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In this paper, we present a parallel higher-order boundary integral method to solve the linear
Poisson–Boltzmann (PB) equation. In our method, a well-posed boundary integral formula-
tion is used to ensure the fast convergence of Krylov subspace linear solver such as GMRES.
The molecular surfaces are first discretized with flat triangles and then converted to curved
triangles with the assistance of normal information at vertices. To maintain the desired accu-
racy, four-point Gauss–Radau quadratures are used on regular triangles and sixteen-point
Gauss–Legendre quadratures together with regularization transformations are applied on
singular triangles. To speed up our method, we take advantage of the embarrassingly parallel
feature of boundary integral formulation, and parallelize the schemes with the message
passing interface (MPI) implementation. Numerical tests show significantly improved accu-
racy and convergence of the proposed higher-order boundary integral Poisson–Boltzmann
(HOBI-PB) solver compared with boundary integral PB solver using often-seen centroid col-
location on flat triangles. The higher-order accuracy results achieved by present method are
important to sensitive solvation analysis of biomolecules, particularly when accurate
electrostatic surface potentials are critical in the molecular simulation. In addition, the
higher-order boundary integral schemes presented here and their associated parallelization
potentially can be applied to solving boundary integral equations in a general sense.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Molecular modeling is a rising interdisciplinary approach on the study of structure, function and dynamics of molecules
with biological significance [1]. Among interactions in molecular modeling, electrostatics are critical due to their ubiquitous
existence. Meanwhile, electrostatics are expensive to compute as they are long-range and pairwise interactions. The Pois-
son–Boltzmann (PB) model is an effective approach to resolve the electrostatics including energy, potential and force of sol-
vated biomolecules [2]. As an implicit solvent model, the PB model considers solvent effects with a mean field
approximation, and models the mobile ions with the Boltzmann distribution. These implicit treatments of solvent surround-
ings make the PB model computationally more efficient compared with explicit solvent models, in which atomic details of
solvent molecules and electrolytes are described. Recently, experimentalists also showed interests in using the PB model to
provide references for newly released structures of biomolecules e.g. the neurotransmitter receptor Acetylcholine [3] and the
Circadian clock complex CLOCK:BMAL1 [4].

In the PB model, as illustrated in Fig. 1(a), the computational domain R3 is divided into the solute (molecule) domain X1

and the solvent domain X2 by a closed molecular surface C such that R3 ¼ X1 [X2 [ C. As shown in Fig. 1(b), the molecular
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surface C is formed by the traces of a spherical solvent probe rolling in contact with the van del Walls balls of the solute
atoms [5,6]. The solvated molecule, which is located in domain X1 with dielectric constant e1, is represented by a set of
Nc point charges carrying Q i charge in the units of ec at positions xi; i ¼ 1; . . . ;Nc . The exterior domain contains the solvent
with dielectric constant e2, as well as mobile ions. For x ¼ ðx; y; zÞ, the PB equation for the electrostatic potentials in each
domain is derived from the Boltzmann distribution and Gauss’ law and has the form
Fig. 1.
molecu
r � ðe1ðxÞr/1ðxÞÞ ¼ �
XNc

i¼1

qidðx� xiÞ in X1; ð1Þ

r � ðe2ðxÞr/2ðxÞÞ � j2 sinh /2ðxÞ ¼ 0 in X2; ð2Þ

/1ðxÞ ¼ /2ðxÞ; e1
@/1ðxÞ
@m

¼ e2
@/2ðxÞ
@m

on C; ð3Þ

lim
jxj!1

/2ðxÞ ¼ 0; ð4Þ
where /1 and /2 are the electrostatic potentials in each domain, qi ¼ ecQ i=kBT; i ¼ 1; . . . ;Nc , ec the electron charge, kB the
Boltzmann’s constant, T the absolute temperature, d the Dirac delta function, j the Debye–Hückel parameter, and m the unit
outward normal on the interface C. We assume weak ionic strength in this context therefore the non-linear sinh function
term can be approximated by its linearized term, resulting in the linear PB equation with sinh /2ðxÞ term replaced by
/2ðxÞ in Eq. (2).

The linear PB model is an elliptic equation defined on multiple domains with discontinuous coefficients across the do-
main interfaces. The PB equation has an analytical solution only for the simple geometries such as spheres [7] or rods [8].
For molecules with complex geometries, the PB equation can only be solved numerically, which is challenging due to the
following numerical difficulties.

(1) The solutions to the PB equation, physically the electrostatic potentials, are not smooth across the interface as the con-
tinuities of both the potentials and the flux densities in Eq. (3) across the interface C are required to be satisfied.

(2) The complex geometry of the interface needs to be captured to maintain the accuracy of the potentials particularly on
or near the interface.

(3) The partial charges carried by the individual atoms of the solute, modeled by the weighted summation of the Dirac
delta functions, is hard to accurately discretize.

(4) The PB equation is defined on the entire R3 domain subject to boundary condition that the potentials approach zero at
infinity thus a cutoff for 3D mesh-based methods is inevitable.

The wide application of the PB model as well as its associated numerical difficulties attracted attention from various com-
putational science communities ranging from biophysics, biochemistry, mathematics, computer science, mechanical engi-
neering as well as electrical engineering. Many numerical PB solvers were developed and they can be roughly but not
completely divided into two categories: The 3D mesh-based finite difference/finite element methods [9–14]; and the bound-
ary integral methods [15–24]. All these methods have their own advantages and disadvantages. For example, the PB solvers
embedded in molecular modeling packages such as Dephi [9], CHARMM [10], AMBER [11], APBS [12] use standard seven-
point finite difference with approximated approaches to bypass the numerical difficulties (1)–(4). Although arguably these
(a)

(b)

(a) Poisson–Boltzmann (PB) model: domains X1ðmoleculeÞ and X2ðsolventÞ with different dielectric constants e1 and e2 respectively; (b) the
lar surface is formed by the trace of solvent probe in contact with the solute (molecule).
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solvers have reduced accuracy, the efficient, robust and user-friendly features of these PB solvers brought their popularities
among the bio-oriented community. An often overlooked drawback of these solvers is that they provide acceptable accuracy
of resolved electrostatics potentials away from the interface but are unable to provide accurate solutions near or on the inter-
faces. Applications such as molecular simulation related to ion channels [25], cell membranes [26], and chromatin pack-
ing[27] require accurate electrostatic potentials and fields near or on the interface, thus call for developing higher-order
methods to solve the PB equation. Three-dimensional mesh-based Interface methods such as Immersed Interface Methods
(IIM) [13] and Matched Interface and Boundary Poisson–Boltzmann (MIBPB) solver [14] can significantly improve the accu-
racy by rigorously treating the numerical difficulties (1)–(3). However, these methods need to cope with numerical difficulty
(4) and the complexities of the algorithms often reduce the efficiency.

Compared with 3D mesh-based methods, the boundary integral methods have many advantages.

(1) The solution is characterized solely in terms of surface distributions so there are fewer unknowns in comparison to
methods that discretize the entire domain.

(2) The far-field boundary condition in Eq. (4) is exactly imposed.
(3) The surface geometry of C can be represented to high precision using appropriate boundary elements.
(4) The electrostatic potential at charge sites are accurately determined using exact analytical expressions.
(5) The continuity conditions in Eq. (3) are explicitly enforced.

Due to these advantages, boundary integral PB solvers have gained increased attention and we briefly review studies
relating to the present work. In 1988, Zauhar et al. [28] introduced the boundary integral formulation by solving the Poisson
equation for the induced surface charges. In 1990, Yoon and Lenhoff [29] formulated an ill-posed integral formulation of the
PB equation. In 1991, Juffer et al. [15] reformulated the previous work to obtain a well-posed formulation, which were ap-
plied by most of the boundary integral PB solvers after that. The boundary integral methods can analytically circumvent the
numerical difficulties (1)–(4), and accelerate the solver with fast algorithms such as fast multipole method (FMM) [16,17,19]
and treecode [20]. These boundary integral PB solvers mostly applied centroid collocation methods on flat triangle and
benchmark tests on spherical cavities with available analytical solutions show 0.5th order accuracy relative to number of
elements [17,20], which left spaces for the more challenging problem of developing higher-order boundary integral PB
solver.

In this paper, we present a more accurate boundary integral PB solver on curved triangles with higher-order quadratures
and regularization of singularities. The rest of the paper is organized as follows. In Section 2, we provide our algorithms
including the well-posed boundary integral formulation and the higher-order numerical schemes, followed by the MPI par-
allelization. In Section 3, we provide the numerical results, first on the spherical cavities with centered and eccentric partial
changes whose analytical solutions are available and then on a protein (PDB: 1ajj) for the electrostatics solvation energy
computation and the parallel efficiency. This paper ends with a section of concluding remarks.

2. Methods

We will use the well-posed boundary integral formulation from Juffer’s work [15] together with high order quadrature
[28] and singularities regularization by a transformation [30,31]. We modify and improve these methods as needed and
we will explain the details in this section. One fact affecting the accuracy of boundary integral methods is the discretization
of the surface. For the sphere, we use a non-uniformed triangular surface from MSMS [32] with radial projection to correct
the truncated output, or a uniform icosahedral triangulation [33]. For biomolecules, we only use MSMS to generate the flat
triangles. All flat triangles are then converted to curved triangles by applying the schemes introduced as follows. Through the
paper, we call our higher-order boundary integral Poisson–Boltzmann solver as HOBI-PB solver.

2.1. Well-posed integral formulation

The differential PB equation in Eqs. (1) and (2) can be converted to boundary integral equation. By applying the funda-
mental solution of Poisson Eq. (1), G0, in X1 and the fundamental solution of PB Eq. (2), Gj, in X2, together with Green’s sec-
ond theorem, and cancel the normal derivative terms with interface jump conditions in Eq. (3), the coupled integral
equations can be derived as [29]:
/1ðxÞ ¼
Z

C
G0ðx; yÞ

@/1ðyÞ
@my

� @G0ðx; yÞ
@my

/1ðyÞ
� �

dSy þ
XNc

k¼1

qkG0ðx; ykÞ; x 2 X1; ð5Þ

/2ðxÞ ¼
Z

C
�Gjðx; yÞ

@/2ðyÞ
@my

þ @Gjðx; yÞ
@my

/2ðyÞ
� �

dSy; x 2 X2; ð6Þ
where G0ðx; yÞ and Gjðx; yÞ are the Coulomb and screened Coulomb potentials,
G0ðx; yÞ ¼
1

4pjx� yj ; Gjðx; yÞ ¼
e�jjx�yj

4pjx� yj : ð7Þ
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However, straightforward discretization of Eqs. (5) and (6) yields a linear system which becomes ill-conditioned as the num-
ber of boundary elements increases [34]. Juffer et al. derived a well-posed boundary integral formulation by going through
the differentiation of the single-layer and double-layer potentials [15]. The desired forms are:
1
2

1þ eð Þ/1ðxÞ ¼
Z

C
K1ðx; yÞ

@/1ðyÞ
@my

þ K2ðx; yÞ/1ðyÞ
� �

dSy þ S1ðxÞ; x 2 C; ð8Þ

1
2

1þ 1
e

� �
@/1ðxÞ
@mx

¼
Z

C
K3ðx; yÞ

@/1ðyÞ
@my

þ K4ðx; yÞ/1ðyÞ
� �

dSy þ S2ðxÞ; x 2 C; ð9Þ
with the notation
K1ðx; yÞ ¼ G0ðx; yÞ � Gjðx; yÞ; K2ðx; yÞ ¼ e
@Gjðx; yÞ
@my

� @G0ðx; yÞ
@my

;

K3ðx; yÞ ¼
@G0ðx; yÞ
@mx

� 1
e
@Gjðx; yÞ
@mx

; K4ðx; yÞ ¼
@2Gjðx; yÞ
@mx@my

� @
2G0ðx; yÞ
@mx@my

; ð10Þ

S1ðxÞ ¼
XNc

k¼1

qkG0ðx; ykÞ; S2ðxÞ ¼
XNc

k¼1

qk
@G0ðx; ykÞ

@mx
ð11Þ
and e ¼ e1=e2. Note this is the well-posed Fredholm second kind of integral equation which is also our choice in this paper.
In order to numerically solve the coupled Eqs. (8) and (9), we need to discretize the molecular surface C with high quality

elements and implement the numerical integral with higher-order quadrature. We also need to treat the occurred singular-
ities or near-singularities when x and y are equal or nearly equal in Kernels K1;...;4. These details are described in the following
subsections.

2.2. Curved triangles and higher-order quadratures

Given the positions and radii of all atoms of a molecule, a triangulation program e.g. MSMS [32] can generate a discretized
surface with a set of Nf flat triangles, Nv nodes (vertices) and corresponding normal directions. To achieve higher-order accu-
racy, we apply the schemes described in [28] to convert these flat triangles to curved triangles under the new background of
solving the well-posed integral PB equation in Eqs. (8) and (9). We also modify and improve these schemes to treat the sin-
gularities of kernels K1;...;4 in Eq. (10). To keep this paper in an integrated form, we start from restating the schemes in [28] to
produce the curved triangles and higher-order quadratures for discretizing Eqs. (8) and (9).

We first replace the straight element edges as shown in Fig. 2(a) with curved arcs in Fig. 2(b) [28]. Let xðtÞ be the arc be-
tween two nodes, parameterized by the dimensionless variable t,
xðtÞ ¼ c0 þ c1t þ c2t2 þ c3t3; ð12Þ
where c0; c1; c2; c3 are vector constants (12 unknowns), which will be determined by a pair of connected nodes and associ-
ated unit normals (12 conditions). At any point on the curve, the normal can be found by nðtÞ ¼ sgnðtÞ jðtÞ

jðjðtÞÞj, where

sgnðtÞ ¼ �1 is chosen to keep a constant orientation of nðtÞ along the curve and jðtÞ is the curvature given as [28]:
jðtÞ ¼ 1
dx=dt

d2x

dt2 �
ðdx

dt � d2x
dt2 Þ

jdx=dtj2
dx
dt

" #
: ð13Þ
As shown in Fig. 2(c), we can use parameter u 2 ½0;1� for the two curves starting from X1 and ending at X2 and X3. Then for
any given u, two points on the curves X1X2 and X1X3 are specified, say Y1 and Y2 with normal directions. By following the
same procedure, we could find a curve connecting Y1 and Y2, using v 2 ½0;1� as the parameter. The pair of parameters ðu;vÞ
will therefore correspond to a point on the curve element.
X1

X3X2

X1

X3X2

X1

X3X2

u
u

(u,v)
v

Y1
Y2

(c)(b)(a)

Fig. 2. Triangular surface elements: (a) a flat triangle (b) a curved triangle (c) curve linear coordinates (u,v) in the curved triangle.
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In order to conveniently use quadrature rules, the integral is conducted in a unit right triangle. A mapping between the
parameters r; s 2 ½0;1� on the unit right triangle in Fig. 3(a) and parameters u;v on a unit square in Fig. 3(b) is constructed
with the following transformation [28].
u ¼ ðr þ sÞ; v ¼ s=ðr þ sÞ; if r þ s – 0;
u ¼ 0; v ¼ 0; if r ¼ s ¼ 0;

�
ð14Þ
Based on this, we can establish the mapping from point ðr; sÞ on the unit right triangle in Fig. 3(a) to point
xðjÞðuðr; sÞ;vðr; sÞÞ ¼ xðjÞðr; sÞ on the jth curved elements in Fig. 3(c) by the following steps:

(1) Given ðr; sÞ, find u;v through Eq. (14).
(2) Plug u as the parameter into the curve functions of X1X2 and X1X3 to locate Y1 and Y2 as shown in Fig. 2(c).
(3) Find the curve function of Y1Y2 and then plug v as the parameter to finally get xðjÞ on the curved elements.

However, this is not an analytical function for efficient computations but a constructive procedure. As a remedy, a high-
order 10-point interpolation scheme is used [28]. The brief idea is illustrated in Fig. (3) on the jth element of the
triangulation.

(1) Pick 10 specified points ðrk; skÞ first in the right unit triangle for k ¼ 1;2; . . . ;10.
(2) Find uðrk; skÞ; vðrk; skÞ according to Eq. (14).
(3) Find xjðuðrk; skÞ; vðrk; skÞÞ and their normal directions on the curved element, which is parameterized by ðu;vÞ. Note

points 1;4;9 are already given with the flat triangles. With these three nodes, three trajectories can be found and used
to find the positions and normal directions of points 2;3;5;6;7;8. Finally with points 5 and 6, the dashed trajectory
can be formed to find point 10 and its normal direction.

(4) As required by the quadrature rules, interpolate any point on the curved element xðjÞðr; sÞ by the expression
xðjÞðr; sÞ ¼
X10

k¼1

Nkðr; sÞxðjÞk ; ð15Þ
where Nkðr; sÞ are Lagrangian interpolation polynomial for a 10-point element. See Table 1 of [28] for the expression of
Nkðr; sÞ. Note Eq. (15) can also be used to find the partial derivative of xðjÞ with respect to r and s, which is required for com-
puting the Jacobian for transformation and the normal direction at xðjÞ.

Suppose now we will integrate function f ðxÞ on the jth curved element. The quadrature rules give the position of a set of
points on the unit right triangle e.g. ðrm; smÞ and quadrature weights Wm for m ¼ 1;2; . . . ;N, where N is the number of quad-
rature points, and the integral can be evaluated as:
Z

Mj

f ðxÞdA ¼
XN

m¼1

f ðxðrm; smÞÞ
@xðrm; smÞ

@r
� @xðrm; smÞ

@s

����
����Wm ð16Þ
Note the term @xðrm ;smÞ
@r � @xðrm ;smÞ

@s gives the normal direction of the point xðjÞðr; sÞ with parameters ðr; sÞ, and we will use this
information to supply the required normal direction in Eqs. (8) and (9).

In this paper, we use N ¼ NGR points (practically we choose NGR ¼ 4) in the Gauss–Radau quadrature [35]. For
i ¼ 1;2; . . . ;Nv , the ith and the ðiþ Nv Þth element of the discretized matrix–vector product Au are given as
2 3 4

5 6

7 8

9

10

1

(1/3,2/3)

(2/3,1/3)

(1,0)(0,0) (1/3,0) (2/3,0)

(1/3,1/3)(0,1/3)

(0,2/3)

(0,1)

r

s

u

v

1 2 3 4

5

6

7

8

9

10

(0,0) (1/3,0) (2/3,0) (1,0)

(1,1/3)

(1,2/3)

(1,1)
(1/3,1) (2/3,1)

(2/3,1/2)

2 3
4

5
6

7 8

9

10

1

(c)(b)(a)

Fig. 3. Coordinates transformation.
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fAugr
i ¼

1
2

1þ eð Þ/1ðxiÞ �
XNr

i

j¼1

XNGR

m¼1

X3

n¼1

Wj;m;n K1ðxi; yj;mÞ
@/1ðxj;nÞ
@mxj;n

þ K2ðxi; yj;mÞ/1ðxj;nÞ
" #

; ð17Þ

fAugr
iþNv
¼ 1

2
1þ 1

e

� �
@/1ðxiÞ
@mxi

�
XNr

i

j¼1

XNGR

m¼1

X3

n¼1

Wj;m;n K3ðxi; yj;mÞ
@/1ðxj;nÞ
@mxj;n

þ K4ðxi; yj;mÞ/1ðxj;nÞ
" #

: ð18Þ
In Eqs. (17) and (18), the superscript r of fAug stands for regular triangle, Wj;m;n contains the weights and coefficients asso-
ciated with the quadrature, the transformation Jacobian, and the interpolation coefficients in Eq. (15). Note that Nr

i is the
number of regular triangles associated with the ith vertex. In these equations, xj;n are the same set of nodes as xi, but yj;m

are the quadrature points on the jth curved element, which are mapped from the predetermined points on the unit right
triangle. This mismatch brings difficulty to apply Fast Multipole Method or treecode to accelerate the higher-order scheme.
Studies about this issue will be proceeded in our future work.

2.3. Treatment of singularities

From Eqs. (17) and (18), we can see that when node i is one of the vertices of the jth curved triangular element, singularity
or near singularity occurs at evaluating kernels K1;...;4. In other words, xi is equal to or nearly equal to yj;m. It can be shown
that the singularities in kernels K1;...;4 are in the order ofOð 1

jxi�yj;m j
Þ [15]. To treat these singularities, we use the tensor-product

of Gauss–Legendre quadrature on a unit square, together with a transformation [30,31]. In this case the mapping from a unit
square (0 6 x; y 6 1) to a unit right triangle (0 6 r; s 6 1 and r þ s 6 1), and to a curved triangle is constructed. The mapping
that r ¼ ð1� yÞx and s ¼ yx for 0 6 x; y 6 0 is used to remove the singularities in kernels K1;...;4 when they appear at
ðr; sÞ ¼ ð0;0Þ which indicates x ¼ 0. To understand this, it can be seen that the Jacobian for the transformation from ðr; sÞ
to ðx; yÞ is x, thus it can remove the Oð 1

jxi�yj;m j
Þ type of singularities.

In the treatment of singularities, if the number of quadrature points used in each direction of the Gauass-Lagendre quad-
rature is NGL, the ith and ðiþ NvÞth element of the discretized matrix–vector product Au will in addition contain the follow-
ing singular component
fAugs
i ¼

1
2

1þ eð Þ/1ðxiÞ �
XNs

i

j¼1

XðNGLÞ2

m¼1

X3

n¼1

Wj;m;n K1ðxi; yj;mÞ
@/1ðxj;nÞ
@mxj;n

þ K2ðxi; yj;mÞ/1ðxj;nÞ
" #

; ð19Þ

fAugs
iþNv
¼ 1

2
1þ 1

e

� �
@/1ðxiÞ
@mxi

�
XNs

i

j¼1

XðNGLÞ2

m¼1

X3

n¼1

Wj;m;n K3ðxi; yj;mÞ
@/1ðxj;nÞ
@mxj;n

þ K4ðxi; yj;mÞ/1ðxj;nÞ
" #

: ð20Þ
In Eqs. (19) and (20), the superscript s of fAug stands for singular triangle, and Wj;m;n contains the weights and coefficients
associated with the quadrature, the transformation Jacobians (additionally contains the Jacobian of the r ¼ ð1� yÞx and
s ¼ yx mapping), and the interpolation coefficients in Eq. (15). Note index j has the range up to Ns

i , which stands for the num-
ber of singular triangles associated with the ith vertex. Simulation shows this value is various for different vertices and it can
be as big as 15. In this paper, we practically choose NGL ¼ 4 points in each direction to ensure desired accuracy [35].

2.4. Low-order scheme

We also briefly introduce the low-order boundary integral Poisson–Boltzmann (LOBI-PB) solver, which is used for com-
parison in this paper. In this low-order scheme, the flat triangle and centroid collocation are used, i.e. the quadrature point is
located at the center of each triangle. This scheme also assumes that the potential and its normal derivative, as well as the
kernel functions are uniform on each triangle. When singularity in kernels occurs, the contribution of this triangle in the
integral is then simply removed. This scheme is in fact widely used in latest boundary integral methods in solving PB equa-
tions to provide convenience on incorporating fast algorithms such as FMM [34] and treecode [20]. For i ¼ 1;2; . . . ;Nf , the ith
and the ðiþ Nf Þth element of the discretized matrix–vector product Au are given as
fAugi ¼
1
2

1þ eð Þ/1ðxiÞ �
XNf

j¼1;j–i

Wj K1ðxi; xjÞ
@/1ðxjÞ
@mxj

þ K2ðxi;xjÞ/1ðxjÞ
" #

; ð21Þ

fAugiþNf
¼ 1

2
1þ 1

e

� �
@/1ðxiÞ
@mxi

�
XNf

j¼1;j–i

Wj K3ðxi;xjÞ
@/1ðxjÞ
@mxj

þ K4ðxi;xjÞ/1ðxjÞ
" #

: ð22Þ
It worths mentioning that the unknowns of LOBI-PB is at the centroid of the triangle in the number of Nf while the unknowns
of HOBI-PB is at the vertices of the triangle in the number of Nv .



Table 1
Pseudocode for parallel HOBI-PB solver using replicated data algorithm.

1 On main processor
2 Read protein data
3 Call MSMS to generate triangulation
4 Copy protein data and triangulation to all other processors
5 On each processor
6 Locally compute sources terms for each assigned vertex
7 Locally convert flat triangles to curved triangles
8 For each assigned triangle, locally compute and store quadrature information
9 For each assigned vertex, locally store quadrature of associated singular triangles

10 Copy result to all other processors
11 Set initial guess for GMRES iteration
12 Compute assigned segment of matrix–vector
13 Copy result to all other processors
14 On main processor
15 Test for GMRES convergence
16 If no, go to step 12 for next iteration
17 If yes, go to step 18
18 On each processor
19 Compute assigned segment of electrostatic solvation energy
20 Copy result to main processor
21 On main processor
22 Add segments of electrostatic solvation energy and output result
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2.5. Electrostatic solvation energy formulation

The electrostatic solvation energy is computed by
Esol ¼
1
2

XNc

k¼1

qk/reacðxkÞ ¼
1
2

XNc

k¼1

qk

Z
C

K1ðxk; yÞ
@/1ðyÞ
@my

þ K2ðxk; yÞ/1ðyÞ
� �

dSy; ð23Þ
where /reacðxkÞ ¼ /1ðxkÞ � S1ðxkÞ, whose formulation is the integral part of Eq. (23), is the reaction potential at the kth solute
atom. The electrostatic solvation energy, which can be regarded as the atomistic charge weighted average of the reaction
potential /reac, can effectively characterize the accuracy of a PB solver.
2.6. MPI based parallel implementation

The HIBO-PB solver uses the boundary integral formulation, which can be conveniently parallelized. The majority of the
CPU time is taken by the following routines.

(1) Compute the source term in Eqs. (8) and (9).
(2) Convert flat triangles to curved triangles.
(3) Compute and store the Gauss–Radau quadrature information for each curved triangle.
(4) Compute and store the Gauss–Legendre quadrature information for singular triangles associated with each vertex.
(5) Perform matrix–vector product as in Eqs. (17)–(20) on each GMRES iteration.
(6) Compute electrostatic solvation energy with Gauss–Radau quadrature.

Among all these routines, routine (5) is the most expensive one and it will be repeatedly computed on each GMRES iter-
ation. We parallelize all these routines to maximize the parallel efficiency. Table 1 provides the Pseudocode for MPI based
parallel implementation.
3. Results

In this section, we present numerical results. We first solve the PB equation on spherical cavities with a centered charge
and with an eccentric change at different locations. The analytical solutions in terms of a closed form (for centered charge)
and in terms of spherical harmonics (for multiple eccentric charges) are available for these tests [7]. To demonstrate the
higher accuracy obtained by higher-order boundary integral Poission–Boltzmann (HOBI-PB) solver, we compare the numer-
ical results with APBS [12], MIBPB[14], and the lower-order boundary integral Poisson–Boltzmann (LOBI-PB) solver. APBS
uses straight-forward finite difference scheme. MIBPB is a 2nd order interface method repeatedly using local interpolation
to capture interface jump conditions [36,37] and applying a Dirichlet-to-Neumann mapping to transform the singular
charges to interface jump conditions [38]. LOBI-PB discretizes the integral equations with flat triangles and performs the
numerical integral with centroid collocation as explained in the previous section.
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We then solve the PB equation on a test protein (PDB: 1ajj), which is a lipprotein receptor with 37 residues and 519
atoms. We report the electrostatic solvation energy results for this protein computed from both HOBI-PB and LOBI-PB to
demonstrate the improved accuracy achieved by the higher-order integral schemes. All algorithms are written in Fortran
90/95 and compiled with GNU Fortran with flag -O3. The serial simulations are performed with a single CPU (Intel (R) Xeon
(R) CPU E5440 @ 2.83 GHz with 2 G Memory) on an 8-core workstation. MPI parallel simulations are conducted on the DMC
cluster (Intel (R) Xeon (R) CPU E5520 @ 2.27 GHz with 1.5 G memory for each core) at Alabama Supercomputing Center. Be-
fore seeing the numerical results, we define order and errors.

3.1. Order and errors

In this paper, we report the relative errors defined as
Table 2
Accurac

h

1
0.5
0.2
0.1
0.05
e/ ¼
max

i¼1;...;N
j/numðxiÞ � /exaðxiÞj

max
i¼1;...;N

j/exaðxiÞj
; ð24Þ
where N is the number of unknowns. Note N is the number of vertices for HOBI-PB, the number of triangular elements for
LOBI-PB, and the number of close-to-surface mesh points (irregular points) for APBS and MIBPB. The notation /num represents
numerically solved surface potentials and /exa denotes the analytical solutions obtained by Kirkwood’s spherical harmonic
expansion [7]. The discretization of APBS and MIBPB are on the Cartesian grid with mesh size h. The discretization of HOBI-PB
and LOBI-PB are on the molecular surface with density d, number of vertices per Å2.

The numerical order of accuracy is computed with
order ¼ logcoarse mesh
fine mesh

coarse error

fine error
ð25Þ
following the convention of numerical analysis, where ‘‘mesh’’ refers to h for finite difference methods or density d for
boundary integral methods, both at coarse and fine levels.

3.2. On a spherical cavity with one centered charge

We first solve the linear Poisson–Boltzmann equation on a spherical cavity with radius 2 Å and a centered change 1ec sub-
merged in water with zero ionic strength. We report the electrostatic solvation energy Esol and surface potential errors e/

computed with all above-mentioned methods in Table 2. The results of APBS and MIBPB are from reference [38].
From Table 2, we can see that APBS provides acceptable value in electrostatic solvation energy compared with the true

value 81.98 kcal/mol since only the potential at the center of the spherical cavity is required to compute the electrostatic
solvation energy. However, the surface potentials computed by APBS method show large errors. This is due to the approx-
imation on interface conditions and singular charges of standard finite difference methods.

MIBPB uses a more sophisticated finite difference scheme. The rigorous treatment on interface conditions and singular
charges significantly improves accuracy. The electrostatic solvation energy is nearly perfect even at coarse grid and the sur-
face potential is very accurate with solid 2nd order convergence pattern relative to mesh-size h.

LOBI-PB gives the electrostatic solvation energy in the same accurate level as APBS but produces much more accurate sur-
face potentials than APBS does. These surface potentials converge at the 0.5th order relative to density d.

HOBI-PB is obviously a more accurate method. It shows 1.5th order of convergence relative to density d as reflected from
surface potential errors and its accuracy is even better than results from MIBPB.

These results demonstrate HOBI-PB is the most accurate PB solver among its peers. According to our knowledge, for this
classic benchmark test, there is no other PB solvers can achieve the same level of accuracy as HOBI-PB does.

3.3. A spherical cavity with one eccentric charge

We further investigate the performance of HOBI-PB and LOBI-PB on a spherical cavity with radius 1 Å and a 1ec eccentric
charge at different locations. The errors shown are in terms of surface potential eu as previously defined. The Debye–Hückel
y comparison of different PB solvers on a spherical cavity (radius = 2 Å, qð0;0;0Þ ¼ 1ec ; e ¼ 80; j ¼ 0); h the mesh size; d the number of vertices per Å2.

APBS MIBPB d HOBI-PB LOBI-PB

Esol e/ ord. Esol e/ ord. Esol e/ ord. Esol e/ ord.

-83.44 1.94e + 0 -81.95 1.24e�2 5 -81.98 1.45e�4 -83.41 4.07e�4
-85.85 1.31e + 0 0.6 -81.98 1.91e�3 2.7 10 -81.98 5.26e�5 1.5 -83.13 2.55e�4 0.7
-82.58 5.76e�1 0.9 -81.98 3.87e�4 1.7 20 -81.98 1.52e�5 1.8 -82.82 1.82e�4 0.5
-82.27 2.94e�1 1.0 -81.98 1.07e�4 1.9 40 -81.98 6.13e�6 1.3 -82.60 1.27e�4 0.5
-82.03 1.49e�1 1.0 -81.98 2.31e�5 2.2 80 -81.98 1.85e�6 1.7 -82.43 8.58e�5 0.6



W. Geng / Journal of Computational Physics 241 (2013) 253–265 261
parameter j is set to 1. The charge moves from the center of the sphere toward to the surface and we test the performance of
the PB solvers in response to the change of locations. The closer the charge is to the surface, the more variant the induced
charges on the surface appear to be. This interesting phenomenon draws attention from many researchers, e.g. the peak sep-
aration method by Juffer et al. [15] and the image method by Deng et al. [39]. In addition to that, we also try to investigate if
the quality of the triangulation will affect the accuracy. To this end, we report the results computed on the triangular sur-
faces generated by MSMS [32] and by a uniform icosahedral triangulation routine (ico) [33]. MSMS generates triangles in
various shapes and sizes, while ico generates uniform and equilateral triangles with fixed numbers of triangles such as
20;80;320, etc. The results are plotted in Fig. 4, and we have the following observation and discussion.
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Fig. 4. relative surface potential errors (e/) on a spherical cavity with radius 1 Å and eccentric unit charge, j ¼ 1, and e ¼ 80: (a) LOBI-PB, MSMS; (b) HOBI-
PB, MSMS; (c) LOBI-PB, ico; (d) HOBI-PB, ico; (e) error vs. elements # N, a charge located at (0,0,0); (f) error vs. elements # N, a charge located at (0.9,0,0).
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(1) The results of HOBI-PB in Fig. 4(b)–(d) show significant improvement in accuracy compared with results of LOBI-PB in
Fig. 4(a)–(c). For HOBI-PB, the errors are smaller in general and the difference between two different meshes are larger,
indicating better accuracy and higher-order convergence.

(2) LOBI-PB, due to its simplicity in algorithm, shows more consistent convergence pattern. HOBI-PB, however affected by
the quadrature rule and singularity removal schemes, shows some irregular patterns.

(3) We also observe that when the charge is located close to the interface e.g. at (0.9,0,0), for coarse mesh, LOBI-PB shows
better accuracy than that from HOBI-PB. This is due to the fact that the close-to-boundary charge brings high variation
of the induced charges on surface and multiple quadrature points selected in HOBI-PB amplify the variations. In LOBI-
PB, there is only one quadrature point in each triangle at the centroid thus the scheme is less sensitive to the induced
charges.

(4) The quality of triangular surface will slightly affect the convergence of the boundary integral PB solvers. The results
from icosahedral triangulation routines show more uniform convergence pattern than that from MSMS.

(5) We further draw the error-vs-element plots for one charge located at (0,0,0) in Fig. 4(e) and (0.9,0,0) in Fig. 4(f) for
both LOBI-PB (circle) and HOBI-PB (triangle) solvers on both MSMS (red, empty marker, solid line) and icosahedron
(blue, filled marker, dashed line) triangles. By observing one color at a time (one kind of mesh at a time), we can
see the pattern in Fig. 4(e) is uniform and HOBI-PB shows better accuracy (smaller y values) and faster convergence
(larger slope). The pattern in Fig. 4(f) is tangled. By observing the slope, we can still see that HOBI-PB converges faster
than LOBI-PB generally. However, the error of the HOBI-PB is bigger than LOBI-PB for coarse mesh due to the interac-
tion between the induced charges on surface and the singular charge near the surface, as explained in observation and
discussion (3). In practice, the partial charges are at least 1–2 Å away from the molecular surfaces therefore the
slightly deteriorated pattern observed here when charges are close to the surfaces will unlikely happen.

In short, the numerical results of HOBI-PB and some other reference PB solvers on the spherical cavities compared with
available analytical solutions quantitatively demonstrate the achieved better accuracy and higher-order convergence of
HIBO-PB. The complexity of the higher-order schemes for quadrature and regularization introduces only minor instabilities
but gain significantly improved accuracy and convergence. Next we use HOBI-PB and LOBI-PB to solve PB equation and com-
pute electrostatic solvation energy on a protein.
3.4. Computing electrostatic solvation energy on protein 1ajj

The ultimate goal of HOBI-PB is to provide accurate electrostatic potentials for solvated biomolecules. With this solver, we
solve the PB equation and compute the electrostatic solvation energy for many small-middle sized proteins. Here we take
protein 1ajj with triangulation at different resolutions as an example. The coordinates and partial charges of the protein
are obtained from CHARMM22 force field [40]. The numerical results show that HOBI-PB solves the PB equation with signif-
icantly improved accuracy compared with what LOBI-PB does.

The numerical results for computing electrostatic solvation energy for protein 1ajj are reported in Table 3. To produce
these results, we discretize the molecular surface of protein 1ajj at different densities as seen in the first column of the table.
Different densities result in different numbers of triangular elements which are listed in the second column of the table,
characterizing the dimension of problem. In the third column, we report electrostatic solvation energies. We can see these
values are very close to each other at different resolutions and they converge to a value near about �1138:49 kcal/mol. In
column 4, we report the CPU time and it increases at the order of OðN2Þ. This reveals currently the most critical limitation
of HOBI-PB as the OðN2Þ computational cost eventually will make the HOBI-PB prohibitively expensive. To alleviate the pain,
we take advantage of the convenient parallelization of boundary integral formulation, and we will see the parallelization
performance next. Memory uses are shown in column 5 and we see a OðNÞ pattern, which is advantageous compared with
the 3D mesh-based methods whose memory uses increase at OðN2Þ or even OðN3Þ, where N is the number of unknowns. The
last column is the number of iterations, and these stable results attribute to the well-posed integral formulation in Eqs. (8)
and (9).

We next plot the solvation energies of HOBI-PB (solid circle) from Table 3 on Fig. 5 together with the solvation energies
computed with LOBI-PB (empty circle) for the same protein at different resolutions. The plot shows results from LOBI-PB
Table 3
Testing results for protein 1ajj. HOBI-PB results showing electrostatic solvation energy Esol , CPU time, memory usage; number of GMRES iterations (it.).

d # of ele. N Esol (kcal/mol) CPU (s) Memory (Mbyte) # of it.

1 6027 -1168.87 115 47 10
2 9198 -1152.42 266 70 10
4 17278 -1145.50 867 129 9
8 32386 -1140.60 3114 238 9
16 66558 -1139.23 17790 523 13
32 132028 -1138.38 56039 759 10
64 270680 -1138.49 254198 2116 11
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Fig. 5. Comparison of electrostatic solvation energy computed with HOBI-PB and LOBI-PB for protein 1ajj.

Table 4
MPI parallel performance for computing electrostatic solvation energy on protein 1ajj; p is number of CPUs, Tp is the time using p CPUs, T1=pTp is the parallel
efficiency.

p N ¼ 132028 N ¼ 66558 N ¼ 32386

TpðsÞ T1=pTp TpðsÞ T1=pTp TpðsÞ T1=pTp

1 50457 100.0% 17755 100.0% 3060 100.0%
2 24740 102.0% 8790 101.0% 1528 100.1%
4 12877 98.0% 4381 101.3% 777 98.5%
8 6398 98.6% 2190 101.3% 406 94.3%
16 3321 95.0% 1090 101.8% 194 98.8%
32 1677 94.0% 571 97.2% 106 90.6%
64 860 91.7% 306 90.8% 62 77.4%

W. Geng / Journal of Computational Physics 241 (2013) 253–265 263
converge to that of HOBI-PB. By using cubic interpolation, we can see both methods eventually converge toward almost the
same values (the red ‘‘x’’ for HOBI-PB and the red ‘‘�’’ for LOBI-PB). The advantage of HOBI-PB is that it can achieve high accu-
racy even at very coarse mesh. For example, the first solid point from right, which corresponds to electrostatic solvation en-
ergy of �1168:87 kcal/mol at density d ¼ 1, is only 30 kcal/mol different from the interpolated true value at about
�1139:09 kcal/mol. Similar patterns are observed on our other tests on different proteins.

We finally provided the MPI based parallel performance in terms of parallel efficiency of HOBI-PB for protein 1ajj at dif-
ferent meshes in Table 4. Due to the limitation of the resources, our results are generated with up to 64 CPUs. The maximum
memories for each CPU in MPI implementation is about 1.5 G therefore for protein (1ajj) we solve the PB equation with max-
imum d ¼ 32 requiring 759 M memory (note d ¼ 64 requires more than 2 G memory per core from Table 3). From Table 4,
we can see the CPU time is substantially reduced when the code is run in parallel on high performance computers. For exam-
ple, for d ¼ 32 with 132,028 elements, the serial work requires more than half of a day (50,457 s), the parallel work with 64
CPUs produce results in about 15 min (860 s). We see high parallel efficiency from the T1

pTp
column. When the dimension of the

problem is sufficiently large (e.g. N ¼ 66;558 or N ¼ 132;028), the parallel efficiency with 64 CPUs is higher than 90%. We
observed occasionally the interesting larger-than-one parallel efficiencies and those could be explained by the traffic fluctu-
ation on the cluster or possibly the argument mentioned in [41].

In summary, the HOBI-PB solver solves the PB equation accurately on both spherical cavities and real biomolecules. The
surface potential and electrostatic solvation energy computed with the solver is accurate, fast-convergent and stable. The
parallelization of the solver is easy to implement and the parallel efficiency is attractively high.
4. Conclusions

This paper describes the schemes of a higher-order boundary integral Poisson–Boltzmann (HOBI-PB) solver. This solver
discretizes the molecular surface with curved triangles, and performs numerical integral with four-point Gauss–Radau
quadratures on regular triangles and with sixteen-point Gauss–Legendre quadratures on singular triangles. The singularities
are regularized with a coordinate transformation. The numerical tests on spherical cavities show that HOBI-PB can achieve
1.5th order convergence of on surface potentials relative to boundary elements and these computed surface potentials are
very accurate even at coarse mesh. In addition, the order of convergence does not compromise when the electric charge is
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off-center or even closed to the surface. The numerical tests of HOBI-PB on biomolecules show much improved accuracy
compared with results from the popular LOBI-PB solvers. The accurate surface potentials are of vital importance to molecular
modeling that are sensitive to electrostatics near or on the molecular surface. To improve the efficiency of HOBI-PB, we also
developed its MPI based parallel version. The numerical results demonstrate very encouraging parallel efficiency, e.g. above
90% when up to 64 CPUs work concurrently.

HOBI-PB achieves higher accuracy at the price of more complex algorithms. The limitation of the HOBI-PB is mainly at the
problem dimension it can treat, which is subject to the available computing resources. For example, for the accessibility to up
64 CPUs each with 1.5 G memory per core at Alabama Supercomputing Center, the problem size HOBI-PB can handle for a
reasonable long waiting time (<15 min) is about 150,000 elements. Considering the high accuracy, we can use fairly small
density 1 6 d 6 5, then PB equations on proteins with hundreds of residues can be conveniently solved. More computing
resources will bring better performance on bigger problems. The rapid updating of computing power will definitely make
HOBI-PB more and more capable.

There are many spaces in which HOBI-PB can be improved and extended. For example, we are looking for better trian-
gulation programs for the molecular surfaces [42–44]. The currently adopted MSMS only provides 3 digits accuracy in ver-
tices, positions and normal directions (we radially project vertices for spheres). In addition, the adoption of fast algorithms
such as FMM [45] and treecode [46] to HOBI-PB, although considerably challenging due to the complexity of HOBI-PB
schemes, is under our consideration. A more challenging problem is the application of HOBI-PB to molecular dynamics
[47,48], where the PB equation will be solved at every time sampling. Furthermore, the higher-order schemes applied in
HOBI-PB has the potential to solve other integral equations such as the integral forms of Helmholtz equation [49] and Max-
well Equations [50]. For these challenges, the application of the quadrature rules and the treatment of singularity will be
similar, however, new challenges such as obtaining the well-posedness of the integral formulation and applying the fast
algorithms need further investigation.
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