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We recently developed a treecode-accelerated boundary integral (TABI) solver for solving 
Poisson–Boltzmann (PB) equation [1]. The solver has combined advantages in accuracy, 
efficiency, memory, and parallelization as it applies a well-posed boundary integral 
formulation to circumvent many numerical difficulties associated with the PB equation and 
uses an O (N log N) treecode to accelerate the GMRES iterative solver. However, as observed 
in our previous work [2], occasionally when the mesh generator produces low quality 
triangles, the number of GMRES iterations required to solve the discretized boundary 
integral equations Ax = b could be large. To address this issue, we design a preconditioning 
scheme using preconditioner matrix M such that M−1 A has much improved condition 
while M−1z can be rapidly computed for any vector z. In this scheme, the matrix M
carries the interactions between boundary elements on the same leaf only in the tree 
structure thus is block diagonal with many computational advantages. The sizes of the 
blocks in M are conveniently controlled by the treecode parameter N0, the maximum 
number of particles per leaf. The numerical results show that this new preconditioning 
scheme improves the TABI solver with significantly reduced iteration numbers and better 
accuracy, particularly for protein sets on which TABI solver previously converges slowly. 
In addition, this preconditioning scheme potentially can improve the condition number 
of various multipole method accelerated boundary elements solvers in scattering, fluids, 
elasticity, etc.

Published by Elsevier Inc.

1. Introduction

In biomolecular simulations, electrostatic interactions are of paramount importance due to their ubiquitous existence 
and significant contribution in the entire force fields. However, computing these nonbonded interactions is challenging 
since they are pairwise at cost of O (N2) and long range [3]. To reduce the degree of freedom of the system in terms 
of electrostatic interactions, implicit solvent Poisson–Boltzmann (PB) model is used [4], in which the water molecules are 
treated as continuum and the dissolved electrolytes are approximated using the statistical Boltzmann distribution. The PB 
model has broad application in biomolecular simulations such as protein structure [5], protein–protein interaction [6,7], 
chromatin packing [8], pKa [9–12], membrane [13,14], binding energy [15–17], solvation free energy [18,19], ion channel
profiling [20], etc.
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The PB equation is an elliptic interface problem with several numerical difficulties such as discontinuous dielectric coeffi-
cients, singular source, complex interface, and infinity boundary condition. Standard finite difference discretization in solving 
PB equation is efficient and robust thus popular [21–24], however it may suffer from accuracy reduction due to disconti-
nuity of the coefficients, non-smoothness of the solution, singularity of the sources, and truncation of the domains, unless 
special interface and singularity treatments are applied [25,26] at the price of more complicated discretization scheme and 
possibly reduced convergence speed in iteration. Meanwhile, boundary integral methods are effective alternatives, which 
analytically circumvent above-mentioned difficulties. In addition, due to the structures hidden in the linear algebraic system 
after the discretization of the boundary integral and molecular surface, the matrix-vector product in each iteration can be 
accelerated by fast methods such as fast multipole methods (FMM) and treecode [27,28]. Our recently developed treecode-
accelerated boundary integral (TABI) Poisson–Boltzmann solver is such an example [1] combining the advantages of both 
boundary integral equation and multipole methods. The TABI solver uses the well-posed derivative form of the Fredholm 
second kind integral equation [29] and the O (N log N) treecode [28] combined to solve the PB equation efficiently and accu-
rately. It also has advantage in memory use and parallelization [1,30]. The TABI solver has been used by many computational 
biophysics/biochemistry groups and it has been disseminated standalone or as a contributive module of the popular APBS 
software package [31,32].

A bottleneck that hinders the efficiency of the TABI solver, which only uses the simplest diagonal or Jacobi precondition-
ing is at the mesh quality for triangulating the large and complex molecular surfaces. Our numerical tests previously showed 
that although the adopted integral formulation is well-posed [29], the mesh quality for triangulating the complex molecular 
surface affects the convergence speed of GMRES [1,2]. Currently our choice of the triangular mesh generator is the MSMS 
package developed by Sanner et al. [33], which is very efficient in generating triangular meshes for given biomolecules. 
However, due to the complexity of the molecular surface, the produced triangles could be irregularly shaped e.g. small in 
size, large in angle (≈ π ), or in some other shapes which might affect the iterative convergence but cannot be filtered by 
our preprocessing subroutines. To resolve these issues, on one hand we are seeking better choices for molecular surface 
triangulation, and on the other hand we are trying to find solution to reduce the effect of mesh quality.

In the present work, we provide a newly designed preconditioning scheme, which cancels the slow-down effects caused 
by the mesh quality, while the added computational cost due to preconditioning is negligibly small. Our numerical simu-
lation shows that for many tested proteins on which the TABI solver used to converge slowly now converges rapidly with 
this update. In addition, we believe this preconditioning scheme can benefit many multipole methods accelerated bound-
ary integral Poisson–Boltzmann solvers such as [34–44]. The similar ideas can also be used to accelerate solving boundary 
integral equations from other areas such as scattering, fluids, elasticity, etc.

We next provide theories and algorithms related to the TABI solver and its preconditioning, followed by numerical results 
and discussion. This paper ends with a concluding remark section.

2. Theory and algorithms

In this section, we briefly describe the Poisson–Boltzmann (PB) implicit solvent model, review the current PB solvers, and 
introduce our recently developed treecode-accelerated boundary integral (TABI) PB solver, followed by our preconditioning 
scheme.

2.1. The Poisson–Boltzmann (PB) model for a solvated biomolecule

The PB model for a solvated biomolecule is depicted in Fig. 1(a) in which the molecular surface � separates the solute 
domain �1 from the solvent domain �2. Fig. 1(b) is an example of the molecular surface � as the triangulated surface 
of protein barnase [6]. In domain �1, the solute is represented by Nc partial charges qk located at atomic centers rk for 
k = 1, · · · , Nc , while in domain �2, a distribution of ions is described by a Boltzmann distribution and we consider a 
linearized version in this study. The solute domain has a low dielectric constant ε1 and the solvent domain has a high 
dielectric constant ε2. The modified inverse Debye length κ̄ is given as κ̄2 = ε2κ

2, where κ is the inverse Debye length 
measuring the ionic strength; κ̄ = 0 in �1 and is nonzero only in �2. The electrostatic potential φ(x) satisfies the linear PB 
equation,

−∇ · ε(x)∇φ(x) + κ̄2(x)φ(x) =
Nc∑

k=1

qkδ(x − xk), (1)

subject to continuity conditions for the potential and electric flux density on �,

[φ] = 0, [εφν ] = 0, (2)

where [ f ] = f1 − f2 is the difference of the quantity f across the interface, and φν = ∂φ/∂ν is the partial derivative in the 
outward normal direction ν . The model also incorporates the far-field boundary condition,

lim φ(x) = 0. (3)

x→∞
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Fig. 1. Schematic models; (a) the PB implicit solvent model, in which the molecular surface � separates space into the solute region �1 and solvent 
region �2; (b) the triangulation of molecular surface of protein Barnase at MSMS density d = 5 (# of vertices per Å2).

Note that Eqs. (1)–(3) define a boundary value problem for the potential φ(x) which in general must be solved numerically.

2.2. Numerical PB solvers

Numerical methods for the PB model face several challenges: the solute is represented by singular point charges, the 
molecular surface is often geometrically complex, the dielectric function is discontinuous across the surface, and the domain 
is unbounded. Two types of methods have been developed, (1) grid-based finite-difference and finite-element methods that 
discretize the entire volumetric domain, e.g. [23,24,45–51], and (2) boundary element methods that discretize the molecular 
surface, e.g. [1,29,34–40,42–44,52]. The reader may consult [4,53] for comprehensive reviews of numerical PB solvers.

Grid-based PB solvers are widely used and available in many software packages, e.g. APBS [21], AMBER [22,47], 
CHARMM [23], Delphi [24,54]. In these schemes, the singular charges are interpolated to the grid or regularized using 
Green’s function, the interface conditions are captured approximately, and the far-field boundary condition is enforced on 
a truncated domain. While these errors can be reduced by refining the grid and enlarging the truncated domain, schemes 
with higher order accuracy have been developed to enforce the interface conditions more strictly [16,25,55–58]. Some 
of these methods developed by mathematician are disseminated toward the greater bioscience community in the forms 
of web-servers e.g. MIBPB (http://weilab .math .msu .edu /MIBPB/) for the finite difference solver [25] and SMPBS (http://
smpbs .math .uwm .edu) for the finite element solver [57].

Our approach to these issues is to employ a boundary element method (BEM) in which the boundary integral PB equa-
tion is solved and the singular charges, interface conditions, and far-field boundary condition are treated analytically. The 
resulting BEM solvers are advantageous in that the molecular surface is represented more accurately and they avoid the 
expense of a volumetric grid. In a conventional BEM, these advantages are offset by the cost of evaluating the O (N2) inter-
actions among the N elements representing the molecular surface. However, fast summation schemes are now available to 
reduce the cost, such as the Fast Multipole Method (FMM) [27,36,37,40,59] and the treecode [28,60]. Our choice for solving 
the PB equations is a BEM accelerated by a Cartesian treecode [1], which is described in the next section.

2.3. Treecode-accelerated boundary integral (TABI) PB solver

In this section we describe our recently developed TABI PB solver for computing the electrostatic surface potential and 
solvation energy [1]. We present the boundary integral form of the PB implicit solvent model, the discretization of the 
boundary integral equations, and the treecode algorithm for accelerating the matrix-vector product.

2.3.1. Boundary integral form of PB model
This section summarizes the well-conditioned boundary integral form of the PB implicit solvent model we employ [1,29]. 

Applying Green’s second identity and properties of fundamental solutions to Eq. (1) yields the electrostatic potential in each 
domain,

φ(x) =
∫
�

[
G0(x,y)

∂φ(y)

∂ν
− ∂G0(x,y)

∂νy
φ(y)

]
dSy +

Nc∑
k=1

qkG0(x,yk), x ∈ �1, (4a)

φ(x) =
∫
�

[
−Gκ (x,y)

∂φ(y)

∂ν
+ ∂Gκ (x,y)

∂νy
φ(y)

]
dSy, x ∈ �2, (4b)

http://weilab.math.msu.edu/MIBPB/
http://smpbs.math.uwm.edu
http://smpbs.math.uwm.edu
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where G0(x, y) and Gκ (x, y) are the Coulomb and screened Coulomb potentials,

G0(x,y) = 1

4π |x − y| , Gκ (x,y) = e−κ |x−y|

4π |x − y| . (5)

Then applying the interface conditions in Eq. (2) with the differentiation of electrostatic potential in each domain yield a 
set of boundary integral equations relating the surface potential φ1 and its normal derivative ∂φ1/∂ν on �,

1

2
(1 + ε)φ1(x) =

∫
�

[
K1(x,y)

∂φ1(y)

∂ν
+ K2(x,y)φ1(y)

]
dSy + S1(x), x ∈ �, (6a)

1

2

(
1 + 1

ε

)
∂φ1(x)

∂ν
=

∫
�

[
K3(x,y)

∂φ1(y)

∂ν
+ K4(x,y)φ1(y)

]
dSy + S2(x), x ∈ �, (6b)

where ε = ε2/ε1. As given in Eqs. (7a)–(7b) and (10), the kernels K1,2,3,4 and source terms S1,2 are linear combinations of 
G0, Gk , and their first and second order normal derivatives [1,29].

K1(x,y) = G0(x,y) − Gκ (x,y), K2(x,y) = ε
∂Gκ(x,y)

∂νy
− ∂G0(x,y)

∂νy
, (7a)

K3(x,y) = ∂G0(x,y)

∂νx
− 1

ε

∂Gκ (x,y)

∂νx
, K4(x,y) = ∂2Gκ (x,y)

∂νx∂νy
− ∂2G0(x,y)

∂νx∂νy
, (7b)

where the normal derivative with respect to x is given by

∂G(x,y)

∂νx
= −ν(x) · ∇xG(x,y) = −

3∑
m=1

νm(x)∂xm G(x,y), (8)

and the second normal derivative with respect to x and y is given by

∂G(x,y)

∂νy∂νx
= −

3∑
m=1

3∑
n=1

νm(x)νn(y)∂xm∂yn G(x,y), (9)

and the source terms S1,2 are

S1(x) = 1

ε1

Nc∑
k=1

qkG0(x,yk), S2(x) = 1

ε1

Nc∑
k=1

qk
∂G0(x,yk)

∂νx
. (10)

Once the potential and normal derivative of the potential from Eqs. (6a)–(6b) are solved, potential at any point in the 
space can be computed via Eqs. (4a)–(4b) or a numerically more accurate formulation as mentioned in [29]. The electrostatic 
solvation energy can also be obtained by

Esol = 1

2

Nc∑
k=1

qkφreac(yk) = 1

2

Nc∑
k=1

qk

∫
�

[
K1(yk,y)

∂φ1(y)

∂ν
+ K2(yk,y)φ1(y)

]
dSy, (11)

where φreac(x) = φ(x) − S1(x) is the reaction potential [1,29]. In our numerical results, we report many results involving 
solving PB equation and calculating the electrostatic solvation energy.

2.3.2. Discretization of boundary integral equations
The molecular surface is triangulated using MSMS [33]. For example, Fig. 1 (b) shows the triangulated molecule sur-

faces at MSMS density d = 5 (# of vertices per Å2) of protein barnase, which will bind another protein barstar to form 
a biomolecular complex (PDB: 1b2s) [6]. The integrals in Eqs. (6a)–(6b) are discretized by centroid collocation. Letting 
xi, i = 1, · · · , N denote the triangle centroids of the N triangular elements, the discretized Eqs. (6a)–(6b) have the following 
form for i = 1, . . . , N ,

1

2
(1 + ε)φ1(xi) =

N∑
j=1
j �=i

[
K1(xi,x j)

∂φ1(x j)

∂ν
+ K2(xi,x j)φ1(x j)

]
�s j + S1(xi), (12a)

1

2

(
1 + 1

ε

)
∂φ1(xi)

∂ν
=

N∑
j=1
j �=i

[
K3(xi,x j)

∂φ1(x j)

∂ν
+ K4(xi,x j)φ1(x j)

]
�s j + S2(xi), (12b)
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Fig. 2. Details of treecode; (a) tree structure of particle clusters; (b) particle–cluster interaction between particle xi and cluster c = {x j}; xc : cluster center, 
R: particle–cluster distance, rc : cluster radius.

where �s j is the area of the jth boundary element for j = 1, · · · , N . The term j = i is omitted to avoid the kernel singular-
ity. Equations (12a)–(12b) is a linear system Ax = b, where x contains the surface potentials φ1(xi) and normal derivatives 
∂φ1(xi)

∂ν , weighted by the element area �si , and b contains the source terms S1(xi), S2(xi). The system is solved by the GM-
RES iteration, which requires a matrix-vector product in each step [61]. Since the matrix is dense, computing the product 
by direct summation requires O (N2) operations, which is prohibitively expensive when N is large. In the next section we 
describe the treecode algorithm used to accelerate the matrix-vector product.

2.3.3. Treecode
We summarize the treecode algorithm and refer to previous work for more details [28,60,62,63]. The matrix-vector 

product Ax for Eqs. (12a)–(12b) has the form of N-body potentials,

V i =
N∑

j=1, j �=i

q j G(xi,x j), i = 1, . . . , N, (13)

where G is a kernel, xi, x j are centroids (also called particles in this context), and q j is a charge associated with x j . To 
this end, the q j in Eq. (13) is equivalent to the �s jφ1(x j) or �s j

∂φ1(x j)

∂ν in Eqs. (12a)–(12b) and G is one of the kernels of 
K1−4. To evaluate the potentials V i rapidly, the particles xi are divided into a hierarchy of clusters having a tree structure 
in a 2-D illustration as in Fig. 2(a). The root cluster is a cube containing all the particles and subsequent levels are obtained 
by dividing a parent cluster into children [60]. The process continues until a cluster has fewer than N0 particles (N0 is 
a user-specified parameter representing the maximum number of particles per leaf, and N0 = 3 in Fig. 2(a)). Then V i is 
evaluated as a sum of particle–particle interactions and particle–cluster interactions, which are depicted in Fig. 2(b),

V i ≈
∑
c ∈Ni

∑
x j∈c

q j G(xi,x j) +
∑
c ∈Fi

p∑
||k||=0

ak(xi,xc)mk
c , (14)

where c denotes a cluster, and Ni, Fi denote the near-field and far-field clusters of particle xi . The first term on the 
right is a direct sum for particles x j near xi , and the second term is a pth order Cartesian Taylor approximation 
about the cluster center xc for clusters that are well-separated from xi [28]. Cartesian multi-index notation is used with 
k = (k1, k2, k3), ki ∈N, ||k|| = k1 + k2 + k3, k! = k1!k2!k3!. A particle xi and a cluster c are defined to be well-separated if the 
multipole acceptance criterion (MAC) is satisfied, rc/R ≤ θ , where rc is the cluster radius, R = |xi − xc | is the particle–cluster 
distance, and θ is a user-specified parameter [60].

The accuracy and efficiency of the treecode is controlled by the combination of order p, MAC parameter θ , and maximum 
particles per leaf N0. Using the treecode, the operation count for the matrix-vector product is O (N log N); the factor N is 
the number of particles xi , and the factor log N is the number of levels in the tree.

2.4. Preconditioning

In order to precondition Krylov subspace methods in solving Ax = b, taking left-precondition scheme as an example, we 
seek a preconditioning matrix or a preconditioner M such that two conditions are satisfied:

(1) M is similar to A such that M−1 A has improved condition compared to A thus less number of iterations are required 
in solving M−1 Ax = M−1b compared to solving Ax = b;

(2) M−1z = y can be efficiently computed, which is equivalent to solving y from M y = z.

Conditions (1) and (2) cannot be improved concurrently and a tradeoff must be made. For examples, M = A is the extreme 
of condition (1) and M = I the identity matrix is the extreme of condition (2), and the preconditioner we are seeking lies 
in between these two extremes. 
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Fig. 3. A schematic illustration of the boundary element dense matrix A and its preconditioning matrix M: (a) matrix A for the case of N = 20 elements 
(the size of the matrix entry shows the strength of the interaction; the four different color-coded region relates to K1−4 in Eqs. (12a)–(12b)); (b) the “block 
diagonal block” preconditioning matrix M (N0 = 3 in this schematic illustration and there are 10 leaves with 1-3 particles/elements each); (c) the “block 
diagonal” preconditioning matrix M , which is a permuted matrix from M in (b) after switching the order of the unknowns. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

The design of our preconditioner is motivated from the observation that in electrostatic interactions, which is also the 
interactions between boundary elements in solving integral equations, the short range interactions are smaller in number of 
interactions but more significant in strength than the long range interactions, which are large in number of interactions and 
computationally more expensive. Due to their large numbers, the long interactions are calculated by multipole expansions. 
This gives us the ideas that for a preconditioner of A, we might use short range interactions represented by the matrix M
to approximate all interactions, ignoring long range interactions. We have three ideas.

(1) interactions between elements computed in direct summation, which is the first term in Eq. (14), or simply,
(2) interactions between elements on the same leaf only (i.e. there is no interaction between elements from different 

leaves, even these elements are close from each other), which is smaller subsets of the elements in idea (1), or more 
complicated,

(3) interactions between elements geometrically close at a specified level of the tree, which is a bigger set containing 
elements in idea (1).

Among these ideas, idea (2) has the least computational cost but the weakest preconditioning power and idea (3) has 
the most computational cost but the strongest preconditioning power. As a neutral choice, we start with idea (1) and we 
immediately encounter a difficulty. We are excited to see that solving M−1 Ax = M−1b receives much improved convergence 
speed but we also realize solving M y = z, which requires another GMRES solver, suffers from similar slow convergence if 
solving Ax = b shows slow convergence. Here M is a much simplified version of A with only the near-field direct sum 
interactions. This difficulty implies that it should be the very near interactions between problematic triangular elements 
cause the slow GMRES convergence. Since M−1 A has much improved condition, the key now is to find a kind of M such 
that M y = z can be solved rapidly.

It turns out that idea (2), which is our final choice, has great advantages in efficiency and accuracy for solving 
M y = z. To be more precise, we give the explicit definition of A and M as from the discretized system (12a)–(12b). Let 

A =
(

A11 A12
A21 A22

)
∈ R

2N×2N , where Amn ∈ R
N×N for m, n = 1, 2. Then the entries of these block matrices are given as

A11(i, j) = 1

2
(1 + ε) δi j + K2(xi,x j)�s j(1 − δi j), A12(i, j) = K1(xi,x j)�s j(1 − δi j),

A21(i, j) = K4(xi,x j)�s j(1 − δi j), A22(i, j) = 1

2

(
1 + 1

ε

)
δi j + K3(xi,x j)�s j(1 − δi j),

(15)

for i, j = 1, · · · , N , where δi, j is the Kronecker delta function and �s j is the area of the jth element. The definition of M
will be essentially similar to A except that the entries of M are zero if i and j are not on the same leaf of the tree, i.e.

Mm,n(i, j) =
{

Am,n(i, j) if i, j are on the same leaf
0 otherwise

(16)

for i, j = 1, · · · , N and m, n = 1, 2.
Here we use Fig. 3 to illustrate the design and advantage of our preconditioning scheme. Fig. 3(a) is the illustration 

of the dense boundary element matrix A for the discretized system (12a)–(12b) with 20 boundary elements. The four 
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different colors represent the four kernels K1−4 related entries of the linear algebraic matrix A in Eqs. (12a)–(12b). Note 
the unknowns are ordered by the potentials φ1 on all elements, followed by the normal derivative of the potential ∂φ1

∂ν . The 
size of the matrix entry in Fig. 3 indicates the magnitude of the interaction between a target element and a source element, 
which decays from the main diagonal to its two wings. By only including the interactions between elements in the same 
leaf, we obtain our designed preconditioning matrix M as illustrated in Fig. 3(b). This preconditioning matrix M has four 
blocks, and each block is a diagonal block matrix. Rigorously, we should call M a “block diagonal block matrix”, but we use 
the term “block diagonal matrix” for simplification and the reason explained next.

The most important advantage of this designed preconditioning matrix M is that computing y = M−1z or equivalently 
solving y from M y = z can be rapidly computed using direct methods e.g. LU factorization. To see this, we rearrange the 
unknowns in vector y. Originally, y is composed of the first segment of potential on all elements followed the second 
segment of normal derivative of the potential on all elements. The rearranged y has Nl segments, where Nl is the total 
number of leaves in the tree structure. One leaf after the other, each leaf segment of the rearranged y consists of the 
potentials on elements belonging to the leaf followed by normal derivatives of the potential on elements of the same leaf. 
This rearrangement creates a block diagonal matrix M as illustrated in Fig. 3(c). This rearranged matrix M is equivalent 
to the original matrix M in the sense of condition number, eigenvalues, singular values but is much more efficient and 
convenient at solving M y = z and computing characteristic quantities of M . For simplicity and the equivalence mentioned 
here, we do not distinct the original M and the rearranged M in the context.

Since M = diag{M1, M2, · · · , MNl } as shown in Fig. 3(c) is a block diagonal matrix such that M y = z can be solved using 
direct method e.g. LU factorization by solving each individual Mi yi = zi . Here each Mi is a square nonsingular matrix, 
which represents the interaction between particles/elements on the ith leaf of the tree. It worths noting that the efficiency 
is not affected even when Mi has a large condition number since direct solver is used for solving M y = z. Meanwhile, 
we can compute the condition number, eigenvalues, singular values of M easily. These values of M are similar or close to 
corresponding values of matrix A thus are very useful to study the properties of A. For example, the norm-2 condition 
number of M can be obtained by its singular values as cond2(M) = σmax/σmin, where the singular values of M can be 
obtained from the singular values of each sub-matrix Mi .

We also provide the computational cost estimate for the preconditioning scheme, which is essentially the cost of solving 
M y = z. Let N0 be the number of particle per leaf, a user specified treecode parameter as explained in previous section. 
Since we only consider the interactions between particles on the same leaf for preconditioning, the dimension of the matrix 
Mi is less than or equal to N0 and we use the upper limit N0 to represent it. The total number of blocks is N/N0. The 
total cost of solving M y = z by solving all Mi yi = zi is therefore O (N3

0 N/N0) = O (N N2
0), which is essentially O (N) if small 

N0 is used. Meanwhile, N0 cannot be too small or M will not include the singular element interactions to cancel with 
the corresponding interaction in A. These considerations suggest we use small N0 e.g. 100 in our preconditioning scheme, 
which is justified by the numerical results in the next section.

3. Results

In this section, we provide numerical results using block diagonal preconditioning as compared with the previously 
used diagonal preconditioning in TABI solver [1]. Our numerical results are produced on a desktop with i5 7500 CPU and 
8G Memory, using GNU Fortran 7.2.0 compiler with compiling option “-O3”. We fix some PB model parameters (relative 
dielectric constants ε1 = 1 and ε2 = 80, inverse Debye length κ = 0.1257/ Å2, which corresponds to ionic strength 0.15 
molar) and some treecode parameters (p = 3), while modify the more relevant parameters (MSMS density d, the MAC 
criterion θ , the maximum particle per leaf N0) as described below. All protein structures are obtained from Protein Data 
Bank (https://www.wwpdb .org) and partial charges are assigned by CHARMM22 force field [64] using PDB2PQR software 
[65]. For dissemination to the greater science community, all codes are published on sourceforge (https://sourceforge .net /
projects /tabipb/) following the New BSD License. The user can also use the link from the corresponding author’s website to 
access the code. In the following, we first solve the PB equation and compute electrostatic solvation energy on two selected 
proteins using the TABI solver with block diagonal preconditioning scheme at various parameters to justify an optimal choice 
of these parameters. Following that, we show the improvements of the block diagonal preconditioning scheme compared 
with the original diagonal preconditioning scheme on selected proteins.

The physical quantity we computed in this manuscript is the electrostatic free energy of solvation with the unit kcal/mol. 
The electrostatic potential φ or φ1 governed in Eq. (1) or Eqs. (6a)–(6b) uses the unit of ec/(4π Å), where ec is the 
elementary charge. By doing this, we can directly use the partial charge obtained from PDB2PQR [65] for solving the PB 
equation. After obtaining the potential, we can convert the unit ec/(4π Å) to kcal/mol/ec by multiplying the constant 
4π332.0716 at room temperature T = 300 K. From potential to energy, only a multiplication of ec is needed. More details 
about PB equation related units conversion can be found in [57,66].

3.1. The selection of treecode parameters

The treecode used by the TABI solver has three tree-structure related parameters: the order p of Taylor expansion, 
which determines the truncation error of the treecode; the MAC criterion θ , which majorly determines the fraction of using 
treecode (particle–cluster) or direct sum (particle–particle) for electrostatic interactions; and the maximum particle per 

https://www.wwpdb.org
https://sourceforge.net/projects/tabipb/
https://sourceforge.net/projects/tabipb/
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Table 1
Treecode parameter selection (θ and N0) for preconditioned TABI solver: MSMS density d = 10, protein 1bpi has 
60600 elements and protein 1a7m has 147121 elements; CPU time t in seconds are reported in terms of total 
time, time for computing one Ax in each iteration, and time for solving one M y = z for the preconditioning 
matrix M .

θ N0 1bpi 1a7m

# of it. t (total) t (Ax) t (M y = z) # of it. t (total) t (Ax) t (M y = z)

0.8 100 10 68.1 6.3 0.4 12 230.7 17.9 0.9
300 9 82.4 6.2 2.4 11 277.2 17.7 6.2
500 8 124.8 6.4 7.3 10 337.9 18.0 12.8

0.5 100 10 149.2 14.4 0.4 12 518.3 41.9 0.9
300 9 157.3 14.5 2.4 11 543.2 42.0 6.2
500 8 192.4 14.8 7.3 10 583.0 42.6 12.7

0.2 100 10 545.8 54.2 0.4 12 2308.9 190.7 0.9
300 9 507.2 53.5 2.4 11 2157.3 188.7 6.2
500 8 530.4 57.2 7.3 10 2110.8 195.6 12.7

leaf N0, which determines the level of the tree. From previous research, we found N0 is less significant than the other two 
parameters in affecting the treecode efficiency and accuracy [1,28,30]. However, in present research, we find that N0 plays 
a significant role in preconditioning. The effects of these parameters for accuracy, efficiency, and parallelization are studied 
in detail in our previous work [1,28,30], and we here mainly focus on their effects on preconditioning.

Table 1 reports number of iterations and CPU time for solving boundary integral PB equation on the molecular surface 
of proteins 1a7m and 1bpi. Protein 1bpi has 898 atoms while protein 1a7m has 2809 atoms. We choose these two proteins 
because solving PB equation using the GMRES solver with only diagonal preconditioning on them requires large number of 
iterations [2]. The parameters are listed in the caption of the table. From data associated with these two proteins, we have 
the following two conclusions:

(1) The MAC θ overally determines the efficiency of the algorithms by controlling how much particle–cluster interactions 
are used to replace particle–particle interaction. To this end, larger θ e.g. 0.8 is preferred than smaller θ e.g. 0.5, 0.2 for 
better efficiency at the price of moderately more loss of accuracy. From this table, we can see for both cases, larger θ
requires less total CPU time.

(2) The impact of N0 in preconditioning are two-fold: first smaller N0 requires less CPU in solving M y = z for precondi-
tioning as seen in the “t (M y = z)” column; second, smaller N0 means more levels of trees thus more particle–cluster 
computation is used, which leads to less accurate Ax computation, then more number of iterations may be required as 
seen in the “# of it.” column; the overall effect is the combination of these two factors. For example, smaller N0 uses 
less CPU time for θ = 0.8 but uses more CPU time for θ = 0.2, 0.5 as seen in the “t (total)” column for both proteins.

By combining all effects, we recommend the combination of θ = 0.8 and N0 = 100 as the optimal choice of parameters, 
which is highlighted in the table. For instance, the diagonal preconditioned TABI solver use 67 iterations for protein 1a7m 
and 110 iterations for protein 1bpi as reported in [2] while the number of iterations required using block diagonal precondi-
tioning is approximately 10 for both proteins. Note that the underlined number 110 indicates that the maximum number of 
iterations are reached before the 1.0e−4 GMRES relative error tolerance is satisfied. It is also very clear that when N0 = 100, 
the time for solving (M y = z) is much less than the time for computing Ax in each iteration thus cost from block precondi-
tioning is only a small amount of additional cost. We also solve PB equation on these two proteins using even smaller N0 , 
e.g. N0 = 50, 25. The CPU time using these even smaller N0 is very close to N0 = 100. However, smaller N0 might cause 
increased number of iterations if the singular elements interaction are not included in M matrix to be canceled with that 
in A as mentioned previously. In the tests shown next, we fix the parameters θ = 0.8 and N0 = 100.

3.2. Preconditioning performance on protein 1a7m at various densities

We next choose the largest protein 1a7m from our test protein sets to check the performance of the preconditioning 
scheme at various densities, which lead to various numbers of boundary elements.

Table 2 reports electrostatic solvation free energy, number of iterations, and CPU time for solving PB equations using 
TABI solver on the molecular surface of protein 1a7m at different densities with diagonal preconditioning (d) and block 
diagonal preconditioning (bd). We increase the density from 1 to 80, resulting in the increased number of elements as 
seen in the first column of the table. We observe that the solvation energy in columns 2 and 3 are very close, indicating 
that preconditioning has very limited effects on accuracy. In fact, the values in column 3 could be more accurate for the 
situation when the GMRES tolerance for using block diagonal preconditioning is well met before the maximum number of 
iterations (110) is reached, while using the diagonal precondition stops when the maximum number of iterations is reached, 
without satisfying the desired error tolerance. As an example, it can be seen that at the finest mesh (1306676 elements), 
using the diagonal preconditioning exits when the maximum number of iterations (110) is reached but the relative residual 
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Table 2
Convergence performance for protein 1a7m at various densities/# of elements; “d” stands for diagonal precondi-
tioning and “bd” stands for block diagonal preconditioning.

# of ele. Esol (kcal/mol) # of its. CPU time (s)

d bd d bd d bd ratio

22491 −2559.64 −2559.64 110 12 208.8 24.9 8.38
48385 −2238.40 −2238.41 110 11 537.7 58.3 9.23
78057 −2213.40 −2214.31 110 28 944.5 253.3 3.73

147121 −2185.65 −2185.63 67 12 1197.9 230.7 5.19
294287 −2176.23 −2176.23 110 13 4357.6 553.1 7.88
620619 −2171.35 −2171.20 110 17 10089.8 1675.9 6.02

1306676 −1995.29 −2168.96 110 30 22964.5 6891.3 3.33

Table 3
Convergence comparison using diagonal preconditioning (d) and block diagonal preconditioning (bd) on a set of 27 proteins; MSMS 
density d = 10.

Index PDB # of ele. Esol (kcal/mol) # of it. CPU time (s) Cond. #

d bd d bd d bd ratio M

1 1ajj 40496 −1147.35 −1147.38 9 8 34.8 33.1 1.05 166.3
2 2erl 43214 −963.52 −963.49 9 8 37.2 35.6 1.05 146.3
3 1cbn 44367 −307.39 −307.36 8 7 34.5 33.0 1.05 161.2
4 1vii 47070 −916.82 −916.79 12 10 60.1 53.0 1.13 271.9
5 1fca 47461 −1216.88 −1216.91 9 9 43.6 46.5 0.94 162.1
6 1bbl 49071 −1003.39 −1003.44 10 9 53.4 51.5 1.04 173.9
7 2pde 50518 −826.79 −826.77 100 19 517.0 104.7 4.94 3760.7
8 1sh1 51186 −761.80 −761.84 110 35 587.6 197.6 2.97 214288.8
9 1vjw 52536 −1257.74 −1257.79 9 8 46.2 44.5 1.04 154.7

10 1uxc 53602 −1156.69 −1156.68 9 9 51.9 55.1 0.94 151.1
11 1ptq 54256 −884.75 −884.73 10 9 53.0 51.3 1.03 154.6
12 1bor 54628 −865.68 −865.66 11 9 64.0 56.5 1.13 249.4
13 1fxd 54692 −3348.08 −3347.96 8 8 46.6 51.2 0.91 161.3
14 1r69 57646 −1102.50 −1102.43 10 9 62.4 60.6 1.03 185.6
15 1mbg 58473 −1370.88 −1370.90 10 9 64.7 62.7 1.03 409.6
16 1bpi 60600 −1322.44 −1322.43 110 10 690.3 67.7 10.19 89069.7
17 1hpt 61164 −826.81 −826.82 12 9 79.4 63.9 1.24 231.3
18 451c 79202 −1040.01 −1040.05 19 13 180.4 132.5 1.36 350.4
19 1svr 88198 −1732.81 −1732.82 11 9 112.5 97.7 1.15 425.9
20 1frd 81792 −2894.34 −2894.13 10 10 93.6 100.2 0.93 183.0
21 1a2s 84527 −1942.73 −1942.74 18 13 183.5 141.2 1.30 5816.6
22 1neq 89457 −1757.87 −1757.90 20 10 221.8 117.5 1.89 1170.1
23 1a63 132133 −2407.54 −2407.54 11 10 191.3 185.8 1.03 184.4
24 1a7m 147121 −2185.65 −2185.63 67 12 1195.6 229.3 5.21 3850.6

25 2go0 111615 −1979.73 −1979.70 20 17 263.8 238.2 1.11 536.1
26 1uv0 128497 −2312.56 −2312.47 56 10 873.7 167.3 5.22 1601.7
27 4mth 123737 −2501.38 −2501.54 69 10 1077.1 165.7 6.50 4823.5

error is 9.1e−3, far from the desired tolerance 1.0e−4 thus the solvation energy result is not correct. On the contrary, using 
block diagonal preconditioning scheme largely reduces number of iterations needed, and returns correct result satisfying 
the desired tolerance. As in previous test cases, we see much reduced number of iterations in column 5 compared with that 
from column 4 and much reduced CPU time in column 7 compared with that from column 6, showing the improvement 
in convergence using block diagonal preconditioning as opposed to using diagonal preconditioning. The similar trend is 
consistently observed with the refinement of the triangulation.

3.3. Preconditioning performance on a set of 27 proteins

We next provide testing results on a set of 27 proteins, in which the first 24 proteins are from our previous work [2,25]
and the last three proteins are HIP/PAP proteins suggested by Dr. Carrie Partch from UC Santa Cruz in studying the pH 
dependence of the binding and stability [67,68].

Table 3 shows the convergence tests using diagonal preconditioning (d) and block diagonal preconditioning (bd) for a 
set of 27 proteins. We encountered slow convergence in previous research and now the issue has been well resolved as 
explained below. The first column of the table is the protein index, followed by PDB ID in the second column, and number 
of elements in the third column using MSMS density d = 10. Columns 4 and 5 are electrostatic solvation energy of the 
proteins using both preconditioning schemes and we can see the difference is insignificant. We see significant reduction of 
number of iterations using block diagonal preconditioning (bd) as in column 7 compared with results in column 6 using 
diagonal preconditioning (d). It worths noting that the worse the diagonal preconditioning result is, the larger improvements 
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Fig. 4. Convergence comparison using diagonal preconditioning and block diagonal preconditioning. (a) Number of iterations; (b) CPU time (s).

block diagonal preconditioning can achieve. For example, proteins 2pde, 1sh1, 1bpi, 1a7m, 1uv0, and 4mth originally use 
100, 110, 110, 67, 56, 60 iterations for diagonal preconditioning but only use 19, 35, 10, 12, 10, 10 iterations for block 
diagonal preconditioning. The ratio of CPU reduction for these proteins are more than 5 times. The CPU time comparison 
in columns 8 and 9, as well as its ratio in column 10, further confirms the results we observed in columns 6 and 7 as CPU 
time is largely related to the number of iterations. We plot the results of columns 6,7,8,9 in Fig. 4, which vividly shows 
the improvements on both number of iterations and CPU time when block diagonal preconditioning is used to replace the 
diagonal preconditioning. It shows that although block diagonal preconditioning works particularly better for cases with 
slow convergence, it does not hurt well-conditioned cases, thus we could uniformly use block diagonal preconditioning to 
update the original diagonal preconditioning. Figs. 4(a) and 4(b) shows similar pattern as CPU time and number of iterations 
are highly correlated when GMRES is used to solve the linear algebraic system. 

In addition, the last column of Table 3 reports the condition numbers of matrix M for each tested proteins. These condi-
tion number can be conveniently computed owing to the block diagonal structure of M as explained previously. In contrast, 
computing the condition number, eigenvalues, and singular values of the full matrix A is computationally prohibitive be-
cause of the large numbers of elements of these tested proteins. Due to the similarity between A and M , we can use 
information from M to explain why solving Ax = b on different proteins encounters various convergence speed since we 
observe that the slow convergence of solving Ax = b implies the slow convergence of solving M y = z. For example, in the 
last column of Table 3 large condition numbers (3760.7, 214288.8, 89069.7, 3850.6, 1671.7, 4823.5) for proteins (2pde, 1sh1, 
1bpi, 1a7m, 1uv0, 4mth) show large numbers of iterations (100, 110, 110, 67, 56, 69). We highlighted these data in the 
table.

The diagonal block structure of M make it possible for us to find the singular values conveniently and the computational 
cost is O (N3

0 N/N0) = O (N N2
0). We choose two proteins (1ajj, 1a63) with good convergence speed (about 10 iterations) 

and two proteins (2sh1, 2pde) with poor convergence speed (100+ iterations) and plot all singular values of matrix M in 
Fig. 5. The plot can be used to explain the convergence speed. On one hand, the ratios between the largest and smallest 
singular values, the 2-norm condition numbers, for proteins 1ajj and 1a63 are much smaller than those from proteins 1sh1 
and 1a63. On the other hand, the singular values of proteins 1ajj and 1a63 cluster away from the origin while the singular 
values of proteins 1ajj and 1a63 cluster near the origin. The computed singular values from blocks also enable us to identify 
at which leaf the interactions affect the matrix condition the most. Our finding is the largest and smallest singular values 
mostly appear in the same block/leaf, in which some elements are unusually close. Note matrix A, so is M , is designed to 
be diagonally dominant using the well-posed integral form [29], but these close elements (small |x − y|) make large kernels 
K1−4, particularly the K2 and K3 kernels, which are in the blue and black closer-to-diagonal regions as shown in Fig. 3, 
resulting in deteriorated condition number. This finding again confirms our conjecture that it is the triangulation quality 
that slows down the GMRES convergence. 

We also reported the condition numbers of A and M−1 A for some selected cases in Table 4. In order to do that, we 
explicitly output the matrices and use Matlab to calculate the condition numbers. Note the problem size is too big for 
calculating condition numbers for large proteins thus we only provide results for some small proteins at small densities. 
From the table, we can see the block diagonal preconditioning scheme significantly reduces the condition number thus 
requires much less number of iterations for convergence. 

3.4. Preconditioning performance on molecular surfaces generated by other mesh generators

In addition to MSMS, there are many other triangular mesh generators such as NanoShaper [69], TMSmesh [70], ESES 
[71], etc. Theoretically, the Fredholm second kind integral form is well-conditioned as φ1 and ∂φ1

∂νy
term at the LHS of 

Eqs. (12a)–(12b) enforce the “diagonally dominant” after the discretization. However, numerically poor triangulation is un-
avoidable when molecular surfaces of some complex proteins are triangulated. To this end, our preconditioning scheme 
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Fig. 5. Singular values plots of the M matrices: (a) 1ajj, (b) 1a63, (c) 1sh1, (d) 2pde.

Table 4
Condition numbers of A and M−1 A and iteration numbers when solving PB equation using TABI with diagonal 
precondition (d) and block diagonal precondition (bd) for a few small proteins at MSMS density d = 1.

PDB # of ele. # of it. (d) # of it. (bd) cond. (A) cond. (M−1 A)

1ajj 6027 12 8 411.2 335.8
2pde 6582 42 12 3950.0 651.1
1sh1 7657 29 10 2376.7 938.5

Table 5
Convergence performance for selected proteins using NanoShaper for triangulation; “d” stands for diagonal pre-
conditioning and “bd” stands for block diagonal preconditioning.

PDB # of ele. Esol (kcal/mol) # of its. CPU times

d bd d bd d bd ratio

4dpf 43100 −21180.92 −21181.75 77 12 1069.2 197.2 5.42
1hg8 306852 −13175.01 −13174.30 27 11 3880.2 1780.8 2.18
3sqe 572352 −17080.73 −17079.44 49 16 15707.1 5511.1 2.85
2cek 875828 −26957.91 −26957.84 26 16 13421.3 9061.8 1.48
3lod 335064 −8796.08 −8795.40 73 14 12480.8 2674.9 4.67

should benefit TABI solvers using various mesh generators. To see this, we tested some cases using NanoShaper as the 
molecular surface generator, which requires large number of iterations [17]. The results as included in Table 5 shows sig-
nificant improvements when the block diagonal preconditioning scheme is used as opposed the diagonal preconditioning, 
which demonstrates the broader application of our preconditioning schemes. 

4. Conclusion

In this paper, we present a newly discovered block diagonal preconditioning scheme to improve the TABI Poisson–
Boltzmann solver, which previously use diagonal preconditioning to accelerate GMRES solver. The block diagonal precondi-
tioning algorithm is simple, efficient, robust, and accurate, which cancels the slow-down effects caused by the mesh quality 
and the added computational cost due to preconditioning is insignificant. Our simulation on various proteins shows that 
for many problems with previously slow convergence now converges as quick as cases without GMRES convergence issues. 
This improvement is consistent with the refinement of the triangulation mesh. Through numerical simulations, we also sug-
gest the optimal treecode parameters to use TABI solver updated with this new preconditioning scheme. In addition, with 
this preconditioning scheme, the cost of preprocessing mesh in deleting poor quality triangles can be greatly reduced. We 
believe this simple preconditioning idea and scheme can benefit many multipole methods accelerated boundary integral 
Poisson–Boltzmann solvers such as [34–44]. This idea and its variation can also be used to accelerate solving boundary 
integral equations originated from broader areas such as scattering, fluids, elasticity, etc.
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