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a b s t r a c t

We present an eigenspectrum partitioning scheme without inversion for the recently described real-
space electronic transport code, TRANSEC. The primary advantage of TRANSEC is its highly parallel
algorithm, which enables studying conductance in large systems. The present scheme adds a new source
of parallelization, significantly enhancing TRANSEC’s parallel scalability, especially for systems with
many electrons. In principle, partitioning could enable super-linear parallel speedup, as we demonstrate
in calculations within TRANSEC. In practical cases, we report better than five-fold improvement in
CPU time and similar improvements in wall time, compared to previously-published large calculations.
Importantly, the suggested scheme is relatively simple to implement. It can be useful for general large
Hermitian or weakly non-Hermitian eigenvalue problems, whenever relatively accurate inversion via
direct or iterative linear solvers is impractical.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recently a real-space approach has been developed for
Green’s function-based ab-initio electronic conductance calcula-
tions, called TRANSEC [1]. TRANSEC inherits a number of intrinsic
advantages associated with real-space electronic-structure calcu-
lations, including favorable parallelizability and no requirement of
an explicit basis-set [1–3].

Within this approach the bottleneck in computing the elec-
tronic transmission function T (E) at energy E is the partial di-
agonalization of a complex-symmetric matrix according to the
equation

(HKS − iΓ )Uk = ϵkUk, ϵk ∈ C. (1)

As described in detail previously [1], we perform this step as an
abbreviated, cheaper intermediate to the inversion

G(E) ≡ {E1 − (HKS − iΓ )}−1 ,

which is needed to compute transmission:

T (E) = Tr

G (E) ΓRGĎ (E) ΓL


.
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In Eq. (1), HKS is the Hermitian Kohn–Sham (KS) Hamiltonian
obtained from the PARSEC Density Functional Theory (DFT)
code [2,3] after self-consistency is reached; the iΓ ≡ i(ΓL + ΓR)
is a sum of imaginary, diagonal absorbing potentials with Gaussian
form at the two ends of the simulation cell, where i2 = −1; and the
ϵk and Uk are a pair of eigenvalue and eigenvector, respectively, of
HKS − iΓ [1]. To calculate conductance in an implicit real-space
basis, we use a simulation cell having a finite volume V , so the
dimension of the matrix HKS is given by N ≈ V/h3. Here h is
the grid spacing of the real-space lattice and N is typically 104 to
106 or greater. To correct for the finite volume V , the imaginary
absorbing potentials, iΓ , are tuned to absorb outgoing electrons
and prevent reflections at the boundaries of the simulation cell [1].
Since HKS is real-symmetric, the presence of iΓ results in a
complex-symmetric eigenproblem. This partial diagonalization is
the most computation-intensive part of TRANSEC, and can take
many hundreds or thousands of core-hours of computation on
standard supercomputers [1].

TRANSEC is parallelized mainly by partitioning the real-space
grid over computing cores during matrix–vector application.1 This
monolithic source of parallelization results in less-than-optimal

1 Note that symmetry and k-point sampling are not implemented because of the
non-periodic geometry of conductance calculations, so parallelization over these
dimensions is unavailable.
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parallel scaling when, for instance, the number Ne of electrons
under simulation increases in tandemwith, or even faster than, the
supercell volume V [1].

In this paper, we develop a further dimension of parallelization
by partitioning over the eigenspectrum of Eq. (1). This scheme can
significantly improve the iterative solution of the eigenproblem
(1), leading to markedly better scalability in TRANSEC. As we will
demonstrate in Section 3, super-linear parallel speedup, or net
savings in computing time, are possible. The present scheme is
conceptually and operationally simpler than shift–invert [4–7] and
similar algorithms, yet still effective. It can accelerate the solution
of large eigenvalue problems, both Hermitian and non-Hermitian,
when matrix inversion via matrix decompositions such as sparse
LU or via iterative linear solvers is impractical. We emphasize
that (1) is weakly non-Hermitian,2 as the eigenvectors of (1) are
bi-orthogonal with respect to a standard inner product [1,8]; in
contrast, for Hermitian eigenvalue problems, the eigenvectors are
orthogonal. While iterative methods have been studied [9,10] for
solution of linear equations with complex-symmetric matrices,
few have been proposed for the corresponding eigenvalue
problems, such as (1). Robust production code for the solution of
sparse large-scale complex-symmetric eigenvalue problems such
as Eq. (1), especially when many eigenpairs are needed, is sorely
missing. The algorithm we propose in this paper can be used to
solve such complex-symmetric eigenvalue problems.

This paper is organized as follows. The remainder of this section
introduces the no-inverse approach andoutlines someof its advan-
tages. In Section 2 we describe in greater detail the shift-without-
invert method, including comparisons to other partitioned
approaches, and some heuristics towards an automated partition
method. In Section 3 we present several large-scale calculations il-
lustrating the potential for improved parallelization and reduced
computational time of the proposed method, including two ma-
jor applications originally reported in [1]. Our current calculations
show better than five-fold net savings in computational time com-
pared to our previous method.

The method proposed here partitions the eigenvalue problem
(1) into parallel sub-problems, then rigidly shifts the operator

HKS − iΓ (2)

into each different partition of the eigenspectrum. In contrast to
more commonly used shift–invert approaches, such as [4–7], we
avoid matrix inversions. Thus our algorithm involves no linear
equation solving via LU decomposition or iterative linear equation
solvers.

Existing spectrum partition algorithms (e.g. [6,7]) partition the
large eigenproblem into parallel sub-problems, but must still face
the complexity associated with shift-inverse. For our problem,
the matrix (2) is very large, and furthermore, the matrix HKS
in TRANSEC is never explicitly computed or stored [1,2], even
in a standard sparse format; it is instead represented as a ma-
trix–vector product formula. These facts make inversion via ILU
factorization infeasible (even if it may be possible to store the
sparse HKS explicitly, the cost of factorization can still be pro-
hibitive due to the matrix size). Sparse inversion using an approxi-
mate inverse (AINV) preconditioner [11,12]may be another option,
but both the AINV and the ILU preconditioners are not straightfor-
ward to apply;moreover, evenwith the increased coding complex-
ity and the expected increase inmemory cost, the overall CPU time
is not necessarily reduced.

TRANSEC works with the Hamiltonian HKS from PARSEC, which
is defined on a real-space grid [2]. The computational cost

2 By ‘‘weakly’’, we mean both that the anti-Hermitian part −iΓ is restricted to
the diagonal, and that it is typically small, as discussed around Eq. (5).
of the iterative diagonalization of Eq. (1) using a Krylov-type
method such as ARPACK scales like O(Nn2

r ), where nr is the
total number of eigenpairs found [13,14]. Because of the sparsity
of the Hamiltonian from a real-space method, multiplying the
Hamiltonian by a trial vector contributes only linearly in the
Hamiltonian dimension N to the cost of (1). Yet this matrix–vector
application is the critical source of parallelization in real-space
methods [2]. By contrast, the quadratic scaling in nr is associated
with orthogonalizing the growing subspace of eigenvectors, aswell
aswith subspace rotations necessary to carry out the Rayleigh–Ritz
refinement process [15]. Whereas the Hamiltonian dimension
depends on both the system volume V (number of atoms) and the
grid spacing h as N ≈ V/h3, the number of eigenpairs nr needed
to converge the T (E) calculation typically scales only with the
number Ne of electrons in the system. Because the system volume,
number of atoms, and number of electrons typically scale together,
the cost of our original method [1] grows cubically with system
size V , whereas the parallelizability improves only linearly with
V . Worse still, parallel scalability deteriorates when a large nr is
needed for a given N , for example in systems with a high average
electron density per unit volume, Ne/V .

To overcome these problems, we present here a spectrum
partitioningmethod that enables the solution of Eq. (1) with better
parallel scalability. To avoid the problems associated with inverse
of large matrices mentioned above, we approach this problem
by shifting without inversion. The no-inverse approach allows us
to parallelize our transport method over energy as well as over
the real-space grid, significantly improving the overall parallel
performance, as will be shown in Section 3.

2. The shift-without-invert partition algorithm

Note thatwe need to compute the nr eigenvalueswith smallest-
real-part3 and their associated eigenvectors of Eq. (1). To partition
this computation, onemain feature of the present scheme is to shift
the matrix (2) by some strategically placed real rigid shifts ES,j and
transform Eq. (1) into a sequence of p sub-problems:
HKS − iΓ − ES,j


Uk = (ϵk − ES,j)Uk, 1 ≤ j ≤ p, (3)

which can be solved parallelly. For each shift ES,j, we solve for nr,j
number of eigenvalues closest to the shift, where each nr,j is only a
fraction of nr . After combining a sequence of such partitions jwith
different values of the shifts ES,j and solving for nr,j < nr eigenpairs
on each partition, we obtain the desired total nr eigenpairs. To
compute all nr eigenpairs, it is clearly necessary that

p
j

nr,j ≥ nr . (4)

The number nr,j of eigenvalues computed in each sub-problem
can in theory be made much smaller than the total nr , hence we
mitigate the O(Nn2

r ) complexity into a sequence of p parallel sub-
problems, each with only O(Nn2

r,j) complexity.
By breaking (1) into a sequence of mostly independent sub-

problems, the present scheme greatly enhances the parallelization
of our real-space method, as we will demonstrate. Moreover,
partitioning allows ‘‘continuation’’ runs to expand a domain of

3 The reason is that to first order, conductance is a property of a small range
of eigenpairs around the Fermi energy EF ≡ ϵNF , the NF th-lowest eigenvalue in
the spectrum of HKS [1]. Typically in TRANSEC we choose nr a few times NF , and
NF ∼ Ne/2 ≪ N , where Ne is the number of electrons in the simulation, and
N ≈ V/h3 is the dimension of HKS . Hence in practice the required eigenpairs are
identical to the nr eigenpairs with smallest-real-part. (In this paper any ‘‘ordering’’
of the eigenvalues always refers to ordering by the real parts.)
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previously-solved eigenpairs from nr to a total n′
r > nr , by

computing just the n′
r −nr previously unsolved eigenpairs as a new

partition.
A single partition’s complexity is quadratic in nr,j, thus it is

theoretically possible to solve for a total of nr eigenpairs in a time
that scales linearly in nr , i.e.O(nr), whenwe partition the spectrum
into as many finer parts as necessary. In particular, this in theory
can lead to far better than the ‘‘ideally’’ linear parallel speedup
of non-partitioned methods. In practice, though, our approach
faces challenges owing to the increased computational demand
associated with computing interior eigenpairs. Our scheme must
also cope with uncertainty in choosing the shifts ES,j, since the
eigenvalues and their density distribution are unknown a priori.

The applications we present in Section 3 illustrate in practice
both the potential, and the possible setbacks, of the present
partitioning scheme. These results show the possibility of super-
linear parallel speedup, or equivalently, saving CPU time via
partitioning, even compared to un-parallelized calculations. In
particular, Sections 3.2 and 3.3 present two major applications
containing Au(111) nanowires from Ref. [1], each of which we
compute here in far less CPU time than in Ref. [1], on the same
hardware. The thirdmajor application from Ref. [1], a C60 molecule
between Au(111) leads, is not presented here. In this case, one
interior partition out of four had difficulty converging using the
same options passed to PARPACK.

The main reason is that Lanczos-type methods (including
PARPACK without inversion) are better suited to converging
exterior eigenvalues. For eigenvalues located far interior to
the spectrum, Lanczos-type methods may suffer from slow
convergence, which can worsen when the interior eigenvalues are
clustered. With our partitionedmethod, we call PARPACKwith the
‘SM’ (smallest magnitude) option, iterating over a much smaller
dimension subspace compared to a non-partitioned method.
Thus our approach is most effective when eigenvalues are not
highly clustered.4 For the unconverged partition in the C60 test
application, the requested number of eigenpairs per Ry is over
2200. In comparison, the average requested eigenpairs per Ry
for the Au nanowire examples is less than 1340, while for the C
chain it is less than 250. The more eigenpairs requested per Ry,
the more clustered some interior eigenvalues can become. This
helps explain why we encountered convergence difficulty for one
partition in C60 yet had excellent results for the other applications.
For problems with highly clustered interior eigenvalues, a pure
no-invert approach as developed here may not be optimal. In
this case we should resort to applying shift-with-invert, that is,
apply the more complicated ‘inverting’ techniques only when
the no-invert approach encounters difficulty converging some
partitions. This combination of no-invert and invert will be of
future development. We emphasize that, for many problems in
quantum transport where the interior eigenvalues are not highly
clustered, our no-invert approach provides a greatly simplified
alternative to shift–invert.

We implement the shift-without-inverse scheme to study
quantum transport with the TRANSEC [1] code. Here, the anti-
Hermitian part −iΓ of (2) is a relatively small perturbation to HKS ,
so the imaginary parts ℑ{ϵk} of the eigenvalues are bounded, and
much smaller than the magnitudes of the real parts,

|ℑ{ϵk}| ≪ |ℜ{ϵk}|.

Specifically, the complex eigenvalues in our TRANSEC applications
are given by

ϵk = ⟨Uk|HKS − iΓ |Uk⟩ ≈ ϵKS
k − i⟨UKS

k |Γ |UKS
k ⟩. (5)

4 Of course, other factors like the assignment of grid points to cores, numerical
roundoff, and convergence tolerance also influence convergence in practice.
Here the UKS
k are unperturbed KS eigenvectors (i.e., those of HKS

alone),

ϵKS
k ≡ ⟨UKS

k |HKS |UKS
k ⟩ ∈ ℜ

are the corresponding unperturbed KS eigenvalues, and the
approximate equality can be justified by first-order perturbation
theory. Therefore

0 ≤ −ℑ{ϵk} ≤ max{Γ },

that is, the whole spectrum lies near the real axis, and TRANSEC’s
eigenproblem Eq. (1) is only weakly non-Hermitian. Consequently,
we only find it necessary to choose appropriate shifts ES,j on the
real axis. This choice of real shifts simplifies the partitioning of the
spectrum.

It is worth mentioning that our scheme should also be
applicable to more strongly non-Hermitian eigenproblems. In
such cases one needs to choose complex shifts to compute
eigenvalues with larger imaginary parts, and a two-dimensional
partitioning {ES,j,k, nr,j,k}, where the j and k indexes represent real
and imaginary parts of the shifts, should be necessary to cover the
whole eigenspectrum.

2.1. Rationale of a ‘‘without-invert’’ approach

Our partitioned algorithm belongs to the divide-and-conquer
methodology. As is well-known, a divide-and-conquer method
in theory is more suitable for parallel computing than non-
partitioned counterparts. The rationale behind our partitioned
method for eigenvalue problems is also to exploit the potential
parallel scaling efficiency. More specifically, since a standard
non-partitioned sparse iterative eigenalgorithm for computing nr
eigenpairs of a dimension N matrix has complexity O(Nn2

r ), if
we partition the wanted spectrum into p parts, then for each

part the complexity reduces to O(N


nr
p

2
), so in theory the total

complexity reduces to

p · O


N

nr

p

2


= O

N

n2
r

p


. (6)

We note these theoretical results reference only the number p of
partitions, not the number of cores, so (6) could theoretically be
attained even with p serial runs on a single core. But there is very
little cost to parallelizing the shift-without-invert scheme because
the p partitions can be computed in embarrassingly parallel
(i.e., entirely independently of each other), as indeed was assumed
to derive Eq. (6). The only coordination or communication required
among partitions is to combine the results after the eigensolution
steps, and subsequently to fill in any missed eigenpairs at the
interfaces among partitions, as described below. Therefore, we
may also consider p as the number of available processors or CPU
cores, which on a modern supercomputer can readily reach over
a few thousand (or we could choose p larger than the number of
cores by running additional parts in series in order to benefit from
the ∼1/p scaling). So the ideal complexity could reach even

O (Nnr) , (7)

when p = O(nr).
The superior theoretical scaling efficiency associated with

partitioned methods is the driving force behind the eigenvalue
partition algorithms, represented by [6,16], and [7].

Both Refs. [6] and [7] utilize the shift–invert operation
within the framework of the Lanczos method; the earlier such
decomposition idea traces back to [17]. The inverse operations
require solving linear equations, which are usually realized by
calling either an iterative linear equation algorithm such as CG, or
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a sparse direct solver [18], in particular the MUMPS package [19].
However, it is well-known that solving the shifted linear equations
involves significant efforts, both in computational cost5 and
especially in the algorithm development. A sparse direct solver
is the more stable and more straightforward choice when the
dimension is not large; however, for very large dimension linear
equations, a direct solver becomes impractical and an iterative
solver often is needed. But any iterative linear equation solver is
not a black-boxmethod that can be used straightforwardly. Rather,
there are several parameters related to a given solver that must
be tuned [20,21], and such task of choosing parameters is further
complicated by the fact that the shifted equations are often ill-
conditioned. The so-called ‘‘preconditioned’’ eigen-algorithms are
usually more complicated to use than the preconditioned linear
solvers they employ to solve the shifted linear equations.

Furthermore, the Lanczos method employed in [17,6,7] may
suffer from missing eigenvalues, especially when there are clus-
tered eigenvalues andwhen subspace-restart is used to savemem-
ory; therefore, quite complicated post-processing operations are
required to find any eigenvalues missed by a previous Lanczos run
within a partition. To guarantee no eigenvalues aremissed in a par-
tition, accurate eigenvalue counts on an intervalmust be calculated
in [6,7]. This is done by resorting to the Sylvester inertia theorem,
which would require a sequence of Cholesky decompositions. The
O(N3) complexity associated with a Cholesky decomposition thus
can significantly restrict the dimension of eigenvalue problems to
which the partitioned methods in [6,7] can be applied.

To avoid these difficulties associated with inversion, the
spectrum slicing method in [16] opts to apply Chebyshev–Jackson
polynomial filters. However, very high order of degree (such as
≥1000) polynomials are used to achieve the desired filtering,
resulting in significant computational cost for the filtering. The
method in [16] seeks to avoid expensive Cholesky decompositions
for counting eigenvalues. This saves computational cost, but
increases the complexity of the algorithmic design, since several
post-processing procedures are needed to guarantee finding all
eigenvalues on a partition slice. The method in [16] is applied to
only a relatively small number of partitions; extending it to many
partitions could encounter difficulties, owing to the complexity of
applying high order degree polynomial filters, and the requirement
of finding all eigenvalues when eigenvalue counts are unknown.

As discussed earlier, the main advantage of a partitioned eigen-
value algorithm should be its applicability to as many partitions as
possible, therefore, we adopt a different approach here than in [16]
to avoiding inversion. In addition, the partitioned eigen-methods
cited above are all restricted to Hermitian eigenproblems, whereas
ourmethod is applicable to non-Hermitian eigenproblems, such as
Eq. (1) in TRANSEC.

Although the scheme we propose here could be used with
any O(Nn2

r ) iterative eigensolver, our implementation makes use
of the well-received eigenvalue package ARPACK [13,22], which
arguably remains the best public domain solver for large non-
Hermitian eigenvalue problems. ARPACK can solve a standard
eigenvalue problemsuch as (1)without performing inverse, simply
by applying implicit polynomial filters [23]. In TRANSEC we
actually call PARPACK—the parallel version of ARPACK using MPI.

As mentioned earlier, the O(Nn2
r ) scaling complexity of

PARPACK leads to inefficiency when nr is large. Our solution is to
decompose the spectrum into smaller chunks and solve parallelly
on each chunk for only a small number of eigenvalues. When
computing a relatively small number of eigenvalues, PARPACK

5 In fact, we have in the first place chosen eigensolution as an efficiency-
enhancing intermediate step towards our actual goal of inverting E − (HKS − iΓ ),
as discussed around Eq. (1) and further in Ref. [1].
enjoys excellent scalability due to fewer basis vectors needing re-
orthogonalization (and thus fewer inner-products). This, coupled
with the overall stability of ARPACK, makes PARPACK the best
available choice for our partitioned subproblem (3). In (3) the
number nr,j of requested eigenvalues is only a very small fraction
of the dimension of the Hamiltonian matrix.

However, we encounter an immediate difficulty with the
partition approach: although PARPACK provides options to specify
which eigenvalues to compute, such as SR/LR (smallest/largest
real part) and SM/LM (smallest/largest magnitude), the SR/LR/LM
are all for computing exterior eigenvalues, and cannot be used to
compute the eigenvalues in, for example, an interior partition; and
the remaining SM option is only for computing eigenvalues closest
to zero.

We overcome this difficulty by combining shifts and the SM
option in PARPACK. That is, we strategically place shifts as in Eq. (3)
in an estimated region of the spectrum, then request PARPACK to
compute the eigenvalues closest to each of these shifts by using
the SM option on the shifted operator. With this choice, we can
converge both the exterior and the interior eigenvalues, by placing
shifts at suitable locations of the spectrum.Adownside is that some
interior eigenvalues may be very slow to converge without using
inverse; if that happens, the overall scalability of our schemewould
deteriorate. A possible remedy is to partially integrate inverse
operations when such a situation is detected to happen. Partially
utilizing inverse is viable because the number of eigenvalues to be
computed around a shift is small. The mixed no-inverse plus shift-
inverse approach is still expected to be less expensive than using
shift–invert on the full wanted spectrum, andwill be the subject of
our future work. The current paper focuses on the shift-no-inverse
approach.

2.2. Computational structure of the shift-without-invert algorithm

Existing partitioned eigenvalue algorithms, including [6,16,7]
and ourmethod, all face the challenge of how to partition the spec-
trum. Since the spectrum is unknown at the start of computation,
it is not straightforward to know how to partition it into smaller
parts, and harder still to partition in such a way that each chunk
would have similar workload for ideal load balancing. This is one
of the intrinsic difficulties of any partitioned approach; another
difficulty is the handling of partition boundaries (or interfaces) be-
tween adjacent partitions, including removing redundant eigen-
values and recovering the wanted eigenvalues that may have been
missed on all the partitions. These difficulties, in our opinion, may
be the main reason why there exist rather few partitioned eigen-
algorithms, even though such an approach can theoretically reach
excellent linear scaling complexity. Progress toward an automated
algorithm to cope with these difficulties would be a meaning-
ful step forward for approaching the improved theoretical scaling
efficiency promised by a partitioned method.

In the next sections we suggest simple techniques to address
the two intrinsic difficulties mentioned above. Note that the
approach as it is sketched here is neither optimized, nor robust
enough to run entirely without human input. Thus our approach
is not yet a fully automated algorithm. But the present heuristics
are straightforward to implement and may serve as an initial step
toward a fully automated partitioned eigen-algorithm. Note also
that the results in Section 3 below are special in that we obtained
themwith foreknowledge of the eigenspectrum from our previous
work [1], and therefore did not need to resort to these approximate
methods to estimate the nr,j and ES,j.

2.2.1. Choosing shifts and partitions
We choose in advance the total number p of partitions, based on

howmany cores are available for parallelization, and based on the
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general consideration that performance improves as p increases
(as seen for actual calculations in Section 3) until the overhead
of choosing the partitions begins to dominate. Each partition is
associatedwith a shift ES,j togetherwith a number nr,j of eigenpairs
to solve; in the jth partition, we compute the nr,j eigenpairs closest
to the shift ES,j.

To estimate initial locations for the partitions, we call PARPACK
to compute just two exterior eigenvalues—the onewith the largest
real part and the one with the smallest. This is not expensive since
PARPACK is generally very efficient for converging a small number
of exterior eigenvalues. Our goal in TRANSEC is to compute the
lower end of the spectrum (see footnote 3), so once we estimate
these two eigenvalues (denote their real parts as rmin and rmax), we
can estimate the interval to be partitioned as a certain proportion
of the full eigenspectrum located at the lower end, for example:
rmin, rmin +

nr

N
· (rmax − rmin)


.

However, this estimate assumes uniform density of the eigenspec-
trum, so it could lead to too many or too few eigenpairs within
the partitioned range. To improve, we can estimate the density of
eigenpairs by solving for a few eigenpairs at several sample points
throughout the spectral region of interest.

We next discuss the challenge of load balancing. Because
PARPACK is based on the restarted Arnoldi/Lanczos method,
interior eigenvalues are more expensive to converge than exterior
ones when we call it without inversion. Clearly, using equal nr,j ≡

nr/p on each partition j would result in poor load balancing.
Instead, it is strongly advisable to reduce nr,j as the partitionsmove
into the interior of the spectrum. As a simple heuristic, we use the
formulas at lines 4–8 in the pseudocode shown in the next section
to do this. After choosing nr,j, wemust estimate ES,j accordingly, as
for example in line 9. Here round() and ceil() are the standard
rounding and ceiling functions, respectively. The formulas, derived
by approximate fitting to actual timing data, provide cheap
estimates of the optimal nr,j for given j and p that result in far
improved load balancing. Still, these formulas are only heuristics,
so we expect further refinements such as sampling the local
eigenvalue density would improve load-balancing significantly.

We now address the two issues mentioned above relating to
boundaries between partitions: first, some eigenvalues may be
computed twice in adjacent partitions, resulting in redundancy.
Second, some wanted eigenvalues may be outside the range of all
partitions, leading to holes in the computed spectrum. In practice,
these two issues compete; tolerating slight redundancy may be
preferable so as to minimize the risk of holes. Holes are the more
severe problem because filling them necessitates further PARPACK
calls.

To address the redundancy problem,we first identify eigenpairs
having the same eigenvalue within a small numerical tolerance,
and then perform a Gram–Schmidt process to bi-orthogonalize
their computed eigenvectors. As a result of the Gram–Schmidt
process, any eigenvector linearly dependent on the previous
eigenvectors is removed, in this case we also remove its associated
redundant eigenvalue. The search and subsequent Gram–Schmidt
process can run through all eigenpairs, or only over adjacent pairs
of partitions.6

The problem of missing eigenvalues is harder to address.
Since we avoid any Cholesky decompositions, we cannot apply
the Sylvester inertia theorem to get eigenvalue counts on a

6 In theory, a brute-force search for degenerate eigenvalues across all partitions
could cost quadratically in nr , just as does the orthogonalization step in PARPACK’s
Arnoldi algorithm. But one must carry out this search and the Gram–Schmidt step
only as post-processing steps after each solution of Eq. (3), rather than iteratively
within Eq. (3). So in practice, removing redundancy consumes only a small fraction
of CPU time. Moreover, one can restrict this search to adjacent partitions, since
redundancy normally does not extend beyond the nearest partition.
partition. Aside from the high cost of Cholesky decompositions, our
eigenvalue problems are non-Hermitian, so the Sylvester inertia
theorem does not apply. In addition, TRANSEC and PARSEC avoid
explicitly computing or storing HKS or other N × N matrices, so
a matrix decomposition such as Cholesky is inapplicable. Some
techniques have been recently proposed [24,25] to estimate the
number of eigenvalues in a given interval without computing
them. But these provide only approximate counts, and are again
intended for Hermitian eigenproblems, thus cannot apply to (3).
Next,we insteadpropose simple heuristics to identify and fill holes.

2.2.2. Pseudocode of the partitioned shift-without-invert algorithm
Here we present first heuristics towards more automated hole-

filling approaches. The structure of our algorithm is presented as
Algorithm 1, which we have designed with the quantum transport
application of TRANSEC in mind. Adjustment may be called for to
optimize the algorithm for other applications.

Some useful inputs to the algorithm include the total dimension
N of the Hamiltonian and the total eigenspectrum range rmin and
rmax, as mentioned above. In quantum transport applications, one
can also use the lowest Kohn–Sham eigenvalues ϵKS

k (those of
HKS only, without iΓ ) to estimate the eigenvalue spacing and
the lowest eigenvalue of (2). These are necessary prerequisites
to quantum transport, obtained when solving the KS equations
of DFT, and are valid approximations to ϵk, as discussed around
Eq. (5). Still, the algorithm would benefit from non-automatic
human insight to gauge the validity of such an approximation, or
further corrections such as higher-order perturbation theory to
improve on it.

Following Algorithm 1, one first can use the nr,j from lines 4 to
8 to estimate optimal shifts ES,j, as in line 9. Ideally, these shifts
would be chosen to minimize redundancy while still avoiding
holes, both between partitions, and at the edges of the overall
range of interest. Or one can improve on line 9 by estimating
the eigenspectrum distribution, as described above. Any such
knowledge of the spectral distribution could prove important to
the quality of the initial shift choices.

Next, one computes the solution to Eq. (3) using the chosen nr,j
and ES,j. The Gram–Schmidt process shown in Algorithm 2 should
then be performed to remove redundancies. As mentioned above,
in practice a few redundancies are desirable to minimize holes.
In fact, we find a reliable heuristic to detect holes is the absence
of even a single redundancy between adjacent partitions. If the
Gram–Schmidt process detects holes, we next apply additional
iterations to ‘‘fill in’’ the holes, by inserting new partitions between
existing adjacent ones that lack redundancy, as in lines 17–22
of Algorithm 1. This approach is reminiscent of an adaptive grid
algorithm.

Hole-filling carries computational costs and overheads, but
these must be weighed against the more expensive probing that
would be needed to get an accurate count of the number of
eigenvalues in advance.

3. Application of the partitioned shift-without-invert algo-
rithm

In this Section, we present benchmark timing results of the
shift-without-invert scheme compared to the standard single-
partition TRANSEC method of Ref. [1] for several large T (E)
calculations.

Wedefine parallel speedupη according to the usual convention,
except with two generalizations. First, because the partitions j run
independently, we report speedup either based on total CPU time,
or on the longest elapsed wall-time:

ηCPU ≡
TCPU,0

TCPU
, ηwall ≡

Twall,0

max
j

{Twall,j} · Ncores
. (8)
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Algorithm 1 Partitioned shift-without-invert eigen-algorithm,
with automated hole-filling heuristic
1: p := Total number of partitions, {Emin, Emax} := extremal

eigenvalues
2: for j = 1 → p do
3: Estimate number of target eigenpairs nr,j for partition j:
4: if j ≤ p/2 then

5: nr,j = round


2
1.5+ j−1

p
·

nr
p


6: else
7: nr,j = ceil( 2nr

p ) − nr,(p−j+1)

8: end if
9: Estimate energy shift ES,j for partition j: ES,j = ES,j−1 +

Emax−Emin
N

 
nr,j+nr,j−1

2


10: Solve eigenvalue problem (3) with the updated values nr,j,

ES,j
11: end for
12:
13: Set a conditional flag ‘‘holes’’ on each interface between

partitions to true
14: repeat(while any ‘‘holes’’ flag is true)
15: Combine partitions and check for holes (Algorithm 2)
16:
17: for all interfaces j on which the flag has value ‘‘holes’’ do
18: Create a new partition j′ between partitions j − 1, j;

p = p + 1;
19: Choose ES,j′ =

1
2


maxi ℜ{λ

(j−1)
i } + mini ℜ{λ

(j)
i }


,

where i indexes all eigenvalues λ
(k)
i on partition k;

20: Choose nr,j′ =
3
2


mini ℜ{λ

(j)
i }−maxi ℜ{λ

(j−1)
i }

(Emax−Emin)/N


,

21: Solve (3) using nr,j′ , ES,j′ .
22: end for
23: until No ‘‘holes’’ remain.

Algorithm2 Combine partitions and remove redundancies/test for
holes
1: for all Computed eigenpairs {λk, vk}, across all partitions do
2: Check whether eigenvalue λm = λk for any m < k :
3: for all Computed eigenpairsm < k do
4: if λm = λk then
5: Modified Gram–Schmidt orthogonalization: vk =

vk − Projvm
vk

6: end if
7: end for
8: Compute norm ak ≡ |vk| after Gram–Schmidt process;
9: if ak < tolerance then

10: Remove redundant eigenpair {λk, vk} ;
11: Set flag holesk−1 = false ;
12: else
13: Normalize: vk = vk/ak ;
14: end if
15: end for

Here TCPU is the total CPU time for the parallel run, TCPU,0 is the
total CPU time for the reference serial run, Twall,j is the elapsed
wall time of the jth partition, Twall,0 ≈ TCPU,0 the elapsed wall
time of the reference serial run, and Ncores the total number of
cores in the parallel job (cumulative over all partitions). Note
the difference between ηCPU and ηwall is due to imperfect load-
balancing among the partitions, i.e. Twall,k ≠ Twall,j. Second,
because some calculations are too large to run practically on a
single core, we sometimes replace the single-core reference times
TCPU,0 and Twall,0 in Eq. (8) with single-partition reference times
TCPU,1 and N1 · Twall,1, respectively, that are still parallelized over
grid points to N1 cores.

For ideal parallelization, the speedup factors defined above
approach ηCPU = ηwall = 100%. In this Section, we will report cases
where η > 100% because multiple partitions can actually reduce
CPU time compared to a single partition, as discussed around
Eqs. (6) and (7).

Our shift-without-invert scheme requires a relatively small
additional run to combine the results of the separate partitions
(Algorithm 2). We neglect this in most timings reported in this
section, but including it would not change the qualitative picture
we present. A more important caveat is the necessity to choose
ES,j and nr,j appropriately, something made harder when one lacks
foreknowledge of the distribution of eigenvalues. As mentioned in
Section 2.2, the calculations in this Section portray the potential
of a somewhat idealized shift-without-invert scheme because we
do possess such foreknowledge from Ref. [1]. Therefore, hole-
filling was avoided, and the timings we present here are simply
cumulative times for the successful partitioned runs. But we
note the calculations do reflect realistic difficulties such as load-
balancing and redundancy.

In general, we sought to equal or exceed the total eigenvalue
counts nr of Ref. [1], choosing nr,j in accordance with Eq. (4),
and using lines 4–8 of Algorithm 1 as a starting point for load-
balancing.7 We divided the single-partition eigenspectra obtained
in Ref. [1] into consecutive intervals j containing nr,j eigenvalues,
and chose ES,j as the midpoint of each interval. We then typically
increased the actual eigenpair requests nr,j by ∼5% or 10%, and in
some cases8 further adjusted the partitions, in order to eliminate
holes. We combined the partitions according to Algorithm 2, and
proceeded to compute transmission T (E) as in Ref. [1]. Because
T (E) is sometimes sensitive to the number of eigenpairs used [1],
we typically might discard eigenpairs in the combined spectra that
were in excess of the number found in the corresponding single-
partition runs. In addition to the T (E) comparisons shown below,
we also usually compared the final eigenvalue spectra to the single-
partition results as another rigorous consistency check.

3.1. C monatomic chain

We applied Algorithm 1 in TRANSEC to compute the transmis-
sion T (E) in an identical Cmonatomic chain structure presented in
Ref. [1]. The geometry, shown in Fig. 1(a), consisted of 14 C atoms
per electrode, with atomic spacing of 2.6 a0, and a gap of 4.7 a0 be-
tween the electrodes and central atom,where a0 is the Bohr radius.
The calculation made use of norm-conserving Troullier–Martins
pseudopotentials with s/p cutoff radii of 1.46/1.46 a0 for C. As in
Ref. [1], we used Gaussian imaginary absorbing potentials Γ cen-
tered on the first and last atoms in the chains, of strength 265mRy
and standard deviation 10.4 a0.

Following Ref. [1], we used a converged grid spacing h = 0.6a0,
resulting in N = 22,100 grid points. In order to investigate a
case with large nr/N , we requested the lowest nr/N = 10% of
eigenpairs instead of 5% as in Ref. [1] for a total of nr = 2210
eigenpairs. The eigenvalues range from EF − 1.036 Ry to EF +

9.229 Ry, where EF is the Fermi level. On a single core with all
nr eigenvalues in a single partition, the calculation took about
T0 = 14.5 h. Parallelized to 4 cores via the standard TRANSEC
procedure (i.e., a single partition, parallelized over N only), it took

7 When doubling the number of partitions, this typically means that each
partition j is split into two smaller ones.
8 The C chain and the 2- and 4-partition BDT calculations were successfully

partitioned on the first attempt.
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Fig. 1. (a) Structure of the C monatomic chain system considered here and in
Ref. [1]. In this work we use 10% of total eigenpairs rather than 5%. (b) TRANSEC
calculated results for transmission, T (E), for the C monatomic chain system shown
in (a). Results obtained using the partitioned shift-without-invert scheme agree
with the single-partition results to better than two decimal places.

Twall,1 = 10 wall-clock hours, or about TCPU,1 = 40 core-hours
(parallel speedup of just η = 36%).

With the shift-without-invert algorithm with 4 partitions on 1
core each (total of 4 cores), the calculation took a total of TCPU = 9
core-hours, giving parallel speedup ηCPU = 160% compared to
the single-core run. The result was obtained in wall-clock time
maxj{Twall,j} = 3 h and including Algorithm2, a full T (E) resultwas
obtained within 3.5 h of starting the calculation (parallel speedup
of ηwall = 290% compared to the non-partitioned parallel run
with same 4 cores, or ηwall > 100% compared to the single core).
The partition parameters were nr,j = (760, 630, 459, 424) and
ES,j − EF = (1.726, 5.678, 7.496, 8.678) Ry. The T (E) results
agreewith the results obtainedwith the non-partitioned PARPACK
package in Ref. [1], as shown in Fig. 1(b).

3.2. Transmission in Au(111) nanowire electrodes

To gauge the shift-without-invert method’s usefulness in prac-
tice, we next applied Algorithm 1 to one of our primary test sys-
tems of Ref. [1], consisting of Au(111) nanowire electrodes with
an Au atomic point contact as the scattering region, and a gap of
9.3 a0 between the central Au atom and each lead. The system’s
structure, shown in Fig. 2(a), is identical to that used in Ref. [1]. As
in Ref. [1], we used Gaussian absorbing potentials centered at the
ends of the two electrodes, with strength 100 mRy and standard
deviation 8.5 a0; andweused anorm-conserving Troullier–Martins
pseudopotential for Auwith electronic configuration of 5d106s16p0

and s/p/d cutoff radii of 2.77/2.60/2.84 a0. The real-space grid had
N = 234,500 grid points, of which the lowest nr = 2930 eigen-
pairs, roughly 1% of the total, were computed. The eigenvalues
ranged from EF −0.549 Ry to EF +1.638 Ry. As reported in Ref. [1],
this single-partition calculation took about Twall,1 = 41 wall-clock
hours on two nodes of Intel E5-2630machines, each nodewith two
hex-core CPUs (a totalN1 = 24 cores). Thus, the total CPU timewas
TCPU,1 = 980 core-hours.

In the current work, we have performed the same calculation
in four separate partitions of six cores (one hex-core CPU) per
partition on the same type of processors, giving a total again of
Ncores = 24 cores. The total CPU time for the four runs reduced
to only TCPU = 320 core-hours, about three times faster than the
single-partition runparallelized only via PARPACKover grid points.
The longest of the four partitioned runs took maxj{Twall,j} = 17 h,
a factor ∼2.5 less elapsed wall-clock time than the PARPACK-only
Fig. 2. (a) Structure of the Au(111) nanowire/atom/nanowire system considered
here and in Ref. [1]. (b) TRANSEC calculated results for transmission, T (E), for the
Au(111) nanowire/atom/nanowire system shownon top. Results obtained using the
partitioned shift-without-invert scheme agree with our results obtained with non-
partitioned PARPACK in Ref. [1] to better than two decimal places.

run. The partition parameters were nr,j = (1019, 891, 675, 524)
and ES,j − EF = (−0.045, 0.795, 1.281, 1.535) Ry. As shown in
Fig. 2(b), the T (E) results obtained by bothmethods agree towithin
0.5% of the peak height, which is well within the typical margin of
error of TRANSEC T (E) calculations.

To determine the portion of this observed speedup attributable
to the partitioning scheme, we also performed a new single-
partition reference calculation for the same system and same nr
with just N1 = 6 cores. In this case, the calculation took Twall,1 =

52 h of elapsed wall-clock time, or a total of TCPU,1 = 310 core-
hours. Compared to this 6-core reference run, the shift-without-
invert schemewith 24 cores exhibited a parallel speedup of ηCPU =

98% as measured by CPU time, and ηwall = 79% measured by
elapsed wall-clock time. By contrast, the original single-partition
TRANSEC algorithm exhibited speedup of just 31% for 24 cores
compared to the 6-core reference run.

3.3. Benzene dithiol (BDT) molecule with Au(111) nanowire elec-
trodes

We also applied the partitioned shift-without-invert scheme
to another of our principal test systems from Ref. [1], a
molecular junction with the same Au(111) nanowire electrodes
and absorbing potentials as in Section 3.2 above and a benzene
dithiol (BDT) molecule as the scattering region. The system
structure used is identical to that in Ref. [1], except that there
an electrode–molecule gap of 3.2 a0 was used to match a similar
calculation by Stokbro et al. [26], and here we use a larger 6.6 a0
gap, as shown in Fig. 3(a), to demonstrate the gap-dependence of
T (E). As in Ref. [1], we used norm-conserving Troullier–Martins
pseudopotentials with s/p/d cutoff radii of 1.69/1.69/1.69 a0 for
S, s/p cutoff radii of 1.46/1.46 a0 for C, and s cutoff radius of 1.28
a0 for H. The real-space grid had N = 257,000 grid points, of
which the lowest nr = 3,210 eigenpairs, about 1% of the total,
were computed. These eigenvalues ranged from EF − 0.977 Ry to
EF +1.670 Ry. The single-partition calculation took about Twall,1 =

72 h on N1 = 24 cores (two nodes) of Intel E5-2630, for a total of
TCPU,1 = 1730 CPU core-hours.

As in Section 3.2, we performed the same T (E) calculation with
the shift-without-invert scheme, using four partitions on six cores
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Fig. 3. (a) Structure of the benzene dithiol (BDT) molecular junction between Au(111) nanowire electrodes, as in Ref. [1] except with a 6.6 a0 molecule–electrode gap.
(b) Computed T (E) with 4 partitions compared to the standard single-partition TRANSEC. (c) Total CPU time TCPU vs. number of cores Ncores for the T (E) calculation in BDT,
shown in semi-log scale. TCPU shown decreasing with Ncores implies super-linear parallel speedup, as discussed in the main text. (d) Net elapsed time maxj{Twall,j} (wall-time
of longest-running partition) vs. Ncores . Results are shown for runs with 24 (blue square [1]), 6 (green pluses), 4 (red triangles), and 1 (cyan circles) cores per partition. Note
the leftmost point on each curve is a standard single-partition run, as in Ref. [1]; the remaining points are multiple-partition runs using the shift-without-invert scheme.
To compare parallelization schemes, one can compare the elapsed time (part (c) of figure) for different runs at a fixed total number of cores in the calculation. As can be
seen from (c), four partitions of six cores each (green pluses) parallelize far better than a single partition of 24 cores (blue square) [1]. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Details of partitioned and non-partitioned BDT calculations, including number of partitions p, number of cores per partition, partition parameters, and timing information.

p Ncores/p {nr,j} {ES,j} − EF (Ry) {Twall,j} (h) TCPU (core-hours)

1 1 3209 0.34 200 200
1 4 3209 0.34 86 344
1 6 3209 0.34 82 489
1 24 3209 0.34 72 1728

2 1 (2252, 1475) (0.06, 1.40) (100, 193) 293
2 4 (2252, 1475) (0.06, 1.40) (41, 50) 362
2 6 (2252, 1475) (0.06, 1.40) (30, 43) 438

4 1 (1188, 1035, 807, 655) (−0.24, 0.82, 1.29, 1.56) (23, 77, 79, 77) 256
4 6 (1188, 1035, 807, 655) (−0.24, 0.82, 1.29, 1.56) (6, 18, 16, 15) 330

8 6 (561, 520, 485, 464, (−0.58, 0.14, 0.65, 0.96, (2, 4, 5, 6, 8, 9, 10, 9) 321
446, 466, 440, 376) 1.18, 1.37, 1.53, 1.64)
(one hex-core CPU) per partition, with the same type of nodes, for
a total NCPU = 24 cores. As shown in Fig. 3(b), the partitioned
and non-partitioned T (E) agree to within the margin of error of
TRANSEC calculations. The total CPU time for the four partitioned
runs reduced to just TCPU = 330 CPU core-hours, a factor > 5
less than the single-partition run using PARPACK on 24 cores. The
longest of the four partitioned runs took maxj{Twall,j} = 18 wall-
clock hours, a factor ∼4 savings in elapsed time compared to the
non-partitioned PARPACK run on the same number of cores. In
addition, the overhead of the partitioned runs, i.e., combining the
results together by removing redundancy, took less than 4 hours
wall-time on 12 cores.

To further investigate the method’s parallel performance in
large-scale calculations, we performed a series of T (E) calcula-
tions with one, four, and six cores per partition. Details of these
BDT calculations, including the partition parameters, are given in
Table 1.We have summarized the speedup data, our primary result
in this work, in Fig. 3(c), showing TCPU vs. Ncores and Fig. 3(d), show-
ing maxj{Twall,j} vs. Ncores. Each curve shown has a fixed number
of cores per partition, Ncores/p. Thus one can compare paralleliza-
tion schemes by evaluating the timings for various curves at a fixed
Ncores position along the horizontal axis. The number p of partitions
is of course given by Ncores divided by Ncores/p.

The left-most data point displayed in each curve is always a
single-partition calculation (serial or parallelized over grid points).
Thus, one can visualize the parallel efficiency of the shift-without-
invert scheme by comparing the TCPU trend of each curve to the
TCPU value of the left-most data point. The runs with six cores
per partition (shown as green pluses) exhibit TCPU decreasing
with Ncores, or equivalently parallel speedup ηCPU > 100%. For
all the curves, TCPU is constant or at most weakly increasing, or
equivalently η is near 100% or even better. For example, comparing
the four-partition vs. single-partition runs with Ncores/p = 6 cores
per partition, we see that parallel speedup was ηCPU = 150% by
CPU time and ηwall = 120% by elapsed time. Moreover, the single-
partition run with 24 cores (shown as a blue square) from Ref. [1]
has TCPU and Twall far greater than the shift-without-invert results
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with the same Ncores. Although the original TRANSEC method has
been designed to handle very large calculations, in this case our
original single-partition result with 24 cores was clearly over-
parallelized for the size of the given calculation.

The dashed line connects the left-most point of each curve,
and so represents the speedup trend of the standard TRANSEC
algorithm with parallelization only over grid points [1]. Moreover,
contrasting the trendof the dashed curve to each solid curve vividly
illustrates how the limitations of PARPACK-only parallelization
can be overcome by shift-without-invert partitioning of the
eigenspace. These speedup results are particularly noteworthy
because the BDT junction between Au(111) nanowire electrodes
is a challenging nano quantum transport system.

4. Conclusions

We have developed a partitioned shift-without-invert scheme
that significantly improves the performance of large iterative
partial diagonalization algorithms. This scheme can theoretically
reduce the computational cost from O(Nn2

r ) to O(Nnr), as noted
in Eq. (7). In practice, we have illustrated with nr/N = 10%
(Section 3.1) that the shift-without-invert time TCPU can indeed
be less than the single-core time T0, and even with nr/N ≈ 1%
(green pluses in Fig. 3(c)) less than the single-partition time TCPU,1.
The proposed scheme adds another level of parallelization (over
the spectrum and the spatial grid), which provides significant
improvement over the already good parallelization (over spatial
grid only) implemented in TRANSEC. As a result, even with
the non-optimized partitions and parameters, we have readily
obtained a factor >5 improvement in CPU time for a large
TRANSEC calculation by switching from one to four partitions
with the same number of cores, as shown in Fig. 3(c). The shift-
without-invert scheme provides a far simpler overall structure
compared to other partitioned methods. This is particularly true
when comparedwith partitioned approaches that utilize inversion,
which require significant additional effort related to solving
shifted linear equations. Moreover, our scheme is applicable to
non-Hermitian problems, for such eigenvalue problems very few
parallel algorithms have been proposed. Finally, our scheme also
enables continuation runs, so that previously converged eigenpairs
need not be discarded, but instead we simply place new shifts
in unexplored regions of the spectrum to compute desired new
eigenpairs. The shift-without-invert scheme is expected to be
applicable to a wide range of iterative eigenvalue problems:
since we base our partitioned solver on PARPACK, it inherits
the remarkable robustness and generality of the PARPACK
package. Thus for a wide range of eigenvalue problems where
ARPACK/PARPACK is applicable, one can adapt our partitioned
scheme to improve parallel scalability.
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