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Abstract—In this paper, we consider a model for the dynamic
multiple-fault diagnosis (DMFD) problem arising in online mon-
itoring of complex systems and present a solution. This problem
involves real-time inference of the most likely set of faults and
their time-evolution based on blocks of unreliable test outcomes
over time. In the DMFD problem, there is a finite set of mutually
independent fault states, and a finite set of sensors (tests) is used to
monitor their status. We model the dependence of test outcomes on
the fault states via the traditional D-matrix (fault dictionary). The
tests are imperfect in the sense that they can have missed detec-
tions, false alarms, or may be available asynchronously. Based on
the imperfect observations over time, the problem is to identify the
most likely evolution of fault states over time. The DMFD problem
is an intractable NP-hard combinatorial optimization problem.
Consequently, we decompose the DMFD problem into a series of
decoupled subproblems, one for each sample epoch. For a sin-
gle-epoch MFD, we develop a fast and high-quality deterministic
simulated annealing method. Based on the sequential inferences, a
local search-and-update scheme is applied to further improve the
solution. Finally, we discuss how the method can be extended to
dependent faults.

Index Terms—Approximate Bayesian revision, determinisitic
simulated annealing, dynamic fault diagnosis, functional
HMMMs, hidden Markov models (HMMs), Lagrangian relax-
ation, multiple faults.

I. INTRODUCTION

A. Motivation

FAULT diagnosis is the process of identifying the failure
states of a malfunctioning system by observing their ef-

fects at various test points. Fault diagnosis can be roughly
categorized as being static or dynamic. In static fault diagnosis,
the observed test outcomes are available as a block at one
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time instant, while in dynamic (online) fault diagnosis, the test
outcomes are obtained over time. Both static and dynamic fault
diagnoses have a number of applications in engineering and
medicine.

Online system-health monitoring and fault diagnosis in
complex systems, such as in the space shuttle, aircraft, and
satellites, are essential in reducing the likelihood of disasters
due to sudden failures, and to improve system availability. In
many mission-critical operations, such as the systems afore-
mentioned, it is imperative that malfunctioning systems be
quickly diagnosed and reconfigured. With the recent advances
in intelligent sensors that provide real-time information on the
system state, there is an increasing trend toward transmission
of onboard diagnostic results to the ground-based test systems
and operators. Such an integrated system-health management
solution is expected to reduce maintenance and operations
costs by reducing troubleshooting time at the ground station,
by reducing “cannot duplicates,” and by facilitating condition-
based maintenance.

In spite of its importance, there are at least two technical
challenges to be overcome. First, the computational burden
of onboard processing of test results in complex systems is
substantial due to the facts that such systems are composed
of large numbers of components and sensors, and that sensors
are sampled frequently. Second, due to operator errors, elec-
tromagnetic interference, environmental conditions, or aliasing
inherent in the signature analysis of onboard tests, the nature of
tests may be unreliable (imperfect). Imperfect tests introduce
additional elements of uncertainty into the diagnostic process:
The “PASS” outcome of a test does not guarantee the integrity
of components under test because the test may have missed
a fault; on the other hand, a “FAIL” outcome of a test does
not mean that one or more of the implicated components are
faulty because the test outcome may have been a false alarm. In
addition, at any sampling time, the results of all test decisions in
a system are not available due to varying sampling rates of the
sensors and signal-processing limitations. Thus, the problem is
one of determining the fault states of components, given a set
of partial and unreliable test outcomes over time. Consequently,
diagnostic logic that hedges against this uncertainty in test
outcomes is of significant interest to the diagnostic community
[2], [11], [14], [15], [18].

B. Previous Work

Previous research on system fault diagnosis has focused on
test-sequencing problems for single fault diagnosis [15], [17]
and its variants [18], [20], test sequencing for multiple-fault
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diagnosis (MFD) [19], and the “static” MFD [12], [19], [21],
[24], [25] of identifying the set of most probable fault states giv-
en a set of test outcomes. Dynamic single-fault diagnosis prob-
lem was first proposed by Ying et al. [23], where it is assumed
that, at any time, the system has, at most, one fault state present.
This modeling is unrealistic for most of the real-world systems.
Another version of dynamic fault diagnosis was studied in [7],
where unknown probabilities of sensor error, incompletely pop-
ulated sensor observations, and multiple faults were allowed,
but the faults could only occur or clear once per sampling
interval. This assumption is invalid when observations are less
frequent or the effects of many faults are removed due to resets,
or when a system experiences a major catastrophe resulting in
multiple faults appearing during the same sampling interval.

The solution strategies applied in [7] and [23] are also
computationally infeasible for general dynamic fault diagnosis
problems. In dynamic single-fault framework [23], a hidden
Markov modeling (HMM) framework was adopted, and a mov-
ing window Viterbi algorithm was used to infer the evolution
of fault states. In the multiple-fault case, the state space of
hidden Markov model increases exponentially from (m + 1)
to 2m, where m is the number of possible fault states. Con-
sequently, the HMM-based method would be viable only for
small-sized systems. The solution method proposed in [7] is
a multiple-hypothesis-tracking approach, where at each obser-
vation epoch, k-best fault-state configurations are stored. At
each epoch, all candidate fault sets, derived from the previously
identified faults, are listed, based on, at most, one change per-
epoch assumption. Then, of all k(m + 1) possible candidate
sets, each has its score calculated, the candidate set which
obtains the highest score is selected as the inference result at the
epoch, and the candidates with the k-best scores are updated.
The method is equivalent to enumeration in a limited search
space; consequently, it is either computationally expensive or
far from optimal.

In this paper, we relax the modeling assumptions imposed in
[7] and [23] and devise a computationally efficient method for
near-optimal solution to the dynamic MFD (DMFD) problem.

C. Scope and Organization of This Paper

This paper is organized as follows. In Section II, we for-
mulate the DMFD problem with imperfect test outcomes. In
Section III, a solution is proposed, where the DMFD problem
is decomposed into a series of single-epoch MFD problems,
coupled with a local-search heuristic for interepoch smoothing
to further increase the overall likelihood of correct fault diag-
nosis. Simulation results are presented in Section IV. In this
section, we discuss how the DMFD model can be extended to
allow for interfault state dependences and present preliminary
results. Finally, this paper concludes with a summary and future
research directions in Section V.

II. DMFD PROBLEM FORMULATION

A. Problem Formulation

The DMFD problem consists of a set of possible fault states
in a system and a set of binary-outcome tests that are observed

at each sample (observation, decision) epoch. Fault states are
assumed to be independent. Each test outcome provides infor-
mation on a subset of the set of fault states. At each sample
epoch, a subset of test outcomes is available. Tests are imperfect
in the sense that the “Pass” outcome of a test does not guarantee
the integrity of components under test because the test may have
missed the faults. A “Fail” outcome of a test does not mean that
one or more of the implicated components are faulty because
the test outcome may have been a false alarm. Our problem
is to determine the time evolution of fault states based on im-
perfect test outcomes observed over time. Formally, the DMFD
problem with imperfect tests, D = {S, κ, Pa, Pv, T, Pd, Pf},
a special case of factorial hidden Markov model [10], consists
of the following conditions.

1) S = {s1, . . . , sm} is a finite set of m fault states associ-
ated with the system.

2) κ = {0, . . . , k, . . . K} is the set of discretized obser-
vation epochs. We denote xi(k) as the status of fault
state si at epoch k. That is, xi(k) = 1 when si is
faulty at epoch k, and xi(k) = 0, otherwise. Let x(k) =
{x1(k), x2(k), . . . , xm(k)} denote the status of all fault
states at epoch k. We assume that the initial state x(0) is
known.

3) Each fault state is modeled as a two-state nonhomoge-
nous Markov chain. For each fault state, e.g., si, at
each epoch, the fault-appearance probability Pai(k)
and fault-disappearance probability Pvi(k) are de-
fined as Pai(k) = Prob(xi(k) = 1|xi(k − 1) = 0) and
Pvi(k) = Prob(xi(k) = 0|xi(k − 1) = 1), respectively,
as shown in Fig. 1(b).

4) T = {t1, t2, . . . , tn} is a finite set of n available binary-
outcome tests, where the integrity of the system can
be ascertained. The outcomes of tests are binary, i.e.,
O(tj) ∈ {pass, fail}.

5) The set of fault states S and the set of binary test
outcomes T are related by a fault-dictionary matrix
D = {dij}, where dij = 1 if failure source si is de-
tected by test tj and zero otherwise. For each dij =
1, a pair of detection and false-alarm probabilities,
Pdij and Pfij , is specified, where Pdij and Pfij

are the detection and false-alarm probabilities of test
tj , respectively, i.e., Pdij = Prob(O(tj) = fail|xi = 1)
and Pfij = Prob(O(tj) = fail|xi = 0), as shown in
Fig. 1(c). For notational convenience, when si does not
affect the outcome of tj , i.e., dij = 0, we let the corre-
sponding Pdij = Pfij = 0.

6) At each observation epoch, k, k ∈ κ, test outcomes up
to and including epoch k are available, i.e., we let T k =
{T (b) = (Tp(b), Tf (b))}k

b=1, where T (b) is the set of
test outcomes at epoch b, with Tp(b)(⊆ T ) and Tf (b)(⊆
T ) as the sets of passed and failed tests at epoch b,
respectively, as shown in Fig. 1(a). The tests are imperfect
in the sense that outcomes of some tests may not be
available, i.e., (Tp(b)

⋃
Tf (b)) ⊂ T . In addition, tests

exhibit missed detections and false alarms. In this paper,
we make the causal independence assumption: the passed
and failed test outcomes are conditionally independent,
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Fig. 1. DMFD modeling illustration. (a) Factorial hidden Markov model
of DMFD. (b) Fault appearance and disappearance probabilities of si.
(c) Detection and false-alarm probabilities of tj for fault state si.

given the status of fault states, and the probabilistic noisy-
OR assumption: a test tj fails at epoch k if it fails on any
of its associated fault states at epoch k [21], [26].

The DMFD problem is one of finding, at each decision
epoch k ∈ {1, . . . , K}, the most likely fault-state candidates
x(k) ∈ {0, 1}m, i.e., the fault-state evolution over time, XK =
{x(1), . . . , x(K)}, that best explains the observed test-outcome
sequence TK . We formulate this as one of finding the maximum
a posteriori (MAP) configuration

X̂K = arg max
XK

Prob
(
XK |TK , x(0)

)
. (1)

B. Illustrative Example

As an illustrative example, consider the system shown in
Table I. The system consists of ten fault states and ten binary
tests. For example, fault s1 can be detected by t1 and t8 with
(Pd1,1, Pf1,1) = (0.95, 0.05) and (Pd1,8, Pf1,8) = (0.7, 0),
respectively. This implies that when fault state s1 occurs, test
t1 detects it with probability 0.95, and if fault state s1 does
not occur, test t1 has 0.05 probability of falsely implicating
it. Similarly, test t8 detects s1 with a probability of 0.7 and
has no false alarms. If s1 is not present at epoch k, then
at epoch k + 1, the probability of having s1 present is 0.12,
while if s1 is present at epoch k, s1 has a probability 0.63
of disappearing at epoch (k + 1). Observations at each of the
epochs from k = 1 to k = 10 are given in Table I. For example,
at k = 4, the outcome of t1 is observed as having failed, while

TABLE I
SIMPLE EXAMPLE SYSTEM

the outcomes of {t2, t3, t4, t5, t6, t8, t9, t10} are observed as
having passed, and the result of t7 is missing. The task is to
identify the evolution of fault states over the ten epochs. A
feasible time evolution of fault states for this system is X̂10 =
{[∅], [2], [1, 2], [1], [3], [4, 8], [9], [7, 9], [7], [10]}.

III. PROBLEM SOLUTION

Applying the Bayes rule, the objective function is equiva-
lent to

X̂K = arg max
XK

Prob
(
TK |XK , x(0)

)
Prob

(
XK |x(0)

)
. (2)

With passed and failed test outcomes being conditionally in-
dependent, given the status of fault states (“the noisy-OR as-
sumption”), and the Markov property of fault-state evolution,
the problem is equivalent to

max
XK

K∏
k=1

{Prob (Tp(k)|x(k)) · Prob (Tf (k)|x(k))

·Prob (x(k)|x(k − 1))} (3)

where Tp(k) ⊆ T and Tf (k) ⊆ T denote the sets of passed and
failed tests at epoch k, respectively.

We define a new function fk(x(k), x(k − 1)) as

fk (x(k), x(k − 1)) = ln {Prob (Tp(k)|x(k))

×Prob (Tf (k)|x(k))

×Prob (x(k)|x(k − 1))} . (4)

Therefore, the problem is equivalent to

X̂K = arg max
XK

K∑
k=1

fk (x(k), x(k − 1)) . (5)
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Given the fault-state status x(k), the outcomes of tests are
independent. Consequently

Prob(Tp(k)|x(k))=
∏

tj(k)∈Tp(k)

Prob(O (tj(k))=pass|x(k))

(6)

Prob(Tf (k)|x(k))=
∏

tj(k)∈Tf (k)

Prob(O (tj(k))= fail|x(k)) .

(7)

For test tj to pass at epoch k, it shall pass on all its associated
fault states, so that

Prob (O (tj(k)) = pass|x(k))

=
m∏

i=1

Prob (O (tj(k)) = pass|xi(k)) (8)

where

Prob (O (tj(k)) = pass|xi(k))

=
{

1 − Pfij , xi(k) = 0
1 − Pdij , xi(k) = 1

= (1 − Pdij)xi(k)(1 − Pfij)1−xi(k), xi(k) ∈ {0, 1}.

(9)

Evidently

Prob (O (tj(k)) = fail|x(k))

= 1 − Prob (O (tj(k)) = pass|x(k)) . (10)

In the same vein, the assumption of independent evolution of
fault states leads to

Prob (x(k)|x(k − 1)) =
m∏

i=1

Prob (xi(k)|xi(k − 1)) (11)

where

Prob (xi(k)|xi(k − 1))

=

⎧⎪⎨⎪⎩
1 − Pai(k), xi(k − 1) = 0, xi(k) = 0
Pai(k), xi(k − 1) = 0, xi(k) = 1
Pvi(k), xi(k − 1) = 1, xi(k) = 0
1 − Pvi(k), xi(k − 1) = 1, xi(k) = 1.

We put it in an exponential form for ease of computation as

Prob (xi(k)|xi(k − 1))

=(1−Pai(k))(1−xi(k−1))(1−xi(k))Pai(k)(1−xi(k−1))xi(k)

×Pvi(k)xi(k−1)(1−xi(k)) (1−Pvi(k))xi(k−1)xi(k) ,

xi(k − 1), xi(k) ∈ {0, 1}. (12)

From (3)–(12), we obtain

fk(x(k), x(k − 1))

=
∑

tj∈Tp(k)

m∑
i=1

[xi(k) ln(1 − Pdij)

+ (1 − xi(k)) ln(1 − Pfij)]

+
∑

tj∈Tf (k)

ln

[
1 −

m∏
i=1

(1 − Pdij)xi(k)

× (1 − Pfij)(1−xi(k))

]

+
m∑

i=1

{(1 − xi(k − 1)) (1 − xi(k)) ln (1 − Pai(k))

+ (1 − xi(k − 1)) xi(k) ln Pai(k)

+ xi(k − 1) (1 − xi(k)) lnPvi(k)

+xi(k − 1)xi(k) ln (1 − Pvi(k))} ,

x(k), x(k − 1) ∈ {0, 1}m. (13)

The problem posed in (5) and (13) is an NP-hard combinatorial
optimization problem. Indeed, even the single-epoch problem,
i.e., x̂(k) = arg maxx(k) fk(x(k), x̂(k − 1)), is NP-hard [19].
It is generally believed that NP-hard problems cannot be solved
to optimality within polynomially bounded computation times
[13], [22].

A. Optimal Solution

The DMFD problem is a special case of factorial HMM.
Here, factorial HMM is a hidden Markov model with distrib-
uted state representation. Consequently, the Viterbi algorithm,
a form of dynamic programming [4], [8], can be used to decode
the time evolution of fault states. Formally

δk (x(k)) = max
Xk−1

ln
(
Prob(T k|Xk)Prob

(
Xk|x(0)

))
,

k = 1, . . . , K. (14)

We can obtain the recursion of δk(x(k)) as

δk+1 (x(k + 1))

= max
Xk

ln
(
Prob(T k+1|Xk+1)Prob

(
Xk+1|x(0)

))
= max

Xk

{
ln (Prob (T (k + 1)|x(k + 1)))

+ ln (Prob (x(k + 1)|x(k)))

+ ln
(
Prob(T k|Xk)Prob

(
Xk|x(0)

)) }
= max

x(k)
{fk+1 (x(k + 1), x(k)) + δk (x(k))} . (15)



1228 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 6, NOVEMBER 2009

With δk(x(k)) (k = 1, . . . ,K) available, we can obtain the
optimal X̂K = {x̂(k)}K

k=1 by

x̂(k) = arg max
x(k)

{δk (x(k))} , k = K, . . . , 1. (16)

The complexity of the earlier Viterbi algorithm is O(K22m).
By exploiting the independence of fault-state evolution, this
complexity can be reduced to O(Km2m+1), which is still ex-
ponential. Evidently, the optimal solution via Viterbi algorithm
suffers from the curse of dimensionality and is impractical for
large-scale problems. Consequently, there is much interest in
approximation algorithms that can find near-optimal solutions
with reasonable computation times.

We propose a practical solution, which decomposes
the problem into a sequence of subproblems. At epoch
k, we solve a single-epoch MFD problem, i.e., x̂(k) =
arg maxx(k) fk(x(k), x̂(k − 1)), where x̂(k − 1) is the solu-
tion from the previous epoch, i.e., (k − 1)th epoch. Based on
the sequential inferences, a local-search method is applied to
further improve the quality of the solution.

B. Single-Epoch MFD Subproblems

For epoch k, the binary-programming problem of x̂(k) =
arg maxx(k) fk(x(k), x̂(k − 1)) is NP-hard [19]. Theoretically,
many combinatorial optimization techniques can be applied to
solve the single-epoch MFD, such as the branch-and-bound,
dynamic programming, genetic algorithms [5], and so on.
However, these algorithms either require substantial memory
or significant computation times (“curse of dimensionality”).

In [19], Shakeri et al. presented a Langragian relax-
ation algorithm (LRA) for the single-epoch MFD problem.
The Langrangian relaxation method decomposes the problem
into a series of low-order linear-integer-programming prob-
lems, by introducing a set of Langrange multipliers. The
linear-integer-programming problem is solved by Lagrangian-
relaxation-based set-covering algorithms with polynomial com-
plexity. Surrogate-subgradient method is applied to update the
Langrange multipliers. This method can obtain a near-optimal
solution and also provide an upper bound on the single-epoch
objective function. For the DMFD problem, we presented in
[18] a strategy for the initialization of Lagrange multipliers
at each epoch to speed up the convergence. In that work, the
Lagrange multiplers at an epoch are initialized with the optimal
multipliers of the same failed tests from the most recent past
epochs. With this initialization, the computation times can be
reduced significantly, compared to an approach where, at each
epoch, the Langrange multipliers are initialized from scratch. In
spite of these improvements, as we demonstrate later, the LRA
has substantial computational requirements at each epoch and

is infeasible for real-world dynamic fault diagnosis problems
requiring real-time inference.

In [24], an approximate-belief-revision (ABR) heuristic is
proposed for solving the Quick Medical Reference-Decision
Theoretic (QMR-DT) problem (a variant of the single-epoch
MFD problem). ABR consists of a mean-field approxima-
tion and a message-passing scheme. The ABR algorithm
seeks to identify a set of propositions that best explains the
observed evidence by employing the following two steps:
1) approximate the belief (pseudomarginal posterior probabil-
ity) of each fault state using the naive mean-field method,
and 2) iteratively update the messages transferred between the
fault states and the observed test outcomes. This process is re-
peated until the beliefs converge. The second step corresponds
to Gauss–Seidel iteration from optimization theory [3]. The
pseudoposterior probabilities estimated by the ABR are coarse;
however, the rank order reflects the likely fault states. ABR is
computationally efficient as compared to LRA, while it cannot
achieve the high diagnostic accuracy of the LRA.

We propose a faster and high-quality deterministic simulated
annealing (DSA) algorithm for single-epoch MFD problem,
which is inspired by the ABR algorithm and stochastic simu-
lated annealing (SSA). The new algorithm exploits their advan-
tages, viz., the ability of SSA to get out of a local minimum and
the computational efficiency of ABR, while overcoming their
disadvantages, viz., the diagnostic inaccuracies of ABR and the
slow convergence of SSA. In the following, we first introduce
the ABR algorithm, then elaborate on the DSA algorithm, and
finally state its relation to the SSA algorithm.

1) ABR algorithm: In ABR, each decision variable xi(k) is
relaxed to be a real value in [0, 1], a soft-decision variable,
and is interpreted as a pseudoposterior probability, i.e., xi(k) ∼=
Prob(xi(k) = 1|Tp(k), Tf (k), x̂i(k − 1)).

Let us define the following operators:

0 (x(k), i) = {0, (j = i);xj(k), (j �= i)} (17)
1 (x(k), i) = {1, (j = i);xj(k), (j �= i)} . (18)

Since the expression shown at the bottom of the page,
also, from (4), we have Prob(T (k),X(k)|X̂(k − 1)) =
exp(fk(x(k), x̂(k − 1))). ABR essentially updates the estimate
of xi(k), at each iteration l, as follows:

x̂
(l+1)
i (k) =

e
fk

(
1

(
x̂
(l)

(k),i

)
,·
)

e
fk

(
0

(
x̂
(l)

(k),i

)
,·
)

+ e
fk

(
1

(
x̂
(l)

(k),i

)
,·
)

=
[
1 + e−(fk(1(x̂(k),i),·)−fk(0(x̂(k),i)),·)

]−1

=
[
1 + e−Δ

(l)
i

(k)
]−1

(19)

Prob (xi(k) = 1|T (k), xj,j �=i(k), x̂i(k − 1)) =
Prob

(
T (k),1 (x(k), i) |X̂(k − 1)

)
Prob

(
T (k),1 (x(k), i) |X̂(k − 1)

)
+ Prob

(
T (k),0 (x(k), i) |X̂(k − 1)

)
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where

Δ(l)
i (k) = fk

(
1

(
x̂(l)(k), i

)
, ·

)
− fk

(
0

(
x̂(l)(k), i

)
, ·

)
(20)

and fk(x(k), ·) is the simplified notation for fk(x(k), x̂(k −
1)). The sequence of fault-state belief updates is permuted
randomly. Note that the sequence of updating x̂

(l+1)
i (k) is the

Gauss–Seidel method, i.e., latest value of x̂j(k)(j �= i) is used

instead of using x̂
(l)
j (k) of last batch as in the Jacobi method,

and the belief-propagation algorithms [16].
As discussed in [24], the belief-update mechanism with

the Gauss–Seidel method facilitates quick convergence of
x(k), and x̂i(k) reflects the belief state of si at epoch k.
However, x̂i(k) is an inaccurate estimate of Prob(xi(k) =
1|Tp(k), Tf (k), x̂i(k − 1)). A simple decision rule is ap-
plied on the converged xi(k), such that if xi(k) ≥ 0.5, then
xi(k) = 1; otherwise, xi(k) = 0. These introduce significant
suboptimality.

2) DSA: To overcome the inaccuracy of ABR algorithm
and keep the advantage of the belief-update mechanism of the
Gauss–Seidel method employed by the ABR algorithm, we
propose a new belief-update method, which may be viewed as
a DSA method.

In our DSA algorithm, each decision variable xi(k), like
those in ABR, is relaxed to be a real value in [0, 1]. When
converged, the values of xi(k) are close to being binary, rather
than their posterior-probability estimates.

The sequence of fault-state belief updates are permuted
randomly. When fault state si at epoch k is considered, with
the current estimate of x(k) as x̂(l)(k) at the iteration index l,
the next estimate of xi(k) is obtained as

x̂
(l+1)
i (k) =

[
1 + e−

Δ(l)
i

(k)

cv

]−1

(21)

where Δ(l)
i (k) is defined in (20). Here, cv (v = 1, . . . , V ) forms

a decreasing list, i.e., cv ∈ C = [β−V1 , . . . , β−1, 1, β, . . . , βV2 ],
where β ∈ (0, 1) is called the cooling rate. Based on a value of
cv , (21) is iterated for each fault state in a randomized sequence,
the iteration repeats until x(k) converges, and then cv moves to
the next value in the list C. Details of DSA algorithm for the
DMFD problem is shown in Fig. 2.

At the beginning of the algorithm, 1(x̂(l)(k), i) or
0(x̂(l)(k), i), whichever has a higher function value fk, is
given a slight preference, i.e., if Δ(l)

i (k) > 0, then x̂
(l+1)
i (k)

is assigned a value slightly over 0.5, and when Δ(l)
i (k) < 0,

then x̂
(l+1)
i (k) is assigned a value slightly less than 0.5. As cv

decreases, higher function value of 1(x̂(l)(k), i) or 0(x̂(l)(k), i)
is given dominant preference, i.e., if Δ(l)

i (k) > 0, x̂
(l+1)
i (k)

is assigned a value slightly less than one, when Δ(l)
i (k) < 0,

x̂
(l+1)
i (k) is assigned a value slightly larger than zero. Finally,

x̂i(k)(∀i) gradually converges to either zero or one. When
C = [1], the DSA algorithm is the same as ABR.

Initial temperature, cooling process, and stopping criteria
directly influence the convergence speed of the simulated-

Fig. 2. DSA method for single-epoch MFD.

annealing algorithm. DMFD may be directly used in real-
time situations, so the timing requirement of the solution is a
constraint imposed on the choice of initial temperature, cooling
schedule, and the stopping criteria. For single-epoch MFD, the
stopping criteria are as follows.

1) x(l)(k) converges.
2) Maximum number of iterations is reached.
3) minimum temperature is reached.
In theory, DSA can asymptotically approach the global op-

timal solution when C is infinitely long, and β approaches
one. Therefore, for high-quality solutions, length of C should
be sufficiently long, and β should be sufficiently large [1].
However, to satisfy the real-time requirements, C should be
short, and β should be small. Experimental results provided
in a later section demonstrate that a moderate size of C, e.g.,
|C| = 5 and β = 0.5, provide satisfactory results. When x(l)(k)
converges, the same decision rule as that of ABR is applied.

How does DSA compare with the SSA? In SSA, xi(k)∀i, k
are hard-decision variables, i.e., binary. A Markov process
is used to generate a stochastic search trajectory. We accept
1(x̂(l)(k), i) as the next solution with probability

p
(l)
i (k) =

[
1 + e−

Δ(l)
i

(k)

cv

]−1

(22)
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i.e., set

x(l+1)(k)

=

⎧⎨⎩1
(
x̂(l)(k), i

)
, with probability p

(l)
i (k)

0
(
x̂(l)(k), i

)
, with probability 1 − p

(l)
i (k).

(23)

When Δ(l)
i (k) > 0, i.e., 1(x̂(l)(k), i) has larger objective

function, x̂(l+1)(k) is more likely to select 1(x̂(l)(k), i), while
if Δ(l)

i (k) < 0, x̂(l+1)(k) is more likely to select 0(x̂(l)(k), i).
By doing so, both improvement and deterioration are permitted
at each iteration. Initially, for large values of cv , a large fraction
of deterioration is accepted; as cv decreases, only smaller
fractions of deterioration are accepted, and as the value of cv

approaches zero, no deterioration is accepted at all. Asymptotic
convergence to the optimal solution is achieved only after an
infinite number of transitions. In any finite-time implemen-
tation, one must resort to approximations of the asymptotic
convergence.

SSA is very slow, partly because of the discrete nature
of the search through the space of all configurations, the
m-dimensional hypercube. Each trajectory is along a single
edge, thereby missing full-gradient information that would be
provided by analog-state values in the “interior” of the hyper-
cube [6]. The similarity between DSA and SSA for the DMFD

problem is that, at each iteration, the term [1 + e−Δ
(l)
i

(k)/cv
]−1

is calculated. However, it is used for different purposes in
DSA and SSA. In DSA, it is used to update the soft-decision
variable xi(k), while in SSA, it is used as the probability
of selecting 1(x̂(l)(k), i). In DSA, the relaxed soft-decision
variables, which include the gradient information, facilitate
quick convergence of the simulated-annealing methods.

3) Extension to multiepoch MFD: Single-epoch MFD can
be extended to incorporate fault states of multiple consec-
utive epochs rather than only one epoch. Let Yk = [x(k −
H + 1), . . . , x(k − 1), x(k)], where H denotes the number of
epochs in multiepoch MFD problem. Then

Fk(Yk) =
k∑

b=k−H+2

fb (x(b), x(b − 1))

+fk−H+1 (x(k − H + 1), x̂(k − H)) . (24)

Define 1(Yk, b, i) and 0(Yk, b, i) as

1(Yk, b, i) = {1, (b′ = b, j = i);xj(b′), otherwise}

0(Yk, b, i) = {0, (b′ = b, j = i);xj(b′), otherwise} . (25)

Therefore, the DSA algorithm is applied on variable Yk as
follows:

x̂
(l+1)
i (b) = Ŷ

(l+1)
k (b, i)

=

{
1 + e−

Fk

(
1

(
Ŷ

(l)
k

,b,i

))
−Fk

(
0

(
Ŷ

(l)
k

,b,i

))
cv

}−1

. (26)

Within the time window [k − H + 1, . . . , k], iteration as in (26)
can be applied back and forth until Yk has converged.

C. Local Search for Interepoch Smoothing

At each time epoch k, when the solution to a single-epoch
MFD problem is obtained, results of a w epoch window,
i.e., from time epoch k − w + 1 to k, can be further
improved by local-search algorithms. Here, w is a user-
defined constant, denoting the epoch-window size, for
improvement. We propose a consistency-check-and-update
(CCU) heuristic as a local-search strategy on the solution space
of {0, 1}mw.

To check the consistency of an estimate of x̂i(k) with its
neighboring estimates, i.e., x̂i(k − 1) and x̂i(k + 1), we obtain
Prob(xi(k)|x̂i(k − 1), x̂i(k + 1)) as

Prob (xi(k)|x̂i(k − 1), x̂i(k + 1))

=
Prob (x̂i(k + 1)|xi(k)) Prob (xi(k)|x̂i(k − 1))∑

xi(k) Prob (x̂i(k + 1)|xi(k)) Prob (xi(k)|x̂i(k − 1))

(27)

where Prob(x̂i(k + 1)|xi(k)) and Prob(xi(k)|x̂i(k − 1)) are as
defined in (12).

When Prob(xi(k) = 1|x̂i(k − 1), x̂i(k + 1)) > 0.5 while
x̂i(k) = 0 or Prob(xi(k) = 0|x̂i(k − 1), x̂i(k + 1)) < 0.5
while x̂i(k) = 1, we consider the estimation x̂i(k) to be not
consistent with x̂i(k − 1) and x̂i(k + 1). For inconsistent
estimate x̂i(k), we flip the bit i of x̂(k) and keep the change
if the flip action increases the overall objective function;
otherwise, it remains at the previous estimate.

Beginning with current epoch k, CCU improves the diagno-
sis {x̂(k − w + 1), . . . , x̂(k)} in the following way.

1) Backward move: When considering improvement at
epoch b, for each fault state (in a random sequence),
i.e., x̂i(b), check whether it is consistent with x̂i(b − 1)
and x̂i(b + 1). If not, flip x̂i(b) to check whether it will
increase the objective function of fb+1(x̂(b + 1), x(b)) +
fb(x(b), x̂(b − 1)). If yes, keep the change; continue
checking and updating in the epoch decreasing direction
until no improvement can be made in any epoch or until
the left most of the epoch window, i.e., k − w + 1, is
reached.

2) Forward move: apply the same checking and updating
process along the epoch increasing direction in a way that
is similar to the backward move.

3) Move backward and forward inside the epoch window,
until no more updates for improvement can be made in
either direction.

This smoothing method can effectively identify inconsistent
diagnosis and improve diagnostic accuracy. It is beneficial
specially when the trajectory of fault-state evolution is stable
and/or tests are less reliable, i.e., tests with low detection
probability and high rate of false alarms.
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IV. SIMULATION AND ON-GOING RESEARCH

A. Randomly Generated Models

To compare the performance of various DMFD algorithms of
interest, we constructed models of various sizes, (m,n) ranging
from (20, 20) as small-scale models, (100, 150) as medium-
scale models, and to (2000, 2500) as large-scale models, where
m is the number of fault states and n is the number of tests.
These models are reasonably realistic in the sense that detection
probabilities of tests are high, i.e., 0.6–0.95, the false-alarm
probabilities of tests are low, i.e., 0–0.05, and tests evenly cover
the fault states. True fault-state set and, accordingly, the test
outcomes of each epoch are generated according to the model
parameters listed in Tables III–V). Algorithms LRA, ABR,
DSA, DSA with CCU (denoted as DSA+), and LRA with CCU
(denoted as LRA+) are applied. The performance metrics for
a DMFD algorithm, for example, algorithm A, are defined as
follows.

1) Diagnostic accuracy, including correct-isolation rate and
false-isolation rate, i.e., CI(A) and FI(A). Let Y (A, k)
be the fault-state set at epoch k detected by algorithm A
and R(k) be the true fault-state set at epoch k. Correct-
isolation and false-isolation rates of algorithm A for
epoch k, i.e., CI(A, k) and FI(A, k), respectively, are
calculated as

CI(A, k) =
|Y (A, k) ∩ R(k)|

|R(k)| (28)

FI(A, k) =
|Y (A, k) ∩ ¬R(k)|

|S| − |R(k)| . (29)

Accordingly, the average correct-isolation and false-
isolation rate of algorithm A over all epochs are obtained
as follows:

CI(A) =
∑K

k=1 CI(A, k)
K

FI(A) =
∑K

k=1 FI(A, k)
K

. (30)

2) Computation time per epoch T (A): The average compu-
tation time per epoch that algorithm A takes to diagnose.

3) Objective function value per epoch, F (A) : F (A) =
F (X̂K

A )/K, where X̂K
A is the solution of XK obtained by

algorithm A, and F (XK) =
∑K

k=1 fk(x(k), x(k − 1)).
Our algorithms were coded in MATLAB, and results are ob-

tained on a 2.26-GHz CPU and 512-MB-RAM PC. To illustrate
the performance differences, results of ten Monte Carlo runs
for models at each scale are listed in Tables III–V. The average
computation time per epoch of each sized model is listed in
Table II.

For the ABR and DSA algorithms, the stopping criterion
used to verify that x(l)(k) has converged is

α =
∣∣∣x(l+1)(k) − x(l)(k)

∣∣∣ ≤ 10−4. (31)

The annealing list C in the DSA algorithm is selected as C =
[4, 2, 1, 0.5, 0.25].

TABLE II
AVERAGE COMPUTATION TIME PER EPOCH (IN SECONDS)

The results for small-scale system models, in Tables II and
III, show that DSA can achieve similar diagnostic-accuracy and
objective-function values as those from LRA, but with much
less computational effort; ABR achieves reasonable diagnostic-
accuracy and average objective-function values; CCU (e.g.,
DSA+ and LRA+) can provide performance improvement to
their respective original algorithms (DSA and LRA).

From the results in Tables II and IV for medium-scale system
models, it is seen that DSA achieves very good diagnostic
performance with a fraction of computation time needed by
the LRA. ABR has the least computation effort; however, the
performance is inferior to LRA and DSA.

From the results in Tables II and V for large-scale system
models, we can observe the following: 1) among ABR, LRA,
and DSA, DSA consistently achieves the best performance;
2) LRA needs the most computation time while yielding less
satisfactory diagnosis results, and the average duality gap for
single-epoch MFD is quite high (over 10%); and 3) CCU can
further improve the performance of DSA and LRA.

To summarize, among the ABR algorithm, DSA algorithm,
and LRA, DSA can provide satisfactory accuracy with moder-
ate computational effort; ABR consumes the least computation
effort, while its diagnosis is less accurate. LRA needs consider-
able computation time, may get stuck at a local optimum with
a high-duality gap [3], and the quality of diagnosis is not nec-
essarily superior to DSA. The CCU heuristic (DSA+, LRA+)
improves the diagnostic accuracy of the underlying algorithms
(DSA, LRA).

B. Comparison With Various Choices of C

To evaluate the effect of cardinality of C and values of β on
diagnostic performance, we vary β in [0, 1] and the list length
from 1 to 13, respectively, on an arbitrary medium-scale model.
Here, C = [β(−|C|+1)/2, . . . , 1, . . . , β(|C|−1)/2].

The average function value and computation times by dif-
ferent settings of C list are shown in Figs. 3 and 4. From the
simulation results, we observe that as β → 1 and |C| → ∞,
the average function value can approach global optimum, but
the computation time is substantially longer. When C = 1, it
is actually ABR. As β → 0, the computation time is less, but
the algorithm behaves as greedy, which means no guarantee
of diagnosis quality. As shown in Fig. 3, the solution quality
of β = 0.1 varies most as compared with other β values in
the two cases. When |C| is limited, e.g., |C| = 5, β assuming
moderate values, e.g., β = 0.5, there is a tradeoff between
solution quality and computation time.
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TABLE III
RESULT OF SIMULATION SYSTEM I

TABLE IV
RESULT OF SIMULATION SYSTEM II

TABLE V
RESULT OF SIMULATION SYSTEM III
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Fig. 3. Effect of the choices of C on average function value.

Fig. 4. Effect of the choices of C on average computation time.

C. Further Speedup of the DSA (ABR) Algorithm

To expedite the convergence rate of DSA, we experimented
with the following stopping criterion instead of the stopping
criterion defined in (31):

α′ =

∣∣fk

(
x(l+1)(k)

)
− fk

(
x(l)(k)

)∣∣∣∣fk

(
x(l)(k)

)∣∣ ≤ 0.05. (32)

The computation time for ABR and DSA with this stopping
criterion, denoted as ABR2 and DSA2, respectively, are listed
in Table II. Coarse, but generally acceptable, diagnostic per-
formance can be achieved, e.g., for large-scale models with
(m,n) = (2000, 2500), as shown in Table V; we can achieve
average CI(DSA2) of 88.1% for the ten runs, as compared to
average CI(DSA) of 89.2%. Computation time using DSA2

is much less than that of DSA, e.g., for the same large-scale
example; on average, 12.3 s is needed instead of 72.8 s for
DSA, as shown in Table II. The reduced inference time may
help meet the strict real-time diagnosis requirements. When the
DSA algorithm is implemented in a low-level language, e.g.,

C/C++, dramatic reduction of computation time, by as much as
a factor of ten, is expected.

D. Real-World Models

We also apply DSA, with the stopping criterion in (32), on a
number of real-world models, whose modeling parameters are
listed in Table. VI. The sizes of the models (m,n) varied from
(8, 4) to (2080, 1319), where m is the number of fault states
and n is the number of tests. These real-world systems are not
ideal, i.e., all these systems have fewer number of tests than the
number of faults, and some systems cannot have all the fault
states covered by tests, e.g., POWERDIST, DOCUMATCH,
and LGCU, and spread of test coverage on faults is uneven,
e.g., UH60TRANS. The detailed descriptions of these models
can be found in [21].

We applied preprocessing where the undetected fault states
are screened out of the system before being processed by DSA.
Based on the simulation results, as shown in Table VI, one can
observe that DSA is an effective algorithm for solving the MAP
optimization problem associated with real-time diagnosis as in
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TABLE VI
REAL-WORLD MODELS

Fig. 5. Simple interfault state-dependence illustration.

(3). However, for systems with low inherent testability, MAP
optimization-based algorithms, i.e., ABR, DSA, and LRA, do
not necessarily achieve satisfactory performance. This points to
the need for built-in testability characteristics (optimal sensor
placement, fault detection, fault isolation, reduced diagnostic
ambiguity) into the system design.

E. Extension to Dependent Faults

A preliminary experiment to extend the DMFD problem
formulation to incorporate interfault state dependences is con-
ducted. For this simple interfault state dependence experiment,
we assume that, for each fault, there is, at most, one other fault
causing the fault, and there is no cyclic relationship among
faults. As shown in Fig. 5, fault si at time epoch k, i.e., fault
state xi(k) is affected by fault sj at current epoch, i.e., xj(k),
as well as its status at time k − 1, i.e., xi(k − 1). It is a special
case of coupled hidden Markov model.

The transition probabilities (11) in single-epoch MFD objec-
tive function (4) are updated as follows:

Prob (x(k)|x(k−1))=
m∏

i=1

Prob (xi(k)|parents (xi(k))) . (33)

If si is affected by one other fault, it has two
causal precedents, i.e., xi(k − 1) and xj(k); therefore,
Prob (xi(k)|parents (xi(k))) = Prob (xi(k)|xi(k − 1), xj(k)).
We apply the same exponential function fitting method on
variables xi(k), xi(k − 1), and xj(k) as that in (11) and (12)
and then apply the DSA algorithm with CCU for its solution.
We experimented with this model on small-scale (20 × 20) and
medium-scale (100 × 150) models; the model parameters and
simulation results are listed in Table VII. These models’ condi-
tional probabilities are generated by the probabilistic noisy-OR

model, i.e., a fault state appears at epoch k if it evolves
from its last state or it is affected by another fault state, i.e.,
Prob(xi(k)=1|xi(k − 1), xj(k))=1−Prob(xi(k) = 0|xi(k−
1))Prob(xi(k)=0|xj(k)). The results also show that DSA with
CCU is a promising approach for the dependent-fault cases.

V. SUMMARY

In this paper, we considered the problem of DMFD with
unreliable (imperfect) tests. We decomposed the original op-
timization problem into a series of subproblems corresponding
to each epoch. We solved each of the subproblems by a DSA
method, which is inspired by its sibling SSA and the ABR
heuristic algorithm. To further smooth the “noisy” diagnoses
stemming from imperfect test results and increase the accuracy
of fault diagnosis, we designed a local-search strategy, denoted
as CCU heuristic, which can effectively identify inconsistent
diagnoses and improve the diagnostic accuracy. Computation
results support that the proposed approach can provide satisfac-
tory solutions to a variety of real-world problems, is scalable,
and can meet various real-time requirements.

The limitations of DMFD model are binary test outcome
and binary system state assumptions, as well as the general
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TABLE VII
PRELIMINARY RESULTS ON THE SIMPLE DEPENDENT-FAULT CASE

limitations of factorial hidden Markov models applied to real-
world time series [9], [10]. Further research is suggested along
two directions. One is to further generalize the DMFD model to
allow the fault states to be multivalued (e.g., the level of severity
of a fault) and tests to have multiple outcomes (e.g., discrete
value reading of sensor outputs). The second direction is to
solve general interfault-dependence problem by representing
dependences among faults and their evolution over time by a
general-coupled HMM.
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