
SCIENCE CHINA
Mathematics

. ARTICLES . August 2016 Vol. 59 No. 8: 1635–1662

doi: 10.1007/s11425-016-0274-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 math.scichina.com link.springer.com

Accelerating large partial EVD/SVD calculations

by filtered block Davidson methods

ZHOU Yunkai1,∗, WANG Zheng1 & ZHOU Aihui2

1Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA;
2LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing,

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Email: yzhou@smu.edu, zwang@smu.edu, azhou@lsec.cc.ac.cn

Received December 13, 2015; accepted April 26, 2016; published online June 12, 2016

Abstract Partial eigenvalue decomposition (PEVD) and partial singular value decomposition (PSVD) of large

sparse matrices are of fundamental importance in a wide range of applications, including latent semantic index-

ing, spectral clustering, and kernel methods for machine learning. The more challenging problems are when a

large number of eigenpairs or singular triplets need to be computed. We develop practical and efficient algo-

rithms for these challenging problems. Our algorithms are based on a filter-accelerated block Davidson method.

Two types of filters are utilized, one is Chebyshev polynomial filtering, the other is rational-function filtering by

solving linear equations. The former utilizes the fastest growth of the Chebyshev polynomial among same degree

polynomials; the latter employs the traditional idea of shift-invert, for which we address the important issue of

automatic choice of shifts and propose a practical method for solving the shifted linear equations inside the block

Davidson method. Our two filters can efficiently generate high-quality basis vectors to augment the projection

subspace at each Davidson iteration step, which allows a restart scheme using an active projection subspace

of small dimension. This makes our algorithms memory-economical, thus practical for large PEVD/PSVD

calculations. We compare our algorithms with representative methods, including ARPACK, PROPACK, the

randomized SVD method, and the limited memory SVD method. Extensive numerical tests on representative

datasets demonstrate that, in general, our methods have similar or faster convergence speed in terms of CPU

time, while requiring much lower memory comparing with other methods. The much lower memory requirement

makes our methods more practical for large-scale PEVD/PSVD computations.

Keywords partial EVD/SVD, polynomial filter, rational filter, kernel, graph

MSC(2010) 15A18, 15A23, 15A90, 65F15, 65F25, 65F50

Citation: Zhou Y, Wang Z, Zhou A. Accelerating large partial EVD/SVD calculations by filtered block Davidson

methods. Sci China Math, 2016, 59: 1635–1662, doi: 10.1007/s11425-016-0274-0

1 Introduction

The need to compute partial eigenvalue decomposition (PEVD) or partial singular value decomposition

(PSVD) arises naturally in many scientific and engineering disciplines, including the electronic structure

calculations in materials science (see [24,36]), and the many spectral methods in statistical and machine

learning (see [5, 7, 25, 39, 75]). For the PEVD in this paper, we focus on symmetric matrices. The PSVD

can be considered as a special case of symmetric PEVD.

Large eigenvalue or singular value problems are ubiquitous in real-world applications. The matrices

formed in realistic applications are usually of large scale. One example is querying a database containing

∗Corresponding author

1636 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

millions of documents by latent semantic indexing (LSI) [13], which requires computing the PSVD of a

matrix with millions of columns. Other applications of PSVD include [8,35,37,45,64]. For an example of

PEVD, we mention the link prediction problem, which requires computing PEVD of symmetric matrices

with dimension of over several millions, derived from graphs of social networks such as Facebook or

LinkedIn.

Many algorithms have been proposed for large PEVD and PSVD computations, as represented by the

Lanczos-type methods [26, 27, 60], the Davidson-type methods [12, 15, 38, 59, 69, 70, 74], and the variants

of subspace iteration [21, 34, 48]. Discussions on many representative algorithms and available solver

packages may be found in [4, 54] and the references therein.

While there exists vast literature on numerical methods for eigen-problems, solving very large PEVD

and PSVD efficiently remains challenging. One of the particular challenges arises from the large number

of eigenpairs or singular triplets required in modern applications, the number may be 5%–20% of the large

matrix dimension. Solving such large problems can be very demanding in terms of CPU time and memory

usage. The other challenges include nonlinearity, i.e., the matrices are not fixed but instead dynamically

updated, such as those encountered in DFT calculations (see [24,36]) or in matrix completion (see [8,37]).

This paper does not address this type of nonlinear eigen-problems, but our methods discussed here can

be used to either provide good initial vectors for the dynamically updated matrices, or solve the sequence

of linearized eigen-problems employed for solving a nonlinear eigen-problem.

We focus on practical algorithms for solving large eigen-problems arising from the latent semantic

indexing (LSI) and the application of a class of graph-kernel-based learning methods. These applications

typically require computing a large number of the principal eigenpairs (or singular triplets) of sparse ma-

trices with millions of rows and/or columns. Although there are efficient algorithms for finding principal

eigenpairs or singular triplets of large matrices, most of them are designed to efficiently converge only

a small number of eigenpairs—they can become inefficient or impractical when applied to computing a

large number of eigenpairs. The main reason is that such algorithms often need to form a large projection

subspace in order to compute many eigenpairs. This leads to high computational cost from orthogonal-

ization and subspace refinement, which often results in overwhelming memory demand. The economical

usage of memory is one key factor to make our methods practical for such problems.

Our methods are based on a block Davidson algorithm, which uses a restart scheme to restrict the

dimension of the projection subspace [70]. We utilize spectrum filtering techniques for acceleration. Two

types of filters are integrated into the Davidson framework. One filter utilizes the property of “fastest

growth outside [−1, 1]” of the Chebyshev polynomial [74]. This filter is implemented through three-term

recurrences associated with the polynomial. The other filter employs the traditional idea of inexact

shift-invert (see [6, 16]), realized by applying the conjugate residual method with a fixed total iteration

step [53] to solve the shifted linear systems.

The two problems we study are (i) the symmetric PEVD,

Avi = λivi, i = 1, . . . , k, (1.1)

where A ∈ Rn×n is symmetric, λ1 > · · · > λk are the largest k eigenvalues of A, and v1, . . . ,vk are the

corresponding eigenvectors; and (ii) the PSVD,

Mvi = σiui, i = 1, . . . , k, (1.2)

where M ∈ Rm×n, σ1 > σ2 > · · · > σk > 0 are the principal singular values of M , k < min(m,n). The

ui and vi are, respectively, the left and right singular vectors of σi, and (ui, σi,vi) is called a singular

triplet of M .

The PSVD is a special case of the symmetric PEVD due to the well-known fact that the SVD of M

can be obtained from the EVD of any one of the following matrices:

MTM ∈ R
n×n, MMT ∈ R

m×m,

[

0 M

MT 0

]

∈ R
(m+n)×(m+n). (1.3)

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1637

Most of the algorithms for computing the PSVD ofM employ the symmetric PEVD of one of the matrices

in (1.3). These include the standard [18] for dense matrices and the more recent [21, 34, 48] for sparse

matrices.

2 The block Davidson method for symmetric PEVD calculations

The main theme of this paper is on using filters to accelerate the block Davidson method.

We first list in Algorithm 1 the framework of the block Davidson method for the PEVD problem (1.1).

Here we denote the number of wanted eigenpairs as kwant, the number of converged eigenpairs as kc,

the block size as kb, the dimension of the projection subspace as ksub, and the dimension of the active

subspace as kact. This algorithmic structure is adapted from [70] to compute the largest kwant eigenvalues.

Algorithm 1: Framework of a block Davidson method for symmetric PEVD calculations

Input: Block size kb, number of wanted eigenpairs kwant.

Output: The converged kc eigenvectors in V (:, 1 : kc) and their associated eigenvalues.

1 Initialize parameters ksub and kact; set kc = 0;

2 while kc 6 kwant do

3 Call a specific method to construct kb augmentation vectors Vaug;

4 Orthonormalize Vaug against V (:, 1 : ksub) and store the resulting vectors in V (:, ksub+1 :

ksub + k′

b). (Here k′

b may be smaller than kb);

5 Update ksub and kact: ksub = ksub + k′

b, kact = kact + k′

b;

6 Compute W = A ∗ V (:, ksub − k′

b + 1 : ksub) ;

7 Compute H(1 : kact, kact − k′

b + 1 : kact) = WT ∗ V (:, kc + 1 : ksub), and symmetrize

H(1 : kact, 1 : kact) ;

8 Compute the eigendecomposition of H : H(1 : kact, 1 : kact) = Q∗D∗QT, where diag(D)

contains non-increasing eigenvalues of H , and Q contains their associated eigenvectors;

9 Rotate the active subspace: V (:, kc + 1 : ksub) = V (:, kc + 1 : ksub) ∗Q;

10 Test for convergence of the Ritz vectors in V (:, kc + 1 : ksub). Denote the number of

newly converged eigenpairs as ec: if ec > 0, update kc as kc = kc+ec, reorder converged

Ritz vectors if necessary;

11 Set kold = kact. Update kact as kact = kact − ec;

12 if kact + kb > kamax then

13 do inner restart simply by setting kact = kkeep, ksub = kc + kkeep;

14 Update H as H(1 : kact, 1 : kact) = D(ec + 1 : ec + kact, ec + 1 : ec + kact);

The newly generated vectors in Vaug (see Step 3 in Algorithm 1) need to be orthonormalized against the

existing projection subspace V . The resulting k′b orthonormal vectors are then added to the projection

basis to augment the active subspace Vact, in which a Rayleigh-Ritz refinement procedure is performed

(see Steps 7–9). Note that k′b could be smaller than kb if some vectors in Vaug are numerically linearly

dependent to vectors in the previous projection subspace Vsub = [Vc, Vact]. (One can easily add random

vectors if one wishes to keep the block size to be a constant.)

This orthogonalization step is necessary for two reasons: (i) The Rayleigh-Ritz procedure needs to start

with an orthonormal basis of Vact, therefore Vaug should be orthogonal to the old basis vectors in Vact.

(ii) New eigen-directions are extracted from the active subspace Vact via the Rayleigh-Ritz refinement of

the basis vectors in Vact, and the new eigen-directions should be orthogonal to the converged eigenvectors

in Vc. Therefore, Vact needs to be orthogonal to Vc to prevent repeatedly searching for the already

converged eigen-directions.

The Rayleigh-Ritz refinement generates kact Ritz pairs (τi,ui), where ui = Vactqi, i = 1, . . . , kact.

The τi’s are the eigenvalues of H , stored in the diagonal matrix D, and the q1, q2, . . . , qkact
are the

1638 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

corresponding eigenvectors stored in Q, from Step 8. After testing for convergence (see Step 10) of

these Ritz pairs, we deflate the converged Ritz vectors into Vc, and reorder the converged vectors if

necessary such that the eigenvectors in V (:, 1 : kc) correspond to eigenvalues in non-increasing order.

The non-converged Ritz vectors are left in Vact for the next Davidson iteration.

Step 10 of Algorithm 1 requires a convergence test on the Ritz pairs (τ1,u1), . . . , (τkact ,ukact). We use

the following convergence criteria for each j,

‖Auj − τjuj‖2 6 tol ∗ τmax(A). (2.1)

Here the τmax(A) refers to the largest absolute value of the converged Ritz value, which is guaranteed to

be no larger than the largest absolute value of the eigenvalues of A, and tol is a user specified tolerance.

A Ritz pair (τj ,uj) is considered converged if (2.1) is satisfied.

Since we sort the Ritz values in a non-increasing order, τ1 > · · · > τkact , we start the convergence test

from the first Ritz pair (τ1,u1), and stop when the first non-converged Ritz pair is detected.

Various Davidson-type methods differ in the ways they construct the augmentation vectors Vaug (Step 3

in Algorithm 1). The quality, as measured by the directions of the vectors in Vaug, crucially determines

the convergence speed of the underlying Davidson method.

To accelerate the convergence, we need to exploit filtering techniques for constructing Vaug.

Before we proceed to the filters, which are essential for the acceleration of the PEVD/PSVD calcula-

tions, we discuss the inner-restart technique, which is necessary to reduce the memory requirement when

kwant is large.

2.1 Inner-restart on the active subspace

Our inner-restart is to be distinguished from the inner-outer iteration techniques as in [16,17,20,52]. The

inner iteration in these inner-outer methods refers to using an iterative method to solve a linear equation

within an outer iteration, while our inner-restart refers to the repeated restart inside a smaller active

projection subspace before this subspace reaches a preassigned maximum subspace dimension. With

the filters we construct, this repeated restart can progressively refine the basis vectors in the projection

subspace, allowing the total subspace dimension to be kept relatively small.

The inner restart resets the dimension of the active subspace kact to a smaller value kkeep when kact

exceeds an upper limit kamax assigned as the maximum dimension of the active subspace. The inner-

restart is done by removing the least significant basis vectors in Vact: Assume that at a certain Davidson

iteration, the dimension of Vact after deflation is kact. If kact + kb > kamax, then the inner restart is

carried out by truncating the last kact − kkeep columns in Vact. When the largest kwant eigenvalues and

eigenvectors are to be computed, during an inner restart, we truncate columns that are the Ritz vectors

associated with the smallest few Ritz values in the active subspace. This is easy to do because eigenvalues

of the Rayleigh quotient matrixH are ordered non-increasingly, from which we can tell which basis vectors

are least significant. In other words, the inner restart keeps the best kkeep basis vectors that are currently

available in the active subspace.

We do not need to enforce a restart on the entire projection subspace V explicitly, since the inner restart

automatically sets a maximum dimension for V : Note that the number of the converged eigenvectors in Vc

is kc, and the dimension of V is ksub, therefore we have ksub = kc + kact 6 kwant + kamax.

Our inner-restart is also different from the standard restart commonly used in Krylov subspace meth-

ods, which is performed, less frequently, on the entire subspace V that is always of a dimension greater

than kwant. The standard restart corresponds to the outer restart in the inner-outer restart method [70].

Our inner-restart is performed inside an active subspace whose dimension kamax is around 5–10 times

the block size kb, which can be much smaller than kwant when kwant is large. The dimension of the total

iterative subspace V only needs to be kwant + kamax, in contrast to other methods that need a projection

subspace with dimension 2 ∗ kwant or even larger. This inner restart technique, enabled by filtering that

generates effective Vaug at each iteration, makes our method highly memory-economical comparing with

other established methods.

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1639

Figure 1 Illustration of a block Davidson iteration with inner-restart. If new eigenvectors are converged, they are

deflated into the converged subspace Vc, and the active subspace Vact slides to the right. Vact is augmented by Vaug for

the next iteration. This Vact is always constrained inside the kamax-wide frame—the last few columns of Vact will be

truncated if the dimension of Vact exceeds kamax

Figure 1 provides a graphical view of the inner-restart in the block Davidson method.

The inner restart technique also makes our method time-efficient. Note that the complexity of major

computations performed in the active subspace are as follows:

• Orthogonalization involving the non-converged basis vectors: O(nk2act).

• Eigenvalue decomposition in the Rayleigh-Ritz refinement: O(k3act).

• Basis rotation of the projection subspace: O(nk2act).

Restricting the dimension of the active subspace kact below a relatively small value can reduce the

computational cost of the above three steps per iteration. As a trade-off, more Davidson outer iterations

are often required to converge all the kwant eigenpairs. However, the total CPU time cost can still be

greatly reduced comparing with the methods without restart or methods with only standard restart on

a large projection subspace V .

2.2 The main idea of spectrum filtering for symmetric PEVD

As mentioned earlier, the convergence rate of the Davidson-type method depends on the quality of the

augmentation vectors. To accelerate convergence for the PEVD problem (1.1), the augmentation vectors

should be made closer to the eigenspace of A corresponding to the wanted eigenvalues. One effective

way to achieve this goal is to apply a spectrum filter f(·) at each Davidson iteration, with the goal to

introduce favorable gap-ratios among the eigenvalues of the filtered matrix f(A).

The main idea of spectrum filtering can be summarized as follows: By a well-known result, the eigenval-

ues of f(A) are f(λi), i = 1, 2, . . . , n, while the eigenvectors of f(A) remain the same as those of A. For

any initial vector x0, one can expand it as x0 =
∑n

i=1 αivi, where the orthonormal basis v1,v2, . . . ,vn

are the eigenvectors of A. Then, f(A)x0 =
∑n

i=1 αif(λi)vi. To obtain fast convergence, we need a filter

f(·) such that f(A)x0 is closer to the invariant subspace spanned by the wanted eigenvectors. Since the

goal of (1.1) is to extract the largest k eigenpairs {(λi,vi)}i=1,...,k, we need an f(·) with the property

that f(λ1), . . . , f(λk) are much larger than f(λi), i > k. In other words, the filter should be designed to

(i) have significantly larger values at wanted eigenvalues than at unwanted ones, and/or (ii) dampen the

unwanted eigenvalues so that each iteration can progressively remove the unwanted eigen-directions from

the iterative subspace.

Spectrum filtering techniques have long been used in eigen-algorithms. In fact, the power method,

the Lanczos method, and all their variants (see [11, 27, 48]), are methods that apply polynomial filters.

1640 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

More sophisticated methods include ARPACK [30,60] and its variations (see [3,9]), which apply implicit

polynomials to filter out basis vectors with unwanted directions; and the Chebyshev-Davidson method

[70, 74], where explicit polynomial filters are applied.

To improve performance, the filter should not be kept fixed at each iteration. Instead, it should

be adaptively updated, utilizing the newer Ritz values that likely provide improved estimates of the

eigenvalues of A. We note that both ARPACK and the Chebyshev-Davidson method use adaptive filters

based on newer Ritz values at each iteration, while ARPACK and its variants have the option of using

other values such as the Leja points instead of Ritz values to adapt the filters.

In the next section, we discuss Chebyshev polynomial filters, and show why it has advantage over

other polynomials of same degree. In Section 4, we focus on rational filters implemented by the conjugate

residual method for solving linear equations obtained from multiple shifts.

3 The Chebyshev polynomial filtered Davidson method

The well-known Chebyshev polynomial of degree m is defined as

Cm(x) =







cos(m cos−1(x)), |x| 6 1,

cosh(m cosh−1(x)), x > 1,

(−1)m cosh(m cosh−1(−x)), x < −1.

(3.1)

There are many usages of this orthogonal polynomial, most of them focus on the best uniform approxi-

mation on the [−1, 1] interval (see [2,56]). While in eigenvalue calculations, it is the following extremum

property outside the [−1, 1] interval that can be used as a guiding principle for selecting the Chebyshev

polynomial over other same degree polynomials.

Theorem 3.1. For any polynomial p(x) of degree 6 m that satisfies |p(x)| 6 1 on [−1, 1], it holds true

that |p(x)| 6 |Cm(x)| for all |x| > 1.

This result is proved by Chebyshev himself [10] (see also [47]). An immediate implication of Theorem 3.1

is that, for all degree m polynomials that are bounded by 1 on [−1, 1], the Cm(x) is the polynomial that

can introduce largest gaps among polynomial values for x’s that are outside [−1, 1]. This makes (3.1) the

optimal degree m polynomial filter for symmetric eigenvalue calculations.

In fact, the Chebyshev polynomial can simultaneously achieve two goals for the acceleration of sym-

metric PEVD calculations: (i) Dampen any unwanted eigenvalues that are mapped inside [−1, 1], and

(ii) magnify the polynomial values at wanted eigenvalues, which should have been mapped outside [−1, 1]

before applying the polynomial filter.

Thus an important step before applying the filter (3.1) is to map unwanted eigenvalues into [−1, 1] and

the wanted ones out of [−1, 1]. But this step is far from obvious, because the location of eigenvalues may

not be known apriori. Some computations may be necessary to probe the location of the eigenvalues.

Usually it is not hard to estimate the exterior (i.e., smallest or largest) eigenvalues. However, the interior

eigenvalue separating the wanted and the unwanted parts of the spectrum is less obvious to find. We

overcome this difficulty by not insisting on using a value that correctly separate the wanted and unwanted

parts of the spectrum at the beginning, instead we use a value that is much easier to obtain and then we

gradually refine it throughout the iteration. We discuss the choice of the filter bounds in Subsection 3.1.

Assume that we already have an estimated interval [blow, bup] that encloses the eigenvalues we want to

dampen, then we only need to map this interval into [−1, 1]. This is easily achieved by a shift-and-scale

mapping,

L(x) =
x− c

e
, where c =

blow + bup

2
, e =

bup − blow

2
. (3.2)

The eigenvalues greater than bup that we want to compute are automatically mapped outside [−1, 1] by

L(·), so that they’ll be magnified by the Chebyshev filter.

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1641

The Chebyshev filtering is to apply the filtered matrix Cm(L(A)) to a block of vectors. Algorithm 2

implements this filtering, the output vectors in Y can be used as the Vaug in Algorithm 1 (see Step 3).

Algorithm 2 computes Cm(L(A))X , it utilizes the well-known three-term-recurrences associated with

the Chebyshev polynomial, namely Cm(t) = 2tCm−1(t)− Cm−2(t), starting from C0(t) = 1, C1(t) = t.

Algorithm 2: Chebyshev filter: Y = Cheb filter(A, X,m, bup, blow)

Input: The matrix A, block vectors X, degree m, bounds blow and bup;

Output: The filtered vectors stored in Y .

1 Compute c = (bup + blow)/2; e = (bup − blow)/2;

2 Compute Y = (AX − cX)/e;

3 for i = 2 : m do

4 Compute Ytmp = 2(AY − cY)/e−X;

5 X ← Y ;

6 Y ← Ytmp;

3.1 Choice of the Chebyshev filtering bounds

For the goal of computing the largest kwant eigenvalues, the blow in (3.2) should bound all the eigenvalues

from below, so that no eigenvalues can be mapped to the left of −1.

For some matrices, a theoretical lower bound for the spectrum is available. For example, eigenvalues

of any symmetric positive semi-definite matrix cannot fall below 0; and for any normalized adjacency

matrix, its eigenvalues cannot fall below −1.

In the more common cases where no apriori lower bounds are available, we can numerically estimate

blow with minimum computational cost, by a method adapted from [73]. The formulas in [73] used for

estimating the upper bound of the total spectrum of Hermitian matrices utilize a few steps of symmetric

Lanczos iteration, and then add a final safe-guard step to guarantee that a total upper bound is ob-

tained. Here we adapt this approach to compute a total lower bound of a symmetric matrix, as listed in

Algorithm 3.

Algorithm 3: k-step Lanczos iteration with a safe-guard

Input: The matrix A, the number of Lanczos steps k.

1 Generate a random vector v, set v ← v/‖v‖2;

2 Compute f = A ∗ v; α = fTv; f ← f − αv; T (1, 1) = α;

3 for j = 2 to k do

4 β = ‖f‖2;

5 if β is below machine epsilon, break;

6 v0 ← v; v ← f/β;

7 f = A ∗ v; f ← f − βv0;

8 α = fTv; f ← f − αv;

9 T (j, j − 1) = β; T (j − 1, j) = β; T (j, j) = α;

10 Return blow = λmin(T)− ‖f‖2, return also the eigenvalues of T .

Besides the lower bound blow, the choice of the filter upper bound bup for the unwanted eigenvalues

also plays a critical role in the performance of the filter. At the beginning of the Davidson iteration, the

location of the largest unwanted eigenvalue is usually unknown. However, we do not need to fix bup at

each iteration. In fact, initially the bup only needs to satisfy blow < bup < λmax(A). This will map the

larger eigenvalues located in (bup, λmax(A)] to the right of [−1, 1] so that they will be converged earlier

than eigenvalues located in [blow, bup). The Courant-Fisher Theorem [42] guarantees that the Ritz values

are all inside [λmin(A), λmax(A)], therefore we can utilize Ritz values to gradually refine bup.

1642 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

In [70, 74], bup is chosen as the median of all the non-converged Ritz values, this approach is effective

in practice. Here we update bup based on a convex combination,

bup = ατmax + (1 − α)τmin, (3.3)

where τmin and τmax are respectively the smallest and the largest non-converged Ritz values computed

from the previous Davidson iteration. At the first Davidson iteration, we simply use the two extreme

Ritz values stored in the eigenvalues of T from Algorithm 3 as the τmin and τmax.

Numerical studies indicate that choosing bup according to (3.3) with a proper α ∈ (0, 1) can lead to

even faster convergence compared with using the median. The advantage of such a convex combination

were also observed in [71, 72], although in [72] the goal is to compute the smallest many eigenvalues.

4 The rational function filtered Davidson method

The Chebyshev filters are particularly effective for accelerating convergence of exterior eigenvalues. How-

ever, its effectiveness may significantly deteriorate when converging interior eigenvalues, especially so

when the interior eigenvalues are clustered. This presents difficulty when many eigenvalues are needed,

since in this case part of the wanted eigenvalues may be interior eigenvalues.

Instead of the Chebyshev filters, we apply the traditional rational function ϕ(x) = 1
x−µ as the filter,

where the shift µ should be placed close to some wanted interior eigenvalues. In matrix form this filter

leads to the familiar shift-invert operation

z = ϕ(A)x = (A− µI)−1x. (4.1)

Applying the filter ϕ(·) to A can greatly magnify the eigenvalues close to µ, while dampening the

others further away from µ. This shift-invert technique [19, 42] has long been used in conjunction with

subspace projection methods to accelerate interior eigenvalue computations.

By the Cayley-Hamilton theorem, the inverse of a size-n nonsingular matrix is a degree n−1 polynomial

of the matrix. Thus the rational function filter (4.1) is essentially a polynomial filter. However, when n

is large, it is impractical to apply a degree n− 1 polynomial, moreover, the coefficients of this polynomial

are non-trivial to get.

A more practical way, also well-known in the literature, is to solve the linear equation

(A− µI)z = x (4.2)

approximately for the filtered vector z. This is known as the inexact shift-invert method (see [6,29,58]).

Iterative linear solvers are preferred over direct methods when A is large and sparse.

Integrating inexact shifted-inverse within a subspace projection method is the inner-outer technique

we mentioned earlier. Iterative eigenvalue algorithms that apply the inner-outer technique include, e.g.,

[16, 17, 58]. The inner iteration refers to inexactly solving (4.2) by a linear solver to get a continuation

vector that is required by the the outer subspace projection iteration.

Solving (4.2) by an iterative linear solver is to apply an implicit polynomial to get an approximate

solution ẑ such that the relative residual norm is reduced to below some tolerance δ:

‖x− (A− µI)ẑ‖/‖x‖ < δ. (4.3)

For a solver to be practical, the degree of the implicit polynomial should be much lower than n− 1.

The shifted linear equations in eigenvalue algorithms are often ill-conditioned, since the shift µ should

be chosen to be close to wanted eigenvalues, this will increase the gap between wanted and unwanted

eigenvalues of the filtered matrix for faster convergence. The ill-conditioning of the linear equation can

make iterative methods converge slowly to the true solution of the linear equation. A large number of

iterations may be needed before the residual norm satisfies (4.3).

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1643

The ill-conditioning issue has attracted much research. Various preconditioners are proposed to improve

conditioning in order to solve the shifted equation in fewer iterations (see [22,58,62]). The more common

practice is that, at the beginning of the outer-iteration, the inner-iteration need not solve the shifted

equation to high accuracy (see [6,16,20,68]), but the focus in the existing literature is mainly on solving

the shifted equation to some specified accuracy.

However, we emphasize that in eigenvector computations, obtaining the wanted direction of the solution

is more essential than obtaining small residual of the linear equation (4.2). This is mainly because an

eigenvector can be scaled but remains to be an eigenvector. We notice that with an unpreconditioned

iterative linear solver, the approximated solution ẑ converges to the desired eigenvector (or invariant

subspace in a block method) much faster than converging to the true solution of (4.2). The potential

ill-conditioning of the shifted linear equation is actually beneficial for obtaining the correct eigen-direction

[44]. Therefore, we simply apply a suitable iterative linear solver with a fixed total iteration number,

without any concern of the ill-conditioning of the shifted equation. In fact, we intentionally choose shifts

that make the shifted equations of form (4.2) at each outer-iteration to be ill-conditioned.

The linear solver we choose for the shift-invert filter in the block Davidson method is the conjugate

residual (CR) method. In the literature, the conjugate gradient (CG) method is more commonly utilized

to solve the shifted equations (see [20, 40, 41, 51]). We prefer CR over CG, mostly because the shifted

equations are all indefinite when the shifts are close to interior eigenvalues, while CG is better suited for

definite linear equations. Our choice of CR is inspired by [58], where CR is applied inside a Rayleigh-

quotient iteration.

4.1 Fixed k-step CR method for block multi-shifted linear equations

The CR method [53] is a Krylov subspace method for solving symmetric linear equations, its extension

can be used to solve non-symmetric equations. We list the pseudo code of the CR method in Algorithm 4.

The name of this method comes from the fact that the residual vectors are conjugate (i.e., H orthogonal)

to each other. The CR solution xj+1 minimizes the residual norm ‖b − Hx̃‖2 for all x̃ in the Krylov

space x0 +Kj(H , b−Hx0), where x0 is the initial vector.

Algorithm 4: Conjugate residual (CR) method for solving Hx = b

Input: Matrix H, right-hand side b, initial vector x0, and tolerance δ.

Output: The approximate solution x stored in the last xj+1.

1 r0 = b−Hx0; p0 = r0;

2 for j = 0, 1, . . . do

3 αj = rTj Hrj/‖Hpj‖
2
2;

4 xj+1 = xj + αjpj ; rj+1 = rj − αjHpj ;

5 If ‖rj+1‖2 < δ‖b‖2 then break;

6 βj = rTj+1Hrj+1/r
T
j Hrj ; pj+1 = rj+1 + βjpj ;

7 Hpj+1 = Hrj+1 + βjHpj ;

As standard in the Krylov methods, the matrix H only need to be accessed via matrix-vector products.

To apply the CR method to the shifted linear equation (4.2), we only need to replace Hrj in Algorithm 4

with Arj − µrj .

The main differences of our approach with those existing in the literature are: (i) We do not concern

about the ill-conditioning of the linear equation, thus we do not construct or apply any preconditioner for

the shifted equations; (ii) instead of using the residual norm to determine when to stop the CR iteration,

we fix the iteration number to k for each of the inner iterations; (iii) we use multiple shifts that are

tailored to the outer block Davidson iteration.

Considering that constructing and applying a preconditioner is problem dependent and may be quite

expensive, our preference for (i) reduces the cost associated with using preconditioners. Moreover, ill-

1644 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

conditioning is actually beneficial, as our goal is not to get a solution that makes the residual norm small,

but to find the correct eigen-direction from each shifted equation.

Our fixed k-step CR shift-invert filter is presented in Algorithm 5. In the standard CR method as

presented in Algorithm 4, the matrix vector products can be reduced by using extra arrays to store the

products and reuse them when possible. This issue is addressed in Algorithm 5.

Algorithm 5: Fixed k-step CR filter: Y = CR filter(X, k,µ, Y (0))

for j = 1 : kb do

yj = y
(0)
j ;

r = xj − Ayj + µjyj ; p = r; r
A
= Ar − µjr; pA

= r
A
;

ρs = rTr
A
; α = ρs/p

T
A
p
A
;

yj = yj + αp;

for i = 2 : k do

r = r − αp
A
; r

A
= Ar − µjr; ρ = rTr

A
; β = ρ/ρs; ρs = ρ;

p = r + βp; p
A
= r

A
+ βp

A
; α = ρs/p

T
A
p
A
;

yj = yj + αp;

Return Y = [y1, . . . , ykb
].

The j in Algorithm 4 that counts the number of iterations is not necessary in implementation, because

one can implement Algorithm 4 memory-economically by overwriting/updating vectors without storing

a sequence of them. While in our Algorithm 5, the j is necessary, because it points to different columns

in the iterative block of size kb, as well as to the specific shift associated with each column.

The CR filter in Algorithm 5 applies a fixed k-step CR iteration to approximately solve each of the kb
linear equations

(A− µjI)yj = xj, j = 1, . . . , kb. (4.4)

The input X contains the right-hand side vectors [x1, . . . ,xkb
], which are the vectors chosen to be filtered.

The µ contains the corresponding shifts [µ1, . . . , µkb
] for each column in X . The Y (0) provides initial

guesses [y
(0)
1 , . . . ,y

(0)

kb
] to start the CR iteration. The output Y contains the approximated solutions

[y1, . . . ,ykb
] for each of the equations in (4.4).

When CR filter is used to compute Vaug at Step 3 of Algorithm 1, we choose X as the kb Ritz vectors

corresponding to the largest kb non-converged Ritz values. Note that this choice of X is the same as

when the Cheb filter is used.

We also use the same Ritz vectors in X as the initial guesses Y (0). This is because the largest kb

Ritz vectors are the best approximations in the current projection subspace to the remaining largest kb
eigenvectors to be computed. Using a better block of initial vectors can help to make the filtered solution

Y evolve closer to the wanted eigenvectors.

4.2 Choice of the shifts for the shift-invert filter

At a certain Davidson iteration, we denote the largest kb non-converged Ritz values as τ1 > · · · > τkb
,

and the corresponding Ritz vectors as u1, . . . ,ukb
. Then as just discussed, the vectors to be filtered by

CR filter should be chosen as these largest u1, . . . ,ukb
. The remaining problem is to pick a shift µj for

each uj, j = 1, . . . , kb.

The choice of the shifts {µ1, . . . , µkb
} is crucial for a method that utilizes shift-invert. This important

issue appears to have received less attention in the literature than it deserves. One reason may be that

choosing shifts for a shift-invert method is challenging, similar challenging issues are well-known to exist

in the low-rank Smith method [43] and the CFADI method [32] for solving large Lyapunov equations,

and in the rational Krylov method [50] for model reduction of large dynamical systems.

We emphasize that ill-conditioning in the shifted equation (4.4) should be embraced instead of avoided

when choosing the shifts. The residual norm of the solution of an equation in (4.4) may be very large

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1645

owing to ill-conditioning, but what we need is the wanted eigen-direction out of the solution of each shifted

equation. In addition, ill-conditioning of the shifted equation can help to find the wanted eigen-direction

faster (see [44]).

To introduce ill-conditioning, we should choose shifts to be as close to the wanted eigenvalues as pos-

sible. Therefore we exploit the largest Ritz values τ1, . . . , τkb
, which are the currently available best

approximations of the eigenvalues that have not been converged. We consider the following four ap-

proaches in choosing the shifts based on Ritz values,

(I) Single shift: µj = median(τ1, . . . , τkb
) for all j = 1, . . . , kb.

(II) Single shift: µj = βτ1+(1−β)τkb
, for all j = 1, . . . , kb. In particular, we consider using the middle

point, with β = 0.5.

(III) Multiple shifts: µj = τj for all j = 1, . . . , kb.

(IV) Mixed shifts: Let p = ⌈ 1
2
kb⌉, µj = τj for j = 1, . . . , p; and µj = τp+1 for j = p+ 1, . . . , kb.

The two single shift strategies (I) and (II) are mainly used for comparisons, because a single shift

method has often been preferred, particularly when a decomposition method is used to solve the shifted

equation. This is because decomposition with multiple shifts can be quite expensive for large matrices.

The mixed shifts (IV) tries to compromise the possibly different needs of an interval that encloses

[τkb
, τ1]: For the more interior lower ‘half’ part, only the Ritz values τp+1 is used as a shift; while for the

more exterior higher ‘half’ part of this interval, for which the Ritz values are likely better approximations

of the non-converged eigenvalues, each of these Ritz values τj (j = 1, . . . , p) is used as a shift.

The multiple shifts (III) uses the most number of shifts, this should not be a concern since we do not

apply a decomposition method to solve the shifted equations.

For all the four shift strategies, the right-hand side vectors are the Ritz vectors corresponding to the

current largest kb non-converged Ritz values, and the same Ritz vectors are used as the initial vectors for

the CR method.

We reason that the multiple shifts (III) have the best possibility to provide a balanced combination of

good shifts and good initial vectors. This is because the Ritz pair (τj ,xj) is currently available optimal

approximation to the j-th non-converged eigen-pair (λj ,vj) from the current projection subspace. The

good shift together with the good initial vector is expected to provide acceleration in finding the wanted

eigen-direction using the CR filter in Algorithm 5.

Indeed, our extensive numerical tests show that the shift strategy (III) readily performs better than the

single shift strategies (I) and (II). The mixed strategy (IV) has its merit, but for simplicity of comparison,

numerical results in Section 7 are all done with the multiple shifts strategy (III).

5 Obtaining better initial vectors by Lanczos iteration

Applying the Cheb filter (see Algorithm 2) or the CR filter (see Algorithm 5) to compute the Vaug at

Step 3 of Algorithm 1 leads to two filtered block Davidson algorithms for symmetric PEVD calculations.

Either algorithm can filter random kb vectors at the first iteration to generate the first Vaug at Step 3

of Algorithm 1. However, we can do better than starting with random vectors.

We apply a kli-step simple Lanczos iteration with full re-orthogonalization to A. The iteration is

essentially Algorithm 3, except that memory should be allocated to save all the kli Lanczos vectors

generated; and that a Rayleigh-Ritz refinement procedure should be added at the end of the Lanczos

iteration to extract the kli Ritz vectors. In general, the kli may range from kamax to kwant + kamax.

Although Algorithm 3 is used to estimate the filter lower bound, while our goal is to compute the

principal eigenpairs, we can still reuse the kb largest Ritz pairs computed by Algorithm 3 (with the above

mentioned additions) as initial to start the filtered block Davidson iteration.

Compared with using random initial vectors, the reuse of Lanczos vectors from the filter bound estimate

as the initial vectors has the following advantages.

• Some of the largest eigenpairs may already be converged in the kli-step simple Lanczos iteration for

the filter bound estimate, especially when the largest eigenvalues are well-separated.

1646 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

• We perform a convergence test after the Rayleigh-Ritz refinement in Algorithm 3, and deflate the

already converged eigenpairs into Vc in Algorithm 1. The number of converged eigenvectors kc is initialized

accordingly.

The kb Ritz vectors corresponding to the largest kb non-converged Ritz values are then used as the

initials to be filtered at Step 3 of Algorithm 1. These largest non-converged Ritz vectors are generally

better initial vectors than random vectors, because the Ritz vectors from the Lanczos iteration are closer

to the wanted invariant subspace compared with random vectors. Therefore, the main iteration (see

Algorithm 1) should start with filtering the first kb non-converged Ritz vectors.

The above choice of initial vectors also works when no eigenpair is converged in the Lanczos initializa-

tion process (i.e., kc = 0).

• Based on the non-converged Ritz values, we can obtain more favorable parameters for the two filters.

For example, if the Cheb filter (see Algorithm 2) is used, then using a larger kli than the small Lanczos

step as used in [73,74] can lead to better filter bounds blow and bup for the first filtering step in the filtered

Davidson method (see Algorithm 1).

For the k-step CR filter, obtaining better approximation of Ritz values to eigenvalues is even more

important. This is because better shifts that locate close to the wanted eigenvalues, as well as better

right-hand side vectors close to the wanted eigen-direction, can significantly speed up the convergence of

the filtered block Davidson method.

Our extensive numerical tests show that using the Lanczos initialization within our block Davidson

method is in general more efficient than initializing with random vectors. Therefore we use Lanczos

iteration as the default initialization method, this default is used for all the numerical results reported in

Section 7.

6 Filtered Davidson method for PSVD calculations

PSVD is a special case of symmetric PEVD. Most PSVD solvers utilize the connection between SVD and

a symmetric EVD, as summarized in the following well-known lemma.

Lemma 6.1. Let the SVD of M ∈ Rm×n (m > n) be

M = U

[

diag(σ1, . . . , σn)

0m−n

]

V T, (6.1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. Then the following three eigenvalue decompo-

sitions hold true,

MTM = V diag(σ2
1 , . . . , σ

2
n)V

T, (6.2)

MMT = U diag(σ2
1 , . . . , σ

2
n, 0, . . . , 0
︸ ︷︷ ︸

m−n

)UT, (6.3)

[

0 M

MT 0

]

= Q diag(σ1, . . . , σn,−σ1, . . . ,−σn, 0, . . . , 0
︸ ︷︷ ︸

m−n

)QT, (6.4)

where the Q matrix is linked to U and V as

Q =
1
√
2

[

U1 U1

√
2U2

V −V 0

]

,

in which the U matrix from (6.1) is denoted as U = [U1 U2] and U1 ∈ Rm×n.

For newer applications in data science where a PSVD is applied, usually the singular triplets associated

with small singular values below a certain threshold are associated with noise in the data and they have

no physical meaning. Thus triplets associated with larger singular values above a threshold are of interest.

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1647

Fortunately, the squaring ofM , as represented in either (6.2) or (6.3), helps to magnify the larger singular

values and make smaller singular values less significant. Thus, although squaring of M is known to make

the smallest few singular triplets less accurate, it is actually preferred for PSVD calculations when the

goal is to compute the largest part of the singular values, as for the applications from data mining. Some

problems from other fields may need accurate solutions of the smallest few singular triplets, for such

problems squaring should be avoided, and we refer to [33, 67] for suitable algorithms.

We compute the PSVD of a matrix M ∈ Rm×n by computing the PEVD of the smaller-sized squaring

matrix, MTM (if m > n), or MMT (if m < n). This is easily done by setting the matrix-vector product

subroutine as Hx(M , X), as in Algorithm 6. The input X to Algorithm 6 refers to a block of vectors of

appropriate dimension, to be multiplied by either MTM or MMT.

Algorithm 6: Matrix-vector Product in PSVD solvers: Y = Hx(M , X)

if m > n then

Yo = MX; Y = M
TYo;

else

Yo = M
TX; Y = MYo;

When replacing the matrix-vector product subroutine used in a symmetric PEVD solver by the

Hx(M , X), we turn the PEVD solver into a PSVD solver. Using the Cheb filter (see Algorithm 2)

as an example, it can be written as Algorithm 7. Besides replacing the matrix-vector product subroutine,

we note that Algorithm 7 employs a unique property of PSVD: Since MTM and MMT are SPSD

matrices, the lower bound blow in the Chebyshev filter can be directly set to zero.

Algorithm 7: Chebyshev Filter for PSVD: Y = Cheb filter PSVD(X,m, bup)

e = bup/2;

Y = Hx(M , X)/e−X;

for i = 2 : m do

Ytmp = (2/e) ∗ Hx(M , Y)− 2Y −X;

X = Y ;

Y = Ytmp;

Similarly, replacing the matrix-vector product subroutine by Hx(M , X) in the shift-invert CR filter

(see Algorithm 5) also turns our PEVD solver into a PSVD solver, we omit the details here.

Once the eigenvectors U or V is computed by a PEVD solver, to compute the PSVD, we only need

to take the square roots of the eigenvalues as the singular values, and then compute either MV Σ−1 for

U if V is computed, or MTUΣ−1 for V if U is computed. Here the Σ−1 operation is nothing but the

column scaling by the reciprocal of the principal singular values that are already computed.

In many applications that require computing a low-rank approximation of a given matrix M , the

number of needed singular triplets is unknown in advance. What is needed is that the relative approxi-

mation error being smaller than a tolerance η. To address this more common scenario, we integrate an

automatic stopping criterion: Every time a new singular value σc is converged, we check the ratio σc

σ1
. If

σc

σ1
6 η, we terminate the iteration process. Because of the repeated refinement in the previous iterations,

as well as the test of convergence criteria we use (we stop checking for convergence whenever the first

non-convergence is detected in the iterative block), the larger singular values normally converge earlier

than the smaller ones. Thus when σc

σ1
6 η is found, we know that the computed PSVD normally has a

relative error no greater than η. In practice, to guarantee that the error is below η, one can simply use

a threshold tolerance somewhat smaller than η.

Our algorithms have this desirable feature of automatically stopping the PSVD calculation whenever

the approximation error is below a threshold tolerance. To our knowledge, this often desired feature has

1648 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

not appeared in other PSVD codes, including those that we compare with in Section 7.

7 Datasets and numerical results

We report the performance of our block filtered Davidson methods applied to realistic test problems from

the LSI and the graph-based learning applications.

To gauge the relative strength of our methods, we compare with a number of major and representative

methods for PEVD or PSVD calculations. The comparative study examines the cost in CPU time, the

memory usage (measured mainly by the size of the major projection subspace), and the accuracy of the

computed eigenpairs or singular triplets.

We first describe the matrices used in the numerical experiments, and then briefly mention the algo-

rithms to be compared with. The main numerical results are presented in Subsection 7.3.

7.1 Datasets and test matrices

Our numerical experiments consist of solving two types of test problems: (i) computing kwant top singular

triplets of a term-document matrix; and (ii) computing kwant top eigenpairs of a normalized adjacency

matrix.

The test matrices are constructed from real-world datasets as needed by the LSI applications and the

graph-kernel-based learning techniques

Table 1 summarizes the basic statistics of the matrices to be used in our experiments. In the matrix

names, the prefix ‘td ’ refers to a term-document matrix whose top singular triplets are needed; and the

prefix ‘na ’ refers to a normalized adjacency matrix whose top eigenpairs are to be computed. For a

matrix A ∈ Rm×n, its sparsity is defined as its total number of nonzero elements divided by m ∗ n. In

fact, this commonly used term “sparsity” refers to “density”.

The datasets Enron Emails [1], 20 Newsgroups [46], NYTimes News Articles [1] and PubMed Ab-

stracts [1] are bag-of-words files recording the number of occurrences of every word in every text. These

datasets are generated from four different collections of texts, Table 2 summarizes their respective sizes

and their text-content types.

We construct the term-document matrices from these datasets using the TF-IDF (term frequency-

inverse document frequency) weighting, which is a widely-used weighting scheme in the LSI applications

(see [23, 55]).

For the normalized adjacency matrices, we construct them from five datasets: SIAM competition [14],

MNIST [28], epsilon [14], Youtube network [31], and LiveJournal network [31]. Their statistics are

summarized below:

Table 1 Statistics of the matrices used in the numerical experiments

Matrix name # of rows # of columns Sparsity

td News20 53,975 11,269 2.41 × 10−3

td Enron 28,102 39,861 3.31 × 10−3

td NYTimes 102,660 300,000 2.26 × 10−3

td PubMed 141,043 8,200,000 4.18 × 10−4

na Siam 21,519 21,519 8.29 × 10−4

na MNIST 70,000 70,000 2.13 × 10−4

na Epsilon 400,000 400,000 4.99 × 10−5

na Youtube 1,134,890 1,134,890 4.64 × 10−6

na LiveJournal 3,997,962 3,997,962 4.34 × 10−6

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1649

Table 2 Properties (size and content type) of the text collection datasets used to construct term-document matrices

Dataset name #words #documents Content type Matrix name

20 Newsgroups 53,975 11,269 news article td News20

Enron Emails 28,102 39,861 email td Enron

NYTimes News Articles 102,660 300,000 news article td NYTimes

PubMed Abstracts 141,043 8,200,000 journal abstract td PubMed

• Dataset SIAM competition is constructed from a collection of texts for a competition on text classi-

fication. It contains 21,519 data points, each having 30,438 features. Each data point represents a text,

and its features are binary term frequencies of the words in the text. All data points are then normalized

to unit length.

• Dataset MNIST is constructed from a collection of images of handwritten digits (integers from 0–9).

It contains 70,000 data points, each having 784 features. Each data point represents an image of 28×28

pixels. This dataset is often used for testing pattern recognition methods such as learning algorithms for

classification and clustering.

• Dataset epsilon is constructed from an artificial dataset used in the Pascal large scale learning

challenge on classification. It contains 400,000 data points, each having 2,000 features.

• Datasets Youtube network and LiveJournal network are undirected graphs that models online so-

cial networks. The vertices represent social network users. Two vertices are linked by an undirected

edge of weight 1 if the corresponding users are connected, otherwise the two vertices are not linked.

Youtube network has 1,134,890 vertices with 2,987,624 edges, and LiveJournal network has 3,997,962

vertices with 3,4681,189 edges.

We first convert the datasets SIAM competition, MNIST and epsilon into unweighted 10-nearest-

neighbor (10NN) graphs according to Euclidean distances [65,75], i.e., two distinct vertexes are connected

by an edge of weight 1 if either one of them is among the 10 nearest neighbors of the other, measured

in the Euclidean distance; otherwise they are not linked by an edge. Once each dataset is represented

as a graph, we can construct an adjacency matrix and then apply the standard normalization to get the

normalized adjacency matrix for this graph.

We add a prefix ‘na ’ to the matrix name to indicate that it is a normalized adjacency matrix. Graph-

kernel-based learning methods require the top (largest) eigenpairs to build graph kernels.

Since the eigenvalues of a normalized adjacency matrix are all located in the [−1, 1] interval, when the

matrix dimension is large, the eigenvalues become highly clustered. This can present severe challenges to

existing eigensolvers.

7.2 Compared algorithms

We implemented the block Davidson algorithm with two filters—the Chebyshev filter and the fixed k-step

conjugate residual filter—in Matlab R© . The resulting solvers are denoted as bdav+Cheb and bdav+CR,

respectively. Both can be applied for symmetric PEVD and PSVD computations.

Our bdav+Cheb and bdav+CR are compared with the following methods/packages, in the Matlab R©

environment:

• ARPACK, which is a Fortran package designed to solve large-scale eigenvalue problems [30]. ARPACK

contains a set of general purpose eigensolvers that are robust, accurate and efficient, and therefore is

widely accepted as a standard tool in eigenvalue computations. In Matlab R© , the built-in function eigs

essentially calls ARPACK, which applies the implicit restarted Lanczos algorithm [60,61] for symmetric

PEVD. Matlab R© also provides a built-in function svds for PSVD computations. The difference is that

svds computes the PSVD of M by applying eigs on the augmented matrix
[

0 M

M
T

0

]
. We believe this

is not the optimal way applying ARPACK for PSVD computations, especially for large matrices. But for

1650 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

the sake of comparison with the directly available PSVD solver provided by MathWorks, we use svds

without modification to its internal implementations.

A parameter p in eigs determines the number of Lanczos basis vectors spanning the projection sub-

space. We use the ARPACK default p = 2 ∗ kwant throughout all experiments. (Although p may be reduced

from 2 ∗ kwant, using a p that is only slightly larger than kwant may significantly increase the CPU time

or lead to only partial convergence.)

• PROPACK1) , which is designed to efficiently compute the PSVD of large and sparse or structured

matrices. It is available in both Fortran and Matlab R© . Our experiments use the Matlab R© code as two

other compared methods are available only in Matlab R© . The PSVD solver, denoted as LanBPRO, is

based on the Lanczos bidiagonalization algorithm with partial reorthogonalization [27]. PROPACK also

provides a symmetric eigensolver, denoted as LanPRO, which implements the symmetric Lanczos algorithm

with partial reorthogonalization [57, 66].

LanBPRO and LanPRO do not perform restart, therefore the dimension of the projection subspace is

proportional to the number of iterations required for convergence. A parameter l determines the number

of new basis vectors added to the subspace in every iteration. By default PROPACK sets the l to

1 +

⌈

min

(

100,max

(

2,
ks(kwant − kc)

2(kc + 1)

))⌉

,

where kc is the number of converged eigenpairs or singular triplets, and ks is the dimension of the existing

subspace. This ks can be significantly larger than 2 ∗kwant, especially when eigenvalues are clustered and

many iterations are required, making PROPACK, which does not use restart, very memory demanding

when many iterations are needed to reach convergence. Nevertheless, PROPACK is adopted in several

highly cited recent publications (see [8, 35, 64]), mainly because PSVDs constitute the bottleneck of

computations for the proposed algorithms there, but no significantly more robust (particularly in terms

of speed and accuracy) PSVD code is available.

• RandSVD, which is a PSVD solver written in Matlab R© based on the randomized SVD algorithm [21,48].

It employs the main structure of a random PCA code2) , and provides options for specifying the types of

initial random matrix and projection subspace. In our experiments, the initial random matrix is drawn

from the standard Gaussian distribution as suggested in [21], and a block Krylov subspace iteration is

used to enhance the accuracy [48].

The dimension of the random SVD projection subspace is (1 + q)(kwant + p), determined by two

parameters—the oversampling parameter p and the number of subspace iterations q. In RandSVD no

convergence tests based on residual norms are used, instead it adopts a simpler approach: It applies the

subspace iteration to MMT starting from an initial MΩ, where Ω contains kwant + p random vectors,

and stops after q iterations. This approach simplifies the coding complexity but comes with a cost. As

shown by the numerical results in Subsection 7.3, RandSVD has the least accuracy among all methods

compared.

We set p = 10 and q = 3 for all experiments, as these parameters provide the overall best performance

for RandSVD applying to the test problems listed in Subsection 7.1. Using a larger q would increase the

accuracy of RandSVD, but with increased computational cost. As each iteration costs about the same in

RandSVD, e.g., increasing q from 3 to 6 would roughly double the CPU time.

• LMSVD3) , which implements in Matlab R© the limited memory PSVD algorithm [34]. The projection

subspace in LMSVD has the form [X(i), X(i−1), . . . , X(i−s)], where s is an integer and each X(j) contains

kwant vectors. Thus the subspace dimension is (1 + s)kwant. By default, s is chosen from {3, 4, 5} based

on the relation between kwant and the size of the matrix. The projection subspace does not dominate

the memory usage, however, LMSVD needs to save a large amount of intermediate results, including

A ∗ [X(i), . . . , X(i−s)], and other projections, for the purpose of reducing computational cost.

1) Code available at http://sun.stanford.edu/∼rmunk/PROPACK/
2) Code available at https://cims.nyu.edu/∼tygert/software.html
3) Code available at http://www.caam.rice.edu/∼zhang/LMSVD/lmsvd.html

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1651

Table 3 Comparison on the major memory requirement of different algorithms. In the numerical tests, q = 3, p = 10,

β ∈ [0.2, 0.4], s ∈ {3, 4, 5}. The ks is usually much larger than 2 ∗ kwant

Method PEVD of A ∈ Rn×n PSVD of M ∈ Rm×n

bdav+Cheb
[(1 + β)kwant]n [(1 + β)kwant]min(m,n)

bdav+CR

ARPACK(eigs/svds) (2kwant)n (2kwant)(m + n)

PROPACK(LanPRO/LanBPRO) ksn ks(m+ n)

RandSVD (not for PEVD) [(1 + q)(kwant + p)]max(m,n)

LMSVD (not for PEVD) [(1 + 2s)kwant](m+ n)

We summarize the theoretical cost of the major memory usage of the compared algorithms in Table 3.

For all methods except LMSVD, we present the size of the major projection subspace, which dominates

the memory cost. As for LMSVD, it uses three intermediate matrices, one to save A ∗ [X(i), . . . , X(i−s)],

the other two (denoted as PX and PY in [34]) are of a combined size (m+ n)s× kwant. They consume a

significant amount of memory. Therefore we also count them in addition to the main projection subspace

[X(i), . . . , X(i−s)] of LMSVD when comparing the major memory usage.

There are newer codes than ARPACK and PROPACK, such as PRIMME [63] and SLEPc [49]. But

there is reason why PROPACK was the dominant choice for PSVD calculations in the highly cited

papers [8, 35, 64]. Therefore we believe comparisons with PROPACK as well as the well-established

ARPACK provide adequate measure of the efficiency of our two methods.

In the numerical tests reported in Subsection 7.3, the real memory usage is measured by adding up

the length of all vectors in the major projection subspace. That is, we add up the total floating point

numbers (denoted as N) stored in the matrix representing the major projection subspace, then convert it

to the memory usage M (in GBs) using M = 8N/10243, since each floating point number takes 8 bytes

(64 bits) in our computation environment.

7.3 Numerical results

Our filtered block Davidson algorithms (bdav+Cheb and bdav+CR) have a few parameters that can affect

their efficiency. Both algorithms need the block size kb, the maximum active subspace dimension kamax,

and the Lanczos initialization steps kli; the algorithm using the Chebyshev filter needs the polynomial

degree m; while the shift-invert CR filter needs the number of CR iterations itcr.

In practice, these parameters are quite straightforward to select, and the default values in our code in

general work well for many cases, testifying the robustness of our filtered algorithms.

Here we list some general guidance for the selection of parameters: (i) In general, a kb between 5 and

30 should work well; if kwant is relatively large, then a larger block size kb may be preferred. (ii) For

bdav+Cheb, a polynomial degree m between 4–30 should work well for most cases; when the eigenvalues

are well separated (as for the term-document matrices), a small m between 4 and 8 is preferred, while

for highly clustered eigenvalues (as for the normalized adjacency matrices), a larger m between 30 and

40 should be used. But a larger m, say m > 50, may be counter-productive, since some noise in the

vectors to be filtered may be magnified into the already converged principal eigen-directions, slowing

down convergence. (iii) For bdav+CR, the number of CR iterations is also determined by how well the

eigenvalues are separated, for well-separated cases such as the term-document matrices, itcr can be set

to a small integer such as 4, while for highly clustered eigenvalues, a larger itcr between 30 and 40 is

preferred over a smaller one. (iv) The kamax is important and it depends on kb and kwant, as well as

on m or itcr. In general, kamax can simply be set as c ∗ kb, where c is an integer. When kb is relatively

small, and m or itcr is small, then a larger kamax is preferred, which means c should be slightly larger, say

c = 20; otherwise, the c can be between 5–10. When kwant is relatively large, we can also simply choose

kamax 6 0.2kwant.

1652 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

Table 4 Default parameters in bdav+Cheb and bdav+CR

Parameter
Term-document matrix Normalized adjacency matrix

bdav+Cheb bdav+CR bdav+Cheb bdav+CR

kb 15 15 15 15

kamax 0.2kwant 0.2kwant 0.2kwant 0.2kwant

kli kwant + kamax kwant + kamax kwant kwant

m 6 – 40 –

itcr – 4 – 30

The default values for our two filters used in our code are listed in Table 4.

We implement the filtered Davidson methods (bdav+Cheb and bdav+CR) in Matlab R© and compare them

with representative methods listed in Subsection 7.2. The two quantities compared are the CPU time

and the memory usage needed by the projection subspace (see Table 3).

We separate the test matrices listed in Table 1 into two groups, based on their sizes. Group (I) consists

of the td News20, td Enron, na Siam, and na MNIST matrices. Group (II) consists of the larger matrices

td NYTimes, td PubMed, na Epsilon, na Youtube, and na LiveJournal.

We perform more comparisons with the matrices in Group (I), since these moderately sized matrices

are approachable by all methods compared within the test setting. We vary kwant as {400, 800, 1200, 1600,

2000}, and compare how each method performs. The point is that a method with better scaling should

incur less CPU and memory cost increments as kwant increases—an important requirement of a practical

method for large data.

For the larger matrices in Group (II), we need to fix kwant at a moderate value. This is because it is

very time consuming for all the methods to compute a relatively large kwant, and the methods requiring

larger memory than others would exit with an ‘out-of-memory’ error without finishing the computations.

All the computations were carried out in Matlab R© on the SMU HPC cluster. Experiments involving

moderately-sized matrices were conducted on the batch worker nodes with 8-core Intel Xeon 2.53 GHz

CPU and 48 GB RAM. Tests on Group (II) matrices were performed on the high-memory nodes with 2

quad-core Intel Xeon 2.66 GHz CPU and 144 GB RAM. The Matlab R© version on the batch worker nodes

is R2013a (8.1.0.604) while that on the high-memory node is R2009a (7.8.0.347).

To make the measurements on CPU time more reliable, we ensure that no other programs were running

on the computing node where our experiments were carried out. We also ran the same set of experiment

independently for five times and report the average of the recorded CPU time.

7.3.1 Comparisons on the moderately sized matrices in Group (I)

We compare bdav+Cheb and bdav+CR with four PSVD solvers (svds, LanBPRO, RandSVD, LMSVD) and two

eigensolvers (eigs, LanPRO).

The comparisons on CPU time as well as memory usage are presented in Figures 2 and 3, in which the

kwant is increased from 400 to 2000 with a stride of 400.

Figure 2 shows the comparisons for PSVD calculations. The svds uses the most CPU time among

all methods compared, especially when kwant increases. This is mainly due to the augmentation of M

into
[

0 M

M
T

0

]
enforced in svds. In the older days, this augmentation was necessary in order to compute

the smallest few singular values to high accuracy. For the newer applications in data science, how-

ever, this is no longer necessary, since the smallest portion of singular values correspond to noise in

the data and are safe to be neglected. A more elaborate implementation should avoid this augmenta-

tion to bring the cost of svds down to that of eigs, as shown in Figure 3. LanBPRO is comparable to

our methods in terms of CPU time cost, especially when kwant is comparatively small. However, the

memory usage of LanBPRO far exceeds our methods, due to the fact that LanBPRO does not use restart.

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1653

400 800 1200 1600 2000
0

0.5

1.0

1.5

2.0
x 10

4

k want

C
P

U
 t
im

e
 (

in
 s

e
c
o

n
d

)

PSVD of td_News20

bdav+CH

bdav+CR

LanBPRO (PROPACK)
svds (ARPACK)

RandSVD

LMSVD

(a)

400 800 1200 1600 2000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

kwant

M
e

m
o

ry
 n

e
e

d
e

d
 b

y
 t
h

e
 s

u
b

s
p

a
c
e

 (
in

 G
B

)

PSVD of td_News20

bdav+CH

bdav+CR

LanBPRO (PROPACK)
svds (ARPACK)

RandSVD

LMSVD

(b)

400 800 1200 1600 2000
0

0.5

1.0

1.5

2.0
x 10

4

k want

C
P

U
 t
im

e
 (

in
 s

e
c
o

n
d

)

PSVD of td_Enron

bdav+CH

bdav+CR

LanBPRO (PROPACK)
svds (ARPACK)

RandSVD

LMSVD

(c)

400 800 1200 1600 2000
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

kwant

M
e

m
o

ry
 n

e
e

d
e

d
 b

y
 t
h

e
 s

u
b

s
p

a
c
e

 (
in

 G
B

)

PSVD of td_Enron

bdav+CH

bdav+CR

LanBPRO (PROPACK)
svds (ARPACK)

RandSVD

LMSVD

(d)

Figure 2 Comparison of six PSVD solvers on computing kwant singular triplets of td News20 (see (a) and (b)) and

td Enron (see (c) and (d)). Plots on the left show the CPU time cost. Plots on the right show the major memory usage

of each solver

RandSVD is efficient when kwant is small, however its CPU time grows rapidly as kwant increases. LMSVD

scales better than RandSVD, although slightly less efficient when kwant is small. The main concern is

that LMSVD stores many intermediate results in exchange for speed, making the method very memory

demanding.

Figure 3 shows the comparisons for PEVD calculations. The LanPRO uses significantly more CPU time

than the other three methods, especially when kwant becomes larger. This is again mainly due to the fact

that no restart is used in LanPRO, which can be very expensive in terms of both CPU time and memory

consumption when many eigenpairs need to be computed. Figure 3 also reveals that, without the burden

caused by the augmentation of matrices artificially enforced in svds, the eigs which calls the Fortran

ARPACK is indeed efficient.

As seen from both Figures 2 and 3, the proposed bdav+Cheb and bdav+CR methods are faster than

the other methods compared. The better performance of our methods becomes more evident when kwant

becomes larger, implying that our methods are more scalable than the compared ones. We emphasize

that the gain in speed is under the situation that our two methods use the least memory among all

methods compared.

For the numerical tests reported in this subsection, the convergence tolerance tol is set to 10−6

1654 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

400 800 1200 1600 2000
0

2

4

6

8

10
x 10

4

kwant

C
P

U
 t
im

e
 (

in
 s

e
c
o

n
d

)

PEVD of na_Siam

bdav+CH

bdav+CR
LanPRO (PROPACK)

eigs (ARPACK)

400 800 1200 1600 2000
0

2000

4000

6000

8000

(a)

400 800 1200 1600 2000
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

kwant

M
e

m
o

ry
 n

e
e

d
e

d
 b

y
 t
h

e
 s

u
b

s
p

a
c
e

 (
in

 G
B

)

PEVD of na_Siam

bdav+CH

bdav+CR
LanPRO (PROPACK)

eigs (ARPACK)

(b)

400 800 1200 1600 2000
0

2

4

6

8

10
x 10

4

kwant

C
P

U
 t
im

e
 (

in
 s

e
c
o

n
d

)

PEVD of na_MNIST

bdav+CH

bdav+CR
LanPRO (PROPACK)

eigs (ARPACK)

400 800 1200 1600 2000
0

5000

10000

15000

(c)

400 800 1200 1600 2000
0

1

2

3

4

5

6

kwant

M
e

m
o

ry
 n

e
e

d
e

d
 b

y
 t
h

e
 s

u
b

s
p

a
c
e

 (
in

 G
B

)
PEVD of na_MNIST

bdav+CH

bdav+CR
LanPRO (PROPACK)

eigs (ARPACK)

(d)

Figure 3 Comparison of four PEVD solvers on computing kwant eigenpairs of na Siam (see (a) and (b)) and na MNIST

(see (c) and (d)). Plots on the left show the CPU time cost. The smaller windows zoom in and show only the CPU time

of bdav+Cheb, bdav+CR, and eigs. The bar graphs on the right show the major memory usage of each solver

for all methods except for RandSVD. This is because the original RandSVD code [21, 48] does not test for

convergence thus a tol is not needed. The maximum active subspace dimension kamax for bdav+Cheb and

bdav+CR varies with kwant. We set kamax = 200 if kwant = 400 or 800, and we simply set kamax = 0.2kwant

for kwant > 1000. Other parameters in bdav+Cheb and bdav+CR are set to the default values in Table 4.

For the Chebyshev filter, the filter upper-bound bup is chosen via the formula (3.3), with α = 0.5 for

the term-document matrices, and α = 0.9 for the normalized adjacency matrices. Parameters for the

compared methods are as specified in Subsection 7.2.

7.3.2 Comparisons on the larger matrices in Group (II)

We list in Table 5 the test problems from Group (II), as well as the parameter values used in bdav+Cheb

and bdav+CR for each problem. Our extensive numerical tests not reported here show that different

parameter values within a suitable range for our algorithms lead to mostly minor performance difference

when applied to a same problem.

The CPU time profiles of the compared methods are listed in Table 6.

To avoid the ‘out of memory’ issue, especially for the LanPRO solver, we preset the maximum memory

for the major projection subspace to 60 GB, and stop any method that reaches this memory limit.

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1655

Table 5 Group (II) test problems and parameter values used in bdav+Cheb and bdav+CR

Test problem Parameters

Matrix kwant kb kamax m α in bup itcr

td NYTimes 1000 15 300 6 0.50 4

td PubMed 200 6 100 6 0.50 4

na Epsilon 500 15 200 40 0.95 30

na Youtube 200 5 50 40 0.95 40

na LiveJournal 200 5 50 50 0.95 50

Table 6 Comparison of the CPU seconds of different methods on Group (II) matrices. The ‘(+)’ marker indicates that

the LanPRO method in PROPACK converges only part of the kwant number of eigenpairs when the preset 60 GB memory

limit is reached. The ‘–’ marker shows the RandSVD solver is not applicable for PEVD calculations

PSVD PEVD

Method td NYTimes td PubMed na Epsilon na Youtube na LiveJournal

bdav+Cheb 8675.47 7680.19 8414.17 10465.16 65996.39

bdav+CR 14224.77 13441.97 14212.41 9938.91 69965.49

ARPACK 49212.38 47666.23 22666.64 21828.75 112377.70

PROPACK 13867.99 14250.30 44864.12 119781.40 (+) 27962.40 (+)

RandSVD 12368.81 13318.31 − − −

td_NYTimes (1000) td_PubMed (200) na_Epsilon (500) na_Youtube (200) na_LiveJournal (200)
0

10

20

30

40

50

60

70

matrix name (k want)

M
e

m
o

ry
 n

e
e

d
e

d
 b

y
 t
h

e
 s

u
b

s
p

a
c
e

 (
in

 G
B

)

bdav+CH

bdav+CR

ARPACK

PROPACK

RandSVD

Figure 4 Comparison of the memory usage of different methods on Group (II) matrices. An upper limit of 60 GB is

set for the memory used by the projection subspace. When tested on na Youtube and na LiveJournal, the LanPRO solver

from PROPACK uses up all 60 GB memory but converges only part of the wanted eigenpairs

When this limit is reached by LanPRO, it converges 197 eigenpairs for the na Youtube matrix, and only 9

eigenpairs for the na LiveJournal matrix, out of a kwant = 200. The latter indicates that the highly

clustered eigenvalues present significant difficulty for the LanPRO solver from PROPACK.

In Figure 4, we list the comparison of the memory usage.

As seen in Figure 4, bdav+Cheb and bdav+CR require the least memory among all the compared

1656 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

Table 7 A detailed profile of bdav+Cheb and bdav+CR corresponding to the experimental results in Table 6. The #iter

refers to the total number of iterations required for convergence, and the #MVprod refers to the number of matrix-vector

products performed by the filters. The last row reports the CPU seconds used by the filters

Method td NYTimes td PubMed na Epsilon na Youtube na LiveJournal

#iter
bdav+Cheb 70 41 67 260 293

bdav+CR 111 69 110 200 221

#MVprod bdav+Cheb 12600 2952 40200 52000 73250

of filtering bdav+CR 16650 4140 51150 41000 56355

CPU seconds bdav+Cheb 2601.10 4678.60 2038.20 2800.70 36229.00

of filtering bdav+CR 5849.34 9717.61 4048.58 4072.70 47856.65

Table 8 Cross-validation on the accuracy of the eigenvalues or singular values: The maximum relative errors between

the sets of eigenvalues or singular values computed by different methods are calculated according to (7.1). The ‘–’ marker

means the related solvers are not for PEVD calculations. (The kwant = 400 case)

Matrix Method bdav+Cheb bdav+CR ARPACK PROPACK RandSVD LMSVD

td News20

(singular

value)

bdav+Cheb 0 1.62E−07 1.46E−07 2.20E−07 4.14E−03 6.73E−07

bdav+CR 1.62E−07 0 1.27E−07 1.84E−07 4.14E−03 6.17E−07

ARPACK 1.46E−07 1.27E−07 0 2.10E−07 4.14E−03 6.51E−07

PROPACK 2.20E−07 1.84E−07 2.10E−07 0 4.14E−03 6.50E−07

RandSVD 4.12E−03 4.12E−03 4.12E−03 4.12E−03 0 4.12E−03

LMSVD 6.73E−07 6.17E−07 6.51E−07 6.50E−07 4.14E−03 0

td Enron

(singular

value)

bdav+Cheb 0 2.09E−07 2.17E−07 2.17E−07 2.12E−03 2.17E−07

bdav+CR 2.09E−07 0 1.89E−07 1.89E−07 2.12E−03 1.89E−07

ARPACK 2.17E−07 1.89E−07 0 3.56E−09 2.12E−03 1.37E−08

PROPACK 2.17E−07 1.89E−07 3.56E−09 0 2.12E−03 1.23E−08

RandSVD 2.11E−03 2.11E−03 2.11E−03 2.11E−03 0 2.11E−03

LMSVD 2.17E−07 1.89E−07 1.37E−08 1.23E−08 2.12E−03 0

na Siam

(eigenvalue)

bdav+Cheb 0 3.09E−11 1.64E−11 8.50E−10 – –

bdav+CR 3.09E−11 0 2.91E−11 8.41E−10 – –

ARPACK 1.64E−11 2.91E−11 0 8.50E−10 – –

PROPACK 8.50E−10 8.41E−10 8.50E−10 0 – –

na MNIST

(eigenvalue)

bdav+Cheb 0 7.09E−12 8.05E−12 3.52E−11 – –

bdav+CR 7.09E−12 0 6.66E−12 3.46E−11 – –

ARPACK 8.05E−12 6.66E−12 0 3.51E−11 – –

PROPACK 3.52E−11 3.46E−11 3.51E−11 0 – –

methods. The memory size used by either LanPRO or LanBPRO grows as the computation proceeds, the

total memory is unknown in advance, since it depends on the number of iterations to reach convergence.

If LanPRO (LanBPRO) cannot converge all the kwant eigenpairs (singular triplets) when the memory used

by the projection subspace exceeds the preset limit of 60 GB, the computation is terminated intentionally

and the partially converged eigenpairs (singular triplets) are returned. The LMSVD solver is not listed in

this comparison because it requires a large amount of memory throughout the iteration, which exceeds

the preset 60 GB memory limit for all of the test cases in Table 5.

When used to compute the PSVDs of term-document matrices td NYTimes and td PubMed, bdav+Cheb

is the fastest while svds(ARPACK) is the slowest, consistent with the observation on the moderately sized

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1657

Table 9 Cross-validation on the accuracy of the eigenvalues or singular values. The maximum relative errors between

the sets of eigenvalues or singular values computed by different methods are calculated according to (7.1). The ‘–’ marker

means the related solvers are not for PEVD calculations. (The kwant = 2000 case)

Matrix Method bdav+Cheb bdav+CR ARPACK PROPACK RandSVD LMSVD

td News20

(singular

value)

bdav+Cheb 0 8.08E−06 7.53E−06 7.53E−06 1.13E−04 7.00E−05

bdav+CR 8.08E−06 0 7.55E−06 7.55E−06 1.11E−04 6.75E−05

ARPACK 7.53E−06 7.55E−06 0 9.72E−14 1.12E−04 6.91E−05

PROPACK 7.53E−06 7.55E−06 9.72E−14 0 1.12E−04 6.91E−05

RandSVD 1.13E−04 1.11E−04 1.12E−04 1.12E−04 0 9.05E−05

LMSVD 7.00E−05 6.75E−05 6.91E−05 6.91E−05 9.05E−05 0

td Enron

(singular

value)

bdav+Cheb 0 2.11E−05 1.21E−05 1.21E−05 1.11E−04 2.82E−04

bdav+CR 2.11E−05 0 1.90E−05 1.90E−05 1.11E−04 2.86E−04

ARPACK 1.21E−05 1.90E−05 0 1.10E−13 1.14E−04 2.85E−04

PROPACK 1.21E−05 1.90E−05 1.10E−13 0 1.14E−04 2.85E−04

RandSVD 1.11E−04 1.11E−04 1.14E−04 1.14E−04 0 1.81E−04

LMSVD 2.82E−04 2.86E−04 2.85E−04 2.85E−04 1.81E−04 0

na Siam

(eigenvalue)

bdav+Cheb 0 8.47E−11 9.87E−11 5.11E−10 – –

bdav+CR 8.47E−11 0 7.31E−11 5.01E−10 – –

ARPACK 9.87E−11 7.31E−11 0 5.10E−10 – –

PROPACK 5.11E−10 5.01E−10 5.10E−10 0 – –

na MNIST

(eigenvalue)

bdav+Cheb 0 2.21E−11 2.14E−11 4.53E−10 – –

bdav+CR 2.21E−11 0 2.29E−11 4.48E−10 – –

ARPACK 2.14E−11 2.29E−11 0 4.54E−10 – –

PROPACK 4.53E−10 4.48E−10 4.54E−10 0 – –

matrices as in Figure 2 (for the same reason of the enforced augmentation of a matrix in svds, which

should actually be avoided for the PSVD calculation of large matrices).

The CPU time of bdav+CR, LanBPRO(PROPACK) and RandSVD are comparable, but bdav+CR provides

more accurate results, as seen in Table 10 in the next subsection.

Moreover, our bdav+CR method requires much less memory as illustrated in Figure 4. When used to

solve the PEVD of normalized adjacency matrices na Epsilon, na Youtube, and na LiveJournal, our

methods bdav+Cheb and bdav+CR outperform eigs (ARPACK) and LanPRO (PROPACK) in terms of CPU

time cost as well as memory usage, especially for the larger matrices na Youtube and na LiveJournal.

We also report a detailed comparison between bdav+Cheb and bdav+CR in Table 7. The results in

Table 7 indicate that when tested on td NYTimes, td PubMed and na Epsilon, the bdav+Cheb method

clearly outperforms bdav+CR in terms of CPU time and number of iterations. However, when com-

pared on na Youtube and na LiveJournal, the number of iterations taken by bdav+CR to convergence

is approximately 3/4 of that needed by bdav+Cheb.

The performance difference between our two methods for these tests can be explained by the eigenvalue

distributions of the test matrices: The eigenvalues of na Youtube and na LiveJournal are more clustered

than the eigenvalues of the other test matrices. While the Chebyshev polynomial filter can enlarge the

gaps among the exterior eigenvalues efficiently (see Theorem 3.1), its power in introducing favorable gaps

for the interior eigenvalues is limited, especially when the interior eigenvalues are clustered. The shift-

invert filter, however, is better suited for magnifying the gaps among interior and clustered eigenvalues

when proper shifts are used.

7.3.3 Cross validation on the accuracy of the solvers

Besides the CPU time and memory consumption, an important measure of a solver is the accuracy of

the solutions it produces.

1658 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

Table 10 Cross-validation on the accuracy of the eigenvalues or singular values. The maximum relative errors between

the sets of eigenvalues or singular values computed by different methods are calculated according to (7.1). The ‘–’ marker

means RandSVD is not for PEVD calculations, and the ‘x’ marker indicates PROPACK does not get full convergence thus

not suitable for cross-validation

matrix method bdav+Cheb bdav+CR ARPACK PROPACK RandSVD

td NYTimes

(singular value)

bdav+Cheb 0 1.41E−08 1.52E−08 4.52E−07 1.42E−02

bdav+CR 1.41E−08 0 1.36E−08 4.50E−07 1.42E−02

ARPACK 1.52E−08 1.36E−08 0 4.52E−07 1.42E−02

PROPACK 4.52E−07 4.50E−07 4.52E−07 0 1.42E−02

RandSVD 1.40E−02 1.40E−02 1.40E−02 1.40E−02 0

td PubMed

(singular value)

bdav+Cheb 0 6.58E−10 9.94E−10 1.61E−06 2.95E−02

bdav+CR 6.58E−10 0 5.75E−10 1.61E−06 2.95E−02

ARPACK 9.94E−10 5.75E−10 0 1.61E−06 2.95E−02

PROPACK 1.61E−06 1.61E−06 1.61E−06 0 2.95E−02

RandSVD 2.86E−02 2.86E−02 2.86E−02 2.86E−02 0

na Epsilon

(eigenvalue)

bdav+Cheb 0 4.43E−11 2.76E−11 5.84E−10 –

bdav+CR 4.43E−11 0 4.62E−11 5.69E−10 –

ARPACK 2.76E−11 4.62E−11 0 5.81E−10 –

PROPACK 5.84E−10 5.69E−10 5.81E−10 0 –

na Youtube

(eigenvalue)

bdav+Cheb 0 2.25E−10 4.44E−11 x –

bdav+CR 2.25E−10 0 2.24E−10 x –

ARPACK 4.44E−11 2.24E−10 0 x –

na LiveJournal

(eigenvalue)

bdav+Cheb 0 3.87E−10 9.44E−11 x –

bdav+CR 3.87E−10 0 3.93E−10 x –

ARPACK 9.44E−11 3.93E−10 0 x –

To examine the accuracy of the compared methods, we cross-validate the numerical results obtained

by the six methods for each of the PEVD or PSVD test problem, obtaining 6 sets of pairs (eigen-pairs,

or SVD pairs using a left/right singular vector),

{(λ
(j)
i ,v

(j)
i)}kwant

i=1 , j = 1, . . . , 6.

Then we use each set of pairs as the ‘benchmark’ to compute the cross validation errors. The maximum

relative error between {λ
(p)
i }kwant

i=1 computed by the p-th method and those computed by other methods

is defined as

E
(p)
j = max

16i6kwant

|λ
(p)
i − λ

(j)
i |

|λ
(p)
i |

, j = 1, . . . , 6. (7.1)

For the purpose of cross-validating the eigenvalues computed by different methods, we calculate E
(p)
j for

all j = 1, . . . , 6.

To cross-validate the computed eigenvectors, we calculate the subspace angle θpq between any two

eigenspaces with orthonormal basis Vp and Vq using the Matlab R© built-in function subspace(). This

function returns the value sin(θpq) = (I − VpV
T
p)Vq.

For brevity of the presentation, we only report the cross validated errors of the computed eigenvalues

and singular values. For the moderately sized Group (I) matrices, we only report the kwant = 400 and

kwant = 2000 cases, in Tables 8 and 9, respectively. For the larger Group (II) matrices, we report the

maximum cross validated errors in Table 10.

In all these tables, the results obtained by the method, whose name is listed on top of each data column,

serve as the ‘benchmark’ for comparison with results by the other methods. The maximum relative errors

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1659

is computed according to (7.1).

Cross validation errors for the other values of kwant are similar to the ones reported here and thus

omitted for the sake of brevity.

As seen from Tables 8–10, the results obtained by RandSVD are most different from any of the other

methods, implying that RandSVD is less accurate comparing with other methods. This is mainly due to

the fact that RandSVD does not use a tolerance to measure convergence. We mention that the accuracy

of RandSVD may be improved to be comparable with the other methods by increasing the number of

iterations, although this will incur increased CPU time cost for RandSVD.

As for the other methods, their accuracy are comparable with the ARPACK solver. Since ARPACK is

generally recognized as providing industrial standard accuracy, we conclude that bdav+Cheb and bdav+CR,

as well as PROPACK and LMSVD (when applicable), all can provide accuracy within a specified tolerance

for PEVD/PSVD calculations.

8 Concluding remarks

We develop two algorithms based on filter-accelerated block Davidson method for large PSVD and sym-

metric PEVD calculations. One algorithm applies Chebyshev polynomial filtering, which utilizes the

fastest growth of the Chebyshev polynomial among same degree polynomials that are bounded by 1 on

[−1, 1]. The other algorithm applies rational-function filtering by solving linear equations. Since the

shifted linear equation is solved by a finite-step conjugate residual (CR) method, essentially the rational-

function filter is approximated by a polynomial filter. We numerically compare four types of automatic

choices of shifts and find that using multiple shifts is better than using a single shift in our block Davidson

method. The two filters usually generate high-quality basis vectors to augment the projection subspace

at each Davidson iteration step. This allows a restart scheme using a projection subspace of small di-

mension. This feature makes our algorithms memory-economical, thus practical for large PEVD/PSVD

calculations, especially when a large number of eigenpairs or singular triplets are needed.

We compare our filtered Davidson methods with representative algorithms, including the well-estab-

lished ARPACK [30,60], the frequently utilized PROPACK [27] in data science, and two recent methods—

the randomized SVD method [21, 48] and the limited memory SVD method [34]. Numerical tests on

representative datasets demonstrate the advantage of our methods in terms of CPU time cost and memory

usage. In general, our methods have similar or faster convergence speed in terms of CPU time, while

requiring much lower memory comparing with other algorithms. The comparatively much lower memory

requirement makes our methods more practical for large-scale PEVD/PSVD computations.

A natural extension of our methods is to combine Chebyshev filtering with the rational filtering, using

the former for exterior eigenvalues, and then switching to the latter when Chebyshev filtering becomes

less effective for the eigenvalues located in the more interior part of the spectrum. This provides a

promising way to combine the strength of both filters and apply them to where they work best. However,

designing an effective way to switch automatically from Chebyshev to the rational filtering appears to be

not straightforward and consists part of our further studies.

Acknowledgements This work was supported by National Science Foundation of USA (Grant Nos. DMS-

1228271 and DMS-1522587), National Natural Science Foundation of China for Creative Research Groups (Grant

No. 11321061), the National Basic Research Program of China (Grant No. 2011CB309703), and the National

Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences. The authors thank the

anonymous referees for constructive comments.

References

1 Bache K, Lichman M. UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013

2 Baer R, Head-Gordon M. Chebyshev expansion methods for electronic structure calculations on large molecular sys-

tems. J Chem Phys, 1997, 107: 10003–10013

1660 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

3 Baglama J, Calvetti D, Reichel L. IRBL: An implicitly restarted block-Lanczos method for large-scale Hermitian

eigenproblems. SIAM J Sci Comput, 2003, 24: 1650–1677

4 Bai Z, Demmel J, Dongarra J, et al. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.

Philadelphia: SIAM, 2000

5 Belabbas M-A, Wolfe P J. Spectral methods in machine learning and new strategies for very large datasets. Proc Natl

Acad Sci USA, 2009, 106: 369–374

6 Berns-Müller J, Graham I G, Spence A. Inexact inverse iteration for symmetric matrices. Linear Algebra Appl, 2006,

416: 389–413

7 Cai D, He X, Han J. Spectral regression: A unified subspace learning framework for content-based image retrieval. In:

Proceedings of the 15th International Conference on Multimedia. New York: ACM, 2007, 403–412

8 Cai J F, Candès E J, Shen Z. A singular value thresholding algorithm for matrix completion. SIAM J Optim, 2010,

20: 1956–1982

9 Calvetti D, Reichel L, Sorensen D C. An implicit restarted Lanczos method for large symmetric eigenvalue problem.

Elec Trans Numer Anal, 1994, 1: 237–263

10 Chebyshev P L. Sur les fonctions qui s’écartent peu de zéro pour certaines valeurs de la variable. Oeuvreas, 1881, 2:

335–356

11 Chen J, Saad Y. Lanczos vectors versus singular vectors for effective dimension reduction. IEEE Trans Knowl Data

Eng, 2009, 21: 1091–1103

12 Davidson E R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large

real-symmetric matrices. J Comput Phys, 1975, 17: 87–94

13 Deerwester S, Dumais S T, Furnas G W, et al. Indexing by latent semantic analysis. J Amer Soc Inform Sci, 1990,

41: 391–407

14 Fan R-E, Lin C-J. Libsvm data: Classification, regression, and multi-label. http://www.csie.ntu.edu.tw/∼cjlin/libs

vmtools/datasets/

15 Fokkema D R, Sleijpen G L G, van der Vorst H A. Jacobi-Davidson style QR and QZ algorithms for the reduction of

matrix pencils. SIAM J Sci Comput, 1998, 20: 94–125

16 Freitag M A. Inner-outer Iterative Methods for Eigenvalue Problems—Convergence and Preconditioning. PhD Thesis.

Bath: University of Bath, 2007

17 Gleich D F, Gray A P, Greif C, et al. An inner-outer iteration for computing PageRank. SIAM J Sci Comput, 2010,

32: 349–371

18 Golub G H, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. SIAM J Numer Anal, 1965, 2:

205–224

19 Golub G H, Van Loan C F. Matrix Computations. Baltimore: The Johns Hopkins University Press, 1996

20 Golub G H, Ye Q. Inexact preconditioned conjugate gradient method with inner-outer iteration. SIAM J Sci Comput,

1999, 21: 1305–1320

21 Halko N, Martinsson P-G, Tropp J A. Finding structure with randomness: Stochastic algorithms for constructing

approximate matrix decompositions. SIAM Rev, 2009, 53: 217–288

22 Knyazev A V. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient

method. SIAM J Sci Comput, 2001, 23: 517–541

23 Ko Y. A study of term weighting schemes using class information for text classification. In: SIGIR’ 12 Proceedings

of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:

ACM, 2012, 1029–1030

24 Kohanoff J. Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods. Cam-

bridge: Cambridge University Press, 2006

25 Kunegis J, Lommatzsch A. Learning spectral graph transformations for link prediction. In: Proceedings of the 26th

International Conference on Machine Learning. New York: ACM, 2009, 561–568

26 Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators.

J Res Nat Bur Standards, 1950, 45: 255–282

27 Larsen R M. Lanczos bidiagonalization with partial reorthogonalization. Technical Report DAIMI PB-357. Aarhus:

Aarhus University, 1998

28 LeCun Y, Cortes C, Burges C J C. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/

29 Lehoucq R B, Meerbergen K. Using generalized Cayley transformations within an inexact rational Krylov sequence

method. SIAM J Matrix Anal Appl, 1998, 20: 131–148

30 Lehoucq R B, Sorensen D C, Yang C. ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with

Implicitly Restarted Arnoldi Methods. Phildelphia: SIAM, 1998

31 Leskovec J, Krevl A. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, 2014

32 Li J, White J. Low rank solution of Lyapunov equations. SIAM J Matrix Anal Appl, 2002, 24: 260–280

33 Liang Q, Ye Q. Computing singular values of large matrices with inverse free preconditioned krylov subspace method.

Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8 1661

Electron Trans Numer Anal, 2014, 42: 197–221

34 Liu X, Wen Z, Zhang Y. Limited memory block Krylov subspace optimization for computing dominant singular value

decompositions. SIAM J Sci Comput, 2013, 35: A1641–A1668

35 Ma S, Goldfarb D, Chen L. Fixed point and Bregman iterative methods for matrix rank minimization. Math Program,

2011, 128: 321–353

36 Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press,

2004

37 Mazumder R, Hastie T, Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. J

Mach Learn Res, 2010, 11: 2287–2322

38 Morgan R B, Scott D S. Generalizations of Davidson’s method for computing eigenvalues of sparse symmetric matrices.

SIAM J Sci Stat Comput, 1986, 7: 817–825

39 Ng A Y, Jordan M I, Weiss Y. On spectral clustering: Analysis and an algorithm. Adv Neural Inf Process Syst, 2002,

14: 849–856

40 Notay Y. Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem. Numer

Linear Algebra Appl, 2002, 9: 21–44

41 Ovtchinnikov E E. Jacobi correction equation, line search, and conjugate gradients in hermitian eigenvalue computation

II: Computing several extreme eigenvalues. SIAM J Numer Anal, 2008, 46: 2593–2619

42 Parlett B N. The Symmetric Eigenvalue Problem. Philadelphia: SIAM, 1998

43 Penzl T. A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J Sci Comput, 2000, 21:

1401–1418

44 Peters G, Wilkinson J H. Inverse iteration, ill-conditioned equations, and Newton’s method. SIAM Rev, 1979, 21:

339–360

45 Prateek J, Meka R, Dhillon I S. Guaranteed rank minimization via singular value projection. Adv Neural Inf Process

Syst, 2010, 23: 937–945

46 Rennie J. 20 newsgroups. http://qwone.com/∼jason/20Newsgroups/, 2008

47 Rivlin T J. Chebyshev Polynomials. New York: John Wiley & Sons, 1974

48 Rokhlin V, Szlam A, Tygert M. A randomized algorithm for principal component analysis. SIAM J Matrix Anal Appl,

2009, 31: 1100–1124

49 Roman J E, Campos C, Romero E, et al. SLEPc users manual. Technical Report DSIC-II/24/02-Revision 3.6.

València: Universitat Politècnica de València, 2015

50 Ruhe A, Skoogh D. Rational Krylov algorithm for eigenvalue computation and model reduction. In: Proceedings of

the 4th International Workshop on Applied Parallel Computing. Large Scale Scientific and Industrial Problems. New

York: Springer-Verlag, 1998: 49150-2

51 Ruhe A, Wiberg T. The method of conjugate gradients used in inverse iteration. BIT, 1972, 12: 543–554

52 Saad Y. A flexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput, 1993, 14: 461–469

53 Saad Y. Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM, 2003

54 Saad Y. Numerical Methods for Large Eigenvalue Problems. Philadelphia: SIAM, 2011

55 Salton G, Buckley C. Term-weighting approaches in automatic text retrieval. Inform Process Manag, 1988, 24: 513–523

56 Sankey O F, Drabold D A, Gibson A. Projected random vectors and the recursion method in the electronic-structure

problem. Phys Rev B, 1994, 50: 1376–1381

57 Simon H D. The Lanczos algorithm with partial reorthogonalization. Math Comput, 1984, 42: 115–142

58 Simoncini V, Eldén L. Inexact Rayleigh quotient-type methods for eigenvalue computations. BIT, 2002, 42: 159–182

59 Sleijpen G L G, van der Vorst H A. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J

Matrix Anal Appl, 1996, 17: 401–425

60 Sorensen D C. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J Matrix Anal Appl, 1992,

13: 357–385

61 Sorensen D C. Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations. Technical Report

TR-96-40. Houston: Rice University, 1996

62 Stathopoulos A, McCombs J R. Nearly optimal preconditioned methods for hermitian eigenproblems under limited

memory, part II: Seeking many eigenvalues. SIAM J Sci Comput, 2007, 29: 2162–2188

63 Stathopoulos A, McCombs J R. PRIMME: PReconditioned Iterative MultiMethod Eigensolver: Methods and software

description. ACM Trans Math Software, 2010, 37: 21–30

64 Toh K C, Yun S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems.

Pac J Optim, 2010, 6: 615–640

65 von Luxburg U. A tutorial on spectral clustering. Stat Comput, 2007, 17: 395–416

66 Wu K, Simon H D. A parallel Lanczos method for symmetric generalized eigenvalue problems. Report 41284. Lawrence:

Lawrence Berkeley National Laboratory, 1997

67 Wu L, Stathopoulos A. PRIMME SVDS: A preconditioned SVD solver for computing accurately singular triplets of

1662 Zhou Y et al. Sci China Math August 2016 Vol. 59 No. 8

large matrices based on the PRIMME eigensolver. ArXiv:1408.5535, 2014

68 Xue F, Elman H C. Fast inexact subspace iteration for generalized eigenvalue problems with spectral transformation.

Linear Algebra Appl, 2011, 435: 601–622

69 Zhou Y. Studies on Jacobi-Davidson, rayleigh quotient iteration, inverse iteration generalized Davidson and Newton

updates. Numer Linear Algebra Appl, 2006, 13: 621–642

70 Zhou Y. A block Chebyshev-Davidson method with inner-outer restart for large eigenvalue problems. J Comput Phys,

2010, 229: 9188–9200

71 Zhou Y. Practical acceleration for computing the HITS ExpertRank vectors. J Comput Appl Math, 2012, 236: 4398–

4409

72 Zhou Y, Chelikowsky J R, Saad Y. Chebyshev-filtered subspace iteration method free of sparse diagonalization for

solving the Kohn-Sham equation. J Comput Phys, 2014, 274: 770–782

73 Zhou Y, Li R-C. Bounding the spectrum of large Hermitian matrices. Linear Algebra Appl, 2011, 435: 480–493

74 Zhou Y, Saad Y. A Chebyshev-Davidson algorithm for large symmetric eigenvalue problems. SIAM J Matrix Anal

Appl, 2007, 29: 954–971

75 Zhu X, Kandola J, Lafferty J, et al. Graph kernels by spectral transforms. In: Chapelle O, Scholkopf B, Zien A, eds.

Semi-Supervised Learning. Cambridge: MIT Press, 2006, 277–291

