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The evolution of the magnetic moment in iron clusters containing 20– 400 atoms is investigated using
first-principles numerical calculations based on density-functional theory and real-space pseudopotentials.
Three families of clusters are studied, characterized by the arrangement of atoms: icosahedral, body-
centered cubic centered on an atom site, and body-centered cubic centered on the bridge between two
neighboring atoms. We find an overall decrease of magnetic moment as the clusters grow in size towards
the bulk limit. Clusters with faceted surfaces are predicted to have magnetic moment lower than other
clusters with similar size. As a result, the magnetic moment is observed to decrease as function of size in a
nonmonotonic manner, which explains measurements performed at low temperatures.
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The existence of spontaneous magnetization in metallic
systems is an intriguing problem because of the extensive
technological applications of magnetic phenomena and
an incomplete theory of its fundamental mechanisms.
Clusters of metallic atoms are important in this respect as
they serve as a bridge between the atomic limit and the
bulk, and can form a basis for understanding the emergence
of magnetization as function of size. Several phenomena
such as ferromagnetism, metallic behavior, and ferroelec-
tricity have been intensely explored in bulk metals, but the
way they manifest themselves in clusters is an open topic
of debate. At the atomic level, ferromagnetism is associ-
ated with partially filled 3d orbitals. In solids, ferromag-
netism may be understood in terms of the itinerant electron
model [1], which assumes partial delocalization of the 3d
orbitals. In clusters of iron atoms, delocalization is weaker
owing to the presence of a surface, whose shape affects the
magnetic properties of the cluster. Because of their small
size, iron clusters containing a few tens to hundreds of
atoms are superparamagnetic: the entire cluster serves as a
single magnetic domain, with no internal grain boundaries
[2]. Consequently, these clusters have strong magnetic
moments, but exhibit no hysteresis.

The magnetic moment of nanosized clusters has been
measured as a function of temperature and size [3–5], and
several aspects of the experiment have not been fully
clarified, despite the intense work on the subject [6–11].
One intriguing experimental observation is that the specific
heat of such clusters is lower than the Dulong-Petit value,
which may be due to a magnetic phase transition [4]. In
addition, the magnetic moment per atom does not decay
monotonically as a function of the number of atoms and for

fixed temperature. Possible explanations for this behavior
are: structural phase transitions, strong dependence of
magnetization with the shape of the cluster, or coupling
with vibrational modes [4]. One difficulty is that the struc-
ture of such clusters is not well known. First-principles and
model calculations have shown that clusters with up to 10
or 20 atoms assume a variety of exotic shapes in their
lowest-energy configuration [12,13]. For larger clusters,
there is evidence for a stable body-centered cubic (bcc)
structure, which is identical to ferromagnetic bulk iron [6].

The evolution of magnetic moment as a function of
cluster size has attracted considerable attention [3–13]. A
key question to be resolved is: What drives the suppression
of magnetic moment as clusters grow in size? In the iron
atom, the permanent magnetic moment arises from ex-
change splitting: the 3d" orbitals (majority spin) are lower
in energy and completely occupied with 5 electrons, while
the 3d# orbitals (minority spin) are partially occupied with
one electron, resulting in a magnetic moment of 4�B, �B
being the Bohr magneton. When atoms are assembled in a
crystal, atomic orbitals hybridize and form energy bands:
4s orbitals create a wide band which remains partially
filled, in contrast with the completely filled 4s orbital in
the atom; while the 3d# and 3d" orbitals create narrower
bands. Orbital hybridization together with the different
bandwidths of the various 3d and 4s bands result in weaker
magnetization, equivalent to 2:2�B=atom in bulk iron.

In atomic clusters, orbital hybridization is not as strong
because atoms on the surface of the cluster have fewer
neighbors. The strength of hybridization can be quantified
by the effective coordination number. A theoretical analy-
sis of magnetization in clusters and thin slabs indicates that
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the dependence of the magnetic moment with the effective
coordination number is approximately linear [8,10,11]. But
the suppression of the magnetic moment from orbital
hybridization is not isotropic [14]. For instance, if we
consider a layer of atoms on the x-y plane, the 3d orbitals
oriented on the plane (the ones with angular dependence xy
and x2 � y2) will hybridize more effectively than orbitals
oriented normal to the plane (with angular dependence
3z2 � r2), because of increased overlap among orbitals
on the x-y plane. If the layer has infinite extent, orbitals
oriented on that plane will tend to form an energy band
wider than the one formed by orbitals normal to it. With a
wider band, the difference in electron population between
the majority spin channel and the minority spin channel is
reduced, leading to reduced spin polarization and overall
weaker magnetization. Reduced orbital hybridization has
been observed to enhance the magnetic moment of metallic
clusters [15] and thin layers [16]. As a consequence of this
anisotropy, clusters with faceted surfaces are expected to
have magnetic properties different from clusters with ir-
regular surfaces, even if they have the same effective
coordination number. This effect is likely responsible for
a nonmonotonic suppression of the magnetic moment as a
function of cluster size. In order to analyze the role of
surface faceting, we have performed first-principles calcu-
lations of the magnetic moment of iron clusters with vari-
ous geometries and with sizes ranging from 20–400 atoms.

We determine the electronic structure of clusters within
the framework of pseudoptentials [17] constructed using
density-functional theory (DFT) [18–20]. DFT is an estab-
lished theory for first-principles studies of weakly and
moderately correlated electronic systems. The exchange-
correlation functional used in this work employs the gen-
eralized gradient approximation (GGA) [21]. We have
observed that the GGA predicts magnetic moments en-
hanced with respect to the simpler local-density approxi-
mation by 2%–10%. For a fixed geometry of the cluster,
we solve self-consistently the Kohn-Sham equation on a
regular grid in real space [22,23]. Proper boundary con-
ditions are obeyed by imposing the electronic wave func-
tions to vanish on the boundary of a large spherical domain,
which contains the system of interest. No explicit basis set
is used. Numerical convergence is controlled with two
parameters: the radius of the domain (typically 5 Å larger
than the cluster radius) and the nearest-neighbor spacing in
the regular grid. For iron atoms, we use a spacing of
0.3 a.u., (approximately 0.16 Å).

We use the PARSEC code [22,23]. This code makes use of
symmetry properties of the system and very efficient tech-
niques for solving the Kohn-Sham equation [24,25]. Until
recently, a significant fraction of numerical effort was
spent in performing exact diagonalization of the Kohn-
Sham equation [20,22,23,26]. Currently, this step is re-
placed with a series of subspace filtering iterations with
Chebyshev polynomials, which reduce the overall numeri-
cal effort by 1 order of magnitude or more [24]. This
dramatic advance in methodology allows us to study con-

fined systems with hundreds, if not thousands of atoms in a
straightforward and computationally efficient manner.

Clusters of both icosahedral and bcc symmetry are ex-
plored in our work. In order to investigate the role of
surface faceting, we construct clusters with faceted and
nonfaceted surfaces. Faceted clusters are constructed by
adding successive atomic layers around a nucleation point.
Small faceted icosahedral clusters exist with sizes 13, 55,
147, and 309. Faceted bcc clusters are constructed with bcc
local coordination and, differently from icosahedral ones,
they do not need to be centered on an atom site. We con-
sider two families of cubic clusters: atom centered or
bridge centered, respectively, for clusters with a nucleation
point at an atom site or on the bridge between two neigh-
boring atoms. The lattice parameter is equal to the bulk
value, 2.87 Å. Nonfaceted clusters are built by adding
shells of atoms around a nucleation point so that their
distance to the nucleation point is less than a specified
value. As a result, nonfaceted clusters usually have narrow
steps over otherwise planar surfaces and the overall shape
is almost spherical. By construction, nonfaceted clusters
have well-defined point-group symmetries: Ih or Th for the
icosahedral family, Oh for the atom-centered family, and
D4h for the bridge-centered family. Clusters constructed in
that manner show low tension on the surface, making
surface reconstruction less likely. Our calculations indicate
that atoms on the surface feel forces weak in magnitude
and directed towards the center of the cluster. Owing to the
small surface-to-volume ratio in large clusters, the impact
of surface reconstruction on those clusters will be small, if
not negligible.

As clusters grow in size, their properties approach the
properties of bulk iron. Figure 1(a) shows the density of
states (DOS) for Fe388, with local bcc coordination. At this
size range, the density of states assumes a shape typical of
bulk iron, with a threefold partition of the 3d bands. In
addition, the cohesive energy of this cluster is only 77 meV
lower than in bulk. This evidence suggests that interesting
size effects will be predominantly observed in clusters
smaller than Fe388. Figure 1(b) shows the DOS for Fe393,
which belongs to the icosahedral family. This cluster has a
very smooth DOS, with not much structure compared to
Fe388 and bulk bcc iron. This is due to the icosahedral-like
arrangement of atoms in Fe393. The overall dispersion of
the 3d peak (4 eV for 3d" and 6 eV for ed#) is nevertheless
similar in all the calculated DOS.

The magnetic moment is calculated as the expectation
value of the total angular momentum:

 M �
�B

@
�gshSzi � hLzi� � �B
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2
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1

@
hLzi

�
;

(1)

where gs � 2 is the electron gyromagnetic ratio. Figure 2
illustrates the approximately linear dependence between
the magnetic moment and spin moment, hSzi, throughout
the whole size range. This results in an effective gyromag-
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netic ratio geff � 2:04�B=@, which is somewhat smaller
than the gyromagnetic ratio in bulk bcc iron, 2:09�B=@.
The difference in ratios is probably due to an underesti-
mation in the orbital contribution, hLzi. In the absence of
an external magnetic field, orbital magnetization arises
from the spin-orbit interaction, which is included in the
theory as a model potential,

 Vso � ��L � S; (2)

where � � 80 meV=@2 [8].
Figure 3 shows the magnetic moment of several clusters

belonging to the three families studied: atom-centered bcc
(top panel), bridge-centered bcc (middle panel), and icosa-
hedral (bottom panel). Experimental data obtained by
Billas and collaborators [3] is also shown. The suppression
of magnetic moment as a function of size is readily ob-
served. Also, clusters with faceted surfaces are predicted to
have magnetic moments lower than other clusters with
similar sizes. This is attributed to more effective hybrid-
ization of d orbitals along the plane of the facets. We also
notice that the correlation between magnetic moment and
surface smoothness is not always well defined. For in-

stance, the cluster Fe175 in Fig. 3(a) has wide facets but
its magnetic moment is not much weaker than clusters with
similar sizes. In Fig. 3(c), clusters with strongly suppressed
magnetic moment have 67 and 135 atoms, whereas clusters
with wide facets and similar sizes have 55 and 147 atoms.

The measured nonmonotonic behavior of the magnetic
moment can be attributed to the shape of the surface. Under
this assumption, islands of low magnetic moment (ob-
served at sizes 45, 85, and 188) are associated to clusters
with faceted surfaces. In the icosahedral family, the islands
of low magnetic moment are located around faceted clus-
ters containing 55, 147, and 309 atoms. The first island is
displaced by 10 units from the measured location. For the
atom-centered and bridge-centered families, we found is-
lands at (65, 175) and (92, 173), respectively, as indicated
in Fig. 3(a) and 3(b). The first two islands are also close to
the measured islands at 85 and 188. Clearly, there is no
exact superposition in the location of calculated islands
and measured islands. The magnetic moment was mea-
sured in clusters at 120 K [3,5]. At that temperature, vibra-
tional modes or the occurrence of metastable configu-
rations can shift the islands of low magnetic moment or
make them more diffuse. Assuming that the nonmonotonic
decay of magnetic moment is dictated by the cluster shape,
we also conclude that clusters with local structures dif-
ferent from the ones we discuss here (such as cobalt
clusters with hexagonal-close packed coordination, or
nickel clusters with face-centered cubic coordination)
should have islands of low magnetic moment located at
different ‘‘magic numbers’’, according to the local atomic
coordination.

In summary, we discussed the behavior of magnetization
in iron clusters containing 20–400 atoms in the light of
first-principles density-functional theory. The magnetic
moment is found to decay as function of cluster size in a
nonmonotonic fashion: clusters with faceted surfaces are

FIG. 2 (color online). Magnetic moment versus spin moment
calculated for the atom-centered bcc (+) and bridge-centered bcc
(	) iron clusters. The approximate ratio is M=hSzi � geff �
2:04�B=@.
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FIG. 1 (color online). Density of states in the clusters Fe388 (a)
and Fe393 (b), majority spin (upper panel) and minority spin
(lower panel). Fe388 corresponds to a fragment of the bcc crystal.
Fe393 has local icosahedral coordination. For reference, the
density of states in bulk iron is shown in dashed lines. The
Fermi energy is chosen as the energy reference.
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predicted to have magnetic moments lower than clusters
with nonfaceted surfaces. As a consequence, clusters with
many steps, or atoms protruding from the surface, are
expected to have strong magnetic properties at low tem-
peratures. In addition, large clusters with icosahedral struc-
ture are expected to have magnetic moments lower than
clusters with bcc structure.
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FIG. 3 (color online). Calculated magnetic moments for clus-
ters in the atom-centered (+, a), bridge-centered (	, b), and
icosahedral (4, c) families. Experimental data [3] is shown in
black diamonds with error bars. Some of the faceted and non-
faceted clusters are depicted next to their corresponding data
points. The dashed lines indicate the value of the magnetic
moment per atom in bulk iron.
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