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SUMMARY

We propose an approximate implicit subspace iteration with alternating directions framework for linear
time-invariant system model reduction. Within this framework, dominant eigensubspaces of the product
of the system Gramians are approximated directly. This has advantage over approaches that consider the
system Gramians separately. We construct two methods within the framework, one uses the QR updates
and the other uses the SVD updates. Numerical results show the efficiency of the proposed methods.
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1. INTRODUCTION

We consider the following linear time-invariant (LTI) system:

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t)
(1)

where A∈Rn×n , B∈Rn×p and C ∈Rq×n; A is stable, i.e. all eigenvalues of A lie in the left
half plane. LTI systems of this form arise frequently in different branches of engineering ([1, 2]
and references therein). In many applications, such as circuit simulation, or time-dependent partial
differential equation control problems, the state dimension n is quite large, while the number of
inputs p and the number of outputs q usually satisfy p,q�n. Closely related to the LTI system (1)
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are two Lyapunov equations:

AP+PAT+BBT = 0 (2)

ATQ+QA+CTC = 0 (3)

The solutions P and Q are called system controllability Gramian and observability Gramian,
respectively. It is well known that P, Q are symmetric positive semi-definite [3].

The important but also common feature p,q�n of the LTI system (1) usually leads to the rapid
decay rate for the eigenvalues of P and Q and also the rapid decay rate of the system Hankel
singular values [4–6]. This implies that the original system can be approximated well by a reduced
system of possibly much lower order.

This paper is concerned with providing a model-order reduction technique for balanced truncation
originally proposed by Moore [7]. The approach given here provides an approximate balancing
transformation that is suitable for large-scale problems. There are several approaches to model
reduction of LTI systems including moment matching via Krylov techniques and Gramian-based
balanced reduction. Two major advantages of balanced truncation over moment-matching methods
(see, for example, [1, 8]) are the stability of the reduced system and the global error bound [9–11].
Most of these approaches approximate the dominant Cholesky factors (equivalently, dominant
eigensubspaces) of P and Q separately [12–18], then combine the two Cholesky factors based on
the algorithm proposed in [19] to compute the reduced model.

It is shown in [20] that the essential projection bases for the LTI system model reduction are
the bases of the dominant eigensubspaces of PQ. For dense problems, this reduction can be
computed through Cholesky factors of P and Q. In the large-scale setting, approximate dominant
low-rank Cholesky factors are used. One drawback is that one of the two Gramians may have
a much slower eigenvalue decay rate than the other while the product PQ actually has a rapid
decay rate. Another problem associated with the dominant Cholesky factor approaches is that
when only partial Cholesky factors are used, the reduced model is not guaranteed to be balanced
(note that the algorithm in [19] requires full Cholesky factors to obtain the final truncated balanced
transformation. When only dominant Cholesky factors are available, the reduced model may not be
balanced); hence, the important global error bound may not be rigorously attained. The approach
presented here produces orthogonal basis sets for the dominant subspaces of PQ and QP , but as
with the approximate Cholesky methods, it can only produce approximate balancing.

Methods based on the Cross Gramian have been developed. The Cross Gramian approach
[21, 22] has a considerable advantage over other approaches for symmetric systems since it reduces
two Lyapunov equations to one Sylvester equation. Hence, it almost halves the computational cost
for model reduction. However, the Cross Gramian cannot always be defined for a general non-
square system (i.e. p �=q); moreover, one crucial property of the Cross Gramian, namelyX2= PQ,
where X is the solution to the Sylvester equation AX+XA+BC=0, may not hold for square
non-symmetric LTI systems. The computational cost of the currently available methods needed
to symmetrize‡ the system is more than solving one Lyapunov equation, which means that for
non-symmetric systems the Cross Gramian approach does not offer advantages over approaches
that handle two Lyapunov equations.

In [23], a very nice way to approximate the dominant eigensubspaces of PQ directly is proposed.
However, at each iteration step the method requires integrating four differential systems associated

‡Equivalent to computing a non-singular symmetrizer J s.t. J= JT, AJ= J AT.
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with the original LTI system (two for each Gramian), which may not be efficient when n is large,
especially when the differential systems are stiff.

Inspired by the ideas in [23], we found ways to approximate the dominant eigensubspace of
PQ via projected matrix equations instead of numerical integration. This makes our approaches
more viable for large-scale LTI systems. The organization of this paper is as follows: we first
propose the general approximate implicit subspace iteration with alternating directions (AISIAD)
framework for model reduction. Then we proceed to construct two new approaches within the
AISIAD framework, which approximate the principal eigensubspaces of PQ directly.

The model reduction steps within the AISIAD framework is based on the dominant eigensub-
spaces algorithm in [20]. The essential difference between our framework and [20] is that we do not
compute either P or Q, and no product PQ is computed explicitly. Hence, our approaches are more
suitable for large-scale LTI systems. They also inherit the advantages of dominant eigensubspaces
approaches over the dominant Cholesky factors approaches.

In this paper, we adopt the MATLAB notation qr(M,0) and svd(M,0) to denote, respectively
the thin QR and thin SVD decompositions of any matrix M .

2. ALGORITHM DERIVATION: THE GENERAL AISIAD FRAMEWORK

In [4, 6], it is shown that the eigenvalues of P and Q usually decay rapidly, as do the system
Hankel singular values, i.e. P and Q can be well approximated by low-rank matrices. We expect
the subspace iteration (also called block power method) to be efficient in computing the dominant
eigenspaces. However, since P and Q are not directly available, we propose implicit subspace
iteration to approximate the dominant eigensubspaces of P and Q. For the model reduction of
LTI system (1), as proved in [20], the essential projection bases are the bases of the dominant left
and right eigensubspaces of PQ. We exploit the alternating direction technique similar to the one
in [23] to achieve the matrix multiplication PQ implicitly and approximate the dominant left and
right eigensubspaces of PQ.

The Lyapunov equations (2) and (3) are treated simultaneously. Given an orthogonal basis
Vi ∈Rn×k , applying subspace iteration to compute the dimension k-dominant eigensubspace of P
requires one to compute PVi at the next step. Since P is unknown, this multiplication cannot be
performed directly. Note that if we obtain a matrix equation that contains PVi as the solution,
then solving the equation we actually perform the multiplication implicitly.

To obtain this desired equation, we multiply Equation (2) from the right by Vi

APVi+PATVi+BBTVi=0 (4)

let Mi= P(I−ViV T
i )ATVi , then (4) becomes

APVi+PViV
T
i ATVi+Mi+BBTVi=0

Now, let Hi=V T
i AVi , if there is a way to estimate M̃i≈Mi without using P , then we can solve

for Xi from

AXi+Xi H
T
i +BBTVi+ M̃i=0

in this case Xi≈ PVi .
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The alternating direction may be introduced as follows to compute the left- and right-dominant
eigensubspaces of PQ simultaneously: Perform QR decomposition of Xi ,

Wi Si=qr(Xi ,0) (5)

then we obtain another orthogonal projection basis Wi . Project the other Lyapunov equation (3)
from the right by Wi , we obtain

ATQWi+QWi Fi+CTCWi+Ni=0
where Ni =Q(I−WiWT

i )AWi and Fi=WT
i AWi . Again estimate Ni by Ñi , solve for Yi from

ATYi+Yi Fi+CTCWi+ Ñi=0
we obtain Yi ≈QWi . Perform QR decomposition of Yi

Vi+1Ri+1=qr(Yi ,0) (6)

we obtain the next projection basis Vi+1. From (5) and (6) we see that in the convergent case (here
the subscripts are omitted),

PV = X=WS

QW = Y =V R

The above equalities lead to

PQW = PV R=WSR

QPV = QWS=V RS

Hence Range(W ) contains the right-dominant eigensubspace of PQ and Range(V ) contains the
right-dominant eigensubspace of QP . Note (QP)T= PQ since P and Q are symmetric and hence
the columns of V also span the left-dominant eigensubspace of PQ.

The above derivation may be summarized in Framework 2.1. Once the dominant eigensubspaces
of PQ are available, the reduced model can be obtained in the same way as proposed in [20]; this
is implemented as the steps 4–6 in Framework 2.1.

The convergence criterion is based on canonical angles [24] between the previous basis and
the current basis; this corresponds to computing the SVD of V T

i−1Vi and WT
i−1Wi . The user will

specify the maximum number of iterations allowed.
For the choice of the initial V1, in practice one often uses the orthonormal basis ofK(A, B,k0)=
[B, AB, . . . , Ak0B] (with k0 being a given integer). This is influenced by the explicit form of
the solution P as in [3]. Other initial bases can also be used, for example, if solving with A
is inexpensive, then one could use the basis of K(A−1, B,k0) as the initial V1. One could also
combine the basis of certain Krylov and rational Krylov subspaces. Random initial vectors may also
be used, but, as expected for subspace iteration, better initial vectors lead to faster convergence.

The most expensive computation for Framework 2.1 is in solving Sylvester equations of the
form

AX+XH+M=0 (7)

A special structure of Equation (7) is that H is much smaller in size than A; this structure can be
exploited. Actually (7) may be solved by partial Schur decomposition via the implicit restarted
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Framework 2.1 (AISIAD approach for LTI model reduction)
1. Select k; generate an initial orthogonal matrix V1∈Rn×k, i←1
2. Iterate until convergence

(a) Solve AXi+Xi HT
i + M̂i=0,

where Hi=V T
i AVi , M̂i= M̃i+BBTVi

(b) [Wi , Si ]=qr(Xi ,0)
(c) Solve ATYi+Yi Fi+ N̂i=0,

where Fi=WT
i AWi , N̂i = Ñi+CTCWi

(d) [Vi+1, Ri+1]=qr(Yi ,0)
(e) i← i+1

3. VL←Vi+1,WR←Wi
4. [Ue,�,Ve]=svd(V T

L ∗WR)

5. SL←VLUe�−1/2, SR←WRVe�−1/2
6. The reduced system is: Ab= STL ASR, Bb= STL B,Cb=CSR.

Arnoldi method [22, 25, 26], [
A M
0 −H

][
V1
V2

]
=

[
V1
V2

]
R

It can be shown that V2 is non-singular if and only if the eigenvalues of R and −H are the
same. One may choose the implicit restarting criteria to guarantee this condition. In this case, it
is straightforward to show that the solution of (7) may be obtained from the partial Schur vectors:
X=V1V

−1
2 . Since only the orthogonal basis of the subspace spanned by X is required, one only

needs to use V1 and avoid V−12 .
Alternatively, methods that mainly exploit matrix–vector products for solving Sylvester equations

can be used to solve (7), e.g. [27–29]. Methods based on Bartels–Stewart [30] but tailored for (7)
can also be used, see e.g. [31]. This approach has the advantage that both iterative methods and
sparse factorization methods may be applied to solve the final equations of the form (A+�i I )x=b,
where �i ’s are the eigenvalues of H .

A more general framework for applying the AISIAD approach for model reduction is as follows.
One only needs to change, respectively, the 2(a) and 2(c) steps in Framework 2.1 into

2(a) Compute Xi= PVi implicitly

2(c) Compute Yi =QWi implicitly

Hence, any approach that achieves the above multiplications implicitly can be adapted into the
AISIAD framework for model reduction. This includes the numerical integration approach in [23].

One fundamental difficulty associated with Framework 2.1 is in estimating M̃i and Ñi of the
two projection error terms

Mi= P(I−ViV T
i )ATVi , Ni =Q(I−WiW

T
i )AWi (8)

since P and Q are unknown.
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In [31], low-rank solutions of the Lyapunov equations (2) and (3) are used to replace the unknown
P and Q in (8). This results in a highly accurate model reduction scheme that can effectively
reduce dimension of a range of difficult realistic models. Numerical results in [31] show that
these models are not as effectively reduced by other model reduction schemes. The approximate
solutions to (2) and (3) can be computed using sparse Lyapunov solvers as in [15, 16, 18, 32, 33].

In the following, we present two approaches that do not include the error terms in (8). The first
one is based on direct QR updates and the second one is based on SVD updates. Both approaches
usually provide satisfactory numerical results. However, in [31] examples are given where ignoring
the error terms is problematic. A nice modification is proposed in [31] to approximate these terms
and it is demonstrated that the inclusion of these approximate error terms gives superior results on
these difficult examples. In the modifications proposed in [31], the Lyapunov equations are first
solved approximately, and the approximate solutions are used to update the error terms in (8).
Thus, additional computational cost is required to attain the higher accuracy.

3. AISIAD WITH DIRECT QR AND SVD UPDATES

3.1. AISIAD with direct QR updates

The approach proposed in this subsection is rather straightforward. Because the projection errors (8)
are difficult to estimate, we neglect these error terms and proceed with the algorithm using direct
QR updates. This is described in Algorithm 3.1.

The underlying idea of Algorithm 3.1 is based on the following observations. If P and Q are
in fact low rank so that P=Vi P̂V T

i and Q=Wi Q̂WT
i can be obtained as the solutions P̂ and Q̂

from the two-side projected equations:

Hi P̂+ P̂ HT
i +V T

i BBTVi = 0 where Hi=V T
i AVi

FT
i Q̂+ Q̂Fi+WT

i C
TCWi = 0 where Fi=WT

i AWi

then the Mi and Ni in (8) satisfy Mi=Ni=0.
If there is rapid decay in the eigenvalues of P and Q or in the Hankel singular values (square

roots of the eigenvalues of PQ), then one expects Mi and Ni to be small in norm. However, this
is predicated upon having determined a subspace dimension large enough to capture all of the
dominant modes, leaving only the small Hankel singular values. Noting that the solutions of the
one-sided projected equations in steps 2(a) and 2(c) satisfy the following relation:

‖Xi−PVi‖ =
∥∥∥∥
∫ ∞
0

eA�Mie
HT
i � d�

∥∥∥∥
‖Yi−QWi‖ =

∥∥∥∥
∫ ∞
0

eA
T �Nie

Fi � d�

∥∥∥∥
one might find the norm differences ‖Xi−PVi‖ and ‖Yi−QWi‖ to be small even though the
norms of Mi , Ni are not small. However, no explicit error bounds based on this observation have
been derived.

Algorithm 3.1 works well for all the models we have, including models not satisfying the
passivity condition A+AT<0. For these non-passive models, the algorithm proposed in [12] is
reported to work poorly. This may be attributed to the fact that combining the two Gramians via
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Algorithm 3.1 (AISIAD-QR)
1. Select k; generate an initial orthogonal matrix V1∈Rn×k, i←1
2. Iterate until convergence

(a) Solve AXi+Xi HT
i + M̂i=0,

where Hi=V T
i AVi , M̂i= BBTVi

(b) [Wi , Si ]=qr(Xi ,0)
(c) Solve ATYi+Yi Fi+ N̂i=0,

where Fi=WT
i AWi , N̂i =CTCWi

(d) [Vi+1, Ri+1]=qr(Yi ,0)
(e) i← i+1

3. VL←Vi+1,WR←Wi
4. [Ue,�,Ve]=svd(V T

L ∗WR)

5. SL←VLUe�−1/2, SR←WRVe�−1/2
6. The reduced system is: Ab= STL ASR, Bb= STL B, Cb=CSR

the alternating direction technique has an advantage over approaches that consider the Gramians
separately.

3.2. AISIAD with SVD updates

The approach proposed in this subsection does not include the projection error terms either, but
we utilize SVD deflation techniques instead of the direct QR updates. Although SVD is more
expensive than QR, it leads to two advantages. The first one is that the dimension of projection basis
need not be fixed; it can be determined by a given tolerance. Moreover, the maximum subspace
dimension can be easily fixed by providing an integer kmax.

The second advantage, which is more interesting, is the existence of abundant choices in
augmenting the projection basis by ‘preconditioned vectors’. The essential idea closely resem-
bles the ‘preconditioning’ techniques used in subspace methods for solving linear equations or
eigenvalue problems, e.g. [34–36].

The method is described in Algorithm 3.2.
Several choices for the augmentation vectors Tix and Tiy at the i th iteration are as follows:

C1: Set T1x= A\B,Tix= A\T(i−1)x ;T1y= AT\CT,Tiy= AT\T(i−1)y .
C2: If a shift �i is available at the i th iteration, then set

Tix=(A−�i I )\Xi , Tiy=(AT−�i I )\Yi
C3: Set Tix= A\Xi , Tiy= AT\Yi ; this corresponds to using 0 as the shift, and it leads to very

high accuracy for the lower frequency region.

Note that the backslash ‘\’ can be solved using either iterative methods or sparse factoriza-
tions. Note also that the system solves represented by ‘\’ above may be replaced by multiplications
‘∗’. The system solves can be considered as adding useful vectors from certain (implicit) rational
Krylov subspaces to the projection basis, while the ‘∗’ may be regarded as enhancing certain
Krylov components.
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Algorithm 3.2 (AISIAD-SVD)
1. Given a tolerance tol and two integers k and kmax,

generate an orthogonal matrix V1∈Rn×k, i←1
2. Iterate until convergence

(a) Solve AXi+Xi HT
i +BBTVi=0, where Hi =V T

i AVi
(b) Compute “preconditioned augmentation” Tix
(c) [Utmp, Si ,Vtmp]=svd([Xi ,Tix ],0)
(d) Let k be the largest number of diagonal elements of Si

s.t. Si (k,k)
Si (1,1)

�tol; if k>kmax, set k=kmax

(e) Wi←Utmp(:,1 :k)
( f ) Solve ATYi+Yi Fi+CTCWi=0, where Fi=WT

i AWi
(g) Compute “preconditioned augmentation” Tiy
(h) [Utmp, Ri+1,Vtmp]=svd([Yi ,Tiy],0)
(i) Let k be the largest number of diagonal elements of Ri+1

s.t. Ri+1(k,k)
Ri+1(1,1)�tol; if k>kmax, set k=kmax

( j) Vi+1←Utmp(:,1 :k)
(k) i← i+1

3. VL←Vi+1,WR←Wi
4. [Ue,�,Ve]=svd(V T

L ∗WR)
5. SL←VLUe�−1/2, SR←WRVe�−1/2
6. The reduced system is: Ab= STL ASR, Bb= STL B,Cb=CSR

Many other alternatives can be applied to compute the augmentation vectors, e.g. using a
combination of ‘\’ and ‘∗’ such as Tix=[A\Xi (:,1 : p), A∗Xi (:1 : p)]; or using different right-hand
sides than the ones in C1–C3; or replacing A by certain preconditioners for the system solves.

One may also use no augmentation vectors. This corresponds to setting Tix=Tiy=∅ and k=
kmax. This choice is observed to have similar behavior as AISIAD-QR. We mention that the choice
Tix=Vi ,Tiy=Wi in [2] is often inferior to AISIAD-QR; hence, other augmentation vectors as
proposed above should be preferred for AISIAD-SVD.

The goal of the ‘preconditioning’ is to bring better vectors into the projection subspace through
Tix and Tiy , so that the algorithm has a better chance to approximate the principal eigenspaces
of PQ. With the ‘preconditioned augmentation’, AISIAD-SVD has more freedom adjusting the
projecting subspaces than AISIAD-QR.

The ‘preconditioned augmentations’ C1–C3 work well in practice. However, we mention that
rigorous analysis for these heuristics still needs further study. For simplicity of discussions, we
will mainly present numerical results for the choice C3.

4. NUMERICAL EXPERIMENTS

In this section we report numerical results of Algorithms 3.1 and 3.2 using augmentation
scheme C3.
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The numerical simulations are performed on a Dell PC (Intel Xeon processor, 3.0GHz CPU,
2GB RAM) running Linux, the MATLAB used is of version 7.0.1.

We first briefly discuss how to read the sigma plots. The frequency response plot is obtained by
calling the MATLAB function sigma; sigma computes the singular values of the transfer function
H(j�), which is the frequency response H(s)=C(s I−A)−1B evaluated on the imaginary axis.
Hence, the plot shows the singular values of the matrix C(j�I−A)−1B as a function of frequency
�. The error plot is the frequency response plot of the error system; it is the plot of singular
values of the matrix H(j�)−Hk(j�) :=C(j�I−A)−1B−Cb(j�I−Ab)

−1Bb as a function of
�. Frequency � may be specified by the user or determined automatically by the algorithm inside
the function sigma. The measure (dB) is defined as the 20∗ log10(·) of the singular value, i.e. if
dB(�)= l, then �=10l/20.

The purpose of the numerical experiments is to verify the accuracy of the algorithms. The
models used are relatively small, but they provide quite realistic tests for iterative methods used in
model reduction. For these models we can easily compute the full L and U factors of P and Q,
so that the standard balanced truncation via LU factors can be used for comparison. The legend
btr-lu in each plot shows reduction by this approach. Note that the final order-k model obtained
by btr-lu is the best balanced order-k reduction that can be obtained via this standard approach.

In the header of each figure, the dimensions of the original system and the reduced system are
listed as n and k, respectively. All the methods reduce the full system to a system of the same
order-k.

Figure 1 shows reduction of Penzl’s constructed model [17], where

A=

⎡
⎢⎢⎢⎢⎣
A1

A2

A3

A4

⎤
⎥⎥⎥⎥⎦ , A1=

[ −1 100

−100 −1

]
, A2=

[ −1 200

−200 −1

]

A3 =
[ −1 400

−400 −1

]
, A4=diag(−1,−2, . . . ,−1000), BT=C=

⎡
⎣10 · · ·10︸ ︷︷ ︸

6

,1 · · ·1︸ ︷︷ ︸
1000

⎤
⎦

For this model, the low-rank Smith method [17] computes the dominant Cholesky factor with
300 columns; the modified low-rank Smith method [32] achieves a significant rank reduction; the
dominant Cholesky factor has only 19 columns. Both methods used the six eigenvalues of A1, A2,
and A3 as shifts. A final order-11 model is generated from the Cholesky factors by standard
balanced truncation. Comparing with the sigma plot of the error system in the frequency interval
[101,104] in [32], we see that AISIAD-QR produces an order-11 model of roughly the same
accuracy as the two low-rank Smith methods, while AISIAD-SVD has higher accuracy in the
lower frequency range than btr-lu and other methods compared.

Figure 2 shows the reduction of a CD player model. Both AISIAD approaches generate an
order-20 model comparable with the btr-lu method.

Figure 3 shows the reduction of an International Space Station 1r-c04 model. Again the AISIAD
approaches generate an order-30 model of similar accuracy as btr-lu does.

Figure 4 shows the reduction of a clamped beam model. The AISIAD-SVD is much more
accurate in the lower frequency range but is less accurate in the higher frequency range.
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Figure 1. Penzl’s constructed model [17]. (A+AT<0). aisiad-qr converged in
15 steps and aisiad-svd converged in 8 steps.
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Figure 2. A simplified simulation model of CD player tracking mechanism. This model describes the
dynamics between the lens actuator and the radial arm position of a portable compact disc player.

(A+AT<0). aisiad-qr converged in 22 steps and aisiad-svd is run 35 steps.

Figure 5 shows the reduction of a one-dimensional Laplacian. Figure 6 shows the reduction of a
three-dimensional Laplacian. In both cases, the two AISIAD methods generate low-order systems
with high accuracy.

As seen from Figures 1–6, AISIAD-SVD with the augmentation scheme C3 often produces a
much more accurate reduced model in the lower frequency region. This is likely related to the
zero shift used in scheme C3. Further study will investigate how to generate or use better shifts
in the ‘preconditioned augmentation’ steps, so that the reduced model will have the desired high
accuracy in the frequency range that matters most.

Finally, we make a comment on the memory requirement and the complexity of the two
AISIAD approaches. Because of the easily fixed maximum dimension, AISIAD is less memory
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Figure 3. Finite element discretization of the flex modes of the Zvezda Service Module of the International
Space Station 1r-c04. (A+AT≮0). Both aisiad-qr and aisiad-svd are run 25 steps.

10 –2 100 102 104
 –150

– 100

 –50

0

50

100

Freq. Response: Structmodel, n =348, k=34

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

full system

aisiad– qr

aisiad –svd

btr –lu

10 –2 100 102 104
 –140

 –120

 –100

– 80

 –60

 –40

 –20

0

Error plot: Structmodel, n =348, k=34

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

aisiad –qr

aisiad –svd

btr– lu

Figure 4. Finite element model of a clamped beam with a control force applied at the free end. (A+AT≮0).
aisiad-qr converged in 36 steps and aisiad-svd is run 45 steps.

demanding than the low-rank ADI or Smith approach. However, since the one-side projected
Sylvester equations need to be solved several times during the iteration, AISIAD is generally more
expensive than low-rank ADI and low-rank Smith methods.

5. CONCLUDING REMARKS

A general AISIAD framework for LTI system model reduction was proposed. We constructed two
approaches within this framework, one used direct QR updates and the other used SVD updates. By
combining the approximate projected-equation approach and the alternating direction technique,
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Figure 5. One-dimensional Laplacian discretized by finite difference, (A+AT<0). B=C ′ =ones(n,1).
aisiad-qr converged in 21 steps and aisiad-svd converged in 7 steps.
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Figure 6. Three-dimensional Laplacian discretized by finite difference, (A+AT<0).
B=C ′ =[ones(n,1), [ones(30,1);zeros(n−30,1)]]. aisiad-qr converged in 8 steps and
aisiad-svd converged in 7 steps. Note that for both aisiad-svd and aisiad-qr,
the accuracy of approximation for the largest singular value is higher than that for the
second largest singular value (this can be easily confirmed by plotting only the approxi-

mation error for the largest singular value).

we constructed new ways of approximating the principal eigensubspace of the product PQ of the
two system Gramians. The combination has advantages over traditional methods that solve the
two Lyapunov equations for P and Q separately.

The preliminary numerical results for both Algorithms 3.1 and 3.2 are satisfactory and
encouraging. Even for some difficult models, the algorithms can produce accurate reduced
models. However, we have observed that Algorithms 3.1 and 3.2 may become less efficient when
the passivity condition A+AT<0 does not hold; for the non-passive cases, even though the
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algorithms can generate a reduced model with required accuracy, the reduced model may be of
larger dimension than necessary.

A rigorous convergence analysis of these algorithms is difficult and presently not available.
Further research on the theoretical properties of the algorithms is desirable.
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