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Abstract. The pKa values are important quantities characterizing the ability of protein
active sites to give up protons. pKa can be measured using NMR by tracing chemical-
shifts of some special atoms, which is however expensive and time-consuming. Alter-
natively, pKa can be calculated numerically by electrostatic free energy changes sub-
ject to the protonation and deprotonation of titration sites. To this end, the Poisson-
Boltzmann (PB) model is an effective approach for the electrostatics. However, nu-
merically solving PB equation is challenging due to the jump conditions across the
dielectric interfaces, irregular geometry of the molecular surface, and charge singular-
ities. Our recently developed matched interface and boundary (MIB) method treats
these challenges rigorously, resulting in a solid second order MIBPB solver. Since the
MIBPB solver uses Green’s function based regularization of charge singularities by de-
composing the solution into a singular component and a regularized component, it
is particularly efficient in treating the accuracy-sensitive, numerous, and complicated
charge distributions from the pKa calculation. Our numerical results demonstrate that
accurate free energies and pKa values are achieved at coarse grid rapidly. In addi-
tion, the resulting software, which pipelines the entire pKa calculation procedure, is
available to all potential users from the greater bioscience community.

AMS subject classifications: 92C40, 35J66
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1 Introduction

The acid dissociation constant Ka is a quantitative measure of the strength of an acid in
solution, which is usually written as a quotient of the equilibrium concentrations as
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Ka=
[H+][A−]

[HA]
,

where [HA], [A−], and [H+] are concentrations of the acid, its conjugate, and proton in
mol/L. The value pKa=−log10Ka is the co-logarithm of acid dissociation constant, which
measures the tendency for a group to give up a proton. The smaller the value of pKa, the
more likely the acid is going to lose a proton, i.e. the stronger the acid is. Since proteins
are chains of amino acids, the protonation or deprotonation of the titration sites (strongly
polar amino acids) plays significant roles in binding affinities, enzymatic activities, and
structural properties [1].

Since pKa values are of significance to many biomolecular processes, their accurate
measurement/calculation are practically important. For a short review, pKa values can
be measured by the following approaches.

Titration graph of acid-base reaction. The Henderson-Hasselbach equation shows pH=

pKa+log10

( [A−]
[HA]

)
. Thus pKa=pH when [HA]=[A−], which happens at half way of the

titrant needed for reaching the equivalence point, i.e. the pH for which the site is 50%
occupied. For a simple acid (e.g. the acetic acid), we can trace the pH during the titration
process while adding base and then locate the pKa on the titration curve.

NMR spectra. For proteins, however, pKa of a titration site on a particular residue is hard
to measure with acid-base reaction. NMR spectra in terms of chemical shifts are thus
recorded as a function of pH [2, 3]. The information of the chemical shift can indicate at
which pH value the interested site is half-way protonated, and the corresponding pH is
the desired pKa.

Computer simulation. Since pKa is associated with the thermodynamics of the acid dis-
sociation [4], its values can also be predicted theoretically assisted with computer simula-
tions. Various theoretical methods have been reported in literature including 1) Poisson-
Boltzmann (PB) model [5–16], 2) Molecular Dynamics (MD) [17], 3) Monte Carlo (MC)
method [18], 4) QM/MM (ab initio QM for the titratable residue and MM for the rest of
the protein environment) [19], and 5) Empirical approaches [20, 21].

We will focus on the PB model based pKa computation, which assumes that the pro-
tonation or deprotonation asserts limited effect to the protein structure, and it is the titra-
tion states that bring the changes in electrostatic free energies. Under this assumption,
one molecular structure is used for all titration states. The pKa computation amounts to
numerically solve PB equation for many times with different charge distributions, while
repeatedly uses the same protein structure related information such as interface, mesh,
elements, etc. This calls for an efficient and accurate PB solver.

However, numerically solving PB equation is challenging due to the jump condi-
tions across the dielectric interface, irregular geometry of the molecular surface, and
charge singularities. Although numerous PB solvers have been developed in the liter-
ature, the Matched Interface and Boundary method based Poisson-Boltzmann (MIBPB)
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method [22–26] is chosen in this paper for pKa computation, because the MIBPB method
handles the interface jump conditions rigorously, treats the irregular geometry with deli-
cately designed local interpolation, and regularizes the charge singularity using Green’s
function based decomposition. With these nice features, the MIBPB solver yields reliable
electrostatic potential and free energy with a solid second order convergence. Comparing
with other PB solvers, the MIBPB solver is particularly efficient in treating the accuracy-
sensitive, abundant, and complicated charge distributions from the pKa calculation. In
this paper, the application of the well-established MIBPB solver to the pKa computation
will be reported for the first time in the literature. Our numerical results show that accu-
rate electrostatic free energies are obtained even at coarse grid thus producing pKa values
at the combination of both efficiency and accuracy. In addition, we designed software to
pipeline all procedures involved in pKa calculation using MIBPB solver, enabling users
to obtain pKa values through one command line input.

The rest of the article is organized as follows. Section 2 is devoted to the theories
and algorithms including the PB model, the MIB scheme, and algorithms for PB model
based pKa computation. Section 3 explains the procedure for using MIBPB solver to
compute the pKa values, which serves an important part for disseminating the software
released with this manuscript. Section 4 validates the MIBPB solver briefly and reports
the numerical results in computing pKa for two selected proteins. This article ends with
a brief conclusion summarizing the main points.

2 Theories and algorithms

In this section, we will first briefly describe the Poisson-Boltzmann (PB) model, and the
scheme of the matched interface and boundary method (MIB) for solving PB equation.
The treatment of charge singularity with the Green’s function based two-component de-
composition will be discussed. This section ends with theories and algorithms of PB
model based pKa computation.

2.1 The Poisson-Boltzmann (PB) model

The PB model is illustrated in Fig. 1(a). Consider a large domain Ω in R
3 containing the

solute protein. The domain Ω is divided by the molecule surface Γ into the molecule do-
main Ω− with dielectric constant ǫ1 and the solvent domain Ω+ with dielectric constant
ǫ2, that is Ω = Ω−⋃

Ω+. Denote the boundary of Ω as ∂Ω. Charges in Ω− are partial
charges assigned to the centers of atoms by using force field while charges in Ω+ are mo-
bile ions described by the Boltzmann distribution. For r ∈R

3, applying Gauss’s law to
the charge distribution in both Ω− and Ω+ leads to the linear PB equation

−∇·(ǫ(r)∇φ(r))+κ̄2(r)φ(r)=ρ(r) (2.1)
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Figure 1: (a) The PB model; (b) The MIB scheme illustrated in the 2-D second order scheme with inside
fictitious points in red and outside fictitious points in yellow.

subject to interface continuity for the potential φ and flux density ǫφn

[φ]Γ =0 and [ǫφn]Γ =0 on Γ, (2.2)

where n is the outer normal direction of the interface Γ, φn =
∂φ
∂n , and the notation [ f ]Γ =

f+− f− is the difference of the function f cross the interface Γ.

In Eqs. (2.1) and (2.2), ǫ is a piecewise function for the dielectric constants in Ω−

and Ω+, and κ is the inverse Debye screening length measuring ionic strength, and its
modified version κ̄ is given as κ̄2=ǫ2κ2. The value of κ is nonzero in Ω+ only. The reader
can refer to [27,28] for more details about definition and units related to these coefficients.
The source term ρ is the summation of the charge distribution in Ω− using delta function

for Nc partial charges located at ri for i = 1,··· ,Nc as ρ(r) = 4π∑
Nc
i=1qiδ(r−ri). Since the

source ρ(r) is the sum of the δ-functions, which brings singularity and numerically its
interaction with the grid points is the source of so-called self-energies. We will present a
new regularization approach to remove the singularity under the matched interface and
boundary (MIB) framework [26].

2.2 Numerical methods for solving PB equation

Since the PB equation has analytic solution only for simple geometries for examples
sphere and rod, in practice the equation is solved numerically. Numerical methods for
solving PB equation fall into two classes, (1) grid-based methods that discretize the entire
domain, e.g. [25, 29–35], and (2) boundary integral methods that discretize the molecular
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surface, e.g. [36–43]. The reader may see [44, 45] for comprehensive review for numeri-
cal methods in solving PB equations. The numerical solution to the PB equation suffers
many challenges such as (1) the interfacial molecular surface is geometrically complex; (2)
the biomolecule is represented by singular point charges; (3) the dielectric function and
electric field are discontinuous across the molecular surface; (4) the nonlinearity appears
when ionic strength is strong; (5) the domain is unbounded. In treating these numerical
challenges, particularly (1)-(3), a finite-difference based interface method named matched
interface and boundary (MIB) method stands out [22–25]. We next briefly introduce the
scheme of MIBPB solver with particular focus on our newly developed two-component
regularization scheme [26] as it is by far the most efficient approach under the MIB frame-
work for treating the charge singularities.

2.3 The Matched Interface and Boundary method based Poisson-Boltzmann
(MIBPB) solver

The MIB method is designed to capture discontinuities of the solutions and coefficients of
the differential equations by using local high order interpolation assisted with the inter-
face jump conditions. Based on the MIB method for general interface problems [22,46,47],
the MIBPB solver is further improved to be able to maintain its designed 2nd order of
convergence and accuracy in the presence of geometric singularities of molecular sur-
faces [23].

The essential idea of discretization in MIB scheme is the introduction of fictitious
points as seen in Fig. 1(b). The yellow dots in outside domain are fictitious points ex-
tended from the inside domain while the red dots in inside domain are fictitious points
extended from the outside domain. Each fictitious point has two values: one is the ficti-
tious value as if it were a point extended from the opposite domain and the other is the
actual value as the solution to the PB equation. The fictitious values can be solved by
using interface jump conditions together with the PB equation. As a result, fictitious val-
ues are linear combination of the solution at nearby grid points and the interface jump
conditions. When a 2nd order finite difference scheme is applied, the fictitious values
will replace the actual values in the centered difference stencil, which eventually forms
the linear algebraic matrix to be solved by Krylov iterative methods. The fictitious val-
ues based discretization guarantees the designed order of convergence at the presence of
interface jump conditions [22]. Furthermore, when geometric singularities are present,
the delicately designed local interpolation scheme can still maintain the designed order
of accuracy [23].

A challenging issue in the MIBPB solver is the efficient treatment of charge singulari-
ties. To this end, we use the recently developed two-component singular charge decom-
position scheme [26], which maintains the 2nd order accuracy while it is much more con-
venient in implementation compared with the previous three-component method [24].
To save space, we here only give a brief introduction to the singular charge decomposi-
tion scheme, which plays a critical role in the accurate and efficient computation of pKa
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values as described below.

We consider a decomposition of the electrostatic potential into a Coulomb component
φC and a reaction field component φRF with φ = φC+φRF. The Coulomb potential φC

satisfies the free space Poisson’s equation with the singular charges as

{

−ǫ1∆φC(r)=ρ(r), in R
3;

φC(r)=0, as |r|→∞,
(2.3)

where ρ=∑
Nc
i=14πqiδ(r−ri). Here φC, which can be analytically given as

φC(r)=G(r)=
Nc

∑
i=1

qi

ǫ1|r−ri|
, (2.4)

is essentially the Green’s function G(r). We define a regularized potential φ̃ as

φ̃=

{

φ−
RF in Ω−,

φ+ in Ω+.
(2.5)

The jump conditions for φ in Eq. (2.2) using the definition φ−= φ−
C +φ−

RF in Ω− can be
written as

φ+=φ−
RF+φ−

C , ǫ2
∂φ+

∂n
=ǫ1

∂φ−
RF

∂n
+ǫ1

∂φ−
C

∂n
, on Γ. (2.6)

Using φ̃+=φ+ in Ω+ and φ̃−=φ−
RF in Ω− as in Eq. (2.5), the regularized PB equation

of φ̃ with corresponding interface and boundary conditions is given as

−∇·(ǫ1∇φ̃)=0 in Ω−, (2.7)

−∇·(ǫ2∇φ̃)+κ̄2φ̃=0 in Ω+, (2.8)

[φ̃]Γ =G on Γ, (2.9)
[

ǫ
∂φ̃

∂n

]

Γ

=ǫ1
∂G

∂n
on Γ. (2.10)

Note that φ̃ actually satisfies the similar PB equation as in Eq. (2.1) but free of the singular
source terms

−∇·(ǫ∇φ̃(r))+κ̄2φ̃(r)=0, in Ω−∪Ω+. (2.11)

Numerically, one just needs to solve one PB interface problem given in (2.7)-(2.10), then
the original potential φ is recovered as φ+ = φ̃+ in Ω+ and φ− = φ̃−+G in Ω−, where
Green’s function G is analytically given as in Eq. (2.4). Because the singular charges are
handled analytically, this two-component regularization method is well suited for the
pKa computation, in which various states are represented by different charge distribu-
tions.
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2.4 PB model based pKa computation

The solution to the PB model is the electrostatic potential on the grids, which can be used
to further compute the electrostatic free energies. These energies at different titration
states are the building blocks to compute the pKa value.

2.4.1 Electrostatic free energy

As described by Sharp and Honig [48], the electrostatic free energy for a solvated biomolecule
is calculated by

∆Gelec=
∫

R3

(

φρ+∆Π−
1

2
ǫ|E|2

)

dr, (2.12)

where φ is the electrostatic potential, ρ is the fixed charge density as a collection of point
charges, ∆Π is the excess osmotic pressure of the mobile ion cloud, and 1

2 ǫ|E|2 is the
electrostatic stress.

In our numerical validation in the next section, we report the electrostatic free energy
as

∆Gelec=Ecoul+
1

2

Nc

∑
i=1

qiφRF(ri), (2.13)

where φRF is the electrostatic potential inside molecule as seen in Eq. (2.5) and Ecoul is the
Coulomb energy using ǫ1 as the dielectric constant. Here for simplification, we omit the
energy components related to the mobile ion pressure and the electrostatic stress, whose
contribution are relatively smaller but computationally more challenging as integrals of
discontinuous functions. Details of evaluating the complete functional can be found in
[48–50].

2.4.2 pKa from thermodynamics

From thermodynamics (e.g. [4], pp. 123-127), we know an equilibrium constant is re-
lated to the standard Gibbs energy change for the reaction. Thus for an acid dissociation
constant Ka, we have ∆G =−RTlnKa ≈ (2.303RT)pKa, where R= 8.31J/(mol · K) is the
universal gas constant. Based on this, pKa can be computed via electrostatic free en-
ergy [8, 9, 14, 16].

We can use the thermodynamics loop in Fig. 2 to compute the pKa of a particular
titration site in protein [1, 9]. Note in this derivation we use microscopic kB = R/NA =
1.38×10−23J/K instead of the macroscopic R since we are dealing with an individual
protein instead of molar concentration. Here the subscripts “p” and “s” represent protein
and solvent environment respectively

pKa(protein)=pKa(model)+
1

2.303kB T
[∆Gs,p(A)−∆Gs,p(AH)] (2.14)

=pKa(model)+
1

2.303kB T
[∆Gelec

s,p (A)−∆Gelec
s,p (AH)] (2.15)
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Figure 2: Thermodynamics circles involving acid dissociation in protein (p) and solvent (s); AH and A stand
for protonated and unprotonated acids respectively.

=pKa(model)+
1

2.303kBT
[∆Gelec

p (AH,A)−∆Gelec
s (AH,A)] (2.16)

=pKa(model)+
1

2.303kBT
[∆GBorn(protein)−∆GBorn(model)

+∆Gback(protein)−∆Gback(model)+∆Ginteract(protein)] (2.17)

=pKintr+
1

2.303kB T
∆Ginteract(protein). (2.18)

In this derivation, Eq. (2.15) holds under the assumption that the non-polar effect from
solvent to protein environment of unprotonated states cancels that of protonated states,
leaving only the electrostatic effect. Eq. (2.16) is from the thermodynamics loop in Fig. 2.
Bashford et al. [9] suggested to use Eq. (2.16) since ∆Gp(AH, A) and ∆Gs(AH, A) have
small difference in structure (e.g. AH and A in protein vs AH and A in solvent) as op-
posed to Eq. (2.15) (e.g. AH in protein and solvent vs A in protein and solvent). This is
also our choice. Eqs. (2.17) and (2.18) are derived using physical interpretation naturally
and we next show this derivation is consistent with the energy change due to protona-
tion. These derivations are originated from Bashford et al. [9] and we restate here with
more details.

The energy associated with the shift pKa at site i (the work of adding a charge qi) can
be computed as:

∆Gi =∆GBorn+∆Gback
︸ ︷︷ ︸

intrinsic-shift

+∑
j

qiqjΦ(ri,rj)

︸ ︷︷ ︸

interact

, (2.19)

with Φ(ri,rj) defined as potential produced at rj by a unit charge at ri for a solvated
protein system (given solute-solvent surface Γ, dielectric constants ǫ1 in solute and ǫ2 in
solvent and ionic screening constant κ). We can further decompose

Φ(ri,rj)=1/(ǫ1|ri−rj|)+Φ∗(ri,rj)

as the summation of Coulomb interaction and a correction term Φ∗. Physically, Φ∗ is
the potential generated from the induced charge on the dielectric interface (i.e. reaction
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potential). In addition, ∆Gback = ∑k qiqkΦ(ri,rk) is the interaction with the background
partial charges and ∆GBorn = (q2

i /2)Φ∗(ri,ri) is the interaction of a charge at ri with a
potential at ri. Let’s add two notes here as:

(1) Φ(ri,rj) can also be treated as the solution at rj to the following single-charge (unit
charge located at ri) Poisson-Boltzmann equation:

−ε1∇
2φ(r)=4πδ(r−ri), r∈Ω−, (2.20a)

−ε2∇
2φ(r)+κ̄2φ(r)=0, r∈Ω+. (2.20b)

(2) For the “intrinsic-shift” part in Eq. (2.19), we can derive it from free energy differences
before and after charging (e.g. the protonation of a charge at the n+1th location in addi-
tion to the n charged locations). For convenience, we define Φi(rj)=Φ(ri,rj) as the total
potential at rj from a unit charge at ri, and Φ∗

i (rj) is the corresponding reaction potential,
both are involved in the energies with or without protonation as

Gdeprot=
1

2

n

∑
i=1

n

∑
j=1

Φ∗
i (rj)qiqj+

1

2

n

∑
i=1

n

∑
j=1,j 6=i

qiqj

ǫ1|ri−rj|
, (2.21)

Gprot=
1

2

n+1

∑
i=1

n+1

∑
j=1

Φ∗
i (rj)qiqj+

1

2

n+1

∑
i=1

n+1

∑
j=1,j 6=i

qiqj

ǫ1|ri−rj|
. (2.22)

Note the first terms in Eqs. (2.21) and (2.22) are essentially the solvation free energies and
we refer them as Gsolv

deprot and Gsolv
deprot

∆Gprot =Gprot−Gdeprot (2.23)

=
n

∑
i=1

(

Φ∗
i (rn+1)qiqn+1+

qiqn+1

ǫ1|ri−rn+1|

)

︸ ︷︷ ︸

∆Gback

+Φ∗
n+1(rn+1)q

2
n+1

︸ ︷︷ ︸

∆GBorn

(2.24)

=Gsolv
prot−Gsolv

deprot+
n

∑
i=1

qiqn+1

ǫ1|ri−rn+1|
. (2.25)

Note Eq. (2.24) holds based on the symmetry of Φ∗
i (rj), which is consistent with Eq. (2.19).

In summary, the pKa for a titration site is composed of the intrinsic pKa and the site-site
interaction as in Eq. (2.18). The free energy associated with intrinsic pKa shift (away from
the model pKa) is given in Eq. (2.23) as the energy difference between protonation and
deprotonation of the titration with only the background charges. The site-site interaction
is computed as in the interaction term of Eq. (2.19). In the next section, we implement the
pKa computation based on Eqs. (2.18) and (2.19).
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3 Implementation

3.1 pKa computing procedure

Following the discussion in the previous section, we use the programming language
Python to write a wrapper to pipeline the pKa computation in four steps as 1) chang-
ing the protonation states on PDB and then on PQR files, with each PQR file representing
a needed charge distribution in the pKa computation, 2) calling MIBPB solver for solving
electrostatics potential and free energies for all PQR files, 3) calculating the intrinsic pKa
values, and 4) finally titrating the final pKa values with energies including site-site inter-
actions. The procedure implemented with the Python wrapper is given as the following.

Step 1: Prepare the protein structure and protonation states

In this step, we prepare the structure and charge distribution of the protein. The protein
structure is obtained from the Protein Data Bank (PDB) (www.pdb.org). The charge dis-
tribution is then produced by PDB2PQR [51] with user chosen forcefields. Before calling
the PDB2PQR program, the protonation states are configured by using different residue
names as specified below in Table 1.

Table 1: The protonation states of titratable amino acids: each residue has a name for unprotonated state and
a name for protonated states; total charge of the residue in a state is included in the parentheses.

standard resid. ARG ASP GLU HIS LYS TYR CYS

unprot.(chg) AR0 (+1) ASP(-1) GLU(-1) HIE(0) LYN(0) TYM(-1) CYM(-1)

protonated(chg) ARG(+2) ASH(0) GLH(0) HIP(+1) LYS(+1) TYR(0) CYX(0)

For a protein with Nt titration sites, we will need 1+2Nt+
1
2(N2

t −Nt) charge distribu-
tions in the form of PQR files as specified below.

1. one PQR file with all titration sites unprotonated, keeping the background charge;

2. 2Nt PQR files having all titration sites unprotonated but one protonated with or
without the background charge; those with background charges on are used for
calculating the intrinsic pKa;

3. 1
2(N2

t −Nt) PQR files with ith and jth titration sites protonated only; all background
charges are set to zero.

Step 2: Call MIBPB solver for solving electrostatics

This step calculates the electrostatic free energies for all titration states represented by
different PQR files. Each PQR file with different charge distribution changes the RHS of
the PB equation as in Eq. (2.1). The PB equation can then be accurately and conveniently
solved using the MIBPB solver. In calling the MIBPB solver, the user can specify solver
and PB model related parameters such as dielectric constants, ion concentration, mesh
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size, etc. in the usrdata.in file. After this step, we received electrostatic free energies from
all charge distributions. These energies will be used to calculate pKa as explained in the
next two steps. Our work follows the procedure as described in Ho’s thesis [1].

Step 3: Compute the intrinsic pKa

The intrinsic pKa for the ith titratable site can be computed by Eq. (3.1) [1],

pKintr
a,i =pK0

a,i−
1

RT ln10
[∆Gele(Ap→ApH)−∆Gele(As→AsH)], (3.1)

where the protein environment has only the fixed background charges, i.e. with all titra-
tion sites unprotonated. In this equation, ∆Gele(Ap →ApH) is the difference of the free
energy between protein with ith titration site protonated and protein with all titration
unprotonated while ∆Gele(As→AsH) is the difference of the free energy between proto-
nated and unprotonated residues alone. Here pK0

a,i is the model pKa at T = 298K taken
from [52] as in Table 2. For the related constants, R is the gas constant and T is the tem-
perature in Kelvin. R is related to the Boltzmann constant, kB=1.3806·10−23J/K, and the
Avogadro constant, NA =6.02·1023/mol, as

R= kB ·NA ≈8.31J/(mol·K), (3.2)

Since the energy calculated from MIBPB using the unit kcal/mol, we finally use the RT
values as

RT≈8.31·298J/mol≈2.5kJ/mol=(2.5/4.182)kcal/mol, (3.3)

thus the energy from MIBPB divided by (2.5ln10/4.182= 1.3765) kcal/mol leads to the
unit of pKa values.

Table 2: Model pKa value for titration sites.

ARG ASP CYS GLU HIS LYS TYR

12.0 4.0 9.5 4.4 6.3 10.4 9.6

Step 4: Titrating final pKa with energies including site-site interactions

Recall that pKa of a titration site is defined as the pH value in which half of the site
is protonated. In the context of computing pKa using electrostatic free energy under
different titration states, we are looking for the pH which makes the Boltzmann average
< θi,pH> as in Eq. (3.4) to equal 0.5.

< θi,pH> =
∑θ θie

−△G(A→A(θ); pH)/RT

∑θ e−△G(A→A(θ); pH)/RT
, (3.4)

where θ ∈ {0,1}Nt and θi ∈ {0,1} is the ith entry of θ. Note the number of states of θ
increases exponentially (2Nt) with number of titrating sites Nt, which is computationally
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prohibitive. In this paper we use direct formulation for proteins with less than 20 titrating
sites and we are working on statistical sampling approaches to handle cases with larger
Nt for future work.

In Eq. (3.4), the energy △G(A→A(θ);pH) is evaluated as

△G(A→A(θ);pH)=−RT ln10∑
i

θi(pKintr
a,i −pH)+

1

2 ∑
i

θi∑
j 6=i

θj△Gij, (3.5)

where pKintr
a,i is the intrinsic pKa for the ith titration site as calculated in step 3 by Eq. (3.1).

△Gij as calculated in Eq. (3.6) is the site-site interaction energy (the free energy of the
protein having the ith site protonated for producing electrostatic potential and the jth
titration site protonated for producing energy without the background charge) computed
in step 2 as well.

△Gij = tT
i Wtj =

1

2
(ti+tj)

TW(ti+tj)−
1

2
tT
i Wti−

1

2
tT

j Wtj. (3.6)

The second equality holds under the assumption that W is symmetric.

3.2 Software dissemination and user guide

With the publication of this manuscript, the python wrapper (wrapper pka.py) and the bi-
nary MIBPB solver (mibpb3.exe on multiple platforms such as MacOS, Linux/Unix, and
Windows ) can be found on the author’s website sponsored by Southern Methodist Uni-
versity. Since part of the MIBPB solver source code is copyrighted to Michigan State
University, please contact Dr. Guowei Wei if interested. The user also needs the MSMS
software [53] for molecular surface generation and we include its binary versions as well.
In addition, the users need to install PDB2PQR [51].

To compute pKa, the user specifies PB model and MIBPB related parameters (dielec-
tric constants, ion concentration, mesh size, density of molecular surface triangulation,
boundary conditions, method of charge regularization, etc.) in usrdata.in file. On a com-
puter with Python and Fortran compilers installed and target protein specified with its
four-digit PDB ID, the user runs the program by simply typing:

python wrapper_pka.py PDBID

The wrapper will automatically download PDB file from the protein data bank, iden-
tify all titration sites, call MIBPB solver for electrostatics, and return the computed pKa

values.

4 Results

In this section, we first validate the accuracy of MIBPB solver, which justifies our choice
of mesh size h= 1.0 for all PB related calculations. Following that, we calculate the pKa

values for two selected proteins, which are compared with the data from experiments.
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4.1 Validation of MIBPB solver

The extensive validation of new MIBPB method in solving PB equation can be found
in [26]. Here we provide results of solving PB equation on bovine pancreatic trypsin
inhibitor (BPTI, PDB ID: 4pti) [54] and turkey ovomucoid third domain (OMTKY3, PDB
ID: 2ovo) [55] at various finite difference mesh sizes. For simplicity, we refer these two
proteins with their PDB IDs 4pti and 2ovo hereafter. The two proteins are also the targets
for our pKa computation. The resulting free energies and errors at different mesh sizes
and solute dielectric constants are given in Table 3.

Table 3: Electrostatic free energies of proteins 4pti and 2ovo computed with MIBPB solver: ǫ1 = 4, 8, 20,
ǫ2=80, ion concentration = 0.15M, MSMS density =10 vertices/Å2 ; values at h=1, h=0.5, and h=0.25 show
difference from values at h=0.125 in kcal/mol; relative error in percentage is benchmarked with results at the
finest mesh h=0.125.

ǫ1=4 ǫ1 =8 ǫ1 =20

h 1.0 0.5 0.25 0.125 1.0 0.5 0.25 0.125 1.0 0.5 0.25 0.125

4pti -15.8 +1.9 +0.4 -5887.9 -5.6 +1.3 +0.3 -2933.9 -0.4 +0.8 +0.2 -1162.6

err.(%) 0.27 0.03 0.01 – 0.19 0.05 0.01 – 0.03 0.07 0.02 –

2ovo -13.9 +1.5 +0.3 -4326.3 -5.3 +1.0 +0.2 -2154.4 -0.7 +0.6 +0.1 -852.4

err.(%) 0.32 0.03 0.01 – 0.25 0.05 0.01 – 0.08 0.06 0.01 –

From Table 3, in each selected dielectric constants ǫ1, we can see the energies converge
to the finest grid h=0.125 from left to right with the decrement of h. In the table, in the
row containing the PDB ID, we reported the free energy at h= 0.125 and the difference
from that at h= 1.0,0.5,0.25. In the row below that, we reported the relative error using
values at h=0.125 as the benchmark. From the table, we can see even when the coarsest
mesh h=1.0 is used, the relative error using result from h=0.125 as the benchmark is still
less than 0.5%, which justifies our choice of h = 1.0 for rapidly solving PB equation for
electrostatic free energies and computing pKa based on these energies.

4.2 pKa computation

We followed the procedure as described in the previous section to compute pKa values
of protein 4pti with 58 residues and 18 titration sites and of protein 2ovo with 56 residues
and 15 titration sites. The reason that we choose these relatively smaller proteins is due
to the fact we use explicit formulation as opposed to the popular Monto Carlo (MC)
simulation for the site-site interactions [1, 12]. The explicit approach has costs increased
as 2Nt thus is prohibitively expensive for larger proteins. In this paper, our focus is to
demonstrate the accuracy of MIBPB in returning the electrostatic free energy subject to
a given protein structure and charge distribution for pKa calculation. Thus we leave
the implementation and enhancement of the MC approach in the future work. In this
section, our computed pKa results are compared with the experimental values from [21]
as referred by [1].
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Table 4: Computed pKa values for protein 4pti at various solute dielectric constants: ǫ1 = 4,8,20, solvent
dielectric constant ǫ2=80, ion concentration = 0.15M, MSMS density =10 vertices/Å2 .

residue expt. pKa intrinsic pKa pKa

ǫ1=4 ǫ1=8 ǫ1=20 ǫ1=4 ǫ1=8 ǫ1=20

TYR21 10.0 11.08 10.49 10.13 11.86 12.04 10.43

GLU7 N/A 4.39 4.49 4.57 4.59 4.98 4.60

LYS15 10.4 10.19 10.42 10.59 9.96 10.12 10.39

LYS26 10.1 10.23 10.43 10.56 10.05 10.23 10.38

ASP50 3.2 0.48 2.17 3.21 2.00 4.97 3.85

ARG1 N/A 19.78 16.56 14.63 19.78 16.56 14.63

ARG53 N/A 13.02 12.90 12.86 12.74 12.39 12.70

ARG42 N/A 12.13 12.38 12.54 12.18 12.57 12.31

ARG39 N/A 13.49 12.94 12.63 13.34 12.64 12.50

ARG17 N/A 12.21 12.23 12.25 11.95 11.78 12.12

GLU49 4.0 3.76 4.11 4.32 4.48 5.59 4.67

ASP3 3.6 3.63 3.77 3.92 3.73 3.95 3.98

TYR35 10.6 10.45 10.13 9.92 10.50 10.21 9.95

TYR23 11.0 17.00 13.41 11.27 17.44 14.19 11.47

LYS46 9.9 11.07 11.09 11.08 10.30 10.14 10.42

LYS41 10.6 12.16 11.69 11.43 12.35 12.47 11.49

TYR10 9.4 12.54 11.26 10.49 12.61 11.44 10.57

ARG20 N/A 16.84 15.03 13.87 16.78 14.97 13.82

The results of computed pKa for the two proteins are included in Tables 4 and 5. The
tables first list the experimental pKa values if they are available in the literature [1, 21],
followed by computed intrinsic pKa and pKa values at various solute dielectric constants.
From the tables, we can see that the computed intrinsic pKa and pKa values are essentially
close to the experimental results. It seems that including the site-site interaction does not
significantly improve the computed pKa toward the experimental pKa. In order to reveal
the embedded information from the tabular data, we plot the computed pKa values in
Fig. 3 compared with available experimental pKa values.

Fig. 3(a) and (b) depict computed pKa result from protein 4pti and 2ovo, respectively.
Since patterns in both subplots are similar, we explain them in a uniform manner. In
Fig. 3(a-b), the vertical axis is the pKa values and the horizontal axis is the titration sites.
To save space, on x-axis we use one-letter representation of the amino acids, followed by
their residue IDs. On these two subplots, the blue stars connected by the dashed line are
the results from experiment [1, 21]. The red triangles, square, and circles are computed
pKa using solute dielectric constants ǫ=4,8,16 respectively. From both subplots, we can
see that the computed pKa are in line with the experimental pKa and it is quite obvious
that using larger solute dielectric constants produced computed pKa values which are



534 J. Hu, S. Zhao and W. Geng / Commun. Comput. Phys., 23 (2018), pp. 520-539

Table 5: Computed pKa values for protein 2ovo at various solute dielectric constants: ǫ1 = 4,8,20, solvent
dielectric constant ǫ2=80, ion concentration = 0.15M, MSMS density =10 vertices/Å2 .

residue expt. pKa intrinsic pKa pKa

ǫ1=4 ǫ1=8 ǫ1=20 ǫ1=4 ǫ1=8 ǫ1=20

LYS13 9.9 12.59 12.07 11.73 12.69 11.96 11.58

ASP27 N/A 10.74 7.69 5.81 6.79 5.71 5.02

TYR11 10.2 13.40 11.76 10.73 13.44 11.87 10.84

LYS29 11.1 11.75 11.53 11.37 12.05 11.68 11.40

HIS52 7.5 8.03 7.64 7.41 8.23 7.72 7.39

LYS34 10.1 12.79 12.14 11.73 12.42 11.86 11.47

ASP7 2.4 2.00 3.01 3.66 2.95 3.54 3.91

GLU10 4.1 5.19 5.08 4.99 7.21 6.10 5.42

TYR31 >12.5 18.97 14.75 12.12 18.97 14.75 12.15

TYR20 10.2 11.01 10.57 10.26 12.69 11.64 10.77

LYS55 11.1 12.15 11.69 11.43 12.15 11.58 11.28

GLU43 4.8 4.66 4.69 4.70 4.62 4.65 4.66

GLU19 3.2 5.73 5.21 4.87 8.37 6.51 5.36

ARG21 N/A 12.54 12.51 12.50 12.88 12.50 12.47

(a) (b)

Figure 3: Computed pKa at various solute dielectric constants ǫ1 =4,8,20 vs experimental pKa for protein 4pti
(a) and protein 2ovo (b).

closer to the experimental results. This conclusion has been advocated by some previous
research results [12, 56].

As explained in the previous section, after receiving all the energies from Eq. (3.5), the
probability of a titration site to be protonated at a given pH can be computed by using
Eq. (3.4). For each titration site, we sampled the probability at pH from 0 to 14 with step
size 0.2 and then use cubic spline to interpolate the pH when probability=0.5. By doing
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(a) (b)

Figure 4: titration curves for (a) titration site ASP3 from protein 4pti (ǫ1=4): pKa (computed)=3.73 vs. pKa

(experiment)= 3.6 and (b) titration site LYS55 from protein 2ovo (ǫ1 = 20): pKa (computed)= 11.28 vs. pKa

(experiment)=11.3.

this, each titration site from every protein at a solute dielectric constant has a titration
curve as shown in Fig. 4. Here we choose two examples, one as shown in Fig. 4(a) is from
titration site ASP3 from protein 4pti at ǫ1 =4, which produces pKa = 3.73 against the 3.6
experiment value. The other example as shown in Fig. 4(b) is from titration site LYS55
from protein 2ovo at ǫ1 = 20, which produces pKa = 11.28 against the 11.3 experiment
value. As we know Aspartic Acid (ASP) is acidic amino acid while Lysine (LYS) is basic
amino acid as two very polar sites whose pKa computation is very sensitive and our
computed values are sufficiently accurate.

5 Conclusion

In this paper, we theoretically computed pKa values of proteins using the electrostatic
free energies. The energies are computed by solving the Poisson-Boltzmann model us-
ing our recently developed 2nd order accurate MIBPB solver [26]. The advantage of our
MIBPB solver is at its accurate results even at coarse mesh such as h=1.0. This is an im-
portant advantage since the MIBPB solver will be called for 1+2Nt+

1
2(N2

t −Nt) times for
full-atom protein structures with variation of the charge distribution. In addition, since
the algorithm is implemented under the assumption that protonation or deprotonation
does not produce the structural change, charge distribution is the key component in pKa

computation. MIBPB regularizes charge singularity analytically using the Green’s func-
tion based decomposition thus could more accurately capture sensitive energy changes
caused by changes in charge distribution.

In addition to calling the MIBPB solver for calculating electrostatic free energies given
structure and charge distribution, we pipelined the entire procedure of pKa computation
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by using Python from downloading PDB structure, assigning charge distribution and
protonation states under selected force fields, to computing intrinsic pKa and then pKa

by including the site-site interactions. To this end, the users input the PDB ID of a target
protein and can receive accurate pKa values on all titration sites quickly. We will make
the Python wrapper and the binary code of MIBPB available on author’s public website.
From the numerical results, our calculation of pKa is accurate and efficient.

PB model based pKa values are affected to many different factors such as the choices
of dielectric constants and ionic strength, force fields, the initial PDB files, as well as the
accuracy of the PB solver. Among these factors, the more disputative ones are the model,
the force field, and the protein structure. MIBPB however can reduce the error in solving
PB equation to the minimum. We next will move to the topic of using position dependent
dielectric constants to enhance pKa computation based on established schemes.
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