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a b s t r a c t

In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear
Poisson–Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used
to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The
molecular surfaces are discretized with flat triangles and centroid collocation. To speed up our method,
we take advantage of the parallel nature of the boundary integral formulation and parallelize the schemes
within CUDA sharedmemory architecture on GPU. The schemes use only 11N+6Nc size-of-double device
memory for a biomolecule with N triangular surface elements and Nc partial charges. Numerical tests of
these schemes showwell-maintained accuracy and fast convergence. The GPU implementation using one
GPU card (Nvidia Tesla M2070) achieves 120–150X speed-up to the implementation using one CPU (Intel
L5640 2.27 GHz). With our approach, solving PB equations on well-discretized molecular surfaces with
up to 300,000 boundary elements will take less than about 10 min, hence our approach is particularly
suitable for fast electrostatics computations on small to medium biomolecules.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Molecular mechanics uses Newton’s classical mechanics to
model molecular systems. The potential energy of all systems in
molecular mechanics is calculated using force fields. Among all
components of the force fields, electrostatics are critical due to
their ubiquitous existence and are expensive to compute since
they are long-range pairwise interactions. Poisson–Boltzmann (PB)
model is an effective alternative for resolving electrostatics that
includes energy, potential and forces of solvated biomolecules [1].
As an implicit solvent approach, the PB model uses a mean field
approximation to trace the solvent effects and applies Boltzmann
distribution to model the mobile ions. These implicit treatments
make the PB model computationally more efficient compared
to explicit solvent models, in which atomic details of solvent
molecules and mobile ions are explicitly described.

In the PB model, the computational domain R3 is divided into
the solute domain Ω1 and the solvent domain Ω2 by a closed
molecular surface Γ such that R3

= Ω1 ∪ Ω2 ∪ Γ . The molecular
surface Γ is formed by the traces of a spherical solvent probe
rolling in contact with the van del Walls balls of the solute atoms
[2,3]. The molecule, which is located in domain Ω1 with dielectric
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constant ε1, is represented by a set of Nc point charges carrying Qi
charge in the units of ec , the elementary charge, at positions xi, i =

1, . . . ,Nc . The exterior domain contains the solvent with dielectric
constant ε2, as well as mobile ions. For x = (x, y, z), the PB
equation for the electrostatic potential in each domain is derived
from Gauss’s law and the Boltzmann distribution. Assuming weak
ionic strength (e.g., the concentration of the physiological saline in
a room temperature), the linearized PB equation and its interface
jump conditions and boundary conditions have the forms

∇ · (ε1(x)∇φ1(x)) = −

Nc
i=1

qiδ(x − xi) in Ω1, (1)

∇ · (ε2(x)∇φ2(x)) − κ2φ2(x) = 0 in Ω2, (2)

φ1(x) = φ2(x),

ε1
∂φ1(x)

∂ν
= ε2

∂φ2(x)
∂ν

on Γ = ∂Ω1 = ∂Ω2,
(3)

lim
|x|→∞

φ2(x) = 0, (4)

where φ1 and φ2 are the electrostatic potentials in each domain,
qi = ecQi/kBT , i = 1, . . . ,Nc, ec the electron charge, kB the
Boltzmann’s constant, T the absolute temperature, δ theDirac delta
function, κ the Debye–Hückel parameter, and ν the unit outward
normal on the interface Γ . Note the κ2φ(x) term in Eq. (2) is
the linearized form of κ2 sinh(φ(x)) when weak ionic strength is
assumed.
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The PB equation is an elliptic equation defined on multiple
domains with discontinuous coefficients across the domain
interface. The PB equation has analytical solutions only for the
simple geometries such as spheres [4] or rods [5]. For molecules
with complex geometries, the PB equation can only be solved
numerically, which is challenging due to the non-smoothness
of the solution subject to Eq. (3), the complex geometry of
the interface Γ , the singular partial charges in Eq. (1), and the
boundary conditions at the infinity in Eq. (4). Many numerical PB
solvers were developed and they can be roughly divided into two
categories: (1) the 3-Dmesh-based finite difference/finite element
methods [6–11]; and (2) the boundary integral methods [12–21].
All these methods have their own advantages and disadvantages.
For example, the PB solvers embedded in molecular modeling
packages, such asDelphi [6], CHARMM[7], AMBER [8], andAPBS [9]
use standard seven-point finite difference to discretize the PB
equation. Although standard finite difference methods arguably
result in reduced accuracy due to the smoothened treatment
of Eq. (3), the efficient, robust and user-friendly features of
these PB solvers brought their popularity to the computational
biophysics/biochemistry community. Compared with 3-D mesh-
based methods, the boundary integral methods have advantages
since they impose the singular partial charge in Eq. (1) and the
far-field boundary condition in Eq. (4) exactly, use appropriate
boundary elements to represent surface geometry to desired
precision, and enforce the continuity condition in Eq. (3) across the
interface explicitly. They are naturally more convenient methods
to attack numerical difficulties in solving the PB equation.

An often claimed advantage of boundary integralmethods com-
pared to finite difference methods is the reduction of the 3-D dif-
ferential equation to a 2-D surface integral equation. However, the
finite difference methods generate a 7-band sparse matrix, while
the boundary integral methods constitute a fully dense matrix,
which is prohibitively expensive to store andwhosematrix–vector
product is computationally costly. The remedy is to generate the
matrix on-the-fly and compute the matrix–vector product with
the assistance of fast algorithms for N-body problems, such as
Fast Multipole Methods (FMM) [13–15,21] and treecode [17]. In
the last few decades, the advent of the multicore computers and
related parallel architectures such as MPI and Open MP brought
the boundary integral methods to a superior position to 3-D
mesh-based methods. Recently, the appearance of GPU comput-
ing further boosts the boundary element methods, particularly for
schemes that have simpler algorithms and use less memory.

GPU computing refers to the use of graphics processing units for
scientific and engineering computing applications rather than tra-
ditionally rendering graphs. A GPU card can be treated as an array
of many simplified CPUs with reduced but concurrent computing
power and more limited but faster memory access to CPUs. GPUs
execute many concurrent threads relatively slowly, rather than a
single thread quickly. Thismeans that GPU computing ismore suit-
able for problems with high concurrency, straightforward work-
flow, low memory requirements, and infrequent communication.
GPUs have broad areas of application, particularly in speeding up
molecular modeling. Molecular dynamics packages such as AM-
BER [22,23] and NAMD [24,25] have GPU implementations that
achieve significant speedup compared to CPU implementations.

The matrix–vector product computed in boundary integral
formulation is similar to computing N-body problems for particle
interactions. Solving N-body problems and related applications in
boundary integralmethods are popular targets for GPU computing.
For examples, Nyland et al. [26] computed N-body interactions
by direct summation, Burtscher et al. [27] used the Barnes–Hut
treecode [28] to compute the dynamics of 5 million point masses
on a 1.3 GHz GPU with 240 threads, obtaining a speedup of 74
over a 2.53 GHz CPU, and Yokota et al. [29] demonstrated a FMM
accelerated boundary integral PB solver on 512 GPUs, achieving
34.6 TFlops.

In this paper, we present a parallel boundary integral PB
solver on GPUs. We adopt the well-posed formulation from Juf-
fer et al. [12], rather than the straightforward integral formulation
presented in [30] and applied in [16,29]. The N-body summation is
computed directly, therefore the scheme is implementation con-
venient and memory saving for GPU computing. The rest of the
paper is organized as follows. In Section 2, we provide our al-
gorithms including the well-posed boundary integral formulation
and its discretization, followed by CUDA implementation on GPUs.
In Section 3,we present the numerical results, first on the spherical
cavities with multiple partial changes, whose analytical solutions
are available and then on a series of proteinswith various sizes and
geometries. This paper ends with a section of concluding remarks.

2. Methods

We use the well-posed boundary integral formulation from
Juffer’s work [12] together with a flat triangulation and a
centroid collocation. A factor affecting the accuracy of boundary
integral method is the discretization of the surface. We use a
non-uniformed triangular surface from MSMS [31]. Throughout
this paper, we call our GPU-accelerated boundary integral
Poisson–Boltzmann solver as GABI-PB solver.

2.1. Well-posed integral formulation

The differential PB equations (1) and (2) can be converted to
boundary integral equations. In order to do this, we first define the
fundamental solutions to the Poisson equation (1) in Ω1 and the
fundamental solution to the PB equation (2) in Ω2 as

G0(x, y) =
1

4π |x − y|
, Gκ(x, y) =

e−κ|x−y|

4π |x − y|
. (5)

Note G0(x, y) and Gκ(x, y) are called Coulomb and screened
Coulomb potentials in electrostatic theory. By applying Green’s
second theorem, and canceling the normal derivative terms with
interface conditions in Eq. (3), the coupled integral equations can
be derived as [30]:

φ1(x) =


Γ


G0(x, y)

∂φ1(y)
∂νy

−
∂G0(x, y)

∂νy
φ1(y)


dSy

+

Nc
k=1

qkG0(x, yk), x ∈ Ω1, (6)

φ2(x) =


Γ


−Gκ(x, y)

∂φ2(y)
∂νy

+
∂Gκ(x, y)

∂νy
φ2(y)


dSy,

x ∈ Ω2. (7)

However, straightforward discretization of Eqs. (6) and (7)
yields an ill-conditioned linear system, whose condition number
dramatically increases as the number of boundary elements
increases [32]. Juffer et al. derived a well-posed boundary integral
formulation by going through the differentiation of the single-layer
potentials and the double-layer potentials [12]. Here the single-
layer potentials are from the induced point charge distributions
G0 and Gκ on surface Γ , while the double-layer potential are from
the induced dipole charge distributions, which are the normal
derivatives of G0 and Gκ on surface Γ . The desired integral forms
are as:
1
2

(1 + ε) φ1(x)

=


Γ


K1(x, y)

∂φ1(y)
∂νy

+ K2(x, y)φ1(y)

dSy
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+ S1(x), x ∈ Γ , (8)
1
2


1 +

1
ε


∂φ1(x)

∂νx

=


Γ


K3(x, y)

∂φ1(y)
∂νy

+ K4(x, y)φ1(y)

dSy

+ S2(x), x ∈ Γ , (9)
with the notation for the kernels and the source terms.
K1(x, y) = G0(x, y) − Gκ(x, y),

K2(x, y) = ε
∂Gκ(x, y)

∂νy
−

∂G0(x, y)
∂νy

,

K3(x, y) =
∂G0(x, y)

∂νx
−

1
ε

∂Gκ(x, y)
∂νx

,

K4(x, y) =
∂2Gκ(x, y)

∂νx∂νy
−

∂2G0(x, y)
∂νx∂νy

,

(10)

S1(x) =

Nc
k=1

qkG0(x, yk), S2(x) =

Nc
k=1

qk
∂G0(x, yk)

∂νx
(11)

and ε = ε1/ε2. Note, this is the well-posed Fredholm second kind
of integral equation, which is also our choice in this paper.

2.2. Discretization

We discretize the integral Eqs. (8) and (9) with the flat triangle
and the centroid collocation (the quadrature point is located
at the center of each triangle). This scheme also assumes that
the potential and its normal derivative, as well as the kernel
functions are uniform on each triangle. When the singularities in
kernels occur (x = y), the contribution of this triangle in the
integral is then simply removed. This scheme, which provides the
convenience of incorporating fast algorithms, such as FMM [32]
and treecode [17], is in fact widely used in the latest boundary
integral methods in solving PB equations.

In this paper, suppose the triangulation program MSMS [31]
discretizes the molecular surface to a set of N triangular elements
connectedwithNv vertices andNe edges.We then have the relation
Nv +N −Ne = 2 called Euler’s polyhedron formula.With potential
φ1(x) and its normal derivative ∂φ1(x)

∂νx
at the centroid of each

triangular element as the unknowns, Eqs. (8) and (9) are converted
to a linear algebraic system Au = b, whose elements are specified
as follows. Note, we do not explicitly express A in an iterative
method as we only concern Au on each iteration.

For i = 1, 2, . . . ,N , the ith and the (i + N)th element of the
discretized matrix–vector product Au are given as

{Au}i =
1
2

(1 + ε) φ1(xi)

−

N
j=1,j≠i

Wj


K1(xi, xj)

∂φ1(xj)
∂νxj

+ K2(xi, xj)φ1(xj)


(12)

{Au}i+N =
1
2


1 +

1
ε


∂φ1(xi)

∂νxi

−

N
j=1,j≠i

Wj


K3(xi, xj)

∂φ1(xj)
∂νxj

+ K4(xi, xj)φ1(xj)


(13)

where Wj is the area of the jth element. Note, we use xi and xj
(instead of yj) in all kernels to indicate sources and targets are
the same set of points. The expressions of bi and bi+N are directly
obtained from S1 and S2 in Eq. (11). In producing the results of this
paper, we apply GMRES solver [33] to solve the linear algebraic
system from the discretization of Eqs. (8) and (9), which requires
computing thematrix–vector product in Eqs. (12) and (13) on each
iteration.
Table 1
Pseudocode for GABI-PB solver using GPU.

1 On host (CPU)
2 read biomolecule data (charge and structure)
3 call MSMS to generate triangulation
4 copy biomolecule data and triangulation to device
5 On device (GPU)
6 each thread concurrently computes and stores source terms for

assigned triangles
7 copy source terms on device to host
8 On host
9 set initial guess x0 for GMRES iteration and copy it to device

10 On device
11 each thread concurrently computes assigned segment of

matrix–vector product y = Ax
12 copy the computed matrix–vector y to host memory
13 On host
14 test for GMRES convergence
15 if no, generate new x and copy it to device, go to step 10 for the

next iteration
16 if yes, generate and copy the final solution to device and go to

step 17
17 On device
18 compute assigned segment of electrostatic solvation energy
19 copy results in step 18 to host
20 On host
21 add segments of electrostatic solvation energy and output result

2.3. Electrostatic solvation energy formulation

To perform the solvation analysis of interested biomolecules,
the electrostatic solvation energy is computed by

Esol =
1
2

Nc
k=1

qkφreac(xk)

=
1
2

Nc
k=1

qk


Γ


K1(xk, y)

∂φ1(y)
∂νy

+ K2(xk, y)φ1(y)

dSy, (14)

where φreac(xk) = φ1(xk) − S1(xk), whose formulation is the
integral part of Eq. (14), is the reaction potential at the kth solute
atom. The electrostatic solvation energy, which can be regarded as
the atomistic charge qk weighted average of the reaction potential
φreac, can effectively characterize the accuracy of a PB solver.

2.4. GPU/CUDA implementation

The GABI-PB solver uses the boundary integral formulation,
which can be conveniently parallelized. The majority of the
computing time is taken by the following subroutines.

(1) Compute the source term in Eqs. (8) and (9).
(2) Perform matrix–vector product in Eqs. (12) and (13) on each

GMRES iteration.
(3) Compute electrostatic solvation energy.

Among all of these subroutines, subroutine (2) is the most
expensive one and is repeatedly computed on each GMRES
iteration. We compute all of these routines in parallel, to minimize
the computation time. Table 1 provides the pseudo code for the
overall computation.

In this pseudo code,wedivide all the operations to those onhost
performed by the CPU and those on device performed by the GPU.
We use Nc to denote the number of atoms of the biomolecule and
N to represent the number of triangular elements. In the following
description, we include the memory use in a pair of parentheses
following each variable we would have claimed.

We first read in the atomistic coordinates (3Nc), radii (Nc)
and charges (Nc) of the given biomolecule (step 2) and call the
MSMS [31] program to generate triangulation (step 3) including
the faces and the vertices of the triangulation. We convert these
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triangulation information to centroid coordinates (3N), normal
direction vectors (3N) and triangle areas (N), and copy them
together with the atomistic coordinates, radii and charges to the
device (step 4). So far, the device memory use is 5Nc + 7N size-
of-double. We then use multi-threads on device to compute the
source terms (2N , but deallocated right after being copied to host)
in Eqs. (8) and (9) (step 6) and copy them to the host (step 7).
Next, we set the initial guess x0 of the solution (currently a zero
vector) and copy it to device (step 9). Note that, when the GMRES
is restarted (usually this needs to be done every 10–20 steps to
ensure the small number of terms in Krylov subspace expansion),
we use the approximated solution achieved from the previous
iteration as the initial guess x0.

What follows is the major computing part. We compute the
matrix–vector product y = Ax (step 11) on multi-threads GPU
device, and copy the resulting y to the host (step 12). These two
steps take additionally 4N size-of-double device memory. Then on
host, we test if the obtained y satisfies the GMRES convergence
criterion (step 14) to decide whether to start the next iteration
(step 15) or terminate the GMRES and generate the final solution
(step 16). After GMRES convergence criterion is satisfied, we
need to compute the atom-wise components of the electrostatic
solvation energy on device, using the final solution copied from
the host (step 18). This step takes additional Nc size-of-double
device memory. Finally, with the components of the electrostatic
solvation energy copied from device (step 19), we compute the
total electrostatic solvation energy on host (step 21). All together,
we have allocated 6Nc + 11N size-of-double device memory.

In implementing algorithms, we tune the CUDA codewith some
optimization strategies like loop unrolling, coalesced memory
access (using double3 data type instead of three double variables
for some structures like position and charge), and fast CUDA
operators like ‘‘rsqrt’’. We also test and choose the optimized value
256 as the number of thread per block. Although these strategies
did not substantially improve the performance, they contribute to
the overall performance.

3. Results

In this section, we present the numerical results. We first solve
the PB equation on a spherical cavity with multiple charges at
different locations. The analytical solutions in terms of spherical
harmonics are available [4]. We then solve the PB equation on a
series of 24 proteins with different sizes and geometries. These
protein structures are downloaded from protein data bank (PDB),
and their charges and hydrogens are addedwith CHARMM22 force
field [34]. We report the electrostatic solvation energy results
and its associated execution time for solving the PB equation
and computing electrostatic solvation energy on these proteins
with and without GPU acceleration to demonstrate the improved
efficiency from using GPU. All algorithms are written in C and
CUDA and compiled by gcc with flag ‘‘-O3’’ and nvcc with flag
‘‘-O3 -arch = sm_20 -use_fast_math’’. The simulations are
performed with a single CPU (Intel(R) Xeon(R) CPU E5640 @
2.27 GHz with 2GMemory) on a 12-core workstation and one GPU
(Nvidia Tesla M2070) card. Before we reveal the numerical results,
we define order and error.

3.1. Order and error

In this paper, we report the relative L∞ error of the surface
potential, which is defined as

eφ =

max
i=1,...,N

|φnum(xi) − φexa(xi)|

max
i=1,...,N

|φexa(xi)|
(15)
Fig. 1. Locations of the partial charges inside a spherical cavitywith radius r = 4 Å.

where N is the number of unknowns, and also the number of
triangular elements of a particular discretized molecular surface.
The notation φnum represents numerically solved surface potential
and φexa denotes the analytical solutions obtained by Kirkwood’s
spherical harmonic expansion [4]. The discretization on the
molecular surface has a parameter ‘‘density’’, number of vertices
per Å2.

The numerical order of accuracy is computed with

order = log coarse_mesh
fine_mesh

ecoarseφ

efineφ

(16)

following the convention of numerical analysis, where ‘‘mesh’’
refers to density for boundary integral methods at both coarse and
fine levels.

3.2. Accuracy tests on a spherical cavity

We first perform the numerical tests for the accuracy of the
algorithm on a spherical cavity, where the analytical solution in
terms of spherical harmonics expansion is available [4]. The test
case we designed is a sphere of radius r = 4Å containing nine
partial charges, which are located along the space curve r(t) =

⟨
3
4π cos t, 3

4π sin t, t
π
⟩ for t = 0, π

2 , . . . , 2π . These nine point
charges carry 0.1, 0.2, . . . , 0.9 electric charges respectively in the
units of ec , the elementary charge. We plot the charge locations
in Fig. 1, which resemble a segment of a biological helix. Table 2
reports the numerical results. In the first column of the table, we
increase the MSMS input parameter ‘‘density’’ (number of vertices
per Å2) by doubling its current value each time. The number of
triangular elements are also approximately doubled each time as
seen in column 2. The electrostatic solvation energy are reported
in column 3 and we can see a consistent pattern that these values
are approaching the true value −952.52 kcal/mol. Column 4 is
the relative L∞ error of the surface potential, whose convergence
pattern can be better seen from column 5 in terms of orders. Note
that the 0.5th order observed here is relative to the area of the
triangular element. If the 1-D length is considered, the order should
be about one.

3.3. Accuracy and efficiency test on proteins

We next solve the PB equation and compute the electrostatic
solvation energy on a series of proteins with different sizes and
geometries. The numerical results are reported in Table 3. In
this table, the first column is the index for the convenience of
identification. The second row is the four-digit protein data bank
(PDB) ID of the corresponding protein. Column 3 is the number
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Table 2
Accuracy tests on a spherical cavity: radius r = 4 Å, nine charges are located on the
space curve ⟨

3
4π cos t, 3

4π sin t, t
π
⟩ for t = 0 :

π
2 : 2π; eφ is the relative L∞ error in

surface potential φ; order is relative to the area of the elements; the exact value of
Esol is −952.52 kcal/mol.

Density #of ele. Esol eφ Order

1 370 −971.92 4.20E−02 –
2 736 −968.05 2.80E−02 0.58
4 1572 −964.03 1.85E−02 0.60
8 3124 −961.08 1.28E−02 0.53

16 6308 −958.75 8.90E−03 0.52
32 12772 −956.99 6.24E−03 0.51
64 25494 −955.74 4.35E−03 0.52

128 51204 −954.81 3.06E−03 0.51

of triangular elements when the molecular surfaces of these
proteins are discretized. We uniformly choose ‘‘density = 10’’
so that proteins with larger molecular surface areas as seen in
column 5 will normally generate larger number of elements. A
few exceptions happen when MSMS modifies the given density
to fit its triangulation needs, resulting in a slightly mismatched
order for the data in columns 3 and 5. Column 4 gives the
number of atoms of associated proteins. We can see in most of the
cases the larger number of atoms results in the larger molecular
surface area and number of elements. Column 6 lists the number
of iterations. From this column, we noticed the GABI-PB solver
converges within 20 steps on the majority of the proteins and
the number of iterations does not increase with the increment
of the number of elements, which contributes to the well-posed
integral formulation. Occasionally, the number of iteration is high,
for example for the 7th, 8th, and 24th proteins. This largely
attributes the fact that the MSMS triangulations of these proteins
have triangles with very small areas or very short sides. Currently
we are working on a project to improve the triangulation. We also
plot the number of iterations vs the number of elements in Fig. 2(a)
on which the fact that most numbers of iterations are consistently
low with a few exceptions is visualized. Column 7 reports the
solvation energies. We compare these values with results from
our previous work in [35] and consistency of results are observed.
Column 8 shows the time for solving PB equation and computing
the electrostatic solvation energy on one CPU (T1 in seconds),
Column 9 displays the time for that with GPU acceleration (Tp in
seconds), and Column 10 reports the ratio between them. From
column 9, we can see most of the jobs are finished within 2–3 min
except jobs on proteins with slow convergence (e.g. the 7th, 8th
and 24th proteins). The ratio in the last column demonstrates the
overall 120–150X parallel speedup.

We also plot the results of the last three columns in Fig. 2.
From Fig. 2(b), we see the CPU time T1 is consistently a scale of
100+ of theGPU time Tp. Time increases as the number of elements
increases normally. Fig. 2(c) enables us to better observe that the
speed-up increases as the number of elements increases, which is
advantageous for solving problems of larger sizes.

Next we focus on two proteins: 1frd and 1svr. Results of these
two proteins in Table 3 show fast convergence with number of
iterations around 10 and they have surface areas more or less of
4500Å2 andnumber of elements is about 80,000 at ‘‘density = 10’’.
To test the accuracy and efficiency of GABI-PB solver on these two
proteins, we solve the PB equation and compute the electrostatic
solvation energy at different ‘‘densities’’ ranging from 1 to 32 by
doubling its value each time. The numerical results are shown in
Table 4. We can see that as the densities are doubled each time,
the number of elements are doubled approximately. The solvation
energies at different densities are approaching to the values at
the largest density 32. The running time Tp with GPU acceleration
increases at the rate of O(N2) after the number of elements are
sufficiently large. Both cases show that, for solving PB equation and
computing electrostatic solvation energy on molecular surfaces
discretizedwith nearly 300,000 elements, the time required is only
about 10 min. The number of iteration in Table 4 shows that the
finer resolution for the same molecular surface will not increase
the number of iterations. To further investigate the convergence
of accuracy on proteins, we plot the electrostatic solvation energy
on Fig. 3. By using cubic interpolation, we can see the electrostatic
solvation energy computed for both proteins eventually converge
toward its interpolated value (the red ‘‘∗’’).

4. Conclusion

This paper describes a direct summation basedGPU-accelerated
boundary integral Poisson–Boltzmann (GABI-PB) solver. This
solver discretizes the molecular surfaces with flat triangles and
Table 3
Numerical results for computing the electrostatic solvation energy of 24 proteins: N is the number of elements, Nc is the number of atoms, Nit is the number of iterations,
area is the molecular surface area, Esol is the electrostatic solvation energy, T1 is the running time on one CPU, and Tp is the running time with GPU acceleration.

ID PDB N Nc Area (Å2) Nit Esol (kcal/mol) CPU T1 (s) GPU Tp (s) T1/Tp

1 1ajj 40 496 519 2176 8 −1145.76 1323 11 125
2 2erl 43 214 573 2329 8 −961.68 1410 11 124
3 1cbn 44367 648 2377 8 −307.03 1486 12 129
4 1vii 47 070 596 2488 11 −915.18 2501 19 129
5 1fca 47461 729 2558 8 −1215.34 1699 13 127
6 1bbl 49071 576 2599 10 −1001.47 2267 17 134
7 2pde 50518 667 2727 99 −824.91 25985 194 134
8 1sh1 51186 702 2756 100 −760.71 27160 201 135
9 1vjw 52536 828 2799 8 −1255.93 2085 16 133

10 1uxc 53602 809 2848 9 −1154.60 2437 18 136
11 1ptq 54260 795 2910 10 −883.77 2778 21 130
12 1bor 54629 832 2910 12 −863.91 3657 28 132
13 1fxd 54692 824 2935 7 −3344.56 1963 15 129
14 1r69 57646 997 3068 9 −1100.83 2823 22 131
15 1mbg 58473 903 3085 9 −1368.58 2901 22 132
16 1bpi 60600 898 3247 24 −1320.89 9004 64 141
17 1hpt 61164 858 3277 11 −825.59 4248 32 133
18 451c 79202 1216 4778 19 −1038.20 11812 87 136
19 1svr 81198 1435 4666 10 −1731.54 7294 53 138
20 1frd 81972 1478 4387 9 −2890.28 5676 41 139
21 1a2s 84527 1272 4457 16 −1941.37 11461 83 139
22 1neq 89457 1187 4738 19 −1756.02 15077 106 142
23 1a63 132134 2065 7003 11 −2404.07 19804 139 143
24 1a7m 147121 2809 7769 54 −2184.05 124326 852 146



W. Geng, F. Jacob / Computer Physics Communications 184 (2013) 1490–1496 1495
Fig. 2. Numerical results for solving PB equation and computing electrostatic solvation energy on a set of 24 proteins: (a) number of iterations; (b) CPU time T1 and GPU
time Tp; (c) the parallel speedup T1/Tp .
Table 4
Numerical results for solving PB equation and computing the electrostatic solvation energy on protein 1frd and 1svr.

Density 1frd 1svr
# of ele. Esol GPU Tp (s) # of it. # of ele. Esol GPU Tp(s) # of it.

1 10176 −3360.69 2 18 13974 −2038.30 2 11
2 17710 −3003.45 2 9 22946 −1833.41 4 10
4 34520 −2931.05 8 9 38116 −1769.44 10 9
8 66294 −2894.02 28 9 71030 −1735.37 31 9

16 134180 −2880.90 109 9 144168 −1723.64 140 10
32 266702 −2872.65 423 9 284478 −1716.94 642 11
Fig. 3. Accuracy tests in terms for electrostatic solvation energy for proteins 1frd (a) and 1svr (b).
performsnumerical integrationwith centroid collocation schemes.
The numerical tests on spherical cavities show that GABI-PB solver
can achieve 0.5th order convergence on surface potentials relative
to the number of elements, which is a 1st order convergence
relative to the length. The accurate surface potentials are of
vital importance to molecular modelings that are sensitive to
electrostatics near or on the molecular surface. Meanwhile,
this direct-sum boundary integral implementation uses memory
efficiently. It has been shown that we only need to allocate
altogether 6Nc + 11N size-of-double device memory, where
Nc is the number of atoms and N is the number of triangular
elements. In addition, numerical tests on a series of 24 proteins
show fast convergence, consistent electrostatic solvation energy
computation, as well as 120–150X speedup, using a single GPU
(Nvidia Tesla M2070) card.

The major limitation of the direct-sum scheme is obviously
the O(N2) computational cost, which becomes prohibitively ex-
pensive when the dimension of the problem increases to certain
level. Even though using multiple GPU cards can offset some of
this effect, it costs extra design, implementation, and hardware
purchase. A remedy to this is, applying the fast algorithms such
as the O(N logN) treecode [17] and the much more complicated
and memory-consuming O(N) FMM [32], which is under our in-
vestigation. It is hard to deny that the adoption of fast algorithms
is necessary for large sized problems. However, there is a region on
which the direct-sum GABI-PB solver has advantages over bound-
ary integral PB solvers with fast algorithms. This region is bounded
by what we called critical point, where the fast algorithms surpass
the direct sum. For example, the CPU implementation of a treecode
algorithm in solving boundary integral PB equation [17] shows a
critical point at about N = 4000 with p = 3 (the order of Taylor
expansion) andMAC ≤ 0.5 (multipole acceptance criterion, the ra-
tio between cluster radius and the distance between target particle
and the center of the cluster). In GPU implementation, the critical
point will be much bigger in considering the communication and
memory access. We will identify the value of critical point in our
future work.

Memory usage is a critical factor of GPU performance. For
solving boundary integral PB, direct-sum uses about 1/3 of
memory of treecode [17] and 1/7 of memory of FMM [32]. The
current GPU implementation is run on an available Tesla M2070
card. When we are considering to rerun all the tests on a Tesla
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M2090, Nvidia announced its release of Tesla K10 followed by
K20 and K20x, showing the rapid hardware update year after
year. Taking M2070 and K20x as examples for comparison, the
peak double precision floating points performance increases from
515Gflops to 1.31Tflops, the memory bandwidth increases from
150 GB/s to 250 GB/s, and the number of CUDA cores increases
from 448 to 2688. However the memory is still limited at 6Gbyte.
These comparisons indicate the proposed direct-sum boundary
integral PB solver, benefited from its low memory use, will
demonstrate continuously improving performance with the flow
of GPU hardware updates.

In addition to including fast algorithms, there are many spaces
in which GABI-PB can be improved and extended. For example,
we are looking for better triangulation programs for the molecular
surfaces [36–38] to avoid the slow convergence pattern for some
proteins as seen in our tests. A more challenging problem is the
application of GABI-PB to molecular dynamics [39,40], where the
PB equation will be solved at every time sampling. For molecular
surfaces discretized within 50,000 elements, GABI-PB can resolve
each sample in a few seconds or less. Furthermore, the GPU-
accelerated boundary integral scheme has the potential to solve
other integral equations such as the Helmholtz equation and
Maxwell Equations.
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