are automatically handled and quietly corrected on Linux. The debugger cannot catch these events.

7.1.10.4 Ctrl/C

If your program seems to be caught in a loop, you can press Ctrl/C. The debugger interprets this as a command to send a signal interrupt (SIGINT) to your
program. Because the debugger itself catches signal SIGINT by default, this interrupts your program and returns control to the debugger prompt.

If you give the command ignore SIGINT, then it is no longer possible to regain control of your program using Ctrl/C. In that case, signal SIGINT is delivered
directly to your program. Unless your program has explicitly arranged otherwise, SIGINT will result in program termination.

7.1.11 Breakpoint Interactions with exec(), fork(), dlopen() and dlclose() System Calls
A process starts with a copy of its parent's memory as the result of a fork() system call; after running for a while within that memory, the process will often
make an exec() system call to start a new executable file within that process.

The debugger keeps track of the exec() calls that occur so that it can keep track of various properties associated with each executable file. In particular, the
breakpoint table is one of those properties. Thus, if you run or rerun your program, the same breakpoints can be re-established, even though a new process
is initiated. Similarly, if you work with more than one process, each process has a distinct breakpoint table associated with it.

When a dlopen() system call occurs, the debugger reprocesses the current breakpoint table and automatically sets up the means to detect any events that
apply to the newly loaded image.

When a dlclose() system call occurs, the debugger also reprocesses the breakpoint and de-activates any events that apply to the unloaded image.

7.1.12 Obsolete Breakpoint Commands (DBX Mode only)
The following forms of breakpoint commands are obsolete, but are still supported for backward compatibilty with earlier versions of the debugger:

obsolete_breakpoint_definition_command
 : obsolete_watch_breakpoint_definition_command
 | obsolete_trace_breakpoint_definition_command
 | obsolete_stopi_breakpoint_definition_command
 | obsolete_wheni_breakpoint_definition_command
 | obsolete_tracei_breakpoint_definition_command

7.1.12.1 Obsolete Watchpoint Definition

An obsolete watchpoint definition is similar to a stop variable or stop memory breakpoint:

obsolete_watch_breakpoint_definition_command
 : watch obsolete_watch_detector
 [obsolete_watch_modifiers]
 [breakpoint_actions]

obsolete_watch_detector
 : variable variable_name
 | [memory] start_address_expression
 | [memory] start_address_expression , end_address_expression
 | [memory] start_address_expression : byte_count_expression

obsolete_watch_modifiers
 : [access_modifier]
 [thread_filter]
 [within_modifier]
 [logical_filter]

An obsolete watchpoint and a stop command differ in the following respects:

● The obsolete watchpoint command begins with watch instead of stop.
● The keyword memory is optional; if omitted, it is assumed.
● The order of filters and modifiers is different.

These differences are purely syntactic; the semantics are the same.

(idb) watch variable _firstNode write
[#3: watch variable _firstNode write]
(idb) cont
[3] Address 0xbffff0fc was accessed at:
void List<Node>::append(struct Node* const): x_list.cxx
 [line 149, 0x8058035] append(struct Node* const)+0x15: movl %edx,
(%eax)
 0xbffff0fc: Old value = 0x00000000
 0xbffff0fc: New value = 0x080b0f40
[3] stopped at [void List<Node>::append(struct Node* const):149 0x8058037]
 149 _firstNode = node;

7.1.12.2 Obsolete Tracepoint Definition

An obsolete tracepoint definition is similar to a when in or when at breakpoint, possibly combined with watching for a change of a variable's value:

obsolete_trace_breakpoint_definition_command
 : trace [variable_name]
 [thread_filter]
 [where_modifier]
 [logical_filter]
 [breakpoint_actions]
 | trace function_name [logical_filter] [breakpoint_actions]
 | trace line_specifier [logical_filter] [breakpoint_actions]

where_modifier
 : in function_name
 | at line_specifier

line_specifier
 : quoted_filename:line_number
 | line_number

quoted_filename
 : "filename"
 | 'filename'

Following are the differences between an obsolete tracepoint and a when command:

● The obsolete tracepoint command begins with trace instead of when.

● If you specify a variable name, a trace identification line is displayed only when the value of the variable changes (and the logical filter evaluates to
true).

The debugger implementation of trace for detecting variable changes tends to be slow — at each place where control might be stopped, as
specified by the where modifier and filters, the value of the variable is compared to the value remembered at the time execution began.

● The order of filters and modifiers is different.

For example:

(idb) trace in List<Node>::print
[#7: trace in void List<Node>::print(void)]
(idb) trace i in List<Node>::print
[#8: trace i in void List<Node>::print(void)]
(idb) trace List<Node>::print if i { print "Test 1"}
[#9: trace in void List<Node>::print(void) if i { print "Test 1"}]

If the trace command is given with no arguments, the debugger prints a trace identification line when each function in your program is entered. For
example:

(idb) trace
[#10: trace]
(idb) status
#10 at procedure entry { trace-proc }

This is equivalent to the when every proc entry command (with equivalent performance degradation).

7.1.12.3 Instruction-Related Breakpoint Commands

The following commands control obsolete instruction-related breakpoints:

obsolete_stopi_breakpoint_definition_command
 : stopi [expression]
 [thread_filter] [match_address] [logical_filter]

obsolete_tracei_breakpoint_definition_command
 : tracei [expression]
 [thread_filter] [match_address] [logical_filter]

obsolete_wheni_breakpoint_definition_command
 : wheni [expression]
 [thread_filter] [match_address] [logical_filter]
 breakpoint_actions

match_address
 : at address_expression

The stopi, tracei, and wheni forms of breakpoint definition are similar to the corresponding stop, trace, and when forms, with the following
differences:

● They have a different initial keyword.

● If you specify a variable name, then breakpoint triggers only when the value of the variable changes (and the logical and thread filters are true).

The debugger implementation of tracei for detecting variable changes tends to be slow: at each place where control might be stopped, as specified
by the where modifier and filters, the value of the variable is compared to the value remembered at the time execution began.

Most important, the variable change and filter tests are performed after every instruction is executed, making these definitions especially
demanding on program performance.

● The order of filters and modifiers is different.

● The at keyword is followed by an address in these commands, instead of a line number.

7.2 Breakpoint Tables
As breakpoints are defined, they are recorded in a breakpoint table associated with the current program. You can display and modify this table in certain limited
ways.

breakpoint_table_command
 : show_all_breakpoints_command
 | delete_breakpoint_command
 | enable_breakpoint_command
 | disable_breakpoint_command

Each entry in the breakpoint table has the following properties:

● A unique breakpoint number that is used to identify and refer to that breakpoint.
● An event description that characterizes the circumstances under which the breakpoint triggers.
● Actions (a possibly empty list of debugger commands) to be performed when the breakpoint triggers.
● A final disposition: either continue or break (stop).
● Enabled and disabled states.

In addition to the main effects of a breakpoint definition, as discussed in Breakpoint Definitions, a breakpoint definition also sets the debugger variable
$lasteventmade to the breakpoint number of the breakpoint just defined. This value can be recalled for later use if desired. For example:

(idb) stop in List<Node>::append
[#2: stop in void List<Node>::append(struct Node* const)]
(idb) cont
[2] stopped at [void List<Node>::append(struct Node* const):148 0x8058026]
 148 if (!_firstNode)
(idb) print $lasteventmade
2
(idb) set $my_break = $lasteventmade
(idb) print $my_break
2

If an error occurs in a breakpoint command, the variable $lasteventmade is not changed.

7.2.1 Showing Breakpoint Status
Use the following commands to display the current breakpoint table:

DBX Mode

show_all_breakpoints_command
 : status

GDB Mode

show_all_breakpoints_command
 : info breakpoints [expression]
 | info watchpoints [expression]
 | info break [expression]
 | info b [expression]
 | i breakpoints [expression]
 | i watchpoints [expression]
 | i break [expression]
 | i b [expression]

All these commands are synonyms.

Specify breakpoint number to print information about particular breakpoint. If you do not specify an argument, the debugger prints information about all
breakpoints.

Each entry in the current breakpoint table is displayed showing all of its properties. For example:

DBX Mode

(idb) status
#1 PC==0x8049f48 in int main(void) "x_list.cxx":182 { stop }
#2 PC==0x8058026 in void List<Node>::append(struct Node* const) "x_list.cxx":148 {
break }

#3 Access memory (write) 0xbffff0fc to 0xbffff0ff { stop }

GDB Mode

(idb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x804a0a0 in main at x_list.cxx:182
2 breakpoint keep y 0x804aa4a in List<Node>::append(class List<Node> *
const, class Node * const) at x_list.cxx:148
3 breakpoint keep y Access memory (changed) 0xbfffec9c to 0xbfffec9f

When an entry in the current breakpoint table references a shared object that is not currently mapped, it's contribution to the What column indicates Not
Currently Mapped.

When large or complex values are passed by value to the routine in the status line, the output can be voluminous. You can set the control variable
$statusargs to 0 to suppress the output of argument type information in the status line.

7.2.2 Enabling, Disabling, and Deleting Breakpoints
When a breakpoint is defined, it is enabled by default. When the debugger starts or resumes process execution, it first adapts the process so that it can detect
when the given events occur. A breakpoint can be disabled so it is not involved in determining when the process should next stop. A breakpoint that is no longer
required can be deleted entirely.

DBX Mode

disable_breakpoint_command
 : disable all
 | disable breakpoint_number_expression ,...

enable_breakpoint_command
 : enable all
 | enable breakpoint_number_expression ,...

delete_breakpoint_command
 : delete all
 | delete breakpoint_number_expression ,...

GDB Mode

disable_breakpoint_command
 : disable [breakpoints] [bpnums]
 | dis [breakpoints] [bpnums]

enable_breakpoint_command
 : enable [breakpoints] [bpnums]

delete_breakpoint_command
 : delete [breakpoints] [bpnums]
 | d [breakpoints] [bpnums]

bpnums
 : bpnum ...

bpnum
 : integer

You can specify one or more breakpoint numbers to disable, enable or delete. If you do not specify any arguments, the debugger disables, enables or
deletes all the breakpoints.

For example:

DBX Mode

(idb) disable 1
(idb) status
#1 PC==0x8049f48 in int main(void) "x_list.cxx":182 { stop } Disabled
#2 PC==0x8058026 in void List<Node>::append(struct Node* const) "x_list.cxx":148 {
break }
#3 Access memory (write) 0xbffff0fc to 0xbffff0ff { stop }
(idb) disable 10 - 8,1 + 1 + 1
(idb) status
#1 PC==0x8049f48 in int main(void) "x_list.cxx":182 { stop } Disabled
#2 PC==0x8058026 in void List<Node>::append(struct Node* const) "x_list.cxx":148 {
break } Disabled
#3 Access memory (write) 0xbffff0fc to 0xbffff0ff { stop } Disabled
(idb) delete 1
(idb) status
#2 PC==0x8058026 in void List<Node>::append(struct Node* const) "x_list.cxx":148 {
break } Disabled
#3 Access memory (write) 0xbffff0fc to 0xbffff0ff { stop } Disabled
(idb) enable all
(idb) status
#2 PC==0x8058026 in void List<Node>::append(struct Node* const) "x_list.cxx":148 {
break }
#3 Access memory (write) 0xbffff0fc to 0xbffff0ff { stop }

GDB Mode

(idb) disable 1
(idb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep n 0x804a0a0 in main at x_list.cxx:182
2 breakpoint keep y 0x804aa4a in List<Node>::append(class List<Node> *
const, class Node * const) at x_list.cxx:148
3 breakpoint keep y Access memory (changed) 0xbfffec9c to 0xbfffec9f
(idb) disable 2-3
(idb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep n 0x804a0a0 in main at x_list.cxx:182
2 breakpoint keep n 0x804aa4a in List<Node>::append(class List<Node> *
const, class Node * const) at x_list.cxx:148
3 breakpoint keep n Access memory (changed) 0xbfffec9c to 0xbfffec9f
(idb) delete 1
(idb) info breakpoints
Num Type Disp Enb Address What
2 breakpoint keep n 0x804aa4a in List<Node>::append(class List<Node> *
const, class Node * const) at x_list.cxx:148
3 breakpoint keep n Access memory (changed) 0xbfffec9c to 0xbfffec9f
(idb) enable
(idb) info breakpoints
Num Type Disp Enb Address What
2 breakpoint keep y 0x804aa4a in List<Node>::append(class List<Node> *
const, class Node * const) at x_list.cxx:148
3 breakpoint keep y Access memory (changed) 0xbfffec9c to 0xbfffec9f

Chapter 8 — Looking Around at the Code, the Data, and Other Process
Information
This chapter describes how to look at the following components of a running process:

● The source files
● The threads, their mutexes, and their condition variables
● The call stack of one or more threads
● The data
● The generated code
● The shared libraries that are loaded

8.1 Looking at the Source Files
The debugger supports commands to perform the following operations with source files:

● Determine the location of the source files
● Select a particular file as the current file
● List portions of the current file
● Search through the current file for target strings

browse_source_command
 : source_directory_mapping_command
 | source_searchlist_command
 | select_source_file_command
 | list_source_file_command
 | search_source_file_command

Special debugging information that the compiler puts in the .o files correlates the machine instructions and data back to the source files and the positions they
came from.

Source files are compiled and linked into executable files. During debugging, the debugger tries to find these source files to display them for you. If the source
files have moved, or if the paths to them are relative, the debugger may not be able to locate them. All the information the debugger needs comes from the
executable files or shared libraries, not from the source files.

8.1.1 How the Debugger Finds Source Files
The debugger searches for a source file (dir_name/base_name) using the following algorithm:

1. If dir_name is mapped to another source directory (mapped_dir_name), look for mapped_dir_name/base_name.
2. If Step 1 fails to find a readable file:

Case 1: If dir_name is absolute, look for dir_name/base_name.
Case 2: If dir_name is relative, for each entry use_dir in use_list, look for use_dir/dir_name/base_name. Note that the use_list entries are
tried in the order they appear in the use_list.

3. If Step 2 fails, for each entry use_dir in use_list, look for use_dir/base_name. Just as in Step 2, the use_list entries are tried in the order they
appear in the use_list.

4. If Step 3 fails, the debugger cannot find any source file.

The debugger uses the first-found readable file as the source file.

The debugger has source directory mapping commands that:

● Inform you in which directories the debugger is looking for the source files.
● Allow you to designate directories in which the debugger will look for the source files.

The following example shows how to use source directory mapping. Suppose you compile x_solarSystem as follows:

% pwd
/usr/users/debugger/sandbox/test/src/common/Examples
% ls -R
bin/ src/

./bin:
x_solarSystem*

./src:
solarSystemSrc/

./src/solarSystemSrc:
base_class_includes/ main/ star.cxx
derived_class_includes/ orbit.cxx
heavenlyBody.cxx planet.cxx

./src/solarSystemSrc/base_class_includes:
heavenlyBody.h orbit.h

./src/solarSystemSrc/derived_class_includes:
planet.h star.h

./src/solarSystemSrc/main:
solarSystem.cxx
% cd src

% cc -g -o ../bin/x_solarSystem \
 -IsolarSystemSrc/base_class_includes \
 -IsolarSystemSrc/derived_class_includes \
 main/solarSystem.cxx heavenlyBody.cxx orbit.cxx planet.cxx star.cxx

Then you move the directory solarSystemSrc elsewhere:

% mv solarSystemSrc movedSolarSystemSrc

Now debug x_solarSystem in /usr/users/debugger/sandbox/test/src/common/Examples/bin:

DBX Mode

(idb) list $curline - 10: 20
Source file not found or not readable, tried...
 ./solarSystemSrc/main/solarSystem.cxx
 ../src/solarSystemSrc/main/solarSystem.cxx
 /usr/examples/solarSystemSrc/main/solarSystem.cxx
 ./solarSystem.cxx
 ../src/solarSystem.cxx
 /usr/examples/solarSystem.cxx

The debugger cannot find the file because it has been moved to another directory.

The following command displays a summary of the source directories in a.out. The ellipsis (...) here means that solarSystemSrc contains one or more
source directories.

DBX Mode

(idb) show source directory
.
solarSystemSrc
 ...

Information: You can further expand a '...' using the command

 show source directory <directory>
or
 show all source directory <directory>

where <directory> is the directory on the line above the '...'.
The first command displays only the children of <directory>, whereas
the second command displays all the descendants of <directory>.

The following command directs the debugger to look for source files originally in solarSystemSrc in movedSolarSystemSrc instead. This time, the
debugger finds the source file.

DBX Mode

(idb) map source directory solarSystemSrc ../src/movedSolarSystemSrc
(idb) list $curline - 10: 20
 104
 105 // Insert the new entry appropriately
 106 //
 107 if (iAmBiggerThan < biggestCount) {
 108 biggestMoons[iAmBiggerThan] = moon;
 109 }
 110 }
 111
 112 int main()
 113 {
> 114 unsigned int j = 1; // for scoping examples
 115 for (unsigned int i = 0; i < biggestCount; i++)
 116 biggestMoons[i] = NULL;
 117
 118 Star *sun = new Star("Sol", G, 2);

 119 buildOurSolarSystem(sun);
 120 sun->printBodyAndItsSatellites(j);
 121 printBiggestMoons();
 122
 123 return 0;

The following command gives a complete list of source directories. As you can see, solarSystemSrc is mapped to movedSolarSystemSrc. As a side effect
of mapping solarSystemSrc to movedSolarSystemSrc, the subdirectories in solarSystemSrc are mapped to their counterparts under
movedSolarSystemSrc.

DBX Mode

(idb) show all source directory
.
solarSystemSrc *=> ../src/movedSolarSystemSrc
 solarSystemSrc/base_class_includes =>
../src/movedSolarSystemSrc/base_class_includes
 solarSystemSrc/derived_class_includes =>
../src/movedSolarSystemSrc/derived_class_includes
 solarSystemSrc/main => ../src/movedSolarSystemSrc/main

To summarize, the debugger provides the following four commands for checking and setting source directory mappings:

DBX Mode

source_directory_mapping_command
 : show source directory [directory_name]
 | show all source directory [directory_name]
 | map source directory from_directory_name to_directory_name
 | unmap source directory from_directory_name

Use the show source directory(dbx) command to display the directory mapping information of directory_name and its child directories (or immediate
subdirectory). If directory_name is not specified, the mapping information of all the source directories whose parent is not a source directory is displayed.

The show all source directory(dbx) command is identical to the show source directory(dbx) command except that the mapping information of all
the descendants of directory_name is displayed:

DBX Mode

(idb) show source directory
.
solarSystemSrc *=> ../src/movedSolarSystemSrc
 ...
(idb) show all source directory
.
solarSystemSrc *=> ../src/movedSolarSystemSrc
 solarSystemSrc/base_class_includes =>
../src/movedSolarSystemSrc/base_class_includes
 solarSystemSrc/derived_class_includes =>
../src/movedSolarSystemSrc/derived_class_includes
 solarSystemSrc/main => ../src/movedSolarSystemSrc/main

When you further expand ellipsis points (...) where directory is the directory on the line above the ellipsis points:

● The show source directory(dbx) command displays only the children of directory_name.
● The show all source directory(dbx) command displays all the descendants of directory_name.

Use the map source directory(dbx) command to tell the debugger that the source files in the directory from_directory_name can now be found in
to_directory_name.

The unmap source directory(dbx) command maps from_directory_name back to itself; in other words, if from_directory_name has been mapped
to some other directory, this command will restore its default mapping. For example:

DBX Mode

(idb) show source directory
.
solarSystemSrc *=> ../src/movedSolarSystemSrc
 ...
(idb) show source directory solarSystemSrc
solarSystemSrc *=> ../src/movedSolarSystemSrc
 solarSystemSrc/base_class_includes =>
../src/movedSolarSystemSrc/base_class_includes
 solarSystemSrc/derived_class_includes =>
../src/movedSolarSystemSrc/derived_class_includes
 solarSystemSrc/main => ../src/movedSolarSystemSrc/main

(idb) unmap source directory solarSystemSrc
(idb) show source directory solarSystemSrc
solarSystemSrc
 solarSystemSrc/base_class_includes
 solarSystemSrc/derived_class_includes
 solarSystemSrc/main

Note: The symbol *=> means that you are setting the mapping explicitly using the map source directory(dbx) command, whereas => means that the
mapping is derived from an existing explicit mapping.

By default, the use_list is: (1) the current directory and (2) the directory containing the executable file. (dbx) Each process has its own use_list. You can
also use the idb command -I option to specify search directories.

The following commands let you view and modify the use_list.

DBX Mode

source_search_list_command
 : use_command
 | unuse_command

GDB Mode

source_search_list_command
 : directory_command
 | show directories

Enter the use(dbx) without an argument or show directories(gdb) command to list the directories in which the debugger searches for source code files.
Specify a directory argument to make source code files in that directory available to the debugger. You can also use the idb command -I option to specify
search directories, which puts those directories in the use_list.

You can customize your debugger environment source code search paths by adding commands to your .dbxinit file that use the use command:

DBX Mode

use_command
 : use [directory_name ...]

If the directory_name is specified, it is either appended to or replaces the use_list, depending on whether the value of the $dbxuse debugger variable
is zero (append) or non-zero (replace).

GDB Mode

directory_command
 : directory [directory_name ...]

Use the directory command with no argument to reset the use_list to empty value.

If the directory_name is specified, it is prepended to use_list. Several directory names may be given to the directory command, separated by ':' or
whitespace. If you specify a directory, which is already in the list, it is moved forward.
To get the full list of directories in the search list, use the show directories command.

DBX Mode

The unuse command removes entries from the use_list:

unuse_command
 : unuse [directory_name ...]
 | unuse *

Enter the unuse command without the directory_name to set the search list to the default (the home directory, the current directory, and the directory
containing the executable file). Include the directory names to remove them from the search list. The asterisk (*) argument removes all directories from the
search list.

8.1.2 How the Debugger Chooses Which Source File to List
The debugger has a concept of current source file, so you do not have to explicitly specify a source file in many commands. Whenever the process stops, the
current source file is set to the source file for the code currently executing. The commands up, down, class(dbx), and file(dbx) also set the current source
file.

DBX Mode

You can see and modify the current source file selection:

select_source_file_command
 : file [filename]
 : fileexpr [expression]

Use the file command without a file name to display the name of the current file scope. Include the file name to change the file scope. Change the file
scope to set a breakpoint in a function not in the file currently being executed.

To see source code for or set a breakpoint in a function not in the file currently being executed, use the file command to set the file scope.

If the file name is not a literal, use the fileexpr command. For example, if you have a script that calculates a file name in a debugger variable or in a
routine that returns a file name as a string, you can use fileexpr to set the file.

The following example uses the file command to set the debugger file scope to a file different from the main program, and then stops at line number 26 in
that file. This example also shows the fileexpr command setting the current scope back to the original file, which is solarSystem.cxx.

(idb) run
[1] stopped at [int main(void):114 0x804c440]
 114 unsigned int j = 1; // for scoping examples
(idb) file
solarSystemSrc/main/solarSystem.cxx
(idb) set $originalFile = "solarSystem.cxx"
(idb) list 24: 10
 24 Moon *phobos = new Moon("Phobos", 9, 11, mars);
 25 Moon *deimos = new Moon("Deimos", 23, 6, mars);
 26
 27 Planet *jupiter = new Planet("Jupiter", 778330, sun);
 28 Moon *io = new Moon("Io", 422, 1815, jupiter);
 29 Moon *europa = new Moon("Europa", 671, 1569, jupiter);
 30 Moon *ganymede = new Moon("Ganymede", 1070, 2631, jupiter);
 31 Moon *callisto = new Moon("Callisto", 1883, 2400, jupiter);
 32 Moon *amalthea = new Moon("Amalthea", 181, 98, jupiter);
 33
(idb) file star.cxx
(idb) list 24: 10
 24 // Stars are simple objects
 25 //
 26 Star::Star(
 27 char* name,
 28 StellarClass classification,
 29 StellarSubclass subclassification)
 30 : HeavenlyBody(name),

 31 _classification(classification),
 32 _subclassification(subclassification)
 33 {
(idb) stop at 26
[#2: stop at "solarSystemSrc/star.cxx":26]
(idb) cont
[2] stopped at [Star::Star(char*, enum StellarClass, StellarSubclass):26 0x804d1f4]
 26 Star::Star(
(idb) file
solarSystemSrc/star.cxx
(idb) fileexpr $originalFile
(idb) file
solarSystemSrc/main/solarSystem.cxx
(idb) list 24: 10
 24 Moon *phobos = new Moon("Phobos", 9, 11, mars);
 25 Moon *deimos = new Moon("Deimos", 23, 6, mars);
 26
 27 Planet *jupiter = new Planet("Jupiter", 778330, sun);
 28 Moon *io = new Moon("Io", 422, 1815, jupiter);
 29 Moon *europa = new Moon("Europa", 671, 1569, jupiter);
 30 Moon *ganymede = new Moon("Ganymede", 1070, 2631, jupiter);
 31 Moon *callisto = new Moon("Callisto", 1883, 2400, jupiter);
 32 Moon *amalthea = new Moon("Amalthea", 181, 98, jupiter);
 33

GDB Mode

In GDB mode the current file can be changed e.g. using list command.
See the example:

(idb) run
Starting program: /usr/examples/x_solarSystem

Breakpoint 1, main () at solarSystemSrc/main/solarSystem.cxx:114
114 unsigned int j = 1; // for scoping examples
(idb) info source
Current source file is solarSystemSrc/main/solarSystem.cxx
(idb)
(idb) list 24,+10
24 Moon *phobos = new Moon("Phobos", 9, 11, mars);
25 Moon *deimos = new Moon("Deimos", 23, 6, mars);
26
27 Planet *jupiter = new Planet("Jupiter", 778330, sun);
28 Moon *io = new Moon("Io", 422, 1815, jupiter);
29 Moon *europa = new Moon("Europa", 671, 1569, jupiter);
30 Moon *ganymede = new Moon("Ganymede", 1070, 2631, jupiter);
31 Moon *callisto = new Moon("Callisto", 1883, 2400, jupiter);
32 Moon *amalthea = new Moon("Amalthea", 181, 98, jupiter);
33
34 Planet *saturn = new Planet("Saturn", 1426940, sun);
(idb) list star.cxx:26,+10
26 Star::Star(
27 char* name,
28 StellarClass classification,
29 StellarSubclass subclassification)
30 : HeavenlyBody(name),
31 _classification(classification),
32 _subclassification(subclassification)
33 {
34 }
35
36 void Star::print(unsigned int i) const
(idb) info source
Current source file is star.cxx
(idb) break 26
Breakpoint 2 at 0x805455c: file solarSystemSrc/star.cxx, line 26.
(idb) continue
Continuing.

Breakpoint 2, Star::Star (this=0x80d2c50, name=0x808e61c "Sol", classification=G,
subclassification=2 '\002') at solarSystemSrc/star.cxx:26
26 Star::Star(

(idb) info source
Current source file is star.cxx
(idb) list solarSystem.cxx:24,+10
24 Moon *phobos = new Moon("Phobos", 9, 11, mars);
25 Moon *deimos = new Moon("Deimos", 23, 6, mars);
26
27 Planet *jupiter = new Planet("Jupiter", 778330, sun);
28 Moon *io = new Moon("Io", 422, 1815, jupiter);
29 Moon *europa = new Moon("Europa", 671, 1569, jupiter);
30 Moon *ganymede = new Moon("Ganymede", 1070, 2631, jupiter);
31 Moon *callisto = new Moon("Callisto", 1883, 2400, jupiter);
32 Moon *amalthea = new Moon("Amalthea", 181, 98, jupiter);
33
34 Planet *saturn = new Planet("Saturn", 1426940, sun);
(idb) info source
Current source file is solarSystem.cxx

8.1.3 Listing Source Files

DBX Mode

The simplest way to see a source file is to use a text editor. The edit command will display an editor on the current file, using the current definition of the
EDITOR environment variable, if there is one.

However, some primitive inspection capabilities are built into the debugger. The list command displays source lines, which can be defined by following way:

● The position of the program counter
● The last line listed, if multiple list commands are entered
● The line number specified as the arguments to the list command

DBX Mode

list_source_file_command
 : list [line_expression]
 | list line_expression , line_expression
 | list line_expression : line_expression

line_expression
 : expression

If specified, the first expression must evaluate to either an integer (the line number of the first line to display within the current source file) or a function (the
first line of the function).

Specify the exact range of source lines as either a comma followed by the expression for the last line, or a colon followed by the expression for the the
number of lines. This second expression must evaluate to an integer value.

If a second expression is not given, the debugger shows 20 lines, fewer if the end of source file is reached.

GDB Mode

list_source_file_command
 : list [[+ | -] line_expression] [, [[+ | -] line_expression]]
 | list function

If a function name or the only one line_expression is specified as the single argument then lines centred around the function beginning or specified
line are printed.
Commands list + and list - print some lines after and before the last printed correspondently.

The line in arguments can be specified by following way:

● integer number - the line in the current source file with specified number
● +offset and -offset - the line moved on 'offset' lines upper or downer from the last printed
● *address - the line which contains code for specified program address

User can specify a source file name for arguments given in form integer number and function by following way:

filename:integer_number and filename:function.

For example, to list lines 16 through 20:

DBX Mode

(idb) list 16, 20
 16
 17 class Node {
 18 public:
 19 Node ();
 20

GDB Mode

(idb) list 16,20
16
17 class Node {
18 public:
19 Node ();
20

For example, to list 6 lines, beginning with line 16:

DBX Mode

(idb) list 16: 6
 16
 17 class Node {
 18 public:
 19 Node ();
 20
 21 virtual void printNodeData() const = 0;

GDB Mode

(idb) list 16,+6
16
17 class Node {
18 public:
19 Node ();
20
21 virtual void printNodeData() const = 0;

8.1.4 Searching the Content of Source Files
The following search commands search through the current source file to help you find the lines to list:

DBX Mode

search_source_file_command
 : / [string]
 | ? [string]

GDB Mode

search_source_file_command
 : [forward-]search regular expression
 | reverse-search regular expression

DBX Mode

Note: The string is actually just the rest of the line, not a string literal. The rest of the line is still having alias expansion done on it.

Use a slash (/) to search forward from the most recently listed line; use a question mark (?) to search backward. Like most searches, it will stop at the end
(or beginning) of the file being searched, and will wrap if the command is repeated at that point.

When the string is omitted, the previous search continues from where it found the string. When the string is present, the search starts from either the start
(/) or the end (?) of the current line.

When a match is found, the debugger lists the line number and the line. That line becomes the starting point for any further searches, or for a list command.
For example:

1. To locate _firstNode:

DBX Mode

(idb) /_firstNode
 69 NODETYPE* _firstNode;

GDB Mode

(idb) forward-search _firstNode
69 NODETYPE* _firstNode;

2. Then to locate append before line 69:

DBX Mode

(idb) ?append
 65 void append (NODETYPE* const node);

GDB Mode

(idb) reverse-search append
65 void append (NODETYPE* const node);

3. Then to locate append after line 65:

DBX Mode

(idb) /append
 145 void List<NODETYPE>::append(NODETYPE* const node)

GDB Mode

(idb) forward-search append
145 void List<NODETYPE>::append(NODETYPE* const node)

The debugger provides parameterized aliases and debugger variables of arbitrary types. You can use these to do list traversal (see the array navigation
example).

8.2 Looking at the Threads
A thread is a single, sequential flow of control within a process. Each thread contains a single point of execution. Threads execute within (and share) a single

address space; therefore, a process's threads can read and write the same memory locations.

8.2.1 Thread Levels
The debugger supports two levels of threads:

● pthreads (user application threads), also known as POSIX threads
● Kernel threads (operating system level threads), also known as native threads

To specify the thread level, set the $threadlevel debugger variable to one of the following strings:

● decthreads — for POSIX thread library debugging
● native — for kernel thread debugging.

For example:

DBX Mode

(idb) set $threadlevel = "decthreads"

For core file debugging, the $threadlevel is always set to "native".

8.2.2 Thread Manipulation Commands
You can use a variety of commands to manipulate the threads:

DBX Mode

thread_command
 : show_thread_command
 | switch_thread_command
 | show_condition_variable_command
 | show_mutex_variable_command
 | pthread_command

8.2.3 Thread Display Commands
You can use the following commands to display threads:

DBX Mode

show_thread_command
 : show thread [thread_id_list] [thread-state-filter]

thread_id_list
 : thread_id ,...
 | *

thread_id
 : expression

thread_state_filter
 : with state eq thread_state

eq
 : == (for C, and C++)
 | .eq. (for Fortran)

thread_state
 : ready
 | running
 | terminated
 | blocked

Use the show thread command without parameters to list all the threads known to the debugger.

If you specify one or more thread identifiers, the debugger displays information about the threads you specify, if the thread matches what you specified in the
list. If you omit a thread specification, the debugger displays information for all threads.

Use the show thread commands to list threads that have specific characteristics, such as threads that are currently blocked. For example:

DBX Mode

(idb) print $threadlevel
"decthreads"
(idb) show thread
 Thread Name State Substate Policy Pri
 ------ ------------------------- --------------- ----------- ------------ ---
* 1 default thread running VP 3 SCHED_OTHER 19
 -1 manager thread blk SCS SCHED_RR 19
 -2 null thread for slot 0 running VP 1 null thread -1
 -3 null thread for slot 1 ready VP 3 null thread -1
 -4 null thread for slot 2 new new null thread -1
 -5 null thread for slot 3 new new null thread -1
> 2 threads(0x140000798) blocked cond 3 SCHED_OTHER 19
 3 threads+8(0x1400007a0) blocked cond 3 SCHED_OTHER 19
 4 threads+16(0x1400007a8) blocked cond 3 SCHED_OTHER 19
 5 threads+24(0x1400007b0) blocked cond 3 SCHED_OTHER 19
 6 threads+32(0x1400007b8) blocked cond 3 SCHED_OTHER 19
(idb) set $threadlevel = "native"
(idb) print $threadlevel
"native"
(idb) show thread
 Id State
* 0x9 stopped
* 0x9 unstarted
 0x3 unstarted
 0x7 unstarted

Note: In the output, the right bracket indicator (>) marks the current thread, whereas the asterisk (*) indicator marks the thread with the event that stopped the
application.

You can switch to a different thread as the current thread. The debugger variable $curthread contains the thread identifier of the current thread.

DBX Mode

switch_thread_command
 : thread [thread_id]

The $curthread value is updated when program execution stops or completes. You can modify the current thread by assigning $curthread a valid thread
identifier. This is equivalent to issuing the thread thread_id command. When there is no process or program, $curthread is set to 0.

Use the thread command without a thread identifier to identify the current thread. Supply a thread identifier to make another thread the current thread.

8.2.4 Mutex Queries
A mutex (mutual exclusion) semaphore is a programming flag that allows multiple pthreads to synchronize access to shared resources, to ensure the
following:

● All threads see a clean and consistent view of the data, without allowing one thread to change something while another thread is reading it.
● Two threads do not change different parts of the data at the same time, possibly in inconsistent ways.

Use the show mutex command to list information about currently available pthread mutexes:

DBX Mode

show_mutex_variable_command
 : show mutex [mutex_id_list] [mutex_state_filter]

mutex_id_list
 : mutex_id ,...
 | (mutex_id ,...)

mutex_state_filter
 : with state eq mutex_state

eq
 : == (for C, and C++)
 | .eq. (for Fortran)

mutex_state
 : locked

If you specify one or more mutex identifiers, the debugger displays information about only those mutexes specified, provided that the list matches the identifiers
of currently available mutexes. If you omit the mutex identifier specification, the debugger displays information about all mutexes currently available.

Use the show mutex with state == locked command to display information exclusively for locked mutexes.

If $verbose is set to 1, the sequence numbers of the threads locking the mutexes are displayed.

The following example shows the output from a simple show mutex command:

DBX Mode

(idb) show mutex
Mutex Name State Owner Pri Type Waiters (+Count)
------ ------------------------- ----- ------ --- -------- --------------------
 1 malloc heap Normal
 2 malloc hash Normal
 3 malloc cache[0] Normal
 4 malloc cache[1] Normal
 5 malloc cache[2] Normal
 6 malloc cache[3] Normal
 7 malloc cache[4] Normal
 8 malloc cache[5] Normal
 9 malloc cache[6] Normal
 10 malloc cache[7] Normal
 11 malloc cache[8] Normal
 12 malloc cache[9] Normal
 13 malloc cache[10] Normal
 14 malloc cache[11] Normal
 15 malloc cache[12] Normal
 16 malloc cache[13] Normal
 17 malloc cache[14] Normal
 18 malloc cache[15] Normal
 19 malloc cache[16] Normal
 20 malloc cache[17] Normal
 21 malloc cache[18] Normal
 22 malloc cache[19] Normal
 23 malloc cache[20] Normal
 24 malloc cache[21] Normal
 25 malloc cache[22] Normal
 26 malloc cache[23] Normal
 27 malloc cache[24] Normal
 28 malloc cache[25] Normal
 29 malloc cache[26] Normal
 30 malloc cache[27] Normal
 31 malloc cache[28] Normal
 32 brk Normal
 33 exc cr Recurs
 34 exc read rwl Normal
 35 known mutex queue Normal
 36 known cond queue Normal
 37 known VP queue Normal
 38 known rwl queue Normal
 39 VM 0 lookaside Normal
 40 VM 1 lookaside Normal
 41 VM 2 lookaside Normal
 42 VM 0 cache Normal

 43 VM 1 cache Normal
 44 VM 2 cache Normal
 45 debugger client registry Normal
 46 Global lock Recurs
 47 ldr Recurs
 48 prime_list(0x140000660) Normal
 49 cond_mutex(0x1400006c0) Normal
 50 current_mutex(0x140000690 Normal
 51 curr_worker_mutex(0x14000 Lock Normal

If the application being debugged has no pthreads, or if the $threadlevel is set to native, an appropriate message is issued.

8.2.5 Condition Variable Queries
A condition variable is a pthread synchronization object used in conjunction with a mutex. A condition variable is used when a thread has locked a mutex to
gain access to data and then finds it must wait for some other thread to change some aspect of the data before it can continue.

DBX Mode

show_condition_variable_command
 : show condition [condition_id_list] [condition_state_filter]

condition_id_list
 : condition_id ,...
 | (condition_id ,...)

condition_id
 : integer_constant

condition_state_filter
 : with state eq condition_state

condition_state
 : wait

Use the show condition command to list information about currently available condition variables. If you supply one or more condition identifiers, the
debugger displays information about the condition variables you specify, provided that the list matches the identities of currently available condition variables. If
you omit the condition variable specification, the debugger displays information about all the condition variables currently available.

Use the show condition with state == wait command to display information only for condition variables that have one or more threads waiting. If
$verbose is set to 1, the sequence numbers of the threads waiting on the condition are displayed.

The following example shows output from a simple show condition command:

DBX Mode

(idb) show condition
Cond Name Mutex Type Waiters (+Count)
------ ------------------------- ------ ----- ---------------------------------
 1 _exc_read_mutex+72(0x3ffc
 2 _exc_read_mutex+112(0x3ff
 3 cond_var(0x140000720) 49 2, 3, 4, 5, 6
 4 curr_worker(0x140000748)

If the application being debugged has no pthreads, or if the $threadlevel is set to native, an appropriate message is issued.

8.2.6 Other Thread Commmands
You can use the where command to display the stack trace of current threads. You can specify one or more threads or all threads.

The print command evaluates an optional expression in the context of the current thread and displays the result.

The call command evalutes an expression in the context of the current thread and makes the call in the context of the current thread.

The printregs command prints the registers for the current thread.

8.2.7 Undocumented pthread Support
You can pass an undocumented string directly into the undocumented pthread debugging support. This is an internal debugging aid, not intended for general
use.

DBX Mode

pthread_command
 : pthread string

8.3 Looking at the Call Stack
Most programming languages have some concept of functions, routines, or subroutines, capturing the notion of code that is invoked from many places. A
running program needs a call stack of call frames for the called functions. Each call frame contains both the information needed to return to its caller and the
information needed to contain the local variables of the function.

The machine code generated for these functions maintains this call stack. Some of this maintenance is done before the call, some at the start of the called
function, some at the end of the called function, and some after the call.

Non-optimized machine code is usually very easy to correlate with the source code, but optimized machine code can be tricky. See Call Frames and Optimized
Code and Call Frames and Machine Code Correlation for more information.

The debugger controls the call stacks of all the threads; you can use it to examine and manipulate call stacks, and use them as a basis for further queries:

call_stack_command
 : show_stack_command
 | change_stack_frame_command
 | pop_stack_frame_command

When your process is stopped by the debugger, you can show the call stack of the thread that caused the stoppage, or the call stack of any other thread.

The following commands show the most recent call frames on the call stack of the current or specified threads:

DBX Mode

show_stack_command
 : where [expression] [thread_specifier]

thread_specifier
 : thread thread_id ,...
 | thread all

thread_id
 : expression

GDB Mode

show_stack_command
 : backtrace | where | info stack | bt [expression]

If specified, the expression must evaluate to a nonnegative integer. You can specify the number of call frames to show. If not specified, all the call frames for the
thread are shown.

DBX Mode

If specified, the thread_specifier specifies the threads whose call stacks are to be shown. If not specified, just the current thread is used.

When large and complex values are passed by value to a routine on the stack, the output of the where command can be voluminous. You can set the
control variable $stackargs to 0 to suppress the output of argument values in the where command.

The stack trace provides the following information for each call level:

Call level The number used to refer to a call level on the stack. The function entered most recently is at level 0. Its caller is at level 1.
Memory address The address of the next instruction to be executed at this level.
Function name The name of the function for the memory address.
File name The source file for the memory address.
Line number The number of the next source line of the memory address.

If your call stack seems to be missing routines, you may be seeing the result of a compiler optimization known as "tail calls".

If your call stack is corrupted, you may see random numbers without any routine names. In this case, it is likely that your application has gotten lost. Typically,
this type of call stack display means that your application has lost track of the real stack and real code location, and is now executing random bits of memory,
interpreting them as instructions.

If you are coding in C++, one of the most common ways to get a corrupt stack is for your code to try to execute a method on an invalid object. If the object has
already been deleted, has not yet been initialized, is not there, or is of a completely different type, then the virtual function table will not be correct, and the
application will be treating random memory as the virtual function table and calling a random place.

8.3.1 Navigating the Call Stack
You can select one of the call frames as the starting point for examining variables. This call frame provides the current scope in the program for which variables
exist, and tells the debugger which instance of those variables whose values you want to see.

DBX Mode

change_stack_frame_command
 : up [expression]
 | down [expression]
 | func [loc]

GDB Mode

change_stack_frame_command
 : up [expression]
 | up-silently [expression]
 | down [expression]
 | down-silently [expression]
 | frame [expression]

Use the up command or the down command without the expression to change to the call frame located one level up or down the stack. Specify an expression
that evaluates to an integer to change the call frame up or down the specified number of levels. If the number of levels exceeds the number of active calls on
the stack in the specified direction, the debugger issues a warning message and the call frame does not change.

When the current call frame changes, the debugger displays the source line corresponding to the last instruction executed in the function executing the selected
call frame.

DBX Mode

When large and complex values are passed by value to a routine on the stack, the output of the up and down commands can be voluminous. You can set
the control variable $stackargs to 0 to suppress the output of argument values in the up and down commands.

Use the func command without the loc to display the current function. To change the function scope to a function that has a call frame in the call stack,
specify the loc either as the name of the function or as an integer expression evaluating to the call level. If you specify the name, the most-recently entered
call frame for that function becomes the current call frame.

If no frames are available to select from, the debugger context is set to the static context of the named function. The current scope and current language are
set based on that function. Types and static variables local to that function are now visible and can be evaluated.

If you enter an integer expression, the debugger moves to the frame at level n, just as if you had entered up n at the level 0 function.

GDB Mode

up-silently and down-silently commands are similar to up and down respectively. But they do their work silently, without causing display of the new
frame.

The frame command selects frame by given number or address. If there is no argument the command displays info about current stack frame.

In the following example, the current call frame is changed to one for method Planet::print so that a variable in that instance of print() can be displayed:

DBX Mode

(idb) where 4
#0 0x804cd72 in ((Planet*)0x80e6008)->Planet::print(i=2)
"solarSystemSrc/planet.cxx":19
#1 0x804c772 in ((HeavenlyBody*)0x80e6008)-
>HeavenlyBody::printBodyAndItsSatellites(i=2) "solarSystemSrc/heavenlyBody.cxx":62
>2 0x804c7a7 in ((HeavenlyBody*)0x80e5fb0)-
>HeavenlyBody::printBodyAndItsSatellites(i=1) "solarSystemSrc/heavenlyBody.cxx":68
#3 0x804c50a in main() "solarSystemSrc/main/solarSystem.cxx":120
(idb) list $curline - 5: 10
 63
 64 // Recursively deal with the satellites. Redeclare i for scoping
examples.
 65 //
 66 unsigned int j = 1;
 67 for (HeavenlyBody* i = _firstSatellite; i; i = i->_outerNeighbor) {
> 68 i->printBodyAndItsSatellites(j++);
 69 }
 70 }
(idb) whatis i
struct HeavenlyBody* i
(idb) print i
0x80e6008
(idb) func Planet::print
virtual void Planet::print(unsigned int) in solarSystemSrc/planet.cxx line No. 19:
 19 std::cout << "(" << i
(idb) where 4
>0 0x804cd72 in ((Planet*)0x80e6008)->Planet::print(i=2)
"solarSystemSrc/planet.cxx":19
#1 0x804c772 in ((HeavenlyBody*)0x80e6008)-
>HeavenlyBody::printBodyAndItsSatellites(i=2) "solarSystemSrc/heavenlyBody.cxx":62
#2 0x804c7a7 in ((HeavenlyBody*)0x80e5fb0)-
>HeavenlyBody::printBodyAndItsSatellites(i=1) "solarSystemSrc/heavenlyBody.cxx":68
#3 0x804c50a in main() "solarSystemSrc/main/solarSystem.cxx":120
(idb) list $curline - 5: 10
 14 {
 15 }
 16
 17 void Planet::print(unsigned int i) const
 18 {
> 19 std::cout << "(" << i
 20 << ") Planet [" << HeavenlyBody::name() << "]; ";
 21 printOrbitalParameters();
 22 std::cout << std::endl;
 23 }
(idb) whatis i
unsigned int i
(idb) print i
2

In the previous example, instead of entering func Planet::print, you can enter down 2. (You would use down in this case because the current call
frame at the start of the example was not the bottommost frame.) Note that the final stack trace in this example lists a call frame for function
Planet::print as the current call frame (denoted by the > character).

GDB Mode
There are some commands to print info about the selected stack frame:

● info frame
The command prints following info about the current frame:

❍ the address of the frame

❍ the address of the next frame down (called by this frame)
❍ the address of the next frame up (caller of this frame)
❍ the language in which the source code corresponding to this frame is written
❍ the address of the frame's arguments
❍ the address of the frame's local variables
❍ the program counter saved in it (the address of execution in the caller frame)
❍ which registers were saved in the frame

● info frame addr
The command prints a verbose description of the frame at address addr, without selecting that frame.

● info args
The command prints the arguments of the selected frame, each on a separate line.

● info locals
The command prints the local variables of the selected frame, each on a separate line. These are all variables (declared either static or automatic)
accessible at the point of execution of the selected frame.

● info catch
The command prints a list of all the exception handlers that are active in the current stack frame at the current point of execution.

8.3.2 The pop Command
The pop command removes one or more call frames from the call stack:

DBX Mode

pop_stack_frame_command
 : pop [expression]

The default is one call frame. The pop command undoes the work already done by the removed execution frames. It does not, however, reverse side
effects, such as changes to global variables.

Note: Because it is extremely unlikely this will fix all the effects of a half-executed call, this command is not recommended for general use. Furthermore, the
pop command does not provide a way to specify a return value when the frame being discarded corresponds to a function that should return a value. You
may need to use the assign command to restore the values of global variables.

Instead of the pop command, you may want to use the return command, which finishes the call corresponding to the selected frame.

GDB Mode

pop_stack_frame_command
 : return [expression]

When you use return, the selected stack frame is discarded (and all frames within it). If you wish to specify a value to be returned, give that value as the
argument to return.

The return command does not resume execution. It leaves the program stopped in the state that would exist if the function had just returned. In contrast,
the finish command resumes execution until the selected stack frame returns naturally.

8.3.3 Call Frames and Optimized Code
When optimized machine code is generated by the compilers, the compiler generates code that maintains the call stack, but sometimes the function boundaries
are changed in one of two ways:

● Inlining is when the compiler completely eliminates the call by instead generating the instructions for the called function at the call site, usually followed
by merging those instructions with the other instructions surrounding the call site.

● Outlining is when the compiler creates a function where one did not exist explicitly in the source. For example, the compiler turns a loop body into a
function, so that it can generate code that uses threads to execute the different iterations in parallel; or the compiler creates a single shared function to
replace several sections of the source that are similar.

Depending on the information the compiler makes available to the debugger, inlined calls may or may not show up in the call stack display. Outlined calls will
show up, and will be correlated to the code they came from. The compiler will probably have supplied the debugger with some invented name for the function.

8.3.4 Call Frames and Machine Code Correlation
On a RISC processor the following is the machine code typically generated for a call to a function:

● The machine code before the call performs the following operations:
❍ Sets some context registers
❍ Puts the parameters either in registers or memory
❍ Loads the address of the function into a register
❍ Loads the address to return to into a register
❍ Branches to the function

● The machine code at the start of the called function performs the following operations:
❍ Sets some context registers
❍ Allocates stack space
❍ Saves some registers in the stack space
❍ Performs some setup of the local variables

● The machine code at the end of the called function performs the following operations:
❍ Restores the saved registers from the stack space
❍ Deallocates the stack space
❍ Branches to the address to return to

● The machine code at the return address of the call frame sets some context registers.

When the thread is partway through the call frame creation or tear-down, the debugger will still show the call frame, but will not be able to show correct values
for the variables or parameters.

8.3.5 Special C++ Issues
For nonstatic member functions, the implicit this pointer is displayed as the address on the stack trace along with the class type of the object, as shown in the
following example:

DBX Mode

(idb) stop in List<Node>::print
[#3: stop in void List<Node>::print(void)]
(idb) cont
[3] stopped at [void List<Node>::print(void):162 0x804aad2]
 162 Node* currentNode = _firstNode;
(idb) where 2
>0 0x804aad2 in ((List<Node>*)0xbfffecfc)->List<Node>::print() "x_list.cxx":162
#1 0x804a53a in main() "x_list.cxx":203

GDB Mode

() break List<Node>::print
Breakpoint 3 at 0x804aad2: file x_list.cxx, line 162.
(idb) continue
Continuing.

Breakpoint 3, List<Node>::print (this=0xbfffecec) at x_list.cxx:162
162 Node* currentNode = _firstNode;
(idb) backtrace 2
>0 0x804aad2 in ((List<Node>*)(const class List<Node> *) 0xbfffecec)-
>List<Node>::print(this=(const class List<Node> *) 0xbfffecec) "x_list.cxx":162
#1 0x804a53a in main() "x_list.cxx":203

8.4 Looking at the Data
After you have seen the call stack (show_stack_command), selected the call frame containing the variables you wish to examine
(change_stack_frame_command), and looked at the source this function is executing (looking at the source), you usually want to examine some of
the variables or even evaluate some expressions. You can use the print command and the call command to do this. You can also use the following
commands to help you determine what to look at and what you are seeing:

DBX Mode

look_around_command
 : various_print_command
 | c++_look_around_command
 | call_command
 | whatis_command
 | whereis_command

 | which_command

various_print_command
 : print_command
 | printf_command
 | printi_command
 | print_registers_command
 | printt_command
 | dump_command

GDB Mode

look_around_command
 : print_command
 | info_registers_command
 | call_command
 | whatis_command

8.4.1 The print Command
You can print the values of one or more expressions or all local variables. You can also use the print command to evaluate complex expressions involving
typecasts, pointer dereferences, multiple variables, constants, and any legal operators allowed by the language of the program you are debugging:

DBX Mode

print_command
 : print [expression ,...]
 | print rescoped_expression
 | print printable-type
 | printb [expression ,...]
 | printd [expression ,...]
 | printo [expression ,...]
 | printx [expression ,...]

rescoped_expression
 : filename ` qual_symbol
 | ` qual_symbol

qual_symbol
 : expression
 | qual_symbol ` expression

For an array, the debugger prints every cell in the array if you do not specify a specific cell.

Use the $hexints, $decints, or $octints variables to select a radix for the output of the print command. If you do not want to change the radix
permanently, use the printx, printd, printo , and printb commands to print expressions in hexadecimal, decimal, octal, or binary base format,
respectively.

GDB Mode

print_command
 : print [/format specifier][expression]

format specifier
 : x | d | u | o | t | a | c | f

By default, GDB prints a value according to its data type. But user might want to print a number in hex, or a pointer in decimal. Or user might want to view
data in memory at a certain address as a character string or as an instruction. In this case user should specify an output format.
To specify how to print a value already computed a user should print after the print command a slash and a format letter. The format letters supported are:

● x
Regard the bits of the value as an integer, and print the integer in hexadecimal

● d

Print as integer in signed decimal.
● u

Print as integer in unsigned decimal.
● o

Print as integer in octal.
● t

Print as integer in binary. The letter `t' stands for "two".
● a

Print as an address, both absolute in hexadecimal and as an offset from the nearest preceding symbol.
● c

Regard as an integer and print it as a character constant.
● f

Regard the bits of the value as a floating point number and print using typical floating point syntax.

For an array, the debugger prints every cell in the array if you do not specify a specific cell.

Consider the following declarations in a C++ program:

DBX Mode

(idb) list 59: 2
 59 const unsigned int biggestCount = 10;
 60 static Moon *biggestMoons[biggestCount];

GDB Mode

(idb) list 59,+2
59 const unsigned int biggestCount = 10;
60 static Moon *biggestMoons[biggestCount];

The following example uses the print command to display a nonstring array:

DBX Mode

(idb) print biggestMoons
[0] = 0x80cf928,[1] = 0x80cfc88,[2] = 0x80cf988,[3] = 0x80cf868,[4] = 0x80cf688,[5] =
0x80cf8c8,[6] = 0x80d0048,[7] = 0x80cff28,[8] = 0x80cfc28,[9] = 0x80cff88

GDB Mode

(idb) print biggestMoons
$4 = {(class Moon *) 0x80d2708, (class Moon *) 0x80d2a68, (class Moon *) 0x80d2768,
(class Moon *) 0x80d2648, (class Moon *) 0x80d2468, (class Moon *) 0x80d26a8, (class
Moon *) 0x80d2e28, (class Moon *) 0x80d2d08, (class Moon *) 0x80d2a08, (class Moon *)
0x80d2d68}

The following example shows how to print individual values of an array:

DBX Mode

(idb) print biggestMoons[3]
0x80cf868
(idb) print *biggestMoons[3]
struct Moon {
 _radius = 1815;
 _name = 0x808e47c="Io"; // class Planet::HeavenlyBody
 _innerNeighbor = 0x0; // class Planet::HeavenlyBody
 _outerNeighbor = 0x80cf8c8; // class Planet::HeavenlyBody
 _firstSatellite = 0x0; // class Planet::HeavenlyBody
 _lastSatellite = 0x0; // class Planet::HeavenlyBody
 _primary = 0x80cf808; // class Planet::Orbit
 _distance = 422; // class Planet::Orbit

 _name = 0x80cf900="Jupiter 1"; // class Planet::Orbit
}

GDB Mode

(idb) print biggestMoons[3]
$7 = (class Moon *) 0x80d2648
(idb) print *biggestMoons[3]
$8 = {<Planet> = {<HeavenlyBody> = {_name = 0x808e17c "Io", _innerNeighbor = 0x0,
_outerNeighbor = 0x80d26a8, _firstSatellite = 0x0, _lastSatellite = 0x0}, <Orbit> =
{_primary = 0x80d25e8, _distance = 422, _name = 0x80d26e0 "Jupiter 1"}, }, _radius =
1815}

8.4.1.1 Dereferencing Pointers

Pointers are variables that contain addresses. By dereferencing a pointer in the command interface, you can print the value at the address pointed to by the
pointer. In C and C++ programs, variables containing a pointer are dereferenced using the * operator. The following example shows how to dereference a
pointer in C++ programs:

(idb) whatis newNode
class IntNode* newNode
(idb) print newNode
0x80b9740
(idb) print *newNode
class IntNode {
 _data = 1;
 _nextNode = 0x0; // class Node
}

8.4.1.2 Printing C Strings

The debugger does not print more than the first $maxstrlen characters of a null-terminated string. Change this debugger variable if it is showing either more
or less than you wish to see.

8.4.1.3 Printing Floating Point Numbers

Floating point numbers are represented inside the computer in binary floating point. They are converted to decimal floating point when printed. The two formats
are not the same, and some numbers are easily represented in decimal but not in binary (for example the number 1.1). The internal binary form for such
numbers is an approximation, the closest that can be made given the number of bits available.

Normally, when a binary floating point number is printed, the shortest decimal number which would be represented by that binary number is used as the number
to print, as it is a legitimate representation of the internal binary number. However, to see a more exact (extended form) representation of a binary floating point
number, you can set the $floatshrinking debugger variable to 0 (zero).

The following example shows the result of converting 1.1 (shortened form) to the closest long double binary floating point number (extended form).

(idb) p $floatshrinking
1
(idb) p 1.1
1.1
(idb) set $floatshrinking = 0
(idb) p 1.1
1.10000000000000000000000000000000008

Currently, the extended forms are only available for long double variables and expressions.

For more detail on floating point representation, see ANSI IEEE standard 754-1985.

8.4.1.4 Restrictions on the print Command

Expressions containing labels are not supported. Variables involving static anonymous unions and enumerated types may not be able to be printed. Printing a
structure that is declared but not defined in a compilation unit may generate an error message indicating that the structure is opaque.

8.4.2 The printf Command
Use the printf command to format and display a complex structure. The first argument is a string expression of characters and conversion specifications

using the same format specifiers as the printf C function. The printf command requires a running target program because it uses libc.

printf_command
 : printf [format_string [, expression ,...]]

For example:

(idb) printf "The PC is 0x%x", $pc
The PC is 0x804a53a

8.4.3 The printi Command
The printi command takes one or more numerical expressions and interprets each one as an assembly instruction, printing out the instruction, and its
arguments when applicable. This command is typically used by engineers performing machine-level debugging.

printi_command
 : printi [expression ,...]

For example:

(idb) $curpc/1i
CompoundNode::CompoundNode(float, int): x_list.cxx
 [line 103, 0x804a60e] _ZN12CompoundNodeC1Efi(...)+0x18: addl $-8, %esp
(idb) $curpc/1dd
0x804a60e: -1946631037
(idb) printi $pc
_ZN12CompoundNodeC1Efi(...)+0x32: hlt

8.4.4 The printregs Command
Use the printregs command to display the values of all the hardware registers. The list of registers displayed by the debugger is machine-dependent. By
default, most values are displayed in decimal radix. To display the register values in hexadecimal radix, set the $hexints variable to 1.

print_registers_command
 : printregs

For example:

(idb) printregs
$eax 0x80b0c14 134941716
$ecx 0x40018000 1073840128
$edx 0x0 0
$ebx 0x401ae9e4 1075505636
$esp [$sp] 0xbffff58c -1073744500
$ebp 0xbffff668 -1073744280
$esi 0x40016b64 1073834852
$edi 0xbffff6dc -1073744164
$eip [$pc] 0x804a3e2 134521826
$eflags 0x286 646
$cs 0x23 35
$ss 0x2b 43
$ds 0x2b 43
$es 0x2b 43
$fs 0x0 0
$gs 0x0 0
$orig_eax 0xffffffff -1
$fctrl 0x37f 895
$fstat 0x0 0
$ftag 0x0 0
$fiseg 0x23 35
$fioff 0x805badf 134593247
$foseg 0x2b 43
$fooff 0xbffff368 -1073745048
$fop 0x1bd 445
$f0 0x000000000000ffff0000000000000000 -inf
$f1 0x000000000000ffff0000000000000000 -inf

$f2 0x000000000000ffff0000000000000000 -inf
$f3 0x000000000000ffff0000000000000000 -inf
$f4 0x000000000000ffff0000000000000000 -inf
$f5 0x000000000000ffff0000000000000000 -inf
$f6 0x000000000000ffff0000000000000000 -inf
$f7 0x0000000000004002a1f7cf0000000000 10.123
$xmm0 0x00000000000000000000000000000000
$xmm1 0x00000000000000000000000000000000
$xmm2 0x00000000000000000000000000000000
$xmm3 0x00000000000000000000000000000000
$xmm4 0x00000000000000000000000000000000
$xmm5 0x00000000000000000000000000000000
$xmm6 0x00000000000000000000000000000000
$xmm7 0x00000000000000000000000000000000
$mxcsr 0x1f80 8064
$vfp 0xbffff668 0xbffff668

8.4.5 The printt Command
The printt command takes one or more numerical expressions and interprets each one as the number of seconds since the Epoch (00:00:00 UTC 1 Jan
1970; see ctime(3) for more information).

printt_command
 : printt [expression ,...]

For example:

(idb) printt 0
(UTC) Thu Jan 1 00:00:00 1970
(idb) printt 978325200
(UTC) Mon Jan 1 05:00:00 2001

8.4.6 The dump Command
Use the dump command without an argument to list the parameters and local variables in the current function. To list the parameters and local variables in an
active function, specify it as an argument.

Use the dump . command (include the dot) to list the parameters and local variables for all functions active on the stack:

dump_command
 : dump qual_symbol
 | dump .

For example:

(idb) dump
>0 0x804a53a in main() "x_list.cxx":203
cNode=0x80b9750
cNode1=0x80b9768
cNode2=0x80b97a0
newNode=0x80b9740
newNode2=0x80b9790
nodeList=class List<Node> { ... }

When large and complex values are passed by value to a routine on the stack, the output of the dump command can be voluminous. You can set the control
variable $stackargs to 0 to suppress the output of argument values in the dump command.

8.4.7 The call Command
After a breakpoint or a signal suspends program execution, you can execute a single function in your program by using the call command, or by including a
function call in the expression argument of a debugger command. Calling a function lets you test the function's operation with a specific set of parameters.

call_command
 : call call-expression

Specify the function as if you were calling it from within the program. If the function has no parameters, specify empty parentheses (()). For multithreaded
applications, the call is made in the context of the current thread. For C++ applications, when you set the $overloadmenu debugger variable to 1 and call an
overloaded function, the debugger lists the overloaded functions and calls the function you specify. When the function you call completes normally, the
debugger restores the stack and the current context that existed before the function was called.

While the program counter is saved and restored, calling a function does not shield the program state from alteration if the function you call allocates memory or
alters global variables. If the function affects global program variables, for instance, those variables will be changed permanently.

Functions compiled without the debugger option to include debugging information may lack important parameter information and are less likely to yield
consistent results when called.

The call command executes the specified function with the parameters you supply and then returns control to you (at the debugger prompt) when the function
returns. The call command discards the return value of the function. If you embed the function call in the expression argument of a print command, the
debugger prints the return value after the function returns. The following example shows both methods of calling a function:

(idb) call earth->distance()
(idb) print earth->distance()
149600

In the previous example, the call command results in the return value being discarded while the embedded call passes the return value of the function to the
print command, which in turn prints the value. You can also embed the call within a more involved expression, as shown in the following example:

(idb) print earth->distance() - 100000
49600
(idb) print mars->distance() - earth->distance()
78340
(idb) call io->print(3)
(3) Moon [Io], radius [1815] km; <Jupiter 1> orbits at 422 Megameters

All breakpoints or tracepoints defined and enabled during the session are active when a called function is executing. When program execution halts during
function execution, you can examine program information, execute one line or instruction, continue execution of the function, or call another function.

When you call a function when execution is suspended in a called function, you are nesting function calls, as shown in the following example:

(idb) where 2
>0 0x804bb6b in buildOurSolarSystem(sun=0x80cf4d0)
"solarSystemSrc/main/solarSystem.cxx":55
#1 0x804c4f2 in main() "solarSystemSrc/main/solarSystem.cxx":119
(idb) stop in Planet::print
[#2: stop in virtual void Planet::print(unsigned int)]
(idb) call mars->print(1)
[2] stopped at [virtual void Planet::print(unsigned int):19 0x804cd72]
 19 std::cout << "(" << i
(idb) where
>0 0x804cd72 in ((Planet*)0x80cf6e8)->Planet::print(i=1)
"solarSystemSrc/planet.cxx":19
#1 0x4004b1a4 in __do_global_ctors_aux(...) in /lib/i686/libm.so.6
#2 0x80cf6e8
(idb) next
stopped at [virtual void Planet::print(unsigned int):20 0x804cdc6]
 20 << ") Planet [" << HeavenlyBody::name() << "]; ";
(idb) stop in Orbit::distance
[#3: stop in Megameters Orbit::distance(void)]
(idb) print distance()
[3] stopped at [Megameters Orbit::distance(void):41 0x804cac7]
 41 return _distance;
(idb) where
>0 0x804cac7 in ((Orbit*)0x80cf700)->Orbit::distance() "solarSystemSrc/orbit.cxx":41
#1 0x4004b1a4 in __do_global_ctors_aux(...) in /lib/i686/libm.so.6
#2 0x80cf700
(idb) disable 3
(idb) cont
Called Procedure Returned
stopped at [virtual void Planet::print(unsigned int):20 0x804cdc6]
 20 << ") Planet [" << HeavenlyBody::name() << "]; ";
(idb) where
>0 0x804cdc6 in ((Planet*)0x80cf6e8)->Planet::print(i=1)
"solarSystemSrc/planet.cxx":20
#1 0x4004b1a4 in __do_global_ctors_aux(...) in /lib/i686/libm.so.6
#2 0x80cf6e8
(idb) cont

(1) Planet [Mars]; <Sol 4> orbits at 227940 Megameters
Called Procedure Returned
stopped at [void buildOurSolarSystem(struct Star*):55 0x804bb6b]
 55 Planet *pluto = new Planet("Pluto", 5913520, sun);

8.4.7.1 Restrictions on the call Command

The debugger supports function calls and expression evaluations that call functions, with the following limitations:

● The debugger does not support passing and returning structures by value.
● The debugger does not implicitly construct temporary objects for call parameters.
● Optimization can prevent the debugger from knowing the type of a function return. Therefore, the debugger assumes returns are of the type int if the

functions are optimized. If the returns are a different type, it may be necessary to cast the result when calling the optimized functions.

8.4.8 The whatis Command
You can print information about the basic nature of a whatis_expression. The expression can be a normal language expression or the name of a type,
function, or other language entity. The debugger shows you information about the entity rather than evaluating it. However, it will evaluate any contained
expressions, such as pointers, needed to determine the entity to which you are referring.

whatis_command
 : whatis whatis_expression

The following example uses the whatis command to determine the storage representation for the data member _classification:

(idb) whatis sun->_classification
const enum StellarClass Star::_classification
(idb) whatis StellarClass
enum StellarClass {O, B, A, F, G, K, M, R, N, S}
(idb) print sun->_classification
G

8.4.9 The whereis Command
The whereis command lists all declarations of a variable and each declaration's fully qualified scope information.

The scope information of a variable usually consists of the name of the source file that contains the function in which the variable is declared, the name of that
function, and the name of the variable. The components of the scope information are separated by back-quotes (`).

whereis_command
 : whereis whereis_name
 | whereis whereis_string

whereis_name
 : identifier_or_typedef_name
 | (identifier_or_typedef_name)

whereis_string
 : string

You can use the whereis command with the whereis_name to obtain information needed to differentiate overloaded identifiers that are in different units, or
within different routines in the same unit. The following example shows how to set breakpoints in two C++ methods, both named print:

(idb) whereis print
"solarSystemSrc/derived_class_includes/planet.h"`Planet::print(unsigned int)
"solarSystemSrc/derived_class_includes/planet.h"`Moon::print(unsigned int)
"solarSystemSrc/base_class_includes/heavenlyBody.h"`HeavenlyBody::print(unsigned int)
"solarSystemSrc/derived_class_includes/star.h"`Star::print(unsigned int)
(idb) stop in "solarSystemSrc/derived_class_includes/planet.h"`Planet::print
Select from
--
 1 planet.h containing Moon
 2 planet.h containing Moon
 3 planet.h containing __dt__6PlanetXv
 4 None of the above
--
1

[#2: stop in virtual void Planet::print(unsigned int)]
(idb) stop in "solarSystemSrc/derived_class_includes/star.h"`Star::print
Select from
--
 1 star.h containing O
 2 star.h containing O
 3 None of the above
--
1
[#3: stop in virtual void Star::print(unsigned int)]

See also the which command for another example of the whereis command.

If you are not sure how to spell a symbol, you can use the whereis command with the whereis_string to search the symbol table for the regular expression
represented by the quoted string. All symbols that match the rules of the regular expression are displayed in ascending order. For example:

(idb) whereis planet
Symbol not found
(idb) whereis "[Pp]lanet"
"solarSystemSrc/derived_class_includes/planet.h"`Moon::Moon(char*, Megameters,
Kilometers, class Planet*)
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet::Planet(char*, Megameters,
class HeavenlyBody*)
"solarSystemSrc/derived_class_includes/planet.h"`Planet::Planet(char*, Megameters,
class HeavenlyBody*)
"solarSystemSrc/derived_class_includes/planet.h"`Planet::print(unsigned int)
"solarSystemSrc/derived_class_includes/planet.h"`__INTER__Moon_Moon_Orbit_Planet_Xv
"solarSystemSrc/derived_class_includes/planet.h"`__INTER__Planet_Planet_Orbit_Xv
"solarSystemSrc/derived_class_includes/planet.h"`__dt__6PlanetXv
__T_6Planet
__cxxexsig6Planet
__vtbl_5Orbit6Planet
__vtbl_5Orbit6Planet4Moon
__vtbl_6Planet
solarSystemSrc/derived_class_includes/planet.h
solarSystemSrc/derived_class_includes/planet.h
solarSystemSrc/derived_class_includes/planet.h
solarSystemSrc/planet.cxx
(idb) whereis "^Planet$"
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet::Planet(char*, Megameters,
class HeavenlyBody*)
(idb) whereis Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet::Planet(char*, Megameters,
class HeavenlyBody*)
(idb) which Planet
"solarSystemSrc/derived_class_includes/planet.h"`Planet
(idb) whatis Planet
class Planet : HeavenlyBody, Orbit {
 Planet(char*, Megameters, class HeavenlyBody*);
 virtual void print(unsigned int);
}

You can use the $symbolsearchlimit debugger variable to specify the maximum number of symbols that will be returned by the whereis command for a
regular expression search. The default value for the $symbolsearchlimit variable is 100; a value of 0 indicates no limit.

8.4.10 The which Command
Use the which command to determine which declaration an identifier resolves to. The which command shows the fully qualified scope information for the
instance of the specified expression visible from the current scope.

The scope information of a variable usually consists of the name of the source file that contains the function in which the variable is declared, the name of that
function, and the name of the variable. The components of the scope information are separated by back-quotes (`).

which_command
 : which which_name

which_name
 : identifier_or_typedef_name
 | (identifier_or_typedef_name)

The following example shows how to use the whereis and which commands to determine a variable's scope:

(idb) where 4
>0 0x804cd72 in ((Planet*)0x80e6008)->Planet::print(i=2)
"solarSystemSrc/planet.cxx":19
#1 0x804c772 in ((HeavenlyBody*)0x80e6008)-
>HeavenlyBody::printBodyAndItsSatellites(i=2) "solarSystemSrc/heavenlyBody.cxx":62
#2 0x804c7a7 in ((HeavenlyBody*)0x80e5fb0)-
>HeavenlyBody::printBodyAndItsSatellites(i=1) "solarSystemSrc/heavenlyBody.cxx":68
#3 0x804c50a in main() "solarSystemSrc/main/solarSystem.cxx":120
(idb) which i
"solarSystemSrc/planet.cxx"`Planet::print(unsigned int)`i
(idb) assign i = 10
(idb) print i
10
(idb) whereis i
"solarSystemSrc/heavenlyBody.cxx"`HeavenlyBody::printBodyAndItsSatellites(unsigned
int)`i
"solarSystemSrc/heavenlyBody.cxx"`HeavenlyBody::printBodyAndItsSatellites(unsigned
int)`i
"solarSystemSrc/heavenlyBody.cxx"`HeavenlyBody::satelliteNumber(struct
HeavenlyBody*)`i
"solarSystemSrc/main/solarSystem.cxx"`main`i
"solarSystemSrc/main/solarSystem.cxx"`printBiggestMoons`i
"solarSystemSrc/main/solarSystem.cxx"`trackBiggestMoons(struct Moon*)`i
"solarSystemSrc/planet.cxx"`Moon::print(unsigned int)`i
"solarSystemSrc/planet.cxx"`Planet::print(unsigned int)`i
"solarSystemSrc/star.cxx"`Star::print(unsigned int)`i
(idb) func HeavenlyBody::printBodyAndItsSatellites
Error: no value for symbol this
Evaluating 'HeavenlyBody::printBodyAndItsSatellites' failed!
The scope HeavenlyBody does not have a field named 'printBodyAndItsSatellites'!
(idb) which i
Symbol not found in current scope
(idb) print i
Symbol "i" is not defined.

8.4.11 Notes on C++ Debugging
The following sections describe the debugger commands specific to debugging C++ programs.

8.4.11.1 Setting the Class Scope Using the class Command

The debugger maintains the concept of a current context in which to perform lookup of program variable names. The current context includes a file scope and
either a function scope or a class scope. The debugger automatically updates the current context when program execution suspends.

The class command lets you set the scope to a class in the program you are debugging:

c++_look_around_command
 : class [class_name]

If class_name is not specified, the class command displays the current class context.

Setting the class scope nullifies the function scope and vice versa. To return to the default (current function) scope, use the command func 0.

Explicitly setting the debugger's current context to a class enables you to view a class to:

● Set a breakpoint in a member function
● Print static data members
● Examine any data member's type

After the class scope is set, you can set breakpoints in the class's member functions and examine data without explicitly mentioning the class name. If you do
not want to affect the current context, you can use the scope resolution operator (::) to access a class whose members are not currently visible. Use the class
command without an argument to display the current class scope. Specify an argument to change the class scope. After the class scope is set, refer to
members of the class by omitting the classname:: prefix.

The following example shows the use of the class command to set the class scope to List<Node> in order to make member function append visible so a
breakpoint can be set in append:

(idb) stop in append
Symbol "append" is not defined.
append has no valid breakpoint address
Warning: Breakpoint not set
(idb) class List<Node>
struct List<Node> {
 struct Node* _firstNode;
 List(void);
 void append(struct Node* const);
 void print(void);
 ~List(void);
}
(idb) stop in append
[#1: stop in void List<Node>::append(struct Node* const)]

8.4.11.2 Displaying Class Information

The whatis and print commands display information on a class. Use the whatis command to display static information about the classes. Use the print
command to view dynamic information about class objects.

The whatis command displays the class type declaration, including the following:

● Data members
● Member functions
● Constructors
● Destructors
● Static data members
● Static member functions

For classes that are derived from other classes, the data members and member functions inherited from the base class are not displayed. Any member
functions that are redefined from the base class are displayed.

The print command lets you display the value of data members and static members. Information regarding the public, private, or protected status of class
members is not provided, because the debugger relaxes the related access rules to be more helpful to users.

The type signatures of member functions, constructors, and destructors are displayed in a form that is appropriate for later use in resolving references to
overloaded functions.

The following example shows the whatis and print commands in conjunction with a class:

(idb) list 43: 12
 43 // Compound Node - contains integer and float data items
 44 //
 45 class CompoundNode : public IntNode {
 46 public:
 47 CompoundNode (float fdata, int idata);
 48
 49 void printNodeData() const;
 50
 51 private:
 52 float _fdata;
 53 };
 54
(idb) whatis CompoundNode
struct CompoundNode : IntNode {
 float _fdata;
 CompoundNode(float, int);
 virtual void printNodeData(void);
}
(idb) whatis CompoundNode::CompoundNode
CompoundNode::CompoundNode(float, int)
(idb) stop in CompoundNode::printNodeData
[#1: stop in virtual void CompoundNode::printNodeData(void)]

(idb) run
The list is:
Node 1 type is integer, value is 1
[1] stopped at [virtual void CompoundNode::printNodeData(void):109 0x804a654]
 109 cout << " type is compound, value is ";
(idb) print _fdata
12.3450003

8.4.11.3 Displaying Object Information

The whatis and print commands display information on instances of classes (objects). Use the whatis command to display the class type of an object. Use
the print command to display the current value of an object.

You can also display individual object members using the member access operators, period (.) and right arrow (->), in a print command.

You can use the scope resolution operator (::) to refer to global variables, to refer to hidden members in base classes, to explicitly refer to a member that is
inherited, or to name a member hidden by the current context.

When you are in the context of a nested class, you must use the scope resolution operator to access members of the enclosing class.

The following example shows how to use the whatis and print commands to display object information:

(idb) whatis this
const struct CompoundNode* const this
(idb) whatis *this
struct CompoundNode : IntNode {
 float _fdata;
 CompoundNode(float, int);
 virtual void printNodeData(void);
}
(idb) print *this
struct CompoundNode {
 _fdata = 12.3450003;
 _data = 2; // class IntNode
 _nextNode = 0x80b0f68; // class IntNode::Node
}
(idb) print _fdata, _data
12.3450003 2
(idb) print this->_fdata, this->_data
12.3450003 2

8.4.11.4 Displaying Static and Dynamic Type Information

When displaying object information for C++ class pointers or references, you have the option of viewing either static type information or dynamic type
information.

The static type of a class pointer or reference is its type as defined in the source code, and thus cannot change. The dynamic type is the type of the object
being referenced, before any casts were made to that object, and thus may change during program execution.

The debugger provides a debugger variable, $usedynamictypes, which allows you to control which form of the type information is displayed. The default
value for this variable is true (1), which indicates that the dynamic type information is displayed. Setting this variable to false (0) instructs the debugger to
display static type information. The output of the print, trace, tracei, and whatis commands are affected.

The display of dynamic type information is supported for C++ class pointers and references. All other types display static type information. In addition, if the
dynamic type of an object cannot be determined, the debugger defaults to the use of static type information.

This debugger functionality does not relax the C++ visibility rules regarding object member access through a pointer/reference (only members of the static type
are accessible). For more information about the C++ visibility rules, see The Annotated C++ Reference Manual (by Margaret E. Ellis and Bjarne Stroustrup,
1990, Addison-Wesley Publishing Company).

In order for dynamic type information to be displayed, the object's static type must have at least one virtual function defined as part of its interface (either one it
introduced or one it inherited from a base class). If no virtual functions are present for an object, only the static type information for that object is available for
display.

The following example shows debugger output with $usedynamictypes set to 0 (false):

(idb) print $usedynamictypes
0
(idb) whatis *this
struct HeavenlyBody {

 const char* const _name;
 struct HeavenlyBody* _innerNeighbor;
 struct HeavenlyBody* _outerNeighbor;
 struct HeavenlyBody* _firstSatellite;
 struct HeavenlyBody* _lastSatellite;
 HeavenlyBody(char*);
 void addSatellite(struct HeavenlyBody*);
 const char* name(void);
 virtual void print(unsigned int);
 void printBodyAndItsSatellites(unsigned int);
 unsigned int satelliteNumber(struct HeavenlyBody*);
}
(idb) print *this
struct HeavenlyBody {
 _name = 0x808e4a0="Moon";
 _innerNeighbor = 0x0;
 _outerNeighbor = 0x0;
 _firstSatellite = 0x0;
 _lastSatellite = 0x0;
}

The following example displays debugger output with $usedynamictypes set to 1 (true). The output is for the same object as the previous example, at the
same point in program execution:

(idb) print $usedynamictypes
1
(idb) whatis *this
struct HeavenlyBody {
 const char* const _name;
 struct HeavenlyBody* _innerNeighbor;
 struct HeavenlyBody* _outerNeighbor;
 struct HeavenlyBody* _firstSatellite;
 struct HeavenlyBody* _lastSatellite;
 HeavenlyBody(char*);
 void addSatellite(struct HeavenlyBody*);
 const char* name(void);
 virtual void print(unsigned int);
 void printBodyAndItsSatellites(unsigned int);
 unsigned int satelliteNumber(struct HeavenlyBody*);
}
(idb) print *this
struct HeavenlyBody {
 _name = 0x808e4a0="Moon";
 _innerNeighbor = 0x0;
 _outerNeighbor = 0x0;
 _firstSatellite = 0x0;
 _lastSatellite = 0x0;
}

8.4.11.5 Displaying Virtual and Inherited Class Information

When you use the print command to display information on an instance of a derived class, the debugger displays both the new class members as well as the
members inherited from a base class. Pointers to members of a class are not supported.

When you use the print command to display the format of C++ classes, the class name (or structure/union name) is displayed at the top of the output. Data
members of a class that are inherited from another class are commented using a double slash (//). Only those data members that are inherited within the
current class being printed are commented.

The following example shows how the debugger uses C++ style comments to identify inherited class members. In the example, class CompoundNode inherits
from class IntNode, which inherits from class Node. When printing a class CompoundNode object, the data member _data is commented with "// class IntNode",
signifying that it is inherited from class IntNode. The member _nextNode is commented with "// class IntNode::Node", showing that it is inherited from class
IntNode, which inherits it from class Node. This commenting is also provided for C++ structs.

(idb) where 3
>0 0x804a628 in ((CompoundNode*)<bad value>)->CompoundNode::CompoundNode(=<no
value>, =<no value>) "x_list.cxx":103
#1 0x804a0ae in main() "x_list.cxx":189
#2 0x400a2507 in __libc_start_main(...) in /lib/i686/libc.so.6
(idb) whatis *this
Symbol "this" is not defined.
(idb) print *this

Symbol "this" is not defined.
(idb) up 1
>1 0x804a0ae in main() "x_list.cxx":189
 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
(idb) whatis *this
Symbol "this" is not defined.
(idb) print *this
Symbol "this" is not defined.
(idb) up 1
>2 0x400a2507 in __libc_start_main(...) in /lib/i686/libc.so.6
(idb) whatis *this
Symbol "this" is not defined.
(idb) print *this
Symbol "this" is not defined.

If two members in an object have the same name but different base class types (multiple inheritance), you can refer to the members using the following syntax:

object.class::member

or

object->class::member

This syntax is more effective than using the object.member and object->member syntaxes, which can be ambiguous. In all cases, the debugger uses the
C++ language rules as defined in The Annotated C++ Reference Manual to determine which member you are specifying.

The following example shows a case in which the expanded syntax can be used:

(idb) print *jupiter
struct Planet {
 _name = 0x808e480="Jupiter"; // class HeavenlyBody
 _innerNeighbor = 0x80cf6e8; // class HeavenlyBody
 _outerNeighbor = 0x80cfa48; // class HeavenlyBody
 _firstSatellite = 0x80cf868; // class HeavenlyBody
 _lastSatellite = 0x80cf9e8; // class HeavenlyBody
 _primary = 0x80cf4d0; // class Orbit
 _distance = 778330; // class Orbit
 _name = 0x80cf8a0="Sol 5"; // class Orbit
}
(idb) print jupiter->_name
Overloaded Values
0x80cf8a0="Sol 5"
0x808e480="Jupiter"
(idb) print jupiter->HeavenlyBody::_name
0x808e480="Jupiter"
(idb) print jupiter->Orbit::_name
0x80cf8a0="Sol 5"

8.4.11.6 Member Functions on the Stack Trace

The implicit this pointer, which is a part of all nonstatic member functions, is displayed as the address on the stack trace. The class type of the object is also
given.

Sometimes the debugger does not see class type names with internal linkage. When this happens, the debugger issues the following error message:

Name is overloaded.

Trying to examine an inlined member function that is not called results in the following error:

Member function has been inlined.

The debugger will report this error regardless of the setting of the -noinline_auto compilation flag. As a workaround, include a call to the given member
function somewhere in your program. (The call does not need to be executed.)

If a program is not compiled with the -g flag, a breakpoint set on an inlined member function may confuse the debugger.

8.4.11.7 Resolving Ambiguous References to Overloaded Functions

In most cases, the debugger works with one specific function at a time. In the case of overloaded function names, you must specify the desired overloaded
function. Following are two ways to resolve references to overloaded function names, both under the control of the $overloadmenu debugger variable (the
default setting of this debugger variable is 1):

● Choose the correct reference from a selection menu.

If the $overloadmenu variable is set to 1 (the default), whenever you specify a function name that is overloaded, a menu appears with all the possible
functions; you must select from this menu. In this example, a breakpoint is set in foo, which is overloaded:

(idb) set $overloadmenu = 1
(idb) stop in C::foo
Select from
--
 1 int C::foo(double*)
 2 void C::foo(float)
 3 void C::foo(int)
 4 void C::foo(void)
 5 None of the above
--
1
[#10: stop in int C::foo(double*)]

● Enter the function name with its full type signature.

If you prefer this method, set the $overloadmenu variable to 0. To see the possible type signatures for the overloaded function, first display all the
declarations of an overloaded function by using the whatis command.

You cannot select a version of an overloaded function that has a type signature containing ellipsis points (...). Pointers to functions with type signatures
that contain the list parameter or ellipsis points are not supported.

Use the specific function type signature to refer to the desired version of the overloaded function. If a function has no parameter, include the void
parameter as the function's type signature. In the following example, the function context is set to foo(double *), as foo is overloaded:

(idb) func foo
Error: foo is overloaded
(idb) func foo(double *)
int C::foo(double*) in x_overload.cxx line No. 25:
 25 int C::foo(double *) { return state;}

8.4.11.8 Advanced Program Information — Verbose Mode

By default, the debugger gives no information on virtual base class pointers for the following:

● Derived classes
● Virtual pointer tables for virtual functions
● Compiler-generated function members
● Compiler-generated temporary variables
● Implicit parameters in member functions

By setting the $verbose debugger variable to 1, you can request that this information be printed in subsequent debugger responses. When the $verbose
debugger variable is set to 1 and you display the contents of a class using the whatis command, several of the class members listed are not in the source
code of the original class definition. The following line shows specific output from the whatis command for one of the additional members:

line: 41 Unable to parse input as legal command or C expression.

The __vptr variable contains the addresses of all virtual functions associated with the class. The compiler generates several other class members for internal
use.

The compiler generates additional parameters for nonstatic member functions. When the $verbose debugger variable is set to 1, these extra parameters are
displayed as part of each member function's type signature. If you specify a version of an overloaded function by entering its type signature and the variable is
set to 1, you must include these parameters. Do not include these parameters if the variable is set to 0.

When the $verbose variable is set to 1, the output of the dump command includes not only standard program variables but also compiler-generated temporary
variables.

The following example prints class information using the whatis command under different settings of the $verbose variable:

(idb) set $verbose = 0

(idb) whatis CompoundNode
struct CompoundNode : IntNode {
 float _fdata;
 CompoundNode(struct CompoundNode*, float, int);
 virtual void printNodeData(const struct CompoundNode* const);
}
(idb) set $verbose = 1
(idb) whatis CompoundNode
struct CompoundNode : IntNode {
 float _fdata;
 CompoundNode(struct CompoundNode*, float, int);
 virtual void printNodeData(const struct CompoundNode* const);
}

8.5 Looking at the Generated Code
This section discusses the following topics:

● Memory display and search commands
● Machine-level debugging

8.5.1 Memory Display and Search Commands
You can use the following commands to read arbitrary memory locations in your program:

machinecode_level_command
 : examine_command
 : search_command

examine_command
 : address_expression / [count] [mode]
 | address_expression ? [count] [mode]
 | address_expression , address_expression / [mode]

search_command
 : address_expression / [count] search_mode value mask
 | address_expression ? [count] search_mode value mask
 | address_expression , address_expression / search_mode value mask

count
 : integer_constant

mode
 : d Print a short word in decimal
 | dd Print a 32-bit (4-byte) decimal display
 | D Print a long word in decimal
 | u Print a short word in unsigned decimal
 | uu Print a 32-bit (4-byte) unsigned decimal display
 | U Print a long word in unsigned decimal
 | o Print a short word in octal
 | oo Print a 32-bit (4-byte) octal display
 | O Print a long word in octal
 | x Print a short word in hexadecimal
 | xx Print a 32-bit (4-byte) hexadecimal display
 | X Print a long word in hexadecimal
 | b Print a byte in hex
 | c Print a byte as a character
 | s Print a string of characters (a C-style string ending in null)
 | C Print a wide character as a character
 | S Print a null terminated string of wide characters
 | f Print a single precision real number
 | g Print a double precision real number
 | L Print a long double precision real number
 | i Disassemble machine instructions

search_mode
 : m 32-bit search mode
 | M 64-bit search mode

value

 : integer_constant

mask
 : integer_constant

The first examine_command displays the count number of memory values in the requested format, starting at address_expression. If count is not
specified, 1 is assumed. The count value must be a positive value.

If you wish to see memory values leading up to the address_expression, use the second examine_command. The second examine_command displays
count number of memory values in the requested format ending at the address_expression. If count is not specified, 1 is assumed. The count value must
be a positive value.

The third examine_command displays memory values in the requested format starting at the smaller of the two address_expressions and ending at the
larger address_expression.

You can display stored values in the following formats by specifying mode. If mode is not specified, the mode used in the previous / command is assumed. If no
previous / command exists, X is assumed.

When disassembling machine instructions, use the $regstyle variable to customize how the registers are displayed.

The search_commands allow you to search memory. Use the address_expression and count to determine the range of memory to search. Use the
search_mode to specify whether you want to search 32 or 64-bit chunks. The debugger will start at the specified starting address and read a chunk of memory
(either 32 or 64 bits in size) and apply the mask and comparison on that chunk of memory. For example, if you want to search memory for a particular
instruction or search an array of either integer or floating-point values, the 32-bit search would be efficient because machine instructions and integer and floating-
point data types are 32 bits in length. Use the value to specify the memory value to seek. Use the mask to specify those bits that must match the same bits in
the specified value. To ensure that a possible match will be found, the debugger applies the mask to the input value prior to starting the search, to remove any
bits that could prevent a match from occurring. Then, for each memory location searched, the debugger applies the mask to the memory value and then
compares it with this new input value. If a match is found, then the address and memory value are displayed.

For example, suppose the user wishes to check an array of 100 integers in memory to see if any values are NULL (0):

(idb) array,&(array[99])/m 0x0 0xfffffff
0x1400005d0: 0x00000000

Suppose the user wishes to search for the trapb instruction:

(idb) printi 0x63ff0000
trapb
(idb) main/1000m 0x63ff0000 0xfffffff
0x12561314: 0x63ff0000

Use the debugger variable $memorymatchall to cause the debugger to output all matches in the specified range. Suppose you want to search a long integer
array of 100 values for the first value over 80, and then want to find all values in the array over 80:

(idb) printx 80
0x50
(idb) longarray/100M 0x50 0x50
0x140002680: 0x0000000000000050
(idb) set $memorymatchall
(idb) longarray/100M 0x50 0x50
0x140002680: 0x0000000000000050
0x140002688: 0x0000000000000051
0x140002690: 0x0000000000000052
0x140002698: 0x0000000000000053
0x1400026a0: 0x0000000000000054
0x1400026a8: 0x0000000000000055
0x1400026b0: 0x0000000000000056
0x1400026b8: 0x0000000000000057
0x1400026c0: 0x0000000000000058
0x1400026c8: 0x0000000000000059
0x1400026d0: 0x000000000000005a
0x1400026d8: 0x000000000000005b
0x1400026e0: 0x000000000000005c
0x1400026e8: 0x000000000000005d
0x1400026f0: 0x000000000000005e
0x1400026f8: 0x000000000000005f
(idb)

8.5.2 Machine-Level Debugging

The debugger lets you debug your programs at the machine-code level as well as at the source-code level. Using debugger commands, you can examine and
edit values in memory, print the values of all machine registers, and step through program execution one machine instruction at a time.

Only those users familiar with machine-language programming and executable file code structure will find low-level debugging useful.

For more information on machine-level debugging, see Machine-Level Debugging in Part III.

8.6 Looking at Shared Libraries

shared_library_command
 : listobj
 | readsharedobj filename
 | delsharedobj filename

Use the listobj command to list all loaded objects, including the main image and the shared libraries. For each object, the information listed consists of the
full object name (with pathname) and the starting and ending addresses for the .text, .data, and .bss sections.

Use the readsharedobj command to read in the symbol table information for the specified shared object. This object must be a shared library. You can use
the command only when you specify the debuggee; that is, either the debugger has been invoked with it, or the debuggee was loaded by the load command.

Conversely, use the delsharedobj command to remove the symbol table information for the shared object from the debugger.

Chapter 9 — Modifying the Process
In addition to the normal side effects of evaluating expressions, including calls, you can explicitly modify the memory of the current process and also modify the
actual loadable file (either executable file or shared library) that has been mapped into memory.

The following sections discuss these commands.

9.1 The assign and the set variable Commands
Use the assign(dbx) and the set variable(gdb) commands to change the value associated with a variable, memory address, or expression that is
accessible according to the scope and visibility rules of the language. The expression can be any expression that is valid in the current context.

DBX Mode

modifying_command
 : assign target = expression
 | patch target = expression

target
 : unary_expression

GDB Mode

modifying_command
 : set [variable] expression

The set variable evaluates the specified expression. If expression includes assignment operator, it executes like all other operators. This is the way to
change memory.

The only difference between the set variable and the print commands is printing the value — the set variable does not print anything.

Note: The variable can be omitted if the beginning of expression does not confuse the debugger, e. g. does not look like a valid subcommand for the
set command.

The following example shows how to deposit the value 5 into the data member _data of a C++ object:

DBX Mode

(idb) print node->_data
2
(idb) assign node->_data = 5
(idb) print node->_data
5

GDB Mode

(idb) print node->_data
$2 = 2
(idb) set node->_data = 5
(idb) print node->_data
$3 = 5

The following example shows how to change the value associated with a variable and the value associated with an expression:

DBX Mode

(idb) print *node
struct CompoundNode {
 _fdata = 12.3450003;
 _data = 5; // class IntNode
 _nextNode = 0x0; // class IntNode::Node
}
(idb) assign node->_data = -32
(idb) assign node->_fdata = 3.14159 * 4.2 * 4.2
(idb) assign node->_nextNode = _firstNode
(idb) print *node
struct CompoundNode {
 _fdata = 55.4176483;
 _data = -32; // class IntNode
 _nextNode = 0x80c0fe0; // class IntNode::Node
}

GDB Mode

(idb) print *node
$6 = {<IntNode> = {<Node> = {_nextNode = 0x0}, _data = 5}, _fdata = 12.345}
(idb) set node->_data = -32
(idb) set node->_fdata = 3.14159 * 4.2 * 4.2
(idb) set node->_nextNode = _firstNode
(idb) print *node
$7 = {<IntNode> = {<Node> = {_nextNode = 0x80b98e0}, _data = -32}, _fdata = 55.41765}

For C++, use the assign(dbx) and the set variable(gdb) commands to modify static and object data members in a class, and variables declared as
reference types, type const, or type static. You cannot change the address referred to by a reference type, but you can change the value at that address.

assign [classname::]member = ["filename"] `expression
assign [object.]member = ["filename"] `expression

Note: Do not use the assign(dbx) and the set variable(gdb) commands to change the PC. When you change the PC, no adjustment to the contents of
registers or memory is made. This means that if you adjust the PC forward, the skipped instructions are not executed and any changes they would have made
will not have happened. It means that if you adjust the PC backward, the instructions you backed up over are not undone, and any changes they made will be in
effect when execution continues again.

Because most instructions change registers or memory in ways that can impact the meaning of the application, changing the PC is very likely to cause your
application to do incorrect calculations and arrive at the wrong answer. Access violations and other errors and signals may result from changing the value in the
PC.

9.1.1 The assign and the set variable Commands in Machine-Level Debugging

You can use the assign(dbx) and the set variable(gdb) commands to alter the contents of memory specified by an address as shown in the following
example:

DBX Mode

(idb) set $address = &(node->_data)
(idb) print $address
0x80c0ff8
(idb) print *(int *)($address)
-32
(idb) assign *(int *)($address) = 1024
(idb) print *(int *)($address)
1024

GDB Mode

(idb) set $address = &(node->_data)
(idb) print $address
$11 = (int *) 0x80b98f8
(idb) print *(int *)($address)
$12 = 32
(idb) set *(int *)($address) = 1024
(idb) print *(int *)($address)
$13 = 1024

See Machine-Level Debugging for more information.

9.2 The patch Command (DBX Mode only)
Use the patch command to correct bad data or instructions in executable disk files. You can patch the text, initialized data, or read-only data areas. You
cannot patch the bss segment, or stack and register locations, because they do not exist on disk files.

Use this command exclusively when you need to change the on-disk binary. Use the assign command when you need only to modify debuggee memory. If
the image is executing when you issue the patch command, the corresponding location in the debuggee address space is updated as well. (The debuggee
is updated regardless of whether the patch to disk succeeded, as long as the source and destination expressions can be processed by the assign
command.) If your program is loaded but not yet started, the patch to disk is performed without the corresponding assign to memory.

(idb) run
[1] stopped at [int main(void):24 0x120001324]
24 return 0;
(idb) patch i = 10
0x1400000d0 = 10
(idb) patch j = i + 12
0x1400000d8 = 22
(idb)

Note: When you use the patch command, the original binary is not overwritten, but is saved with the string ~backup appended to the file name. This
allows you to revert to the original binary if necessary. A file with the string ~temp appended to the file name may also be created. It may be deleted after
the debugging session is over.

Chapter 10 — Continuing Execution of the Process
Before continuing the process, you should decide whether or not to make a snapshot, in case you want to revert to that snapshot state and try a different set of
steps. After creating the snapshot, use the following commands to continue executing the program:

continue_command
 : step_into_command
 | step_over_command
 | step_out_of_command
 | cont_command
 | cont_from_place_command
 | finish_command

10.1 The step and stepi Commands
Use the step command to execute a line of source code. When the line being stepped contains a function call, the step command steps into the function and
stops at the first executable statement.

Use the stepi command to step into the next machine instruction. When the instruction contains a function call, the stepi command steps into the function
being called.

For multithreaded applications, use these commands to step the current thread while putting all other threads on hold.

If you supply the optional expression argument, the debugger evaluates the expression as a positive integer that specifies the number of times to execute the
command. The expression can be any expression that is valid in the current context.

step_into_command
 : step [step_number]
 | stepi [step_number]

step_number
 : expression

In the following example, two step commands continue executing a C++ program:

DBX Mode

(idb) step
stopped at [void List<Node>::append(struct Node* const):151 0x805801d]
 151 Node* currentNode = _firstNode;
(idb) step
stopped at [void List<Node>::append(struct Node* const):152 0x8058025]
 152 while (currentNode->getNextNode())

GDB Mode

(idb) step
151 Node* currentNode = _firstNode;
(idb) step
152 while (currentNode->getNextNode())

The following example shows stepping by instruction (stepi). To see stepping into calls, see the next example.

DBX Mode

(idb) $curpc/4i
void List<Node>::append(struct Node* const): x_list.cxx
[line 156, 0x8058087] append(struct Node const)+0x83: leave
 [line 156, 0x8058088] append(struct Node* const)+0x84: ret
 [line 156, 0x8058089] append(struct Node* const)+0x85: nop
 [line 156, 0x805808a] append(struct Node* const)+0x86: nop
(idb) stepi
stopped at [void List<Node>::append(struct Node* const):156 0x8058088] append(struct
Node* const)+0x84: ret
(idb) return
stopped at [int main(void):190 0x804a110]
 190 nodeList.append(cNode);

GDB Mode

(idb) x /4i $pc
Dump of assembler code for function void List<Node>::append(class List<Node> * const,
class Node * const):
0x804aac7 <append(class List<Node> * const, class Node * const)+131>: leave

0x804aac8 <append(class List<Node> * const, class Node * const)+132>: ret
0x804aac9 <append(class List<Node> * const, class Node * const)+133>: nop
0x804aaca <append(class List<Node> * const, class Node * const)+134>: nop
(idb) stepi
(idb) finish
main () at x_list.cxx:190
190 nodeList.append(cNode);

10.2 The next and nexti Commands
Use the next command to execute a line of source code. When the next line to be executed contains a function call, the next command executes the function
being called and stops the process at the line immediately after the function call.

Use the nexti command to execute a machine instruction. When the instruction contains a function call, the nexti command executes the function being
called and stops the process at the instruction immediately after the call instruction.

For multithreaded applications, use these commands to step the current thread while putting all other threads on hold.

If you supply the optional expression argument, the debugger evaluates the expression as a positive integer that specifies the number of times to execute the
command. The expression can be any expression that is valid in the current context.

step_over_command
 : next [step_number]
 | nexti [step_number]

step_number
 : expression

For example:

DBX Mode

(idb) next
stopped at [int main(void):192 0x804a113]
 192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);
(idb) next
stopped at [int main(void):193 0x804a1ba]
 193 nodeList.append(cNode1);

GDB Mode

(idb) next
192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);
(idb) next
193 nodeList.append(cNode1);

The following example shows the difference between stepi and nexti over the same call:

DBX Mode

(idb) cont
[2] stopped at [void List<Node>::append(struct Node* const):152 0x8058025]
 152 while (currentNode->getNextNode())
(idb) $curpc/4i
void List<Node>::append(struct Node* const): x_list.cxx
[line 152, 0x8058025] append(struct Node const)+0x21: pushl %edi
 [line 152, 0x8058026] append(struct Node* const)+0x22: movl -4(%ebp),
%eax
 [line 152, 0x8058029] append(struct Node* const)+0x25: movl %eax,
(%esp)
 [line 152, 0x805802c] append(struct Node* const)+0x28: call getNextNode
(idb) stepi 3
stopped at [void List<Node>::append(struct Node* const):152 0x805802c] append(struct
Node* const)+0x28: call getNextNode

(idb) stepi
stopped at [struct Node* Node::getNextNode(void):81 0x804a554] getNextNode:
pushl %ebp
(idb) cont
[2] stopped at [void List<Node>::append(struct Node* const):152 0x8058056]
 152 while (currentNode->getNextNode())
(idb) nexti
stopped at [void List<Node>::append(struct Node* const):152 0x8058057] append(struct
Node* const)+0x53: movl -4(%ebp), %eax
(idb) nexti
stopped at [void List<Node>::append(struct Node* const):152 0x805805a] append(struct
Node* const)+0x56: movl %eax, (%esp)

GDB Mode

(idb) continue
Continuing.

Breakpoint 2, List<Node>::append (this=0xbfffecdc, node=0x80b9768) at x_list.cxx:152
152 while (currentNode->getNextNode())
(idb) x /4i $pc
Dump of assembler code for function void List<Node>::append(class List<Node> * const,
class Node * const):
0x804aa65 <append(class List<Node> * const, class Node * const)+33>: pushl
%edi
0x804aa66 <append(class List<Node> * const, class Node * const)+34>: movl
-4(%ebp), %eax
0x804aa69 <append(class List<Node> * const, class Node * const)+37>: movl
%eax, (%esp)
0x804aa6c <append(class List<Node> * const, class Node * const)+40>: call
0x804a684 <getNextNode(class Node * const)>
(idb) stepi 3
152 while (currentNode->getNextNode())
(idb) stepi
Node::getNextNode (this=(class Node *) 0xbfffecdc) at x_list.cxx:81
81 Node* Node::getNextNode() {return _nextNode; }
(idb) continue
Continuing.

Breakpoint 2, List<Node>::append (this=0xbfffecdc, node=0x80b9768) at x_list.cxx:152
152 while (currentNode->getNextNode())
(idb) nexti
152 while (currentNode->getNextNode())
(idb) nexti
152 while (currentNode->getNextNode())

10.3 The return Command
Use the return(dbx) and finish(gdb) command without an argument to continue execution of the current function until it returns to its caller.
Use return function_name(dbx) to continue the execution until control is returned to the specified function. The function must be active on the call stack.

DBX Mode

step_out_of_command
 : return
 | return [qual_symbol_opt]

qual_symbol_opt
 : expression
 | qual_symbol_opt ` expression

GDB Mode

step_out_of_command
 : finish

In the following example, the next command is used to step through process execution in the append method. The return(dbx) / finish(gdb) command
finishes the append method and returns control to the caller.

DBX Mode

(idb) next
stopped at [void List<Node>::append(struct Node* const):154 0x805806f]
 154 currentNode->setNextNode(node);
(idb) return
stopped at [int main(void):193 0x804a1d2]
 193 nodeList.append(cNode1);

GDB Mode

(idb) next
154 currentNode->setNextNode(node);
(idb) finish
main () at x_list.cxx:193
193 nodeList.append(cNode1);

The return(dbx) / finish(gdb) command is sensitive to the user's location in the call stack. Suppose function A calls function B, which calls function C.
Execution has stopped in function C, and you entered the up command, so you were now in function B, at the point where it called function C. Using the
return command here would return you to function A, at the point where function A called function B. Functions B and C will have completed execution.

10.4 The cont Command
Use the cont(dbx) and continue(gdb) command without a parameter value to resume process execution until a breakpoint, a signal, an error, or normal
process termination is encountered. Specify a signal parameter value to send an operating system signal to the process.

DBX Mode

cont_command
 : cont [in loc]
 | cont [signal] [to_source_line]
 | number_expression cont [signal]
 | conti to address_expression

to_source_line
 : to line_specifier

number_expression
 : expression

signal
 : integer_constant
 | signal_name

GDB Mode

cont_command
 : continue [number_expression]
 | until [place_detector]

When you use the cont(dbx) and continue(gdb) command, the debugger resumes execution of the entire process.

In the following example, a cont(dbx) / continue(gdb) command resumes process execution after it was suspended by a breakpoint.

DBX Mode

(idb) list $curline - 5: 10
 188
 189 CompoundNode* cNode = new CompoundNode(12.345, 2);
 190 nodeList.append(cNode);
 191
 192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);
> 193 nodeList.append(cNode1);
 194
 195 nodeList.append(new IntNode(3));
 196
 197 IntNode* newNode2 = new IntNode(4);
(idb) stop at 198
[#3: stop at "x_list.cxx":198]
(idb) cont
[3] stopped at [int main(void):198 0x804a31e]
 198 nodeList.append(newNode2);

GDB Mode

(idb) list
183
184 // add entries to list
185 //
186 IntNode* newNode = new IntNode(1);
187 nodeList.append(newNode);
188
189 CompoundNode* cNode = new CompoundNode(12.345, 2);
190 nodeList.append(cNode);
191
192 CompoundNode* cNode1 = new CompoundNode(3.1415, 7);
193 nodeList.append(cNode1);
194
195 nodeList.append(new IntNode(3));
196
197 IntNode* newNode2 = new IntNode(4);
198 nodeList.append(newNode2);
199
200 CompoundNode* cNode2 = new CompoundNode(10.123, 5);
201 nodeList.append(cNode2);
202
(idb) break 198
Breakpoint 3 at 0x804a44e: file x_list.cxx, line 198.
(idb) continue
Continuing.

Breakpoint 3, main () at x_list.cxx:198
198 nodeList.append(newNode2);

DBX Mode

The signal parameter value can be either a signal number or a string name (for example, SIGSEGV). The default is 0, which allows the process to continue
execution without specifying a signal. If you specify a signal parameter value, the process continues execution with that signal.

Use the in argument to continue until the named function is reached. The function name must be valid. If the function name is overloaded and you do not
resolve the scope of the function in the command line, the debugger prompts you with the list of overloaded functions bearing that name from which to
choose.

Use the to parameter value to resume execution and then halt when the specified source line is reached. The form of the optional to parameter must be
either:

● quoted_filename:line_number, which explicitly identifies both the source file and the line number where execution is to be halted.
● line_number, a positive numeric, which indicates the line number of the current source file where execution is to be halted.

You can repeat the cont command (n +1) times by entering n cont.

You can set a one-time breakpoint on an instruction address before continuing by entering conti to address_expression.

GDB Mode

Use the optional argument number_expression of continue command to specify a further number of times to ignore a breakpoint at this location.

Until command continues running until a source line past the current line, in the current stack frame, is reached. This command is used to avoid single
stepping through a loop more than once.
If place_detector is specified the command continues running until either the specified location is reached, or the current stack frame returns.

10.5 The goto Command

DBX Mode

The goto(dbx) command is intended for advanced users who want to 'skip over' the execution of a portion of source code. In general, its usage is not
recommended.

cont_from_place_command
 : goto line_expression

line_expression
 : expression

Chapter 11 — Using Snapshots as an Undo Mechanism
DBX Mode

You can save the current state of the debuggee process in a snapshot, and later revert to that state and try a different set of steps. Conceptually speaking,
this feature is similar to the undo function in text editors, except that with snapshots you have control of the granularity of each undo. See the Introduction for
a quick overview.

snapshot_command
 : save_snapshot_command
 | clone_snapshot_command
 | show_snapshot_command
 | delete_snapshot_command

The following sections discuss these commands and address the limitations of snapshots.

11.1 The save snapshot Command
Use the save snapshot command to save the state of the current process in a snapshot. Snapshots are numbered sequentially starting from 1.

save_snapshot_command
 : save snapshot

In the following example, the first line of the save snapshot message shows the snapshot_number (1), the time it is saved, and the ID number of the process
that implements the snapshot. The next two lines show the status of the snapshot.

(idb) save snapshot
1 saved at 13:27:54 (PID: 29077).
 stopped at [int main(void):182 0x1200023f8]
 182 List<Node> nodeList;

11.2 The clone snapshot Command
Use the clone snapshot command to revert the state of the debuggee process to that of a previously saved snapshot. By doing this, you can conveniently
return to the state saved in the snapshot as opposed to rerunning the process and re-entering the debugger command sequence that brought you to that state.

Note that rerun and clone snapshot are different in that rerun always executes the process from the beginning, whereas clone snapshot does not
execute the process at all; it simply duplicates the saved snapshot (using a mechanism similar to the fork system call) and behaves as though the process
execution has stopped at the point when the snapshot was saved.

The clone snapshot command clones the snapshot specified by snapshot_id. If no snapshot_id is specified, the most-recently saved existing snapshot is

cloned.

clone_snapshot_command
 : clone snapshot [snapshot_id]

snapshot_id
 : expression

Cloning a snapshot has two side effects:

● The snapshots created after the cloned snapshot are deleted. For example, suppose four snapshots are saved from a process. Cloning the second
snapshot results in the deletion of the third and fourth snapshots.

● The current process is killed and replaced by the clone process. Thus, if you enter show process after cloning a snapshot, you will see that the process
ID of the current process has changed to that of the cloned process. For example:

(idb) show process
>localhost:29013 (/usr/examples/x_list) paused.
(idb) clone snapshot
Process has exited
Process 29089 cloned from Snapshot 1.
1 saved at 13:27:54 (PID: 29077).
 stopped at [int main(void):182 0x1200023f8]
 182 List<Node> nodeList;
(idb) show process
>localhost:29089 (/usr/examples/x_list) paused.

11.3 The show snapshot Command
Use the show snapshot * and show snapshot all commands to display all the snapshots that have been saved from the current process. Use show
snapshot snapshot_id_list to display the snapshots specified. If no snapshots are specified, the most-recently saved existing snapshot is displayed.

show_snapshot_command
 : show snapshot [snapshot_id_list]

snapshot_id_list
 : snapshot_id ,...
 | all
 | *

snapshot_id
 : expression

For example:

(idb) show snapshot all
1 saved at 13:27:54 (PID: 29077).
 stopped at [int main(void):182 0x1200023f8]
 182 List<Node> nodeList;

11.4 The delete snapshot Command
Use the delete snapshot * and delete snapshot all commands to delete all the snapshots that have been saved from the current process. Use
delete snapshot snapshot_id_list to delete the specified snapshots. If no snapshots are specified, the most-recently saved existing snapshot is
deleted.

delete_snapshot_command
 : delete snapshot [snapshot_id_list]

snapshot_id_list
 : snapshot_id ,...
 | all
 | *

snapshot_id
 : expression

For example:

(idb) show snapshot all
1 saved at 13:27:54 (PID: 29077).
 stopped at [int main(void):182 0x1200023f8]
 182 List<Node> nodeList;
(idb) delete snapshot
(idb) show snapshot all
No snapshots have been saved.

11.5 Snapshot limitations
Snapshots have the following limitations:

● Snapshots are implemented by causing the process to fork. The state saved in a snapshot does not include I/O and forks. In other words, when you clone
a snapshot, the I/O that has been done since the snapshot was saved is not undone; likewise, the child processes that have been spawned since the
snapshot was saved are not killed.

● The save snapshot command saves the state of the current process only. If you are doing multiprocess debugging, you might want to save a snapshot
for each process.

● Snapshots on a multithreaded process are not supported.
● Snapshots are not supported for core file debugging.

Chapter 12 — Debugging Optimized Code
TBD

Chapter 13 — Support Limitations
This chapter contains sections which describe the limitations on support for the following languages:

● C++
● Fortran

13.1 Limitations on Support for C++
The debugger interprets C++ names and expressions using the language rules described in The Annotated C++ Reference Manual (Ellis and Stroustrup, 1990,
Addison-Wesley). C++ is a distinct language, rather than a superset of C. Where the semantics of C and C++ differ, the debugger provides the interpretation
appropriate for the language of the program being debugged.

To make the debugger more useful, it relaxes some standard C++ name visibility rules. For example, you can reference public, protected, and private class
members.

The following limitations apply to debugging a C++ program:

● If a program is not compiled with the -g flag, do not set a breakpoint on an inline member function; it may confuse the debugger.
● When you use the debugger to display virtual and inherited class information, the debugger does not support pointers to members of a class.
● The debugger does not support calling the C++ constructs new and delete. As alternatives, use the malloc() and free() routines from C.
● Sometimes the debugger does not see class type names with internal linkage, and it issues an error message stating that the name is overloaded.
● You cannot select a version of an overloaded function that has a type signature containing ellipsis points (...).
● Pointers to functions with type signatures that contain parameter list or ellipsis arguments are not supported.

Limitations for debugging templates include the following:

● You cannot specify a template by name in a debugger command. You must use the name of an instantiation of the template.
● Setting a breakpoint at a line number that is inside a template function will not necessarily stop at all instantiations of the function within the given file, but

only at a randomly chosen few.

13.2 Limitations on Support for Fortran
The debugger and the operating system support the Fortran language with certain limitations, which are described in the following sections.

Be aware of the following data-type limitations when you debug a Fortran program:

● The debugger does not allow setting a breakpoint on a program routine named MAIN.
● Substring notation is not supported.

The following limitations apply only to Fortran 90:

● Fortran 90 array constructors, structure constructors, adjustable arrays, and vector subscripts are not supported.
● Fortran 90 user-defined (derived) operators are not supported.
● The debugger does not handle variables of 16-bit character data types.

13.2.1 Limitations on Procedure Invocations
Following are the limitations on Fortran procedure invocations:

● The debugger does not support invocations of user-defined procedures unless they have been compiled with debug information.
● The debugger does not support complex or real*16 procedure return values.
● The debugger does not support real*16 or complex*32 procedure arguments.
● Of the Fortran intrinsic procedures, the debugger currently supports only:

❍ the mathematical functions (for example, ACOS, ACOSD, SIN, SQRT, and so on)
❍ the kind type functions (KIND, SELECTED_INT_KIND, SELECTED_REAL_KIND)

Part III
Advanced Topics
Part III provides information to make advanced use of the debugger by expanding on topics presented in Part II.

It is intended to be used as a reference and therefore contains a wide variation in the level of information provided in each section.

Chapter 14 — Preparing Your Program for Debugging
This chapter describes how you can modify your program to wait for the debugger.

14.1 Modifying Your Program to Wait for the Debugger
To modify your program to wait for the debugger, complete the following steps:

1. Add some code similar to the following :

void loopForDebugger()
{
 if (!getenv("loopForDebugger")) return;
 static volatile int debuggerPresent = 0;
 while (!debuggerPresent);
}

2. Call this function at some convenient point.

3. Use the debugger's attach capability to get the process under control.

When you have the process under debugger control, you can assign a non-zero value to debuggerPresent, and continue your program. For example:

% setenv loopForDebugger ""
% a.out arg1 arg2 &
% idb -pid 1709 a.out
^C
(idb) assign debuggerPresent = 1
...
(idb) cont

Chapter 15 — Debugger's Command Processing Structure
This chapter is divided into the following sections:

● Lexical elements of commands
● Grammar of commands

15.1 Lexical Elements of Commands
After the debugger assembles complete lines of input from the characters it reads from stdin or from the file specified in the source command (as described
in Part II), each line is then converted into a sequence of lexical elements known as lexemes. For example, print(a++); is converted into the following
lexemes:

1. print
2. (
3. a
4. ++
5.)
6. ;

The sequence of lexemes is then recognized as debugger commands containing language-specific expressions by a process known as parsing. The
recognition is based on a set of rules known as a grammar. The debugger uses a single grammar for commands regardless of the current program's language,
but it has language-specific subgrammars for some of the pieces of commands, such as names, expressions, and so on.

15.1.1 Lexical States
The debugger starts processing each line according to the rules of the LKEYWORD lexical state. It recognizes the longest lexeme it can, according to these
rules. After recognizing the lexeme, it may stay in the same state, or it may change to a different lexical state with different rules.

The debugger moves between the following lexical states as it recognizes the lexemes:

Lexical State Description
LBPT Breakpoint commands have lexemes that change the lexical state to LBPT.
LEXPORT The command export changes the lexical state to LEXPORT. This state recognizes an evironment variable identifier.

LFILE Commands that require file names have lexemes that change the lexical state to LFILE so that things like mysrc/foo.txt are recognized as
a file name, and not as a variable mysrc being divided by a structure data member foo.txt.

LFINT Commands that require either a file name or a process ID have lexemes to change the lexical state to LFINT.

LKEYWORD All but one of the debugger commands begin with one or more keywords. The exception is the examine command. The debugger recognizes
the '{' and ';' lexemes that must precede a command, and uses those to reset to the LKEYWORD state for the beginning of the next command.

LLINE Commands that require arbitrary character input have lexemes that change the lexical state to LLINE.

LNORM Language expressions involve language-specific lexemes. The lexemes that precede an expression change the lexical state to LNORM, and
then LNORM recognizes the language-specific lexemes.

LSETENV The command setenv changes the lexical state to LSETENV. This state recognizes an evironment variable identifier.
LSIGNAL Commands that require signal names have lexemes that change the lexical state to LSIGNAL.
LWORD Commands that require shell words have lexemes that change the lexical state to LWORD.

The rules that each lexical state uses are described in the following sections, in a format known as a lex regular expression. Rather than repeating some of
descriptions, a set of common subrules is described first. After the common subrules, we describe the initial state, the rules, and for each recognized token, the
next lexical state.

15.1.2 Identifiers
All languages have a concept of an identifier, composed of letters, digits, and other special characters. The debugger also uses keywords composed of letters;
therefore, rules are required to determine which identifiers are actually debugger keywords.

All debugger commands, except examine, begin with leading keywords. Because the examine command begins with an expression, all identifiers must be
recognized as such from both the LKEYWORD state that starts commands and the LNORM state that the debugger uses for processing expressions.

Some debugger commands have keywords embedded in them following expressions, and the ends of expressions are hard to recognize. You can use
identifiers that have the same spelling as an embedded keyword simply by enclosing the whole expression in parentheses (()). For more information on using
keywords within commands, see Section 4.4.4.

Furthermore, the C and C++ grammars need to know whether an identifier is a typedef or struct/class identifier. The debugger currently makes the
determination at the time the whole command is parsed, rather than deferring the determination to when the expression itself is being evaluated. This can result
in a misidentification of the identifier.

When in the following four lexical states, the debugger can recognize identifiers:

● LKEYWORD, LNORM, LBPT
Language Regular Expression

C, C++, Fortran {LT}({LT}|{DG})*

The state is changed to LNORM to process the rest of the expression.
● LSIGNAL

Language Regular Expression
All {LT}({LT}|{DG})*

The state is left as LSIGNAL to process the next signal.

If your operating system supports internationalization (I18N), {LT} equates to {LTI18N}.

15.1.3 Embedded Keywords
The complete set of embedded keywords follows:

Lexeme Representation Initial Lexical State Changed Lexical State Language Specific?
ANY any LNORM LNORM Shared by all
AT at LBPT, LNORM LNORM Shared by all
CHANGED changed LNORM LNORM Shared by all
IF if LBPT LNORM Shared by all
IN in LBPT, LNORM LNORM Shared by all
IN_ALL in{Whitespace}all {Whitespace} LBPT, LNORM LNORM Shared by all
POLICY policy LNORM LNORM Shared by all
PRIORITY priority LNORM LNORM Shared by all
READ read LNORM LNORM Shared by all
THREAD thread LNORM LNORM Shared by all

THREAD_ALL
thread{Whitespace}all
thread{Whitespace} *

LNORM LNORM Shared by all

TO to LNORM LNORM Shared by all
WITH_STATE with{Whitespace}state LNORM LNORM Shared by all
WITHIN within LNORM LNORM Shared by all
WRITE write LNORM LNORM Shared by all

NOTE: THREAD is both a leading and an embedded keyword.

15.1.4 Leading Keywords
Leading keywords are recognized only at the beginning of commands. You do not need to use parentheses (()) to use them as a normal identifier, unless they
occur at the start of an examine command.

Leading keywords may differ between languages. The complete set follows:

Lexeme Representation
(Some May Be Language Specific)

Initial
Lexical
State

Changed
Lexical State

Language
Specific?

ALIAS alias LKEYWORD LNORM Shared by
all

ASSIGN assign LKEYWORD LNORM Shared by
all

ATTACH attach LKEYWORD LNORM Shared by
all

CALL call LKEYWORD LNORM Shared by
all

CATCH catch LKEYWORD LSIGNAL Shared by
all

CATCH_UNALIGN catch{Whitespace}unaligned LKEYWORD LNORM Shared by
all

CLASS class LKEYWORD LNORM
C++
Special
Case

CLONE_SNAPSHOT clone{Whitespace}snapshot LKEYWORD LNORM Shared by
all

CONDITION condition LKEYWORD LNORM Shared by
all

CONT cont LKEYWORD LNORM Shared by
all

CONTI conti LKEYWORD LNORM Shared by
all

CONT_THREAD cont{Whitespace}thread LKEYWORD LNORM Shared by
all

DELETE delete LKEYWORD LNORM

Shared by
all, also
used for
C++
special
case

DELETE_ALL
delete{Whitespace}*
delete{Whitespace}all

LKEYWORD LNORM Shared by
all

DELSHAREDOBJ delsharedobj LKEYWORD LFILE Shared by
all

DETACH detach LKEYWORD LNORM Shared by
all

DISABLE disable LKEYWORD LNORM Shared by
all

DISABLE_ALL
disable{Whitespace}*
disable{Whitespace}all

LKEYWORD LNORM Shared by
all

DOWN down LKEYWORD LNORM Shared by
all

DUMP dump LKEYWORD LNORM Shared by
all

EDIT edit LKEYWORD LFILE Shared by
all

ELSE else LKEYWORD LKEYWORD Shared by
all

ENABLE enable LKEYWORD LNORM Shared by
all

ENABLE_ALL
enable{Whitespace}*
enable{Whitespace}all

LKEYWORD LNORM Shared by
all

EXPAND_AGGREGATED_MESSAGE expand{Whitespace}aggregated{Whitespace}message LKEYWORD LNORM Shared by
all

EXPORT export LKEYWORD LNORM Shared by
all

FILECMD file LKEYWORD LFILE Shared by
all

FILEEXPR fileexpr LKEYWORD LFILE Shared by
all

FOCUS focus LKEYWORD LNORM Shared by
all

FOCUS_ALL
focus{Whitespace}*
focus{Whitespace}all LKEYWORD LNORM Shared by

all

FUNC func LKEYWORD LNORM Shared by
all

GOTO goto LKEYWORD LNORM Shared by
all

HELP help LKEYWORD LLINE Shared by
all

HISTORY history LKEYWORD LNORM Shared by
all

HPFGET hpfget LKEYWORD LNORM Fortran

IF if LKEYWORD LNORM Shared by
all

IGNORE ignore LKEYWORD LSIGNAL Shared by
all

IGNORE_UNALIGN ignore{Whitespace}unaligned LKEYWORD LNORM Shared by
all

INPUT input LKEYWORD LFILE Shared by
all

IO io LKEYWORD LFILE Shared by
all

KILL kill LKEYWORD LNORM Shared by
all

KPS kps LKEYWORD LNORM Shared by
all

LIST list LKEYWORD LNORM Shared by
all

LISTOBJ listobj LKEYWORD LNORM Shared by
all

LOAD load LKEYWORD LFILE Shared by
all

MAP_SOURCE_DIRECTORY map{Whitespace}source{Whitespace}directory LKEYWORD LNORM Shared by
all

MUTEX mutex LKEYWORD LNORM Shared by
all

NEXT next LKEYWORD LNORM Shared by
all

NEXTI nexti LKEYWORD LNORM Shared by
all

OUTPUT output LKEYWORD LFILE Shared by
all

PATCH patch LKEYWORD LNORM Shared by
all

PLAYBACK playback LKEYWORD LKEYWORD Shared by
all

POP pop LKEYWORD LNORM Shared by
all

PRINT print LKEYWORD LNORM Shared by
all

PRINTB printb LKEYWORD LNORM Shared by
all

PRINTD printd LKEYWORD LNORM Shared by
all

PRINTENV printenv LKEYWORD LNORM Shared by
all

PRINTF printf LKEYWORD LNORM Shared by
all

PRINTI printi LKEYWORD LNORM Shared by
all

PRINTO printo LKEYWORD LNORM Shared by
all

PRINTT printt LKEYWORD LNORM Shared by
all

PRINTX printx LKEYWORD LNORM Shared by
all

PRINTREGS printregs LKEYWORD LNORM Shared by
all

PROCESS process LKEYWORD LNORM Shared by
all

PROCESS_ALL
process{Whitespace}*
process{Whitespace}all

LKEYWORD LNORM Shared by
all

PTHREAD pthread LKEYWORD LNORM Shared by
all

QUESTION ? LKEYWORD LNORM Shared by
all

QUIT quit LKEYWORD LNORM Shared by
all

READSHAREDOBJ readsharedobj LKEYWORD LFILE Shared by
all

RECORD record LKEYWORD LKEYWORD Shared by
all

RERUN rerun LKEYWORD LWORD Shared by
all

RETURN return LKEYWORD LNORM Shared by
all

RUN run LKEYWORD LWORD Shared by
all

SAVE_SNAPSHOT save{Whitespace}snapshot LKEYWORD LNORM Shared by
all

SET set LKEYWORD LNORM Shared by
all

SETENV setenv LKEYWORD LNORM Shared by
all

SH sh LKEYWORD LNORM Shared by
all

SHOW show LKEYWORD LKEYWORD Shared by
all

SHOW_AGGREGATED_MESSAGE show{Whitespace}aggregated{Whitespace}message LKEYWORD LNORM Shared by
all

SHOW_AGGREGATED_MESSAGE_ALL
show{Whitespace}aggregated{Whitespace}message{Whitespace}*
show{Whitespace}aggregated{Whitespace}message{Whitespace}all

LKEYWORD LNORM Shared by
all

SHOW_PROCESS_SET show{Whitespace}process{Whitespace}set LKEYWORD LNORM Shared by
all

SHOW_PROCESS_SET_ALL
show{Whitespace}process{Whitespace}set{Whitespace}*
show{Whitespace}process{Whitespace}set{Whitespace}all

LKEYWORD LNORM Shared by
all

SHOW_SOURCE_DIRECTORY show{Whitespace}source{Whitespace}directory LKEYWORD LNORM Shared by
all

SHOW_ALL_SOURCE_DIRECTORY show{Whitespace}all{Whitespace}source{Whitespace}directory LKEYWORD LNORM Shared by
all

SLASH / LKEYWORD LNORM Shared by
all

SNAPSHOT snapshot LKEYWORD LNORM Shared by
all

SNAPSHOT_ALL snapshot all LKEYWORD LNORM Shared by
all

SNAPSHOT_* snapshot * LKEYWORD LNORM Shared by
all

SOURCE source LKEYWORD LFILE Shared by
all

STATUS status LKEYWORD LNORM Shared by
all

STEP step LKEYWORD LNORM Shared by
all

STEPI stepi LKEYWORD LNORM Shared by
all

STOP stop LKEYWORD LBPT Shared by
all

STOPI stopi LKEYWORD LNORM Shared by
all

THREAD thread LKEYWORD LNORM Shared by
all

TRACE trace LKEYWORD LNORM Shared by
all

TRACEI tracei LKEYWORD LNORM Shared by
all

UNALIAS unalias LKEYWORD LNORM Shared by
all

UNLOAD unload LKEYWORD LNORM Shared by
all

UNMAP_SOURCE_DIRECTORY unmap{Whitespace}source{Whitespace}directory LKEYWORD LNORM Shared by
all

UNRECORD unrecord LKEYWORD LNORM Shared by
all

UNSET unset LKEYWORD LNORM Shared by
all

UNSETENV unsetenv LKEYWORD LNORM Shared by
all

UNSETENV_ALL unsetenv{Whitespace}* LKEYWORD LNORM Shared by
all

UNUSE unuse LKEYWORD LFILE Shared by
all

UP up LKEYWORD LNORM Shared by
all

USE use LKEYWORD LFILE Shared by
all

VERSION version LKEYWORD LNORM Shared by
all

WATCH watch LKEYWORD LNORM Shared by
all

WATCH_MEMORY watch{Whitespace}memory LKEYWORD LNORM Shared by
all

WATCH_VARIABLE watch{Whitespace}variable LKEYWORD LNORM Shared by
all

WHATIS whatis LKEYWORD LNORM Shared by
all

WHEN when LKEYWORD LBPTChapter Shared by
all

WHENI wheni LKEYWORD LNORM Shared by
all

WHERE where LKEYWORD LNORM Shared by
all

WHEREIS whereis LKEYWORD LNORM Shared by
all

WHERE_THREAD where{Whitespace}thread LKEYWORD LNORM Shared by
all

WHERE_THREAD_ALL
where{Whitespace}thread{Whitespace}*
where{Whitespace}thread{Whitespace}all

LKEYWORD LNORM Shared by
all

WHICH which LKEYWORD LNORM Shared by
all

15.1.5 Reserved Identifiers
Some identifiers are recognized as reserved words, regardless of whether they are inside parentheses (()).

The reserved words may differ between languages. The complete set follows:

Lexeme Representation
(Some May Be Language Specific) Initial Lexical State Changed Lexical Language Specific?

CHAR char LNORM LNORM C, C++
CLASS class LNORM LNORM C++
CONST const LNORM LNORM C, C++
DELETE delete LNORM LNORM C++
DOUBLE double LNORM LNORM C, C++
ENUM enum LNORM LNORM C, C++
FLOAT float LNORM LNORM C, C++
INT int LNORM LNORM C, C++
LONG long LNORM LNORM C, C++

NEW new LNORM LNORM C++
OPERATOR operator LNORM LNORM C++
SHORT short LNORM LNORM C, C++
SIGNED signed LNORM LNORM C, C++
SIZEOF sizeof LNORM LNORM C, C++, Fortran
STRUCT struct LNORM LNORM C, C++
UNION union LNORM LNORM C, C++
UNSIGNED unsigned LNORM LNORM C, C++
VOID void LNORM LNORM C, C++
VOLATILE volatile LNORM LNORM C, C++

15.1.6 Lexemes Shared by All Languages
Because the debugger supports multiple languages, some of the rules must be language specific. To distinguish between the characters used for a particular
language to represent a lexeme and the lexeme itself, the debugger names the lexemes, rather than using any one language's representation. For example, the
lexeme GE corresponds to Fortran's '.GE.', and to C's '>='.

Some lexemes have the same representation in all languages, especially those that form part of the debugger commands apart from the language-specific
expressions.

15.1.6.1 Common Elements of Lexemes
The following tables list common elements of lexemes.
Concept Rule Representation Description
Decimal digit DG [0-9] One character from '0'..'9'.
Octal digit OC [0-7] One character from '0'..'7'.

Hexadecimal digit HX [0-9a-fA-F]
Any of the characters '0'..'9' and any of the letters 'A'..'F' and
'a'..'f'.

Single letter LT [A-Za-z_$]
Any of the characters 'A'..'Z', 'a'..'z', and the underscore (_) and
dollar sign ($) characters.

Single letter
from the International Character Set LT18N [A-Za-z_$\200-\377]

Any of the characters 'A'..'Z', 'a'..'z', the underscore (_) and dollar
sign ($) characters, and any character in the top half of the 8-bit
character set.

Shell 'word' WD [^ \t;\n<>'"]
Any character except space, tab, semicolon (;), linefeed, less
than (<), greater than (>), and quotes (' or ").

File name FL [^ \t\n\}\;\>\<]
Any character except space, tab, semicolon (;), linefeed, right
brace (}), less than (<), greater than (>), and tick (`).

Optional exponent Exponent [eE][+-]?{DG}+
Numbers often allow an optional exponent. It is represented as
an 'e' or 'E' followed by an optional plus (+) or minus (-), and then
one or more decimal digits.

Whitespace Whitespace [\t]+

Whitespace is often used to separate two lexemes that would
otherwise be misconstrued as a single lexeme. For example,
stop in is two keywords, but stopin is an identifier. Apart from
this separating property, Whitespace is usually ignored.
Whitespace is a sequence of one or more tabs or spaces.

String literal stringChar
([^"\\\n]|([\\]({simpleEscape}|
{octalEscape}|{hexEscape})))

Any character except the terminating quote character ("), or a
newline (\n). If the character is a backslash (\), it is followed by an
escaped sequence of characters.

Character literal charChar
([^'\\\n]|([\\]({simpleEscape}|
{octalEscape}|{hexEscape})))

Any character except the terminating quote (') character, or a
newline (\n). If the character is a backslash (\), it is followed by an
escaped sequence of characters.

Environment variable identifier EID [^ \t\n<>;='"&\|]
Any character except space, tab, linefeed, less-than (<), greater-
than (>), semicolon (;), equal sign (=), quotes (' or "), ampersand
(&), backslash (\), and bar (|).

Universal character name UCN \\u{HX}{4}|\\U{HX}{8}
A universal character name is a backslash (\) followed by either a
lowercase 'u' and 4 hexadecimal digits, or an uppercase 'U' and 8
hexadecimal digits.

The escaped sequence of characters can be one of following three forms:

Concept Rule Representation Description

Simple escape simpleEscape ([A-Za-z'"?#*\\])

One of 'A'-'Z' or 'a'-'z'. Some of these have special meanings, the most common being 'n' for
newline and 't' for tab. Can be a quote (' or ") character that does not finish the literal, a question
mark (?), a pound sign (#), an asterisk (*), or a backslash (\), which then becomes part of the
string literal rather than causing a further escape sequence.

Octal escape octalEscape (OC{1,3})
1 to 3 octal digits, the combined numeric value of which is the character that becomes part of the
string literal.

Hexadecimal escape hexEscape ([xX]HX{1,8})
An 'x' or an 'X' followed by 1 to 8 hexadecimal digits, the combined numeric value of which is the
character that becomes part of the string literal.

15.1.6.2 Whitespace and Command-Separating Lexemes Shared by All Languages
In all lexical states, unescaped newlines produce the NEWLINE token and change the lexical state to be LKEYWORD.

In all lexical states except LLINE, a semicolon also changes the lexical state to be LKEYWORD.

Initial State: LKEYWORD, LNORM, LFILE, LLINE, LWORD, LSIGNAL, LBPT
Regular Expression: [\n]
Lexeme: NEWLINE
Change to State: LKEYWORD

This is because SEMICOLON is the command separator.

Initial State: LKEYWORD, LNORM, LFILE, LSIGNAL, LBPT, LWORD
Regular Expression: ";"
Lexeme: SEMICOLON
Change to State: LKEYWORD

Commands can be nested, and the following transitions support this:

Initial State: LNORM
Regular Expression: "{"
Lexeme: LBRACE
Change to State: LKEYWORD

Initial State: LKEYWORD, LNORM, LFILE, LSIGNAL, LBPT
Regular Expression: "}"
Lexeme: RBRACE
Change to State: LKEYWORD

In most lexical states, the spaces, tabs, and escaped newlines are ignored. In the LLINE state, the spaces and tabs are part of the line, but escaped newlines
are still ignored. In the LWORD state, the spaces and tabs are ignored, but escaped newlines are not.

Initial State: LKEYWORD, LNORM, LFILE, LSIGNAL, LBPT

Regular Expression: [\t]
\\\n

Lexeme: Ignored
Change to State: Unchanged

Initial State: LLINE
Regular Expression: \\\n
Lexeme: Ignored
Change to State: Unchanged

Initial State: LWORD
Regular Expression: [\t]
Lexeme: Ignored
Change to State: Unchanged

15.1.6.3 LNORM Lexemes Shared by All Languages
The state stays in LNORM.
Lexeme Regular Expression
ANY any

AT at

ATSIGN "@"

CHANGED changed

CHARACTERconstant [lL][']{charChar}+[']

COLON ":"

COMMA ","

DOLLAR "$"

DOT "."

GE ">="

GREATER ">"

HASH unknown

IF if

IN in

IN_ALL in{Whitespace}all{Whitespace}

LE "<="

LESS "<"

LPAREN "("

POLICY policy

PRIORITY priority

RPAREN ")"

READ read

SLASH "/"

STAR "*"

STATE state

STRINGliteral ["]{stringChar}*["]

THREAD thread

THREAD_ALL
thread{Whitespace}all
thread{Whitespace}"*"

TICK "`"

TO to

WIDECHARACTERconstant [lL][']{charChar}+[']

WIDESTRINGliteral [lL]["]{stringChar}*["]

WITH with

WITHIN within

WRITE write

15.1.6.4 LBPT Lexemes Shared by All Languages

Lexeme Regular Expression Initial Lexical State Changed Lexical State
IN in LBPT LNORM

IN_ALL in{Whitespace}all LBPT LNORM

AT at LBPT LNORM

PC_IS pc LBPT LNORM

SIGNAL signal LBPT LNORM

UNALIGNED unaligned LBPT LNORM

VARIABLE variable LBPT LNORM

MEMORY memory LBPT LNORM

EVERY_INSTRUCTION every{Whitespace}instruction LBPT LNORM

EVERY_PROC_ENTRY every{Whitespace}proc[edure]{Whitespace}entry LBPT LNORM

QUIET quiet LBPT LBPT

15.1.6.5 LFILE Lexemes Shared by All Languages
Files are one or more characters that can appear in a file name.

The state is left as LFILE, so that commands such as use and unuse can have lists of files.

Lexeme Regular Expression
FILENAME {FL}+

15.1.6.6 LKEYWORD Lexemes Shared by All Languages
The state remains in LKEYWORD.
Lexeme Regular Expression

INTEGERconstant
"0"{OC}+
"0"[xX]{HX}+
{DG}+

15.1.6.7 LLINE Lexemes Shared by All Languages
All characters up to the next newline are assembled into a STRINGliteral.

15.1.6.8 LWORD Lexemes Shared by All Languages
Once the lexical state has been set to LWORD, it will stay there until a NEWLINE or a SEMICOLON is found. Both of these cause the lexical state to become
LKEYWORD again. The individual words recognized can be any of the following, but in each case, the state stays LWORD.
Lexeme Regular Expression
GREATER ">"

LESS "<"

GREATERAMPERSAND ">&"

ONEGREATER "1>"

TWOGREATER "2>"

STRINGliteral
[']{charChar}*[']
["]{stringChar}*["]

STRINGliteral {WD}* that does not end in a backslash

WIDECHARACTERconstant [lL][']{charChar}+[']

WIDESTRINGliteral [lL]["]{stringChar}*["]

15.1.6.9 LSIGNAL Lexemes Shared by All Languages
The state stays in LSIGNAL.
Lexeme Regular Expression
INTEGERconstant {DG}+

IDENTIFIER {LT}({LT}|{DG})*

15.1.6.10 LSETENV and LEXPORT Lexemes Shared by All Languages
Lexeme Regular Expression
ENVARID {EID}+

15.1.7 Lexemes That Are Represented Differently in Each Language

Lexeme Representation
(Some May Be Language Specific) Initial Lexical State Changed Lexical State Language Specific?

AMPERSAND "&" LNORM Unchanged C, C++, Fortran

ANDAND "&" LNORM Unchanged C, C++

ANDassign "&=" LNORM Unchanged C, C++

ARROW "->" LNORM Unchanged C, C++

ARROWstar "->*" LNORM Unchanged C++

ASSIGNOP "=" LNORM Unchanged C, C++, Fortran

BRACKETS "[]" LNORM Unchanged C, C++

CLCL "::" LNORM Unchanged C++

DECR "--" LNORM Unchanged C, C++

DIVassign "/=" LNORM Unchanged C, C++

DOTstar ".*" LNORM Unchanged C++

ELLIPSIS "..." LNORM Unchanged C++

EQ

"=="
".EQ."
(IS[\t]+)?
 ("="|("EQUAL"([\t]+"TO")?))

LNORM Unchanged
C, C++, Fortran
Fortran

ERassign "^=" LNORM Unchanged C, C++

GE

".GE."
(IS[\t]+)?
 "NOT"[\t]+
 ("<"|("LESS"([\t]+"THAN")?))
(IS[\t]+)?
 (">="|("GREATER"([\t]+"THAN")?[\t]
 +"OR"[\t]+"EQUAL"([\t]+"TO")?))

LNORM Unchanged

Fortran

GREATER
".GT."
(IS[\t]+)?
 (">"|("GREATER"([\t]+"THAN")?))

LNORM Unchanged Fortran

HAT "^" LNORM Unchanged C, C++

INCR "++" LNORM Unchanged C, C++

LBRACKET "[" LNORM Unchanged C, C++, Fortran

LE

".LE."
(IS[\t]+)?"NOT"[\t]+
 (">"|("GREATER"([\t]+"THAN")?))
(IS[\t]+)?
 ("<="|("LESS"([\t]+"THAN")?[\t]+
 "OR"[\t]+"EQUAL"([\t]+"TO")?))

LNORM Unchanged

Fortran

LESS
".LT."
(IS[\t]+)?
 ("<"|("LESS"([\t]+"THAN")?))

LNORM Unchanged Fortran

LOGAND ".AND." LNORM Unchanged Fortran

LOGEQV ".EQV." LNORM Unchanged Fortran

LOGNEQV ".NEQV." LNORM Unchanged Fortran

LOGNOT ".NOT." LNORM Unchanged Fortran

LOGOR ".OR." LNORM Unchanged Fortran

LOGXOR ".XOR." LNORM Unchanged Fortran

LS "<<" LNORM Unchanged C, C++

LSassign "<<=" LNORM Unchanged C, C++

MINUS "-" LNORM Unchanged C, C++, Fortran

MINUSassign "-=" LNORM Unchanged C, C++

MOD
"%"
MOD

LNORM Unchanged C, C++

MODassign "%=" LNORM Unchanged C, C++

MULTassign "*=" LNORM Unchanged C, C++

NE

"!="
".NE."
"/="
(IS[\t]+)?
 "NOT"[\t]+("="|("EQUAL"([\t]+"TO")?))

LNORM Unchanged
C, C++
Fortran

NOT
"!"
NOT

LNORM Unchanged C, C++

OPENSLASH "(/" LNORM Unchanged Fortran

OR
"|"
OR

LNORM Unchanged C, C++

OROR "||" LNORM Unchanged C, C++

ORassign "|=" LNORM Unchanged C, C++

PARENS "()" LNORM Unchanged C++

PERCENT "%" LNORM Unchanged Fortran

PLUS "+" LNORM Unchanged C, C++, Fortran

PLUSassign "+=" LNORM Unchanged C, C++

QUESTION "?" LNORM Unchanged C, C++

RBRACKET "]" LNORM Unchanged C, C++, Fortran

RS ">>" LNORM Unchanged C, C++

RSassign ">>=" LNORM Unchanged C, C++

SLASHCLOSE "/)" LNORM Unchanged Fortran

SLASHSLASH "//" LNORM Unchanged Fortran

STARSTAR "**" LNORM Unchanged Fortran

TWIDDLE "~" LNORM Unchanged C, C++

15.1.7.1 LKEYWORD Lexemes Specific to C++
If a C++ identifier is followed by a "::", it is assumed to be a class or namespace identifier.

If a C++ identifier is followed by a "<", complex and dubious checks are made to try to match a complete template instance specifier.

15.1.7.2 LNORM Lexemes Specific to C and C++
The lexemes in the following table are specific to C and C++. The state stays in LNORM.
Lexeme Representation Language
ARROW "->" C, C++
INCR "++" C, C++
DECR "--" C, C++
LS "<<" C, C++
RS ">>" C, C++
EQ "==" C, C++
NE "!=" C, C++
ANDAND "&&" C, C++
OROR "||" C, C++
MULTassign "*=" C, C++
DIVassign "/=" C, C++
MODassign "%=" C, C++
PLUSassign "+=" C, C++
MINUSassign "-=" C, C++
LSassign "<<=" C, C++
RSassign ">>=" C, C++
ANDassign "&=" C, C++
ERassign "^=" C, C++
ORassign "|=" C, C++
PLUS "+" C, C++
MINUS "-" C, C++
MOD "%" C, C++
HAT "^" C, C++
AMPERSAND "&" C, C++
OR "|" C, C++
TWIDDLE "~" C, C++
NOT "!" C, C++
BRACKETS "[]" C, C++
ASSIGNOP "=" C, C++
LBRACKET "[" C, C++
RBRACKET "]" C, C++
QUESTION "?" C, C++
CHAR char C, C++
DOUBLE double C, C++
FLOAT float C, C++
INT int C, C++
LONG long C, C++
SHORT short C, C++

SIGNED signed C, C++
UNSIGNED unsigned C, C++
VOID void C, C++
CONST const C, C++
VOLATILE volatile C, C++
SIZEOF sizeof C, C++
ENUM enum C, C++
STRUCT struct C, C++
UNION union C, C++

INTEGERconstant
"0"{OC}+
"0"[xX]{HX}+
{DG}+

C, C++

FLOATINGconstant
{DG}*"."{DG}*
{DG}*"."{DG}* {Whitespace}?{Exponent}
{DG}+{Whitespace}?{Exponent }

C, C++

IDENTIFIER, TYPEDEFname {LT}|{UCN})({LT}|{UCN}|{DG})* C, C++

The lexemes in the following table are specific to C++. The state stays in LNORM.

Lexeme Representation Language
OPERATOR operator C++
NEW new C++
DELETE delete C++
CLASS class C++
ELLIPSIS "..." C++
CLCL "::" C++
THIS this C++
DOTstar ".*" C++
ARROWstar "->*" C++
PARENS "()" C++

15.1.7.3 LNORM Lexemes Specific to Fortran
The lexemes in the following table are specific to Fortran. The state stays in LNORM.
Lexeme Representation
PLUS "+"

MINUS "-"

STARSTAR "**"

LESS ".LT."

LE ".LE."

EQ ".EQ."

NE ".NE."

GE ".GE."

GREATER ".GT."

EQ "=="

NE "/="

LOGNOT ".NOT."

LOGAND ".AND."

LOGOR ".OR."

LOGEQV ".EQV."

LOGNEQV ".NEQV."

LOGXOR ".XOR."

PERCENT "%"

ASSIGNOP "="

SLASHSLASH "//"

OPENSLASH "(/"

SLASHCLOSE "/)"

LBRACKET "["

RBRACKET "]"

AMPERSAND "&"

SIZEOF sizeof

INTEGERconstant

".TRUE."
".FALSE."
"0"{OC}+
"0X"{HX}+
{DG}+

IDENTIFIER, TYPEDEFname {LT}({LT}|{DG})*

FortranName [A-Za-z$]({LT}|{DG})*

FortranNamedKind "_"{FortranName}

FortranNumericKind "_"{DG}+

FortranKind
{FortranNamedKind}
{FortranNumericKind}

FortranCharacterNamedKind {FortranName}"_"

FortranCharacterNumericKind {DG}+"_"

FortranCharacterKind
{FortranCharacterNamedKind}
{FortranCharacterNumericKind}

RealWithDecimal
({DG}+"."DG}*)
({DG}*"."{DG}+)

ExponentVal [+-]?{DG}+

RealEExponent [Ee]{ExponentVal}

RealDExponent [Dd]{ExponentVal}

RealQExponent [Qq]{ExponentVal}

RealSingleConstant
(({DG}+{RealEExponent})
({RealWithDecimal}{RealEExponent}?)){FortranKind}?

RealDoubleConstant ({DG}+|{RealWithDecimal}){RealDExponent}

RealQuadConstant ({DG}+|{RealWithDecimal}){RealQExponent}

RealConstant
{RealSingleConstant}
{RealDoubleConstant}
{RealQuadConstant}

REALconstantWithKind RealConstant

FortranBinaryValue [Bb]((['][01]+['])|(["][01]+["]))

FortranOctalValue [Oo](([']{OC}+['])|(["]{OC}+["]))

FortranHexValue [Zz](([']{HX}+['])|(["]{HX}+["]))

FortranOctalValueAlternative (([']{OC}+['])|(["]{OC}+["]))[Oo]

FortranHexValueAlternative (([']{HX}+['])|(["]{HX}+["]))[Xx]

INTEGERconstantWithKind

{DG}+{FortranKind}
{DG}*"#"[0-9A-Za-z]+
{FortranBinaryValue}
{FortranOctalValue}
{FortranHexValue}
{FortranOctalValueAlternative}
{FortranHexValueAlternative}

LOGICALconstantWithKind
".TRUE."{FortranKind}?
".FALSE."{FortranKind}?

CharSingleDelim [^'\\\n]|('')

CharDoubleDelim [^"\\\n]|("")

FortranOctalEscape {OC}{1,3}

FortranHexEscape [Xx]{HX}{1,2}

FortranEscapeChar
[\\]([AaBbFfNnRrTtVv]|{FortranOctalEscape}
 |{FortranHexEscape}|0|[\\])

StringSingleDelim [']({CharSingleDelim}|[\\])*[']

StringDoubleDelim ["]({CharDoubleDelim}|[\\])*["]

FortranString
{StringSingleDelim}
{StringDoubleDelim}

CStringSingleDelim [']({CharSingleDelim}|{FortranEscapeChar})*[']

CStringDoubleDelim ["]({CharDoubleDelim}|{FortranEscapeChar})*["]

FortranCString ({CStringSingleDelim}|{CStringDoubleDelim})[Cc]

CHARACTERconstantWithKind
{FortranString}
{FortranCharacterKind}{FortranString}
{FortranCharacterKind}?{FortranCString}

15.2 Grammar of Commands
Most of the grammar for commands has already been given in previous sections. This section concentrates on the grammar for expressions.

15.2.1 Names and Expressions Within Commands
The exact syntax of expressions is specific to the current language.

expression
 : expression for C
 | expression for C++
 | expression for Fortran

Often you can omit an expression from a command or use a convenient default instead, to change the meaning of a command.

expression-opt
 : [expression]

Identifiers, Keyword, and Typedef Names
The debugger uses the normal language lookup rules for identifiers, (obeying scopes, and so on,) but also extends those rules as follows:

● All global variables are visible.
● If the debugger cannot find the identifier within the current lexical scopes, it will successively search the lexical scopes of each of the first
$framesearchlimit (default is 0) callers.

These rules can be subverted by rescoping the name.

NOTE: The debugger does not know where in the scope a declaration occurred, so all lookups consider all identifiers in the scope, whether or not they occurred
before the current line.

The lexical tokens for identifiers are specific to the current language, and also to the current lexical state.

IDENTIFIER
 : identifier for LSIGNAL lexical state
 | identifier for C
 | identifier for C++
 | identifier for Fortran

TYPEDEFnames are lexically just identifiers, but when looking them up in the current scope, the debugger determines that they refer to types, such as
TYPEDEFs, classes, or structs. This information is needed to correctly parse C and C++ expressions.

TYPEDEFname
 : IDENTIFIER

A few lexical tokens act as embedded keywords in some positions within expressions, but the debugger generally tries to accept them as though they were
normal identifiers.

identifier-or-key-word
 : IDENTIFIER
 | embedded-key-word

embedded-key-word
 : ANY
 | CHANGED
 | READ

 | WRITE

In other contexts, the debugger is also prepared to accept TYPEDEFnames (for example, int or the name of a class).

identifier-or-typedef-name
 : identifier-or-typedef-name for C
 | identifier-or-typedef-name for C++
 | identifier-or-typedef-name for Fortran

Integer Constants
The lexical tokens for integer constants are specific to the current language.

integer_constant
 : INTEGERconstant for C and C++
 | INTEGERconstant for Fortran

Macros
The debugger does not currently understand usages of macros, for example, uses of C and C++ preprocessor #define macros, and so on.

Calls
You can call any function whose address can be taken, provided that the parameters can also be passed, and the result returned.

call-expression
 : call-expression for C
 | call-expression for C++
 | call-expression for Fortran

Parameters
Each language may impose its own restrictions on exactly what can be passed as a parameter.

Any expression can be passed 'by value', but C++ constructors and destructors will not be invoked. Evaluating parameters can involve evaluating nested calls.

Anything whose address can be taken can be passed 'by reference'.

The debugger has very limited understanding of array descriptors.

Comma is both the argument separator and a valid operator in C and C++. Hence, argument lists are comma-separated assignment-expressions rather
than full expressions.

argument-expression-list
 : assignment-expression
 | assignment-expression COMMA argument-expression-list

arg-expression-list-opt
 : [argument-expression-list]

assignment-expression
 : assignment-expression for C
 | assignment-expression for C++
 | assignment-expression for Fortran

Return Results
Any scalar or structure type can be the return result of a called function. Some simple array types are also supported, but the general cases are not.

The C++ constructors and destructors are not invoked, which may cause problems.

Addresses
You can take the addresses of variables and other data that are in memory, and functions that have had code generated for them. You can also take the
address of a line of source code.

Some variables may be in registers; you cannot take their addresses.

The optimizing compilers may move variables from one memory location to another, in which case you will obtain the address of the current memory location of
the variable.

The optimizing compilers may eliminate unused functions, as well as functions that have had all calls inlined. Static functions in header files may result in
multiple copies of the code, and the address will be of only one of those copies.

The optimizing compilers and linkers may skip some instructions on the way in during a call, so a breakpoint on the first few instructions may not be hit. When
you set a breakpoint on a function, the debugger sets it deeper in the function, at the end of the entry sequence, to try to avoid this.

The address of a line of source code is the address of the first instruction in memory that came from this line, but this instruction may be branched around, so it
might not be executed before any other instruction from the same line.

Address of a Source Line
The debugger has extended the syntax of most languages to allow you to get the address of the first instruction that a source line generates. If you do not
specify a file via the string, then the current file is used. If you specify a DOLLAR as the line-number, then the last line in the file that generated any
instructions is used.

line-address
 : ATSIGN string COLON line-number
 | ATSIGN line-number

line-number
 : INTEGERconstant
 | DOLLAR

Other Modified Forms of Expressions
The whatis_command supports supersets of the normal expression syntax of the language.

whatis-expressions
 : whatis-expressions for C
 | whatis-expressions for C++
 | whatis-expressions for Fortran

Some commands (notably the examine command and the cont command) have a syntax that inhibits the use of a full expression. In this case, a more limited
form of expression is still allowed.

address-exp
 : address-exp for C
 | address-exp for C++
 | address-exp for Fortran

The cont command and the change_stack_frame_commands have a form that specifies where to continue to, or where to cut the stack back to.

loc
 : loc for C
 | loc for C++
 | loc for Fortran

The target of a modifying_command can only be a subset of the possible expressions, known as a unary-expression.

unary-expression
 : unary-expression for C
 | unary-expression for C++
 | unary-expression for Fortran

Strings
The syntax of strings is sensitive to the current lexical state and language.

string
 : LNORM string

 | LLINE string
 | LWORD string

Most of the languages have places where they allow a series of string literals to be equivalent to a single string formed of their concatenated characters.

string-literal-list
 : string-literal-list for C
 | string-literal-list for C++

Rescoped Expressions
Sometimes the normal language visibility rules are not sufficient for specifying the variable, function, and so on, to which you may want to refer. The debugger
extends the language's idea of an expression with an additional possibility called a rescoped expression.

Rescoped expressions cause the debugger to look up the identifiers and so on in the qual-symbol-opt, as though it were in the source file specified by the
preceding filename-tick or qual-symbol-opt.

rescoped-expression
 : filename-tick qual-symbol-opt
 | TICK qual-symbol-opt

rescoped-typedef
 : filename-tick qual-typedef-opt
 | TICK qual-typedef-opt

filename-tick
 : string-tick

string-tick
 : string TICK

qual-symbol-opt
 : expression /* Base (global) name */
 | qual-symbol-opt TICK expression /* Qualified name */

qual-typedef-opt
 : qual-typedef-opt for C
 | qual-typedef-opt for C++
 | qual-typedef-opt for Fortran

In the following example, rescoped expressions are used to distinguish which x the user is querying, because there are two variables named x (one local to
main and one global):

(idb) list $curline - 10: 20
 1 long x = 5; // global x
 2
 3 int main()
 4 {
 5 int x = 7; // local x
 6 int y = x - ::x;
> 7 return (y);
 8 }

By default, a local variable is found before a global one, so that the plain x refers to the local variable.

(idb) whatis x
int x
(idb) which x
"x_rescoped.cxx"`main`x
(idb) whatis "x_rescoped.cxx"`main`x
int x

You may use the C++ :: operator to specify the global x in C++ code or rescoped expressions in any language.

(idb) whatis ::x
long x
(idb) whatis "x_rescoped.cxx"`x

long x
(idb) print "x_rescoped.cxx"`x
5

In the following example, the x variable is used in the following places to demonstrate how rescoping expressions can find the correct variable:

● As a variable local to main
● As a member variable of the class Foo
● As a global variable
● As a local variable to Foo's member function SetandGet
● As a local variable to the CastAndAdd function, but visible as a parameter

(idb) list $curline - 10: 20
 10 double x = 3.1415;
 11
 12 int CastAndAdd(char x) {
 13 int result = ((int)::x) + x;
 14 return result;
 15 }
 16
 17 float Foo::SetandGet() { // multiple scopes!
 18 long x = (long)::x; // local x = global x
 19 Foo::x = (float)x; // member x = local x
> 20 return Foo::x; // return member x
 21 }
 22
 23 int main () {
 24 int x = 7;
 25 x -= CastAndAdd((char)1);
 26
 27 Foo thefoo;
 28 x -= (int)thefoo.SetandGet();
 29 return x;
(idb) whatis x
long x
(idb) which x
"x_rescoped2.cxx"`Foo::SetandGet`x
(idb) whatis ::x
double x
(idb) whatis Foo::x
float Foo::x
(idb) whatis main`x
int x
(idb) whatis CastAndAdd`x
char x

Printable Types
The lexical tokens for printable types are specific to the current language.

printable-type
 : printable-type for C
 | printable-type for C++
 | printable-type for Fortran

15.2.2 Expressions Specific to C
The debugger has an almost complete understanding of C expressions, given the general restrictions.

expression
 : assignment-expression

constant-expression
 : conditional-expression

C Identifiers
The lookup rules are almost always correct for C.

identifier-or-typedef-name
 : identifier-or-key-word
 | TYPEDEFname

C Constants
The numeric constants are treated exactly the same as in C. The enumeration constant identifiers go though the same grammar paths as variable identifiers,
which has basically the same effect as the C semantics.

primary-expression
 : identifier-or-key-word
 | constant
 | string-literal-list
 | LPAREN expression RPAREN
 | process_set
 | LPAREN process_range RPAREN

string-literal-list
 : string
 | string-literal-list string

constant
 : FLOATINGconstant
 | INTEGERconstant
 | CHARACTERconstant
 | WIDECHARACTERconstant
 | WIDESTRINGliteral

C Rescoped Expressions
The C implementation of rescoped expressions is the following:

qual-typedef-opt
 : TYPEDEFname
 | qual-typedef-opt TICK TYPEDEFname

whatis-expressions
 : expression
 | rescoped-expression
 | printable-type

C Calls
Following is the C implementation of calls.

call-expression
 : expression

function-call
 : postfix-expression LPAREN [arg-expression-list] RPAREN

Restrictions and limits are documented here.

C Addresses
Following is the C implementation of addresses.

address
 : AMPERSAND postfix-expression
 | line-address
 | postfix-expression

address-exp
 : address
 | address-exp PLUS address
 | address-exp MINUS address
 | address-exp STAR address

Restrictions and limits are documented here.

C Loc Specifications
The C implementation of loc is the following:

loc
 : expression
 | rescoped-expression

C Types
The debugger understands the full C type specification grammar.

type-specifier
 : basic-type-specifier
 | struct-union-enum-type-specifier
 | typedef-type-specifier

basic-type-specifier
 : basic-type-name
 | type-qualifier-list basic-type-name
 | basic-type-specifier type-qualifier
 | basic-type-specifier basic-type-name

type-qualifier-list
 : type-qualifier
 | type-qualifier-list type-qualifier

type-qualifier
 : CONST
 | VOLATILE

basic-type-name
 : VOID
 | CHAR
 | SHORT
 | INT
 | LONG
 | FLOAT
 | DOUBLE
 | SIGNED
 | UNSIGNED

printable-type
 : rescoped_typedef
 | type_name

struct-union-enum-type-specifier
 : elaborated-type-name
 | type-qualifier-list elaborated-type-name
 | struct-union-enum-type-specifier type-qualifier

typedef-type-specifier
 : TYPEDEFname
 | type-qualifier-list TYPEDEFname
 | typedef-type-specifier type-qualifier

elaborated-type-name
 : struct-or-union-specifier
 | enum-specifier

struct-or-union-specifier
 : struct-or-union opt-parenthesized-identifier-or-typedef-name

opt-parenthesized-identifier-or-typedef-name
 : identifier-or-typedef-name
 | LPAREN opt-parenthesized-identifier-or-typedef-name RPAREN

struct-or-union
 : STRUCT
 | UNION

enum-specifier
 : ENUM identifier-or-typedef-name

type-name
 : type-specifier
 | type-specifier abstract-declarator
 | type-qualifier-list // Implicit "int"
 | type-qualifier-list abstract-declarator // Implicit "int"

type-name-list
 : type-name
 | type-name COMMA type-name-list

abstract-declarator
 : unary-abstract-declarator
 | postfix-abstract-declarator
 | postfixing-abstract-declarator

postfixing-abstract-declarator
 : array-abstract-declarator
 | LPAREN RPAREN

array-abstract-declarator
 : BRACKETS
 | LBRACKET constant-expression RBRACKET
 | array-abstract-declarator LBRACKET constant-expression RBRACKET

unary-abstract-declarator
 : STAR
 | STAR type-qualifier-list
 | STAR abstract-declarator
 | STAR type-qualifier-list abstract-declarator

postfix-abstract-declarator
 : LPAREN unary-abstract-declarator RPAREN
 | LPAREN postfix-abstract-declarator RPAREN
 | LPAREN postfixing-abstract-declarator RPAREN
 | LPAREN unary-abstract-declarator RPAREN postfixing-abstract-declarator

C Other Forms of Expressions
The following expressions all have their usual C semantics:

assignment-expression
 : conditional-expression
 | unary-expression ASSIGNOP assignment-expression
 | unary-expression MULTassign assignment-expression
 | unary-expression DIVassign assignment-expression
 | unary-expression MODassign assignment-expression
 | unary-expression PLUSassign assignment-expression
 | unary-expression MINUSassign assignment-expression
 | unary-expression LSassign assignment-expression
 | unary-expression RSassign assignment-expression
 | unary-expression ANDassign assignment-expression
 | unary-expression ERassign assignment-expression
 | unary-expression ORassign assignment-expression

conditional-expression
 : logical-OR-expression
 | logical-OR-expression QUESTION expression COLON conditional-expression

logical-OR-expression
 : logical-AND-expression
 | logical-OR-expression OROR logical-AND-expression

logical-AND-expression
 : inclusive-OR-expression
 | logical-AND-expression ANDAND inclusive-OR-expression

inclusive-OR-expression
 : exclusive-OR-expression
 | inclusive-OR-expression OR exclusive-OR-expression

exclusive-OR-expression
 : AND-expression
 | exclusive-OR-expression HAT AND-expression

AND-expression
 : equality-expression
 | AND-expression AMPERSAND equality-expression

equality-expression
 : relational-expression
 | equality-expression EQ relational-expression
 | equality-expression NE relational-expression

relational-expression
 : shift-expression
 | relational-expression LESS shift-expression
 | relational-expression GREATER shift-expression
 | relational-expression LE shift-expression
 | relational-expression GE shift-expression

shift-expression
 : additive-expression
 | shift-expression LS additive-expression
 | shift-expression RS additive-expression

additive-expression
 : multiplicative-expression
 | additive-expression PLUS multiplicative-expression
 | additive-expression MINUS multiplicative-expression

multiplicative-expression
 : cast-expression
 | multiplicative-expression STAR cast-expression
 | multiplicative-expression SLASH cast-expression
 | multiplicative-expression MOD cast-expression

cast-expression
 : unary-expression
 | LPAREN type-name RPAREN cast-expression

unary-expression
 : postfix-expression
 | INCR unary-expression
 | DECR unary-expression
 | AMPERSAND cast-expression
 | STAR cast-expression
 | PLUS cast-expression
 | MINUS cast-expression
 | TWIDDLE cast-expression
 | NOT cast-expression
 | SIZEOF unary-expression
 | SIZEOF LPAREN type-name RPAREN
 | line-address

postfix-expression
 : primary-expression
 | postfix-expression LBRACKET expression RBRACKET
 | function-call
 | postfix-expression LPAREN type-name-list RPAREN
 | postfix-expression DOT identifier-or-typedef-name
 | postfix-expression ARROW identifier-or-typedef-name
 | postfix-expression INCR

 | postfix-expression DECR

15.2.3 Expressions Specific to C++
C++ is a complex language, with a rich expression system. The debugger understands much of the system, but it does not understand how to evaluate some
complex aspects of a C++ expression. It can correctly debug these when they occur in the source code.

The aspects of the expression system not processed properly during debugger expression evaluation include the following:

● Many of the implicit conversions
● Program-defined operators
● Calling constructors and destructors during the debugger's own evaluation of expressions

There are also some minor restrictions in the following grammar, compared with the full C++ expression grammar, to make it unambiguous:

expression
 : assignment-expression

constant-expression
 : conditional-expression

C++ Identifiers
The debugger correctly augments the general lookup rules when inside class member functions, to look up the members correctly.

The debugger has only a limited understanding of namespaces. It correctly processes names such as
UserNameSpace::NestedNamespace::userIdentifier, as well as C++ use-declarations, which introduce a new identifier into a scope.

The debugger does not currently understand C++ using-directives.

The debugger understands the relationship between struct and class identifiers and typedef identifiers.

id-or-keyword-or-typedef-name
 : identifier-or-key-word
 | TYPEDEFname

C++ Constants
The debugger treats numeric constants the same as C++ does. The enumeration constant identifiers go though the same grammar paths as variable identifiers,
which has basically the same effect as the C++ semantics.

constant
 : FLOATINGconstant
 | INTEGERconstant
 | CHARACTERconstant
 | WIDECHARACTERconstant
 | WIDESTRINGliteral

C++ Calls
The debugger does not understand the following aspects of C++ calls:

● Invoking C++ constructors and destructors to create and destroy temporaries containing the value of parameters and results.
● Default parameters.
● Many of the implicit conversions that may be needed for the parameters.
● Overloading resolution. Instead, the debugger queries the user.

call-expression
 : expression

Restrictions and limits are documented here.

C++ Addresses
Following is the C++ implementation of addresses:

address
 : AMPERSAND postfix-expression /* Address of */
 | line-address
 | postfix-expression

address-exp
 : address
 | address-exp PLUS address
 | address-exp MINUS address
 | address-exp STAR address

Restrictions and limits are documented here.

C++ Loc
Following is the C++ implementation of loc:

loc
 : expression
 | rescoped-expression

C++ Other Modified Forms of Expressions

whatis-expressions
 : expression
 | printable-type

C++ Rescoped Expressions
The C++ implementation of rescoped expressions is as follows:

qual-typedef-opt
 : type-name
 | qual-typedef-opt TICK type-name

C++ Strings
The C++ implementation of strings is as follows:

string-literal-list
 : string
 | string-literal-list string

C++ Identifier Expressions
The debugger understands nested names. Namespaces go through the same paths as classes, hence the unusual use of TYPEDEFname.

id-expression
 : id-expression-internals

id-expression-internals
 : qualified-id
 | id-or-keyword-or-typedef-name
 | operator-function-name
 | TWIDDLE id-or-keyword-or-typedef-name

qualified-id
 : nested-name-specifier qualified-id-follower

qualified-type
 : nested-name-specifier TYPEDEFname

nested-name-specifier
 : CLCL
 | TYPEDEFname CLCL
 | nested-name-specifier TYPEDEFname CLCL

qualified-id-follower
 : identifier-or-key-word
 | operator-function-name
 | TWIDDLE id-or-keyword-or-typedef-name

C++ Types
The debugger understands the full C++ type specification grammar.

type-specifier
 : basic-type-specifier
 | struct-union-enum-type-specifier
 | typedef-type-specifier

type-qualifier-list
 : type-qualifier
 | type-qualifier-list type-qualifier

type-qualifier
 : CONST
 | VOLATILE

basic-type-specifier
 : basic-type-name basic-type-name
 | basic-type-name type-qualifier
 | type-qualifier-list basic-type-name
 | basic-type-specifier type-qualifier
 | basic-type-specifier basic-type-name

struct-union-enum-type-specifier
 : elaborated-type-name
 | type-qualifier-list elaborated-type-name
 | struct-union-enum-type-specifier type-qualifier

typedef-type-specifier
 : TYPEDEFname type-qualifier
 | type-qualifier-list TYPEDEFname
 | typedef-type-specifier type-qualifier

basic-type-name
 : VOID
 | CHAR
 | SHORT
 | INT
 | LONG
 | FLOAT
 | DOUBLE
 | SIGNED
 | UNSIGNED

elaborated-type-name
 : aggregate-name
 | enum-name

printable-type
 : rescoped-typedef
 | type-name

aggregate-name
 : aggregate-key opt-parenthesized-identifier-or-typedef-name
 | aggregate-key qualified-type

opt-parenthesized-identifier-or-typedef-name
 : id-or-keyword-or-typedef-name
 | LPAREN opt-parenthesized-identifier-or-typedef-name RPAREN

aggregate-key
 : STRUCT
 | UNION

 | CLASS

enum-name
 : ENUM id-or-keyword-or-typedef-name

parameter-type-list
 : PARENS type-qualifier-list-opt

type-name
 : type-specifier
 | qualified-type
 | basic-type-name
 | TYPEDEFname
 | type-qualifier-list
 | type-specifier abstract-declarator
 | basic-type-name abstract-declarator
 | qualified-type abstract-declarator
 | TYPEDEFname abstract-declarator
 | type-qualifier-list abstract-declarator

abstract-declarator
 : unary-abstract-declarator
 | postfix-abstract-declarator
 | postfixing-abstract-declarator

postfixing-abstract-declarator
 : array-abstract-declarator
 | parameter-type-list

array-abstract-declarator
 : BRACKETS
 | LBRACKET constant-expression RBRACKET
 | array-abstract-declarator LBRACKET constant-expression RBRACKET

unary-abstract-declarator
 : STAR
 | AMPERSAND
 | pointer-operator-type
 | STAR abstract-declarator
 | AMPERSAND abstract-declarator
 | pointer-operator-type abstract-declarator

postfix-abstract-declarator
 : LPAREN unary-abstract-declarator RPAREN
 | LPAREN postfix-abstract-declarator RPAREN
 | LPAREN postfixing-abstract-declarator RPAREN
 | LPAREN unary-abstract-declarator RPAREN postfixing-abstract-declarator

pointer-operator-type
 : TYPEDEFname CLCL STAR type-qualifier-list-opt
 | STAR type-qualifier-list
 | AMPERSAND type-qualifier-list

C++ Other Forms of Expressions
The following expressions all have the usual C++ semantics:

primary-expression
 : constant
 | string-literal-list
 | THIS
 | LPAREN expression RPAREN
 | operator-function-name
 | identifier-or-key-word
 | qualified-id
 | process_set
 | LPAREN process_range RPAREN

operator-function-name

 : OPERATOR operator-predefined
 | OPERATOR basic-type-name
 | OPERATOR TYPEDEFname
 | OPERATOR LPAREN type-name RPAREN
 | OPERATOR type-qualifier
 | OPERATOR qualified-type

operator-predefined
 : PLUS
 | MINUS
 | STAR
 | ...
 | DELETE
 | COMMA

type-qualifier-list-opt
 : [type-qualifier-list]

postfix-expression
 : primary-expression
 | postfix-expression LBRACKET expression RBRACKET
 | postfix-expression PARENS
 | postfix-expression LPAREN argument-expression-list RPAREN
 | postfix-expression LPAREN type-name-list RPAREN
 | postfix-expression DOT id-expression
 | postfix-expression ARROW id-expression
 | postfix-expression INCR
 | postfix-expression DECR
 | TYPEDEFname LPAREN argument-expression-list RPAREN
 | TYPEDEFname LPAREN type-name-list RPAREN
 | basic-type-name LPAREN assignment-expression RPAREN

type-name-list
 : type-name
 | type-name COMMA type-name-list
 | type-name comma-opt-ellipsis
 | ELLIPSIS

comma-opt-ellipsis
 : ELLIPSIS
 | COMMA ELLIPSIS

unary-expression
 : postfix-expression
 | INCR unary-expression
 | DECR unary-expression
 | line-address
 | AMPERSAND cast-expression
 | STAR cast-expression
 | MINUS cast-expression
 | PLUS cast-expression
 | TWIDDLE LPAREN cast-expression RPAREN
 | NOT cast-expression
 | SIZEOF unary-expression
 | SIZEOF LPAREN type-name RPAREN
 | allocation-expression

allocation-expression
 : operator-new LPAREN type-name RPAREN operator-new-initializer
 | operator-new LPAREN argument-expression-list RPAREN LPAREN type-name RPAREN
operator-new-initializer

operator-new
 : NEW
 | CLCL NEW

operator-new-initializer
 : [PARENS]
 | [LPAREN argument-expression-list RPAREN]

cast-expression
 : unary-expression
 | LPAREN type-name RPAREN cast-expression

deallocation-expression
 : cast-expression
 | DELETE deallocation-expression
 | CLCL DELETE deallocation-expression
 | DELETE BRACKETS deallocation-expression
 | CLCL DELETE BRACKETS deallocation-expression

point-member-expression
 : deallocation-expression
 | point-member-expression DOTstar deallocation-expression
 | point-member-expression ARROWstar deallocation-expression

multiplicative-expression
 : point-member-expression
 | multiplicative-expression STAR point-member-expression
 | multiplicative-expression SLASH point-member-expression
 | multiplicative-expression MOD point-member-expression

additive-expression
 : multiplicative-expression
 | additive-expression PLUS multiplicative-expression
 | additive-expression MINUS multiplicative-expression

shift-expression
 : additive-expression
 | shift-expression LS additive-expression
 | shift-expression RS additive-expression

relational-expression
 : shift-expression
 | relational-expression LESS shift-expression
 | relational-expression GREATER shift-expression
 | relational-expression LE shift-expression
 | relational-expression GE shift-expression

equality-expression
 : relational-expression
 | equality-expression EQ relational-expression
 | equality-expression NE relational-expression

AND-expression
 : equality-expression
 | AND-expression AMPERSAND equality-expression

exclusive-OR-expression
 : AND-expression
 | exclusive-OR-expression HAT AND-expression

inclusive-OR-expression
 : exclusive-OR-expression
 | inclusive-OR-expression OR exclusive-OR-expression

logical-AND-expression
 : inclusive-OR-expression
 | logical-AND-expression ANDAND inclusive-OR-expression

logical-OR-expression
 : logical-AND-expression
 | logical-OR-expression OROR logical-AND-expression

conditional-expression
 : logical-OR-expression
 | logical-OR-expression QUESTION expression COLON conditional-expression

assignment-expression
 : conditional-expression

 | unary-expression ASSIGNOP assignment-expression
 | unary-expression MULTassign assignment-expression
 | unary-expression DIVassign assignment-expression
 | unary-expression MODassign assignment-expression
 | unary-expression PLUSassign assignment-expression
 | unary-expression MINUSassign assignment-expression
 | unary-expression LSassign assignment-expression
 | unary-expression RSassign assignment-expression
 | unary-expression ANDassign assignment-expression
 | unary-expression ERassign assignment-expression
 | unary-expression ORassign assignment-expression

15.2.4 Expressions Specific to Fortran
This section contains expressions specific to Fortran.

Fortran Identifiers
The Fortran implementation of identifiers is as follows:

identifier-or-typedef-name
 : identifier-or-key-word
 | TYPEDEFname
 | PROCEDUREname

Fortran Constants

real-or-imag-part
 : real_constant
 | PLUS real_constant
 | MINUS real_constant
 | integer_constant
 | PLUS integer_constant
 | MINUS integer_constant

constant
 : real_constant
 | integer_constant
 | complex-constant
 | character_constant
 | LOGICALconstantWithKind

character_constant
 : CHARACTERconstantWithKind
 | string

complex-constant
 : LPAREN real-or-imag-part COMMA real-or-imag-part RPAREN

Fortran Rescoped Expressions
The Fortran implementation of rescoped expressions is as follows:

qual-typedef-opt
 : TYPEDEFname /* Base (global) name */
 | qual-typedef-opt TICK TYPEDEFname /* Qualified name */

whatis-expressions
 : expression
 | rescoped-expression
 | printable_type

Fortran Calls

The Fortran implementation of calls is as follows:

call-expression
 : call-stmt

call-stmt
 : named-subroutine
 | named-subroutine LPAREN RPAREN
 | named-subroutine LPAREN actual-arg-spec-list RPAREN

Fortran Addresses
The Fortran implementation of addresses is as follows:

address
 : line-address
 | primary

address-exp
 : address
 | address-exp PLUS address
 | address-exp MINUS address
 | address-exp STAR address

Restrictions and limits are documented here.

Fortran Loc
The Fortran implementation of loc is as follows:

loc
 : expression
 | rescoped-expression

Fortran Types
The Fortran implementation of types is as follows:

type-name
 : TYPEDEFname

printable-type
 : rescoped-typedef
 | type-name

Other Forms of Fortran Expressions

expression
 : expr
 | named-procedure

assignment-expression
 : expr

constant-expression
 : constant

unary-expression
 : variable

expr
 : level-5-expr
 | expr defined-binary-op level-5-expr

level-5-expr
 : equiv-operand
 | level-5-expr LOGEQV equiv-operand

 | level-5-expr LOGNEQV equiv-operand
 | level-5-expr LOGXOR equiv-operand

equiv-operand
 : or-operand
 | equiv-operand LOGOR or-operand

or-operand
 : and-operand
 | or-operand LOGAND and-operand

and-operand
 : level-4-expr
 | LOGNOT and-operand

level-4-expr
 : level-3-expr
 | level-3-expr LESS level-3-expr
 | level-3-expr GREATER level-3-expr
 | level-3-expr LE level-3-expr
 | level-3-expr GE level-3-expr
 | level-3-expr EQ level-3-expr
 | level-3-expr NE level-3-expr

level-3-expr
 : level-2-expr
 | level-3-expr SLASHSLASH level-2-expr

level-2-expr
 : add-operand
 | level-2-expr PLUS add-operand
 | level-2-expr MINUS add-operand

add-operand
 : add-operand-f90
 | add-operand-dec
 | unary-expr-dec

add-operand-f90
 : mult-operand-f90
 | add-operand-f90 STAR mult-operand-f90
 | add-operand-f90 SLASH mult-operand-f90

mult-operand-f90
 : level-1-expr
 | level-1-expr STARSTAR mult-operand-f90

add-operand-dec
 : mult-operand-dec
 | add-operand-f90 STAR mult-operand-dec
 | add-operand-f90 SLASH mult-operand-dec
 | add-operand-f90 STAR unary-expr-dec
 | add-operand-f90 SLASH unary-expr-dec

mult-operand-dec
 : level-1-expr STARSTAR mult-operand-dec
 | level-1-expr STARSTAR unary-expr-dec

unary-expr-dec
 : PLUS add-operand
 | MINUS add-operand

level-1-expr
 : primary
 | defined-unary-op primary

defined-unary-op

 : DOT_LETTERS_DOT

primary
 : constant

 | variable
 | function-reference
 | LPAREN expr RPAREN
 | AMPERSAND variable
 | process_set
 | LPAREN process_range RPAREN

defined-binary-op

 : DOT_LETTERS_DOT

int-expr
 : expr

scalar-int-expr
 : int-expr

variable
 : named-variable
 | subobject

named-variable
 : variable-name

subobject
 : array-elt-or-sect
 | structure-component
 | known-substring

known-substring
 : disabled-array-elt-or-sect LPAREN substring-range RPAREN
 | hf-array-abomination

substring-range
 : scalar-int-expr COLON scalar-int-expr
 | scalar-int-expr COLON
 | COLON scalar-int-expr
 | COLON

hf-array-abomination
 : named-variable
 LPAREN section-subscript-list RPAREN
 LPAREN section-subscript RPAREN
 | structure PERCENT any-identifier
 LPAREN section-subscript-list RPAREN
 LPAREN section-subscript RPAREN
 | structure DOT any-identifier
 LPAREN section-subscript-list RPAREN
 LPAREN section-subscript RPAREN

disabled-array-elt-or-sect
 : DISABLER array-elt-or-sect

array-elt-or-sect
 : named-variable LPAREN section-subscript-list RPAREN
 | structure PERCENT any-identifier LPAREN section-subscript-list RPAREN
 | structure DOT any-identifier LPAREN section-subscript-list RPAREN

section-subscript-list
 : section-subscript
 | section-subscript COMMA section-subscript-list

subscript
 : scalar-int-expr

section-subscript
 : subscript
 | subscript-triplet

subscript-triplet
 : subscript COLON subscript COLON stride
 | subscript COLON COLON stride

 | COLON subscript COLON stride
 | COLON COLON stride
 | subscript COLON subscript
 | subscript COLON
 | COLON subscript
 | COLON

stride
 : scalar-int-expr

structure-component
 : structure PERCENT any-identifier
 | structure DOT any-identifier

structure
 : named-variable
 | structure-component
 | array-elt-or-sect

function-reference
 : SIZEOF LPAREN expr RPAREN
 | named-function LPAREN RPAREN
 | named-function LPAREN actual-arg-spec-list RPAREN

named-procedure
 : PROCEDUREname

named-function
 : PROCEDUREname

named-subroutine
 : PROCEDUREname

actual-arg-spec-list
 : actual-arg-spec
 | actual-arg-spec COMMA actual-arg-spec-list

actual-arg-spec
 : actual-arg

actual-arg
 : expr

any-identifier
 : variable-name
 | PROCEDUREname

variable-name
 : identifier-or-key-word

PROCEDUREname
 : IDENTIFIER

Chapter 16 — Debugging Core Files
When the operating system encounters an unrecoverable error while running a process, for example a segmentation violation (SEGV), the system creates a file
named core and places it in the current directory. The core file is not an executable file; it is a snaphot of the state of your process at the time the error
occurred. It allows you to analyze the process at the point it crashed.

This chapter discusses the following topics:

● Invoking the debugger on a core file
● Debugging a core file
● Transporting a core file

It also contains a core file debugging example and a quick reference for transporting a core file.

16.1 Invoking the Debugger on a Core File

You can use the debugger to examine the process information in a core file. Use the following debugger command syntax to invoke the debugger on a core file:

% idb executable_file core_file

or

(idb) load executable_file core_file

The executable file is that which was being executed at the time the core file was generated.

16.2 Debugging a Core File
When debugging a core file, you can use the debugger to obtain a stack trace and the values of some variables just as you would for a stopped process.

The stack trace lists the functions in your program that were active when the dump occurred. By examining the values of a few variables along with the stack
trace, you may be able to pinpoint the process state and the cause of the core dump. Core files cannot be executed; therefore the rerun, step, cont and so
on commands will not work until you create a process using the run command.

In addition, if the program is multithreaded, you can examine the thread information with the show thread and thread commands. You can examine the
stack trace for a particular thread or for all threads with the where thread command.

The following example uses a null pointer reference in the factorial function. This reference causes the process to abort and dump the core when it is
executed. The dump command prints the value of the x variable as a null, and the print *x command reveals that you cannot dereference a null pointer.

% cat testProgram.c

#include <stdio.h>
int factorial(int i)

main() {
 int i,f;
 for (i=1 ; i<3 ; i++) {
 f = factorial(i);
 printf("%d! = %d\en",i,f);
 }
}

int factorial(int i)
int i;
{
int *x;
 x = 0;
 printf("%d",*x);
 if (i<=1)
 return (1);
 else
 return (i * factorial(i-1));
}

% cc -o testProgram -g testProgram.c
% testProgram
Memory fault - core dumped.
% idb testProgram core
Welcome to the debugger Version n

object file name: testProgram
core file name: core
Reading symbolic information ...done
Core file produced from executable testProgram
Thread terminated at PC 0x120000dc4 by signal SEGV
(idb) where
>0 0x120000dc4 in factorial(i=1) testProgram.c:13
#1 0x120000d44 in main() testProgram.c:4
(idb) dump
>0 0x120000dc4 in factorial(i=1) testProgram.c:13
printf("%d",*x);
(idb) print *x
Cannot dereference 0x0
Error: no value for *x
(idb)

16.3 Transporting a Core File
Transporting core files is usually necessary to debug a core file on a system other than that which produced it. It is sometimes possible to debug a core file on a
system other than that which produced it if the current system is sufficiently similar to the original system, but it will not work correctly in general.

16.3.1 Procedure for Transporting Core Files
The following procedure (see also quick reference) shows how to transport the core files. In this example, a.out is the name of the executable and core is the
name of the core file.

You need to collect a variety of files from the original system. These include the executable, the core file, shared libraries used by the executable, and
/usr/shlib/libpthreaddebug.so if the POSIX Threads Library is involved.

Do the following steps (1 through 4) on the original system:

1. Determine the shared objects in use:

% idb a.out core
(idb) listobj
(idb) quit

2. Cut, paste and edit the result into a list of file names. Most will probably begin with /usr/shlib/.

3. If /usr/shlib/libpthread.so is one of the files, add /usr/shlib/libpthreaddebug.so to the list. (If you have a privately delivered
libpthread.so, there should be a privately delivered corresponding libpthreaddebug.so; use the privately delivered one.)

4. Package the a.out, core and shared objects, for example, into a tar file. Be sure to use the tar h option to force tar to follow symbolic links as if
they were normal files or directories.

% tar cfvh mybug.tar

Then do the following steps (5 through 14) on the current system:

On the current system, the executable and core file are generally put in the current working directory, the shared objects are put in an "application" subdirectory,
and libpthreaddebug.so is put in a "debugger" subdirectory.

5. Create a directory for debugging the transported core files:

% mkdir mybug

6. Move to that directory:

% cd mybug

7. Get the package:

% mv <wherever>/mybug.tar .

8. Create the subdirectories applibs and dbglibs:

% mkdir applibs dbglibs

9. Unpackage the tar files. Be sure to use the tar s option to strip off any leading slashes from pathnames during extraction.

% tar xfvs mybug.tar

10. Move the shared objects (that were originally in /usr/shlib and are now in usr/shlib) into applibs:

% mv usr/shlib/* applibs

If the tar xfvs output in step 9 moved shared objects into other directories, move them into applibs as well.

11. Make libpthreaddebug.so exist in the dbglibs directory, for example, by linking it to the file in the applibs directory.

% ln -s ../applibs/libpthreaddebug.so dbglibs/libpthreaddebug.so

12. Set the IDB_COREFILE_LIBRARY_PATH environment variable to the application subdirectory. This directs the debugger to look for shared objects (by
their base names) in the application subdirectory before trying the system directories. If the POSIX Threads Library is involved, set the
LD_LIBRARY_PATH environment variable to the debugger subdirectory so that the debugger will use the correct libpthreaddebug.so.

% env IDB_COREFILE_LIBRARY_PATH=applibs \
LD_LIBRARY_PATH=dbglibs \
idb a.out core

13. Determine that the shared objects are in the applibs subdirectory rather than in /usr/shlib/:

(idb) listobj

For an alternative method when the debugger cannot be run on the original system, see the corefile_listobj.c example.

14. Debug as usual:

(idb)

16.4 Core File Debugging Example
The following is a complete example, from core creation, through transporting and core file debugging:

1. Create the core file:

% a.out -segv
Segmentation fault (core dumped)

2. Determine the shared objects using the debugger on the original system:

% idb a.out core
Welcome to the debugger Version n

object file name: a.out
core file name: core
Reading symbolic information ...done
Core file produced from executable a.out
Thread 0x5 terminated at PC 0x3ff8058b448 by signal SEGV
(idb) listobj
 section Start Addr End Addr
--
a.out
 .text 0x120000000 0x120003fff
 .data 0x140000000 0x140001fff

/usr/shlib/libpthread.so
 .text 0x3ff80550000 0x3ff8058bfff
 .data 0x3ffc0180000 0x3ffc018ffff
 .bss 0x3ffc0190000 0x3ffc01901af

/usr/shlib/libmach.so
 .text 0x3ff80530000 0x3ff8053ffff
 .data 0x3ffc0170000 0x3ffc0173fff

/usr/shlib/libexc.so
 .text 0x3ff807b0000 0x3ff807b5fff
 .data 0x3ffc0210000 0x3ffc0211fff

/usr/shlib/libc.so
 .text 0x3ff80080000 0x3ff8019ffff
 .data 0x3ffc0080000 0x3ffc0093fff
 .bss 0x3ffc0094000 0x3ffc00a040f

(idb) quit

3. Cut, paste, and edit the result into a list of file names. Note that libpthread.so is included, so add /usr/shlib/libpthreaddebug.so to the list.

4. Create a tar file:

% tar cfv mybug.tar a.out core \
 /usr/shlib/libpthread.so /usr/shlib/libmach.so \
 /usr/shlib/libexc.so /usr/shlib/libc.so \
 /usr/shlib/libpthreaddebug.so
a a.out 128 Blocks
a core 2128 Blocks
a /usr/shlib/libpthread.so 928 Blocks
a /usr/shlib/libmach.so 208 Blocks
a /usr/shlib/libexc.so 96 Blocks
a /usr/shlib/libc.so symbolic link to ../../shlib/libc.so
a /usr/shlib/libpthreaddebug.so 592 Blocks

Note that libc.so is a symbolic link. Therefore, use the tar h option to force tar to follow symbolic links as if they were normal files or directories:

% tar hcfv mybug.tar a.out core \
 /usr/shlib/libpthread.so /usr/shlib/libmach.so \
 /usr/shlib/libexc.so /usr/shlib/libc.so \
 /usr/shlib/libpthreaddebug.so
a a.out 128 Blocks
a core 2128 Blocks
a /usr/shlib/libpthread.so 928 Blocks
a /usr/shlib/libmach.so 208 Blocks
a /usr/shlib/libexc.so 96 Blocks
a /usr/shlib/libc.so 3193 Blocks
a /usr/shlib/libpthreaddebug.so 592 Blocks

Now you have a package that you can transport.

5. On the current system, create a directory for debugging, move to that directory, and get the package.

% mkdir mybug
% cd mybug
% mv <wherever>/mybug.tar .

6. Create the necessary subdirectories and unpackage the tar file using the s option:

% mkdir applibs dbglibs
% tar xfvs mybug.tar
blocksize = 256
x a.out, 65536 bytes, 128 tape blocks
x core, 1089536 bytes, 2128 tape blocks
x usr/shlib/libpthread.so, 475136 bytes, 928 tape blocks
x usr/shlib/libmach.so, 106496 bytes, 208 tape blocks
x usr/shlib/libexc.so, 49152 bytes, 96 tape blocks
x usr/shlib/libc.so, 1634400 bytes, 3193 tape blocks
x usr/shlib/libpthreaddebug.so, 303104 bytes, 592 tape blocks

7. Move the original shared objects into applibs, and make libpthreaddebug.so exist in the dbglibs directory, for example, by linking it to the file in
the applibs directory:

% mv usr/shlib/* applibs
% ln -s ../applibs/libpthreaddebug.so dbglibs/libpthreaddebug.so

In this example, all shared objects were in usr/shlib/, so no other moving is needed.

8. Observe the file system:

% ls -lR
total 4904
-rwxr-xr-x 1 user1 groupXX 65536 Sep 17 11:20 a.out*
drwxrwxr-x 2 user1 groupXX 8192 Sep 17 11:36 applibs/
-rw------- 1 user1 groupXX 1089536 Sep 17 11:21 core
drwxrwxr-x 2 user1 groupXX 8192 Sep 17 11:24 dbglibs/

-rw-rw-r-- 1 user1 groupXX 3737600 Sep 17 11:23 mybug.tar
drwxrwxr-x 3 user1 groupXX 8192 Sep 17 11:36 usr/

./applibs:
total 2632
-rw-r--r-- 1 user1 groupXX 1634400 Dec 7 1998 libc.so
-rw-r--r-- 1 user1 groupXX 49152 Jun 26 1998 libexc.so
-rw-r--r-- 1 user1 groupXX 106496 Dec 29 1997 libmach.so
-rw-r--r-- 1 user1 groupXX 475136 Dec 7 1998 libpthread.so
-rw-r--r-- 1 user1 groupXX 303104 Dec 7 1998 libpthreaddebug.so

./dbglibs:
total 0
lrwxrwxrwx 1 user1 groupXX 29 Sep 17 11:24 libpthreaddebug.so@ ->
../applibs/libpthreaddebug.so

./usr:
total 8
drwxrwxr-x 2 user1 groupXX 8192 Sep 17 11:36 shlib/

./usr/shlib:
total 0
%

If other files need to be moved into applibs, do that as well and then re-observe the file system. In this example, there are none.

9. Now set the environment variables as indicated:

% env IDB_COREFILE_LIBRARY_PATH=applibs \
LD_LIBRARY_PATH=dbglibs \
idb a.out core
Welcome to the debugger Version n

object file name: a.out
core file name: core
Reading symbolic information ...done
Core file produced from executable a.out
Thread 0x5 terminated at PC 0x3ff8058b448 by signal SEGV

10. Issue the listobj command to ensure the application libraries are coming from applibs/. Find any that are not, either from the original system, or
unpacked from the tar file but not yet moved into applibs.

(idb) listobj
 section Start Addr End Addr
--
a.out
 .text 0x120000000 0x120003fff
 .data 0x140000000 0x140001fff

applibs/libpthread.so
 .text 0x3ff80550000 0x3ff8058bfff
 .data 0x3ffc0180000 0x3ffc018ffff
 .bss 0x3ffc0190000 0x3ffc01901af

applibs/libmach.so
 .text 0x3ff80530000 0x3ff8053ffff
 .data 0x3ffc0170000 0x3ffc0173fff

applibs/libexc.so
 .text 0x3ff807b0000 0x3ff807b5fff
 .data 0x3ffc0210000 0x3ffc0211fff

applibs/libc.so
 .text 0x3ff80080000 0x3ff8019ffff
 .data 0x3ffc0080000 0x3ffc0093fff
 .bss 0x3ffc0094000 0x3ffc00a040f

11. Now debug as usual:

(idb) where
>0 0x3ff8058b448 in nxm_thread_kill(0x140091c68, 0xb, 0x1, 0x0, 0x0,
0xfffffffffffffcc0) in applibs/libpthread.so

#1 0x3ff80578c58 in pthread_kill(0x140091c68, 0xb, 0x1, 0x0, 0x0,
0xfffffffffffffcc0) in applibs/libpthread.so
#2 0x3ff8056cd34 in UnknownProcedure3FromFile69(0x140091c68, 0xb, 0x1, 0x0, 0x0,
0xfffffffffffffcc0) in applibs/libpthread.so
#3 0x3ff807b22d8 in UnknownProcedure4FromFile1(0x140091c68, 0xb, 0x1, 0x0, 0x0,
0xfffffffffffffcc0) in applibs/libexc.so
#4 0x3ff807b3824 in UnknownProcedure17FromFile1(0x140091c68, 0xb, 0x1, 0x0, 0x0,
0xfffffffffffffcc0) in applibs/libexc.so
#5 0x3ff807b3864 in exc_unwind(0x140091c68, 0xb, 0x1, 0x0, 0x0, 0xfffffffffffffcc0)
in applibs/libexc.so
#6 0x3ff807b3af0 in exc_raise_signal_exception(0x140091c68, 0xb, 0x1, 0x0, 0x0,
0xfffffffffffffcc0) in applibs/libexc.so
#7 0x3ff8057a328 in UnknownProcedure6FromFile80(0x140091c68, 0xb, 0x1, 0x0, 0x0,
0xfffffffffffffcc0) in applibs/libpthread.so
#8 0x3ff800d6a30 in __sigtramp(0x140091c68, 0xb, 0x1, 0x0, 0x0, 0xfffffffffffffcc0)
in applibs/libc.so
#9 0x120001d94 in mandel_val(cr=0.01, ci=0.16, nmin=0, nmax=255) "mb_pi.c":62
#10 0x12000274c in smp_fill_in_data(raw_mthread=0x11fffe998) "mb_pi.c":338
#11 0x3ff80582068 in thdBase(0x0, 0x2, 0x0, 0x0, 0xff, 0x1) in applibs/libpthread.so
(idb) quit
%

16.5 Quick Reference for Transporting a Core File
The following sections contain a quick reference for transporting a core file.

First, do the following steps on the original system:

1. % idb a.out core
2. (idb) listobj; quit
3. Cut, paste, and edit into list of filenames.
4. Add /usr/shlib/libpthreaddebug.so, if libpthread.so
5. % tar cfvh mybug.tar a.out core <shlibs>

Next, do the following steps on the current system:

5. % mkdir mybug
6. % cd mybug
7. % mv <tarfile> mybug.tar
8. % mkdir applibs dbglibs
9. % tar sfvc mybug.tar

10. % mv usr/shlib/* applibs
11. % ln -s ../applibs/libptheaddebug.so dbglib/libptheaddebug.so

The ../applibs is not a typo. Think of it as:

% cd dbglibs
% ln -s ../applibs/libpthreaddebug.so libpthreaddebug.so
% cd ..

12. % env IDB_COREFILE_LIBRARY_PATH=applibs \
LD_LIBRARY_PATH=dbglibs \
idb a.out core

13. (idb) listobj
14. (idb) <as usual>

Chapter 17 — Kernel Debugging
TBD

Chapter 18 — Machine-Level Debugging
The debugger lets you debug your programs at the machine-code level as well as at the source-code level. Using debugger commands, you can examine and
edit values in memory, print the values of all machine registers, and step through program execution one machine instruction at a time.

Only those users familiar with machine-language programming and executable-file-code structure will find low-level debugging useful.

This chapter contains the following sections:

● Examining memory addresses
● Stepping at the machine level

18.1 Examining Memory Addresses
You can examine the value contained at an address in memory as follows:

● The examine commands (/ and ?) display the values stored in memory.
● The print command, with the appropriate pointer arithmetic, prints the value contained at the address in decimal.
● The printregs command prints the values of all machine-level registers.

In addition to examining memory, you can also search memory in 32 and 64-bit chunks.

18.1.1 Using the Examine Commands
You can use the examine commands (/ and ?) to print the value contained at the address in one of a number of formats (decimal, octal, hexadecimal, and so
on). See Memory Display Commands for more information.

The debugger also maintains the $readtextfile debugger variable that allows you to view the data from the text section of the executable directly from the
binary file, rather than reading it from memory.

18.1.2 Using Pointer Arithmetic
You can use C and C++ pointer-type conversions to display the contents of a single address in decimal. Using the print command, the syntax is as follows:

(idb) print *(int *)(address)

Using the same pointer arithmetic, you can use the assign command to alter the contents of a single address. Use the following syntax:

(idb) assign *(int *)(address) = value

The following example shows how to use pointer arithmetic to examine and change the contents of a single address:

(idb) print *(int*)(0x10000000)
 4198916
(idb) assign *(int*)(0x10000000) = 4194744
(idb) print *(int*)(0x10000000)
 4194744
(idb)

18.1.3 Examining Machine-Level Registers
The printregs command prints the values of all machine-level registers. The registers displayed by the debugger are machine dependent. The values are in
decimal or hexadecimal, depending on the value of the $hexints variable (the default is 0, decimal). The register aliases are shown; for example, $r1 [$t0].
See the printregs command for more information.

18.2 Stepping at the Machine Level
The stepi and nexti commands let you step through program execution incrementally, like the step and next commands. The stepi and nexti
commands execute one machine instruction at a time, as opposed to one line of source code. The following example shows stepping at the machine-instruction
level:

(idb) stop in main
[#1: stop in main]
(idb) run
[1] stopped at [main:4 0x120001180]
4 for (i=1 ; i<3 ; i++) {
(idb) stepi
stopped at [main:4 0x120001184] stl t0, 24(sp)
(idb) [Return]
stopped at [main:5 0x120001188] ldl a0, 24(sp)
(idb) [Return]
stopped at [main:5 0x12000118c] ldq t12, -32664(gp)

(idb) [Return]
stopped at [main:5 0x120001190] bsr ra,
(idb) [Return]
stopped at [factorial:12 0x120001210] ldah gp, 8192(t12)
(idb)

At the machine-instruction level, you can step into, rather than over, a function's prologue. While within a function prologue, you may find that the stack trace,
variable scope, and parameter list are not correct. Stepping out of the prologue and into the actual function updates the stack trace and variable information
kept by the debugger.

Single-stepping through function prologues that initialize large local variables is slow. As a workaround, use the next command.

Chapter 19 — Debugging Parallel Applications
IDB supports debugging of message passing interface (MPI) applications launched by mpirun-- a MPI launcher from mpich, a public domain implementation of
MPI.

This chapter contains the following sections:

● Overview
● Starting a parallel debugging session
● Using commands in a parallel debugging session
● Working with sets of application processes
● Working with aggregated messages
● Parallel debugging tips
● Parallel debugging example
● Using the mpirun_dbg.idb startup file

19.1 Overview
The biggest challenge of debugging massively parallel applications is coping with large quantities of output from debuggers controlling the parallel application's
processes. IDB helps you do this by condensing (aggregating) similar output into groups. Aggregation is performed by using the following two strategies:

● Identical output messages are condensed into a single output message. When a condensed message is displayed, it is prefixed with a range of user
process IDs (not necessarily consecutive) to which this output applies. All processes with the same output are aggregated into a single and final output
message, for example:

[0-41] Linux Application Debugger for Itanium(R)-based applications, Version XX
 |
Process range

● Outputs that have different hexadecimal digits, but are otherwise identical, are condensed by aggregating the differing digits into a range, for example:

[0-41]>2 0x120006d6c in feedback(myid=[0;41],np=42,name=0x11fffe018="mytest")
"mytest.c":41
 | |
Process range Value range

Another challenge of debugging massively parallel applications is controlling all processes or subsets of the parallel application's processes from the debugger
in a consistent manner. The debugger allows you to control all or a subset of your processes through a single user interface. At the startup of a parallel
debugging session, IDB does the following:

1. Detects the topology of your application and attaches a debugger to each of your application's processes.
2. Builds an n-nary tree with the debuggers as root and leaves with special processes called aggregators in the middle (shown in the following diagram).

You can specify the tree's branching factor and the aggregator time delay.

The root debugger is responsible for starting your parallel application and serves as your user interface. The aggregators perform output consolidation as
described previously. The leaf debuggers control and query your application processes.

The branching factor is the factor used to build the n-nary tree and determine the number of aggregators in the tree. For example, for 16 processes:

● Using a branching factor of 8 creates 3 aggregators
● Using a branching factor of 2 creates 15 aggregators

You can set the value of the $parallel_branchingfactor variable from its default value of 8 to a value equal to or greater than 2 in the IDB initialization file
(.idbrc, and so on).

When you delete $parallel_branchingfactor from the IDB initialization file, the branching factor used in the startup mechanism is the default value.

Aggregator delay specifies the time that aggregators wait before they aggregate and send messages down to the next level when not all of the expected
messages have been received.

You can change the value of the $parallel_aggregatordelay variable from its default value of 3000 milliseconds in the IDB initialization file (.idbrc,
etc.). See Parallel Debugging Tips for more information.

When you delete $parallel_aggregatordelay from the IDB initialization file, the aggregator delay used in the startup mechanism is the default value.

Note: You can only change the values that are set for $parallel_branchingfactor and $parallel_aggregatordelay at startup, in the .idbrc file.
After the program has started up, you cannot change these values.

19.2 Starting a Parallel Debugging Session
To start your parallel application under debugger control, you need to have the environment variable IDB_HOME set to the directory your IDB is in, then issue
the following command at the shell, where N represents number of processes and application is the name of the MPP program you would like to debug:

% mpirun -dbg=idb -np N [other mpich options] application [idb options]

Make sure that there is a file called mpirun_dbg.idb in the directory in which mpirun is located. Also note that the IDB option -gdb is not yet supported under
parallel debugging session.

When the debugger starts your parallel application, it detects and attaches to all of your application's processes. At this point, your application stops before
executing any user code and the debugger displays a prompt.

You can now set any necessary breakpoints and use the continue command to continue the execution of your application.

19.3 Using Commands in a Parallel Debugging Session
You can use most IDB commands just as you would when debugging a non-parallel application. Most commands are passed on to the leaf debuggers and you
see aggregated output from them in your user interface. However, there are a few important exceptions.

The following table shows debugger commands that can be accessed remotely, locally, and both remotely and locally for parallel debugging; and IDB
commands that are disabled for parallel debugging.

Remote Local Both Remote and Local Disabled
#
/
?
assign
call
catch
class
cont/conti
delete
delsharedobj
disable
down
dump
enable
examine_address
file
func
goto
history
if
ignore
kill
list
listobj
map/unmap source directory
next/nexti
pop
print
printb
printd
printf
printi
printo
printregs
printt
printx
process
readsharedobj
return
show condition
show mutex
show process
show source directory
show thread
status
step/stepi
stop/stopi
thread
trace/tracei
use/unuse
up
watch
whatis
when/wheni
where/whereis
which

!/history
alias/unalias
edit
export
help
playback
quit
record/unrecord
source

export
set/setenv
sh
unset/unsetenv

attach/detach
kps
load/unload
patch
printenv
rerun
run
snapshot

Remote means commands will be sent to the leaf debuggers. Local means that commands are not sent to the leaf debuggers but are processed by the local
IDB.

In addition to the commands listed in the table, you can use four other IDB commands to assist parallel debugging:

parallel_debugging_command
 : focus_command
 | show_process_set_command
 | show_aggregated_message_command
 | expand_aggregated_message_command

19.4 Working With Sets of Application Processes
When there are many processes, it can be annoying or impractical to enumerate all the processes when one needs to focus on specific processes. Therefore,
IDB introduces the concept of "process sets" and "process ranges" to let the user specify a group of processes in a compact form. Moreover, process sets come
with the usual set operations, and both the sets and the ranges can be stored in debugger variables for manipulation, reference, or inspection at a later time.

A process set is a bracketed list of process ranges separated by commas.

Note: Because brackets ([]) are part of the process set syntax, this section shows optional syntactic items enclosed in curly braces ({}).

process_set
 : []
 | [process_range {,...}]

Note: The set can be empty.

A process range has the following three forms:

process_range
 : *
 | expression
 | { expression } : { expression }

In the first form, the star (*) specifies all processes.

You can use the second form as follows:

● If expression evaluates to, or can be coerced into an integer p, then the range contains the process with pid p only.
● If expression evaluates to a process range r, then the process range is the same as r.

You can use the third form to specify a contiguous range of processes. For example, 10:12 stands for the processes associated with pids 10, 11, and 12.

Note: A range whose lower bound is greater than its upper bound is illegal and will be ignored.

Because both the lower bound and the upper bound are optional, you can specify ranges as follows:

Example Represents
:5 All processes whose pid is no greater than 5.
20: All processes whose pid is no less than 20.
: The process set [:] is equivalent to the process set [*].

19.4.1 Using Debugger Variables to Store Process Sets and Ranges
Like storing other data types supported by the debugger, you can store process sets and process ranges in debugger variables using the set command. For
example:

 (idb) set $set1 = [:7, 10, 15:20, 30:]
 (idb) print $set1
 [:7, 10, 15:20, 30:]

In addition to using the print command, you can also use the show process set command to inspect the process set stored in a debugger variable. For
example:

show_process_set_command
 : show process set debugvar_name
 | show process set all
 | show process set

If you do not specify the set name, or if you use the all specifier, the debugger displays all the process sets that are currently stored in debugger variables, as
the continued example shows:

(idb) set $set2 = [8:9, 5:2, 22:27]
`5:2' is not a legal process range. Ignored.
(idb) show process set $set2
$set2 = [8:9, 22:27]
(idb) show process set *
$set1 = [:7, 10, 15:20, 30:]
$set2 = [8:9, 22:27]

19.4.2 Process Set Operations
You can use the following three operations on process sets:

Operation Represents Action
+ Set union Takes two sets S1 and S2 and returns a set whose elements are either in S1 or in S2.
- Difference Takes two sets S1 and S2 and returns a set whose elements are in S1 but not in S2.
unary - Negation Takes a single set S and returns the difference of [*] and S.

The following example demonstrates these operations:

(idb) set $set1 = [:10, 15:18, 20:]
(idb) set $set2 = [10:16, 19]
(idb) set $set3 = $set1 + $set2
(idb) print $set3
[*]
(idb) print $set3 - $set2
[:9, 17:18, 20:]
(idb) print -$set2
[:9, 17:18, 20:]

19.4.3 Changing the Current Set with the focus Command
You can use the focus command to change the current process set, which is the set of processes whose debuggers receive the remote command entered at
the root debugger:

focus_command
 : focus expression
 | focus all
 | focus

The first form of the command sets the current process set to the set resulting from the evaluation of the given expression. The second form sets the current
process set to the set that includes all processes. The third form displays the current process set.

19.5 Working with Aggregated Messages
As mentioned in the Overview, the root debugger collects the outputs from the leaf debuggers and presents you with an aggregated output. In most cases, this
aggregation works fine, but it can be an impediment if you want to know the exact output from certain leaf debuggers.

To remedy this, the debugger assigns a unique number (called a message_id) to each aggregated message and saves the message in the
message_id_list. You can use the following commands to inspect the message list and expand its entries:

show_aggregated_message_command
 : show aggregated message message_id_list
 | show aggregated message all
 | show aggregated message

message_id_list

 : expression {,...}

The first form of the command displays the aggregated messages in the list whose message IDs match the numbers specified in the message_id_list. The
second form displays all the aggregated messages in the list. If no message_id is specified, the debugger shows the most recently added (newest) message.

expand_aggregated_message_command
 : expand aggregated message message_id_list
 | expand aggregated message

This command expands the specified messages. If no message_id is specified, the debugger expands the most recently added (newest) message.

You can control the length of the message list using the $aggregatedmsghistory debugger variable. If you set this variable to the default (0), the debugger
records as many messages as the system will allow.

19.6 Parallel Debugging Tips
This section contains the following tips for debugging parallel applications:

● Tip 1. How to obtain better aggregate outputs
● Tip 2. How to synchronize processes
● Tip 3. How to find the sources in a parallel debugging session

Tip 1. How to Obtain Better Aggregate Outputs
If the debugger outputs are not aggregated as you would expect them to be, you can increase the value of the $parallel_aggregatordelay debugger
variable, whose value is the expiration time (in milliseconds) for each of the aggregators when the aggregators have not received all the expected messages.
Because the default value of the $parallel_aggregatordelay is 3000 milliseconds, you should not normally have a problem with the aggregation delay.

Tip 2. How to Synchronize Processes
If the processes become unsynchronized in the debugging session (for example, if you use the focus command on a subset of the total set and then use a
next or some other motion command), the easiest way to get the processes back together is to use a cont to a future location where all processes have to
go. The following example shows how the output from processes is not identical because different processes are at different locations in the program. Using the
cont to command synchronizes the processes and aggregates the messages.

(idb) next
(idb) [4:5,12] stopped at [int feedbackToDebugger(int, int, char*):17 0x120006bf4]
 [0:3,6:11] [3] stopped at [int feedbackToDebugger(int, int, char*):15 0x120006bf0]
 [4:5,12] 17 int pathSize = 1000;
 [0:3,6:11] 15 int i = 0;

(idb) l
(idb) [0:3,6:11] 16 char path[1000];
 [4:5,12] 18 char hostname[1000];
 [0:3,6:11] 17 int pathSize = 1000;
 [4:5,12] 19 int hostnameSize = 1000;
 [0:3,6:11] 18 char hostname[1000];
 [4:5,12] 20
 [0:3,6:11] 19 int hostnameSize = 1000;
 [4:5,12] 21 volatile int debuggerAttached = 0;
 [0:3,6:11] 20
 [4:5,12] 22
 [0:3,6:11] 21 volatile int debuggerAttached = 0;
 [4:5,12] 23 gethostname(hostname,hostnameSize);
%3 [0:12] [22;24]
 [0:3,6:11] 23 gethostname(hostname,hostnameSize);
 [4:5,12] 25 getcwd(path,pathSize);
 [0:3,6:11] 24
 [4:5,12] 26 strcat(path,"/");
 [0:3,6:11] 25 getcwd(path,pathSize);
 [4:5,12] 27 strcat(path,name);
 [0:3,6:11] 26 strcat(path,"/");
 [4:5,12] 28
 [0:3,6:11] 27 strcat(path,name);
 [4:5,12] 29 // Print myid pid into idbAttach.myid
 [0:3,6:11] 28
 [4:5,12] 30 sprintf(filename,"idbAttach.%d",myid);
 [0:3,6:11] 29 // Print myid pid into idbAttach.myid

 [4:5,12] 31 file = fopen(filename,"w");
 [0:3,6:11] 30 sprintf(filename,"idbAttach.%d",myid);
 [4:5,12] 32 if (file == NULL) {
 [0:3,6:11] 31 file = fopen(filename,"w");
 [4:5,12] 33 fprintf(stderr,"smg98: can't open %s for %s\n",filename,
"w");
 [0:3,6:11] 32 if (file == NULL) {
 [4:5,12] 34 exit(1)
 [0:3,6:11] 33 fprintf(stderr,"smg98: can't open %s for %s\n",filename,
"w");
 [4:5,12] 35 }
 [12] 36 fprintf(file," %ld %ld %s %s\n", myid, getpid(), hostname, path);
 [12] 37 fclose(file);
 [12] 38
 [4:5] 36 fprintf(file," %ld %ld %s %s\n", myid, getpid(), hostname, path);
 [0:3,6:11] 34 exit(1);
 [0:3,6:11] 35 }
 [4:5] 37 fclose(file);
 [0:3,6:11] 36 fprintf(file," %ld %ld %s %s\n", myid, getpid(), hostname,
path);
 [4:5] 38

(idb) cont to 36
 [0:13] stopped at [int feedbackToDebugger(int, int, char*):36 0x120006cb8]
 [0:13] 36 fprintf(file," %ld %ld %s %s\n", myid, getpid(), hostname, path);

(idb) next
(idb) [0:13] stopped at [int feedbackToDebugger(int, int, char*):37 0x120006d0c]
 [0:13] 37 fclose(file);

Tip 3. How to find the sources in a parallel debugging session
The debugger will not be able to display the source lines if it cannot find the source file in the directory specified in the application binary file or in the directory in
which the binary resides.

Specifying the -I option in the command line does not fix the problem because the -I option applies only to the root debugger. In other words, the -I option is
not passed along to the leaf debuggers.

Applying the use command or the map source directory command to all the leaf debuggers can overcome the problem. For example,

(idb) w
Source file not found or not readable, tried...
 ./cpi.c
 /usr/users/smith/idb-sandbox/test/src/common/Funct/bin/cpi.c
(Cannot find source file mpirun.c)
(idb) use /usr/proj/debug/idb/test/src/common/Funct/src
 [0:7] Directory search path for source files:
 [0:7] . /usr/users/smith/idb-sandbox/test/src/common/Funct/bin
/usr/proj/debug/idb/test/src/common/Funct/src
(idb) w
 [0:7] 20
 [0:7] 21 double f(double);
 [0:7] 22
 [0:7] 23 int main(int argc, char *argv[])
 [0:7] 24 {
 [0:7] 25 int done = 0, n, myid, numprocs, i;
 [0:7] 26 double PI25DT = 3.141592653589793238462643;
 [0:7] 27 double mypi, pi, h, sum, x;
 [0:7] 28 double startwtime = 0.0, endwtime;
 [0:7] 29 int namelen;

19.7 Parallel Debugging Example
The following is an example of a parallel debugging session. Click on the links within the example for explanation.

% mpirun -dbg=idb -np 8 cpi
Linux Application Debugger for Itanium(R)-based applications, Version XX
Reading symbolic information ...done
stopped at [void* MPIR_Breakpoint(void):101 0x40000000000b3060]
 101 {

Process has exited
(idb)
 [0:7] Linux Application Debugger for Itanium(R)-based applications, Version XX
 [0:7] ------------------
 [0:7] object file name: /home/nsl/smith/mpich-1.2.4/examples/cpi
 [0:7] Reading symbolic information ... [0:7] done
%1 [0:7] Attached to process id [30596;30636]
 [1:7] stopped at [0x20000000001ef962]
 [0] stopped at [void* MPIR_Breakpoint(void):101 0x40000000000b3060]
 [0] 101 {

(idb)
 [0:7] stopped at [int main(int, char**):20 0x4000000000003520]
 [0:7] 20 MPI_Init(&argc,&argv);

(idb)
 [0:7] 16 double startwtime = 0.0, endwtime;
 [0:7] 17 int namelen;
 [0:7] 18 char processor_name[MPI_MAX_PROCESSOR_NAME];
 [0:7] 19
 [0:7] > 20 MPI_Init(&argc,&argv);
 [0:7] 21 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 [0:7] 22 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 [0:7] 23 MPI_Get_processor_name(processor_name,&namelen);
 [0:7] 24

(idb) stop in f
(idb)
 [0:7] [#1: stop in double f(double)]

(idb) focus [0:3]
[0:3]>
[0:3]> cont
[0:3]> Process 3 on nht6005.spt.intel.com
Process 2 on nht6005.spt.intel.com
Process 0 on nht6005.spt.intel.com
Process 1 on nht6005.spt.intel.com

 [0:3] [1] stopped at [double f(double):7 0x4000000000003390]
 [0:3] 7 {

[0:3]> where
[0:3]>
 [0:3] >0 0x4000000000003390 in f(a=<no value>) "cpi.c":7
%2 [0:3] #1 0x4000000000003a30 in main(argc=0, argv=0x[0;80000fffffffba7c])
"cpi.c":51
 [0:3] #2 0x20000000000906b0 in /lib/libc.so.6.1
 [0:3] #3 0x4000000000003220 in _start(...) in /home/nsl/smith/mpich-
1.2.4/examples/cpi

[0:3]> focus [4:7]
[4:7]>
[4:7]> cont
[4:7]> Process 7 on nht6005.spt.intel.com
Process 4 on nht6005.spt.intel.com
Process 6 on nht6005.spt.intel.com
Process 5 on nht6005.spt.intel.com

 [4:7] [1] stopped at [double f(double):7 0x4000000000003390]
 [4:7] 7 {

[4:7]> where
[4:7]>
 [4:7] >0 0x4000000000003390 in f(a=<no value>) "cpi.c":7
%3 [4:7] #1 0x4000000000003a30 in main(argc=0, argv=0x[0;80000fffffffba7c])
"cpi.c":51
 [4:7] #2 0x20000000000906b0 in /lib/libc.so.6.1
 [4:7] #3 0x4000000000003220 in _start(...) in /home/nsl/smith/mpich-
1.2.4/examples/cpi

[4:7]> focus [*]
[0:7]>
[0:7]> next
[0:7]>
 [0:7] stopped at [double f(double):8 0x40000000000033b1]

 [0:7] 8 return (4.0 / (1.0 + a*a));

[0:7]> where
[0:7]>
%4 [0:7] >0 0x40000000000033b1 in f(a=[0.0050000000000000001;0.074999999999999997])
"cpi.c":8
%5 [0:7] #1 0x4000000000003a30 in main(argc=1,
argv=0x[80000fffffffb768;6000000000014a50]) "cpi.c":51
 [0:7] #2 0x20000000000906b0 in /lib/libc.so.6.1
 [0:7] #3 0x4000000000003220 in _start(...) in /home/nsl/smith/mpich-
1.2.4/examples/cpi

[0:7]> show aggregated message
%1 [0:7] Attached to process id [30596;30636]
%2 [0:3] #1 0x4000000000003a30 in main(argc=0, argv=0x[0;80000fffffffba7c])
"cpi.c":51
%3 [4:7] #1 0x4000000000003a30 in main(argc=0, argv=0x[0;80000fffffffba7c])
"cpi.c":51
%4 [0:7] >0 0x40000000000033b1 in f(a=[0.0050000000000000001;0.074999999999999997])
"cpi.c":8
%5 [0:7] #1 0x4000000000003a30 in main(argc=1,
argv=0x[80000fffffffb768;6000000000014a50]) "cpi.c":51
[0:7]>
[0:7]> expand aggregated message 1
%1 [0:7] Attached to process id [30596;30636]
 [3] Attached to process id 30612
 [2] Attached to process id 30606
 [0] Attached to process id 30596
 [1] Attached to process id 30600
 [4] Attached to process id 30618
 [5] Attached to process id 30624
 [7] Attached to process id 30636
 [6] Attached to process id 30630
[0:7]> disable 1
[0:7]>
[0:7]> cont
[0:7]> pi is approximately 3.1416009869231249, Error is 0.0000083333333318
wall clock time = 69.300781

 [0:7] Process has exited with status 0

[0:7]> quit

The following are explanatory notes from the previous example:

Component of Example Meaning
-np 8 This parallel session creates 8 processes.
[0:7] This is a message from processes 0 to 7.

%1 This aggregated message contains messages with differing portions (in this case, the process id's are different from
process to process), and 1 is the message id.

focus [0:3] This focus command sets the current process set to include processes 0, 1, 2, and 3.
[0:3]> This prompt shows the current process set.
show aggregated message This show aggregated message command displays all the aggregated messages saved in the message list.

expand aggregated message 1 This expand aggregated message command expands the aggregated message with message id 1.

19.8 Using the mpirun_dbg.idb Startup File
The latest mpich distribution should come with the idb startup file mpirun_dbg.idb. If it does not, or if you are using an older distribution of mpich, you can
create the idb startup file by saving the following script as mpirun_dbg.idb in the directory in which mpirun resides:

#! /bin/sh

cmdLineArgs=""
p4pgfile=""
p4workdir=""
prognamemain=""

while [1 -le $#] ; do
 arg=$1

 shift
 case $arg in
 -cmdlineargs)
 cmdLineArgs="$1"
 shift
 ;;
 -p4pg)
 p4pgfile="$1"
 shift
 ;;
 -p4wd)
 p4workdir="$1"
 shift
 ;;
 -progname)
 prognamemain="$1"
 shift
 ;;
 esac
done
#
if [-n "$IDB_HOME"] ; then
 ldbdir=$IDB_HOME
 idb=$ldbdir/idb
 if [-f $ldbdir/idb.cat] && [-r $ldbdir/idb.cat] ; then
 if [-n "$NLSPATH"]; then
 nlsmore=$NLSPATH
 else
 nlsmore=""
 fi
 NLSPATH=$ldbdir/$nlsmore
 fi
else
 idb="idb"
fi
#
#
Need to `eval echo $cmdLineArgs` to undo evil quoting done in mpirun.args
#
$idb `eval echo $cmdLineArgs` -parallel $prognamemain -p4pg $p4pgfile -p4wd
$p4workdir -mpichtv

Appendixes
Appendix 1 — Debugger Variables
The debugger has the following predefined variables. Conventionally, an IDB variable name is an identifier with a leading dollar sign ($).

Variable Default Setting Description

$aggregatedmsghistory 0 Controls the length of the aggregated message list. If set to the default (0), the debugger
records as many messages as the system will allow.

$ascii 1 Prints ASCII or all ISO Latin-1.
$beep 1 Beeps on illegal command line editing.
$catchexecs 0 Stops execution on program exec.

$catchforkinfork 0 Notifies you as soon as the forked process is created (otherwise you are notified when the
call finishes).

$catchforks 0 Notifies you on program fork and stops child.
$childprocess 0 When the debugger detects a fork, it assigns the child process ID to $childprocess.
$curevent 0 Displays the current breakpoint number.
$curfile (null) Displays the current source file.
$curfilepath (null) Displays the current source file access path.
$curline 0 Displays the current source line.
$curpc 0 Displays the current point of program execution.
$curprocess 0 Displays the current process ID.

$cursrcline 0 Displays the last source line at end of most recent source listing.
$cursrcpc 0 Displays the PC address at end of most recent machine code listing.
$curthread 0 Displays the current thread ID.
$dbxoutputformat 0 Displays various data structures in dbx format.
$dbxuse 0 Replaces current use paths.
$decints 0 Displays integers in decimal radix.
$doverbosehelp 1 Displays the help menu front page.
$editline 1 Enables command line editing.
$eventecho 1 Echoes events with event numbers.
$exitonterminationofprocesswithpid None If set to process ID (pid), when that process terminates, the debugger exits.

$floatshrinking 1

If set to the default (1), the debugger prints binary floating point numbers using the shortest
possible decimal number. If set to 0, the debugger prints the decimal number which is the
closest representation in the number of decimal digits available of the internal binary
number.

$framesearchlimit 0 Defines the maximum number of call frames by which to extend normal language-based
identifier lookups.

$funcsig 1 Displays function signature at breakpoint.
$givedebughints 1 Displays hints on debugger features.
$hasmeta 0 Interprets multibyte characters.
$hexints 0 Displays integers in hex radix.
$historylines 20 Defines the number of commands to show for history.
$indent 1 Prints structures with indentation.
$lang "None" Defines the programming language of current routine.
$lasteventmade 0 Displays the number of last (successful) breakpoint definition.
$lc_ctype "C" Displays the current locale information.
$listwindow 20 Displays the number of lines to show for list.
$main "main" Displays the name of the first routine in the program.
$maxstrlen 128 Defines the largest string to print fully.

$memorymatchall 0 When set to non-zero, displays all memory matches in the specified range. Otherwise, only
the first memory match is displayed.

$octints 0 Displays integers in octal radix.
$overloadmenu 1 Prompts for choice of overloaded C++ name.
$page 1 Paginates debugger terminal output.

$pagewindow 0 Defines the number of lines per output page. The default of 0 causes the debugger to query
the terminal for the page size.

$parallel_branchingfactor 8 Specifies the factor used to build the n-nary tree and determine the number of aggregators
in the tree.

$parallel_aggregatordelay 3000 milliseconds Specifies the length of time that aggregators wait before they aggregate and send
messages down to the next level when not all the expected messages have been received.

$parentprocess 0 When the debugger detects a fork, it assigns the parent process ID to $parentprocess.
$pimode 0 Echoes input to log file on playback input.
$prompt "(idb) " Specifies debugger prompt.

$readtextfile 0 If set to non-zero, instructions are read from the text area of the binary file rather than from
the memory image.

$regstyle 1

Controls the format of register names during disassembly. Valid settings are:

● 0 = compiler names, for example, t0, ra, or zero.
● 1 = hardware names, for example, r1, r26, or r31.
● 2 = assembly names, for example, $1, $26, or $31.

$repeatmode 1 Repeats previous command when you press the Return key.
$reportsotrans 0 Report when an event was changed because a shared object was either opened or closed.
$showlineonstartup 0 Displays the first executable line in main.
$showwelcomemsg 1 Displays welcome message at startup time.
$stackargs 1 Shows arguments in the call stack if 1.
$statusargs 1 Prints breakpoints with parameters if 1.
$stepg0 0 Steps over routines with minimal symbols.

$stoponattach 0 Stops the running process on attach.

$stopparentonfork 0
Stops parent process execution on fork. When set to a nonzero value, this variable instructs
the debugger to stop the parent process after it forks a child process. The child process
continues to run if $catchforks is not set, otherwise stops. The default is 0.

$symbolsearchlimit 100
Specifies the maximum number of symbols that will be returned by the whereis command
for a regular expression search. The default value is 100; a value of 0 indicates no limit.

$threadlevel decthreads Specifies POSIX threads (DECthreads) or native threads.
$usedynamictypes 1 Evaluates using C++ static or dynamic type.
$verbose 0 Produces even more output.

Appendix 2 — Debugger Aliases
The debugger has the following predefined aliases:

(idb) alias
F1 print
F2 print 'F2 executes the command "F2 selected-text" - define alias F2'
F3 print 'F3 executes the command "F3 selected-text" - define alias F3'
S next
Si nexti
W list $curline - 10:20
a assign
att attach
b stop at
bp stop in
c cont
d delete
det detach
e file
exit quit
f func
focus ladebug multi select
g goto
h history
j status
l list
li ($cursrcpc)/10 i; set $cursrcpc = $cursrcpc + 40
n next
ni nexti
p print
pb printb
pd printd
pi printi
plist show process all
po printo
pr printregs
ps printf "%s",
pt printt
px printx
q quit
r rerun
ri record input
ro record output
s step
si stepi
source playback input
sw switch
switch process
t where
tlist show thread
ts where thread all
tset thread
tstack where thread all
u list $curline - 9:10
w list $curline - 5:10
wi ($curpc - 20)/10 i
wm watch memory
wv watch variable

Appendix 3 — corefile_listobj.c Example
You can use the following example as an alternative to the listobj command for cases in which the debugger cannot be run on the original system. See the
Transporting Core Files section for more information.

/*
 cc corefile_listobj.c -lxproc -o corefile_listobj
 */

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>

#include <errno.h>

typedef unsigned long vma_t;

/* core file format */

#include <sys/user.h>
#include <sys/core.h>

/* dynamic loader hookup */

#include <loader.h>
typedef int (*ldr_reader_func)(vma_t from,
 void * to,
 long nbytes,
 int is_string);
extern pid_t ldr_core_process();
extern int ldr_set_core_reader(ldr_reader_func reader);

/**/

static FILE * corefile;
static struct core_filehdr corehdr;
static int nsections;
static struct core_scnhdr * section_headers;

int
open_corefile(const char * corename)
{
 size_t nread;

 corefile = fopen(corename, "rb");
 if (!corefile) {
 perror("Opening corefile");
 return -1;
 }
 nread = fread(&corehdr, sizeof(corehdr), 1, corefile);
 if (nread != 1) {
 perror("fread() of corefile header");
 return -1;
 }
 if (strncmp(corehdr.magic, "Core", 4) != 0) {
 fprintf(stderr, "Corefile header magic is not \"Core\"\n");
 return -1;
 }
 nsections = corehdr.nscns;
 section_headers = calloc(nsections, sizeof(section_headers[0]));
 if (!section_headers) {
 perror("Allocating corefile section headers");
 return -1;
 }
 nread = fread(section_headers, sizeof(section_headers[0]),
 nsections, corefile);
 if (nread != nsections) {
 perror("fread() of corefile section headers");
 return -1;
 }

 return 0;
}

static int
section_type_has_memory(int type)
{
 switch (type) {
 case SCNTEXT: case SCNDATA: case SCNRGN: case SCNSTACK:
 return 1;
 case SCNREGS: case SCNOVFL:
 default:
 return 0;
 }
}

static int
read_from_corefile(vma_t from,
 void * to,
 long nbytes,
 int is_string)
{
 vma_t getter = from;
 char * putter = (char *) to;
 long to_go = nbytes;
 int secnum;
 size_t nxfer;

try_for_more:
 while (to_go > 0) {
 for (secnum = 0; secnum < nsections; secnum += 1) {
 if (section_type_has_memory(section_headers[secnum].scntype)) {
 vma_t vaddr = (vma_t) section_headers[secnum].vaddr;
 vma_t size = (vma_t) section_headers[secnum].size;
 if (vaddr <= getter && getter < vaddr+size) {
 vma_t this_time = (size < to_go ? size : to_go);
 long file_offset = section_headers[secnum].scnptr+(getter-vaddr);
 if (fseek(corefile, file_offset, SEEK_SET) != 0) {
 perror("fseek() for corefile read");
 return -1;
 }
 nxfer = fread(putter, 1, this_time, corefile);
 if (nxfer != this_time) {
 perror("fread() of corefile data ");
 return -1;
 }
 to_go -= this_time;
 getter += this_time;
 putter += this_time;
 goto try_for_more;
 }
 }
 }
 fprintf("Couldn't find core address for %#lx\n", getter);
 return -1;
 }
 return 0;
}

int
main(int argc, char* argv[])
{
 pid_t process;

 if (argc != 2) {
 fprintf(stderr, "Usage is %s <corefile>\n", argv[0]);
 return 1;
 }
 if (open_corefile(argv[1]) < 0)
 return -1;

 process = ldr_core_process();
 ldr_set_core_reader(read_from_corefile);

 if (ldr_xattach(process) < 0) {
 perror("Attaching to corefile");
 return 1;
 } else {

 ldr_module_t mod_id = LDR_NULL_MODULE;
 ldr_module_info_t info;
 size_t ret_size;
 while (1) {
 if (ldr_next_module(process, &mod_id) < 0) {
 perror("ldr_next_module");
 return 1;
 }
 if (mod_id == LDR_NULL_MODULE)
 break;
 if (ldr_inq_module(process, mod_id, &info,
 sizeof(info), &ret_size) < 0) {
 perror("ldr_inq_module");
 return 1;
 }
 printf("%s\n", info.lmi_name);
 }
 ldr_xdetach(process);
 return 0;
 }
}

Appendix 4 — Array Navigation Example
The debugger provides parameterized aliases and debugger variables of arbitrary types. Clever use of these can do almost any list traversal.

For example, here is how to navigate an array:

alias elt(e_) "{ p e_ }"
alias pa0(a) "{ set $a = &a[0]; set $i = 0; elt($a[$i]); set $i = $i+1 }"
alias pan "{ elt($a[$i]); set $i = $i+1 }"
pa0
pan
pan
pan

%idb a.out
...
(idb) alias elt(e_) "{ p e_ }"
(idb) alias a0(a) "{ set $a = &a[0]; set $i = 0; elt($a[$i]); set $i = $i+1 }"
(idb) alias pan "{ elt($a[$i]); set $i = $i+1 }"
...
(idb) pa0(a)
struct S {
 next = 0x140000178;
}
(idb) pan
struct S {
 next = 0x140000180;
}
(idb)
struct S {
 next = 0x140000188;
}
(idb)
struct S {
 next = 0x140000190;
}

