
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2006; 13:621–642
Published online 27 June 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla.490

Studies on Jacobi–Davidson, Rayleigh quotient iteration, inverse
iteration generalized Davidson and Newton updates

Yunkai Zhou∗,†

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.

SUMMARY

We study Davidson-type subspace eigensolvers. Correction equations of Jacobi–Davidson and several other
schemes are reviewed. New correction equations are derived. A general correction equation is constructed,
existing correction equations may be considered as special cases of this general equation. The main theme
of this study is to identify the essential common ingredient that leads to the efficiency of a diverse form
of Davidson-type methods. We emphasize the importance of the approximate Rayleigh-quotient-iteration
direction. Copyright q 2006 John Wiley & Sons, Ltd.

Received 13 August 2003; Revised 24 October 2005; Accepted 28 November 2005

KEY WORDS: eigenproblem; Davidson-type subspace method; correction equations; Rayleigh quotient;
Jacobi–Davidson; IIGD; Newton method

1. INTRODUCTION

We study Davidson-type subspace methods for the standard eigenvalue problem

Ax = �x (1)

where A is an n× n matrix, � is the eigenvalue and x is the corresponding eigenvector. Eigenvalue
problem (1) is central to many scientific applications. Several excellent monographs [1–8] contain

∗Correspondence to: Yunkai Zhou, Department of Computer Science and Engineering, University of Minnesota, 200
Union St. SE., Minneapolis, MN 55455, U.S.A.

†E-mail: zhou@msi.umn.edu

Contract/grant sponsor: Mathematical, Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, SciDAC Program, Office of Science, U.S. Department of Energy;
contract/grant number: W-31-109-ENG-38
Contract/grant sponsor: U.S. Department of Energy; contract/grant number: DE-FG02-03ER25585

Copyright q 2006 John Wiley & Sons, Ltd.

622 Y. ZHOU

in-depth discussions on properties and algorithms for eigenvalue problems, together with many
sources from science and engineering applications.

Krylov subspace methods constitute a major group of methods for (1). They include the Arnoldi
method [9], the Lanczos method [10], and their important variants: the implicit restart Arnoldi
method [11], the rational Krylov method [12, 13] and the Krylov–Schur method [14]. In contrast,
Davidson-type subspace methods are not restricted to Krylov structures. They include the Davidson
method [15], several generalizations [16–18], and the Jacobi–Davidson method [19–22].

A key advantage of a subspace method over a single vector update approach is that the con-
vergence may be more robust and faster. For a symmetric eigenvalue problem the reason is easy
to see since ∀ f : Rn→R (e.g. f is the Rayleigh-quotient), minx∈S1 f (x)�minx∈S2 f (x) for
S2 ⊆ S1 ⊆ Rn .This is often called the subspace acceleration.

In this paper, we study mainly the Davidson-type subspace methods for (1). Within each step of
a Davidson-type method, a standard Rayleigh–Ritz procedure is usually applied. It is known that
exterior eigenvalues are approximated more efficiently than interior ones by Davidson-type methods
with standard Rayleigh–Ritz procedures. For approximation of interior eigenvalues, the harmonic
Rayleigh–Ritz procedure [19] may be used. Harmonic Rayleigh–Ritz is related to shift-invert but
its clever formulation avoids matrix inversion, hence it can be more favourable for large problems.

In large-scale eigenvalue computation, solving correction equations inexactly via (precondi-
tioned) iterative methods is a crucial part for most of the fast eigensolvers. It is known (e.g.
References [19–21, 23]) that when suitable correction equations are found, preconditioned formu-
lations can be obtained by modifying the correction equations. Hence, the focus of this paper is
to study different correction equations. We wish to identify the essential ingredient that a diverse
form of correction equations share which leads to a fast Davidson-type eigensolver.

Some notations: Throughout this paper we use boldface letters for matrices and vectors. The
upper script ()∗ denotes the transpose ()T in the real case, and the conjugate transpose ()H in the
complex case. And we use � to denote Ritz values.

2. DAVIDSON-TYPE SUBSPACE EIGENSOLVER

Before getting into details we present in Algorithm 2.1 the framework of a Davidson-type subspace
method for (1), where for simplicity we only compute one eigenpair that best satisfies a selection
criterion. The criterion may be largest/smallest real part (LR/SR), imaginary part (LI/SI), or
magnitude (LM/SM); or that the eigenvalue is closest to a given value.

For large eigenproblems restart is necessary because of memory constraint. Moreover, effective
restart can refine the starting vector, which is important for the convergence rate of a subspace
eigensolver. The implicit restart Arnoldi (IRA) [11] provides an efficient restart strategy for Krylov-
type subspace methods. The Krylov–Schur method [14] is mathematically equivalent to IRA but
uses Schur vectors for restart. Restart for Davidson-type methods are addressed in, e.g. References
[21, 24]. All the restart techniques try to retain as much useful information that have been accu-
mulated in the current basis vectors as possible. As for Algorithm 2.1, the restart corresponds to
computing the Schur decomposition of the Rayleigh quotient matrix: H j+1Y = YS (at step 5(e)
when j = m), where the upper triangular form S is ordered s.t. the first k diagonal elements best
approximate the wanted eigenvalues. Then the algorithm restarts from

Vk = Vm+1Y(:, 1 : k), Wk =Wm+1Y(:, 1 : k), Hk = S(1 : k, 1 : k)

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 623

It is often useful to do deflation when more eigenpairs are sought. Deflation means fixing converged
wanted Schur vectors; the active subspace basis is forced to be orthogonal to these Schur vectors.
For more detailed discussions on deflation, we refer to standard books, e.g. References [4, 6, 7].
Algorithm 2.1: Framework of subspace methods for the eigenvalue problem (1).

1. Start with an initial unit vector x, V1 = [x].
2. Compute w = Ax, W1 = [w].
3. Compute � = x∗w, r = w− �x; let H1 = [�].
4. If ‖r‖ <= �, return (�, x) as the eigenpair; else, set k1 = 1.
5. Outer Loop: for j = k1, k1 + 1, . . . ,m do

(a) Call specific subspace method to construct an augmentation vector t.

(b) Orthonormalize t against V j to get a unit vector v.
(c) Compute w = Av; V j+1 = [V j | v], W j+1 = [W j | w].

(d) Compute H j+1 =
[

H j V∗jw

v∗W j v∗w

]
.

(e) Compute the eigenpair (�, y) (‖y‖ = 1) of H j+1 that best satisfies the selection criterion.
Set � = the largest magnitude of eigenvalues of H j+1.

(f) Compute the Ritz vector x = V j+1y
and the residual vector r = Ax− �x =W j+1y− �x.

(g) Test for convergence: if ‖r‖ <= ��, return (�, x) as the eigenpair.

6. Restart, set k1 = k, go to step 5.

One important numerical step is the orthogonalization at step 5(b). A common choice is the
modified Gram–Schmidt (MGS) method. MGS is in practice much more stable than Gram–Schmidt
(GS), but the orthogonality of the basis constructed by MGS depends on the condition number
of the original set of vectors. The other problem is that MGS cannot be expressed by Level-
2 BLAS, hence parallel implementation needs more communication [1, 25]. Another choice for
orthogonalization is the DGKS method [26]. DGKS can be implemented more efficiently in parallel
because DGKS is actually GS with reorthogonalization when necessary. As a referee pointed out,
DGKS is preferred over MGS for eigenproblem also because that for a preconditioned eigensolver
where linear systems are solved by GMRES, MGS for GMRES may fail to be stable when the
residual is small.

What distinguishes each subspace method is the vector augmentation at step 5(a). When iterative
methods (e.g. GMRES [27], BICGSTAB [28]) are used to solve for the augmentation vector, step
5(a) necessarily contains the inner iteration of the subspace methods.

The (generalized) Davidson method [15–17] constructs t as follows.
5(a) Construct a preconditioner M j ; solve for t from:

(M j − � j I) t = −r (2)

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

624 Y. ZHOU

For notational simplicity, we omit the subindex of any Ritz pairs (� j , x j) wherever there is no
confusion, and use x to denote the normalized Ritz vector.

In the original paper [15], Davidson derived this formulation by taking the derivative of the
Rayleigh quotient

Q(z) = z∗Az
z∗z

∀z �= 0 (3)

at x, varying only the i th component of x (denoted as x(i)) each time:

�Q(x)
�x(i)

∣∣∣∣
x(i)+�x(i)

= 0, i = 1, 2, . . . , n (4)

From (4) we get �x(i) = (�− aii)−1(Ax− �x)(i). Hence, M j = diag(A) is proposed in Reference
[15]. In Reference [29] Davidson related this formulation to the Newton method. It was observed
that the convergence rate is related to how well the diagonal matrix diag(A) approximates A. For
example, if A is diagonally dominant (in eigenvalue problems, diagonal dominance means that
the off-diagonal elements are small compared with the changes in magnitude between diagonal
elements [8, 16, 18]), then the Davidson method converges very fast. Hence, the diagonal matrix
(diag(A)− �I) was considered as a straightforward preconditioner to A− �I. The main advantage
of a diagonal preconditioner is that the preconditioned system (which is diagonal) is trivial to solve,
but it requires A to be diagonally dominant. More sophisticated preconditioners than the diagonal
matrix have been tried [16, 17], leading to the so-called generalized Davidson method. As has
been pointed out (e.g. in References [16, 19]), the preconditioner interpretation does not explain
the improved convergence rate well since the exact preconditioner (A− �I)−1 leads to stagnation
((A− �I)−1r is x, which lies in the original projection subspace).

The Jacobi–Davidsonmethod [19] is an important advance for Davidson-type subspace methods.
Jacobi–Davidson solves the following projected equation.

5(a) Solve (approximately) for t s.t. t ⊥ x and

(I− xx∗)(A− �I)(I− xx∗)t = −r (5)

Usually, (5) is solved inexactly by iterative methods. The matrix (I − xx∗)(A − �I)(I − xx∗)
is always singular on Cn , but not on x⊥, therefore this singularity poses no essential difficulty to
iterative methods for (5).

An equivalent formulation to (5) (see Reference [19, Section 4]) is the following inverse iteration
generalized Davidson (IIGD) method [30].

5(a) Solve (approximately)

(A− �I)t1 = r and (A− �I)t2 = x

then set t = −t1 + �t2, where � = x∗t1
x∗t2

(6)

The � is set to ensure t ⊥ x. From (6) it is clear that the expansion vector t contains information in
both directions (A − �I)−1r and (A − �I)−1x. In the original paper [30] the authors dealt with a
huge problem at that time and they could not afford the subspace approach; hence, they ended up
using single vector updating approach in their program (this is also pointed out in Reference [7]).

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 625

A major advantage of Davidson-type subspace methods is that the correction equations allow
approximate solutions, hence they can be solved by existing iterative methods; preconditioners
may be incorporated. In contrast, shift-invert Arnoldi-type methods generally require rather accurate
system-solves, which presents difficulty for preconditioned iterative linear solvers. One main reason
for the different accuracy requirement is that, in an Arnoldi-type method, the residual vector at each
iteration is computed as a by-product of the Arnoldi decomposition, it needs high accuracy in order
to keep the Arnoldi structure; while a Davidson-type method performs the Rayleigh–Ritz procedure
and computes a new residual vector (r = Ax − �x) at each iteration step. The extra work frees
a Davidson-type method from the need to solve its correction equations accurately.

3. CORRECTION EQUATIONS BASED ON NEWTON UPDATES

The locally fast convergence property of the (single vector) Newton method is an attractive feature
for designing fast algorithms. In References [30, 31] it was argued that Jacobi–Davidson and IIGD
are (inexact) Newton–Raphson methods. The generalized Rayleigh quotient Q(z, y) := z∗Ay/z∗y
was used in Reference [31] to establish the argument. Reference [32] also contains discussions on
Jacobi–Davidson method as subspace accelerated Newton method.

In this section we derive a Newton update straightforwardly from the standard Rayleigh quotient
(3), discuss its several disadvantages. We then review several more efficient correction equations
based on applying the Newton method to transformed formulations of (1). Note that because of the
normalization, the Newton updates discussed here are not Newton method in the strict sense. This
is pointed out in Reference [33].

Throughout this section we assume A is real and symmetric. The gradient of the Rayleigh
quotient (3) is

∇Q(z) = 2Az
zTz
− 2zTAzz

(zTz)2
= 2

zTz
(Az− Q(z)z) (7)

The Hessian of (3) is

∇2Q(z) = 2

zTz
(A− Q(z)I)− 4

(zTz)2
(AzzT + zzTAT − 2Q(z)zzT) (8)

The AT comes from expressing ∇Q(z)T straightforwardly. Let z be the normalized Ritz vector x
and denote � = Q(x), then (8) becomes

∇2Q(x) = 2(A− �I)− 4(AxxT + xxTAT − 2�xxT) (9)

We note that the formula of the Hessian for a more general Rayleigh-quotient zTAz/zTMz may be
found in Reference [34].

By the assumption A=AT, also note that r=Ax − �x, we may simplify the three correction
terms in (9) into two terms:

AxxT + xxTAT − 2�xxT= rxT + xrT (10)

So the Newton equation ∇2Q(x)t= − ∇Q(x) becomes,

(A− �I− 2(rxT + xrT))t= − r (11)

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

626 Y. ZHOU

Since A=AT, Equation (11) is equivalent to

(I− 2xxT)(A− �I)(I− 2xxT)t= − r (12)

From (12) it is clear that the Hessian is singular when � is an eigenvalue. Recall that one of the
standard conditions for a Newton method applied to f (x)= 0 to have quadratic convergence rate is
that ∇ f is non-singular at the solution‡ [35, 36]; hence, (11) and (12) are not very exciting Newton
formulations. A more serious problem is that −x is the only solution of (11) or (12) when � is
not an eigenvalue of A. Therefore, (11) or (12) has the same stagnation problem associated with
the Davidson method (2) using M j =A. We present (11) and (12) mainly to show that it can be
misleading to assume that a formulation derived by a Newton method always has at least quadratic
convergence rate. The standard conditions for a quadratic rate should be taken into account when
determining the rate of a Newton formulation.

Another shortcoming about the above derivation based on the standard Rayleigh-quotient (3) is
the condition A=AT. Note also that the derivatives in (7) and (8) are w.r.t. z, but there are n + 1
unknowns (z, �); the extra unknown � is fixed as Q(z).

Note that essentially we want the residual to be zero. A much better approach, as taken in
References [20, 33, 37], is to apply Newton method to

F(x,�) :=
[

(A− �I)x

− 1
2x

Tx+ 1
2

]
=

[
0

0

]
(13)

This avoids the A=AT constraint, and the natural normalization condition xTx= 1 makes (13)
n+ 1 equations for n+ 1 unknowns (x, �). It is straightforward to verify that the Newton equation
w.r.t. (x, �) for (13) is [

A− �I −x
−xT 0

][
t

�

]
=

[−r
0

]
(14)

The Jacobian matrix [
A− �I −x
−xT 0

]

is generally non-singular, even when (�, x) is a simple eigenpair of A. The non-singularity was
proved in [33]. Therefore, the Newton formulation (14) for (13) has quadratic convergence rate.
Actually, the design of Jacobi–Davidson [19] exploits this non-singularity, since (5) is equivalent
to (14).

In Reference [37] two other interesting updates are presented. The first one is the constrained
Newton recurrence obtained by applying Newton method to

Ax− xxTAx= 0 (15)

‡A simple example in the one-dimensional case is f (s)= sn for any integer n>1, Newton method applied to this
f (s)= 0 is only linearly convergent because f ′(0)= 0.

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 627

The Newton equation for (15) is

[A− �I− xxT(A+ AT)]t= − r (16)

The second update is the following:

[A− �I+ �xxT]t= − r (17)

It is based not on Newton method but instead on a heuristic. Nevertheless, it is called the inflated
Newton recurrence in Reference [37], The value �= 1 is used in Reference [37] for the numerical
tests, while in Reference [38] different values of � are tested and no significant difference is
observed.

What seems tricky is when � is an eigenvalue of A with geometric multiplicity greater than
one. In this case the matrices in (14) and (16) (and also (17)) are singular, hence one of the stan-
dard conditions for Newton method to have quadratic convergence rate is not satisfied. Therefore,
the quadratic convergence rate for (14) and (16) may not be established by simply referring to
the Newton method. We will address this in the next section. It turns out that the Rayleigh quo-
tient iteration, whose convergence rate is not affected by eigenvalue multiplicity, will resolve this
unfavourable case nicely.

4. UNIFICATION BY RAYLEIGH QUOTIENT ITERATION AND A GENERALIZATION

In this section we unify the Jacobi–Davidson (JD), IIGD and methods (14), (16) and (17) in
Section 3 by the Rayleigh quotient iteration (RQI). A general formulation that captures the essence
of all these correction equations is presented.

It is well-known that RQI is cubically convergent for normal matrices and quadratically con-
vergent for non-normal matrices [39]. The convergence rate is independent of the eigenvalue
multiplicity [5, p. 78]. Extensive studies on RQI may be found, e.g. in References [5, 7, 39–42]
and references therein.

Note that the subspace method with updating Equations (5), (6), (11) and (12) are special cases
of the following (18).

5(a) Solve (approximately) the following equation for t:

(I− �xx∗)(A− �I)t= − r (18)

where � is a suitable non-zero constant.
To discuss the validity of (18), we first establish the following result.

Proposition 4.1
Let the initial unit vector be the same x, assuming that � is not an eigenvalue of A and that
x∗(A − �I)t �= 0. Then the subspace method via (18) produces a subspace that includes the
(approximate) RQI direction during the next iteration.

Proof
It is well known that the RQI direction is

xR = (A− �I)−1x (19)

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

628 Y. ZHOU

(Note that when the inverse is done via approximate solve, we get an approximate direction. For
simplicity of notation, we do not use extra symbols for the approximate solves and approximate
directions throughout.) Equation (18) can be written as

(A− �I)t= − r+ �x (20)

From the assumption x∗(A − �I)t �= 0 and � �= 0, we see � �= 0. Equation (20) is essentially the
IIGD equation (6). From (20)

t= (A− �I)−1r+ �(A− �I)−1x= − x+ �xR (21)

Note that x is in the original projection subspace, say, V j . Therefore, the RQI direction xR will
be included in the augmented projection subspace V j+1 when 5(b) and 5(c) are performed in
Algorithm 2.1. �

This proposition shows that, under the specified conditions, the subspace method with (18) is
able to retain the RQI direction. But under what condition does x∗(A − �I)t �= 0 hold true for a
solution t of (18)? The following lemma answers this question.

Lemma 4.1
In exact arithmetic, any solution t of (18) satisfies x∗(A− �I)t= 0 if � �= 1.

Proof
Since � �= 1, it is easy to show that (I − � xx∗) is invertible and has an eigenvector x which
corresponds to the eigenvalue 1− �, the other eigenvalues are all 1’s. The eigendecomposition of
(I− � xx∗) can be written as

(I− � xx∗)=U

⎡
⎢⎢⎢⎢⎣
1− �

1

. . .

1

⎤
⎥⎥⎥⎥⎦U∗ (22)

where U= [x,u2, . . . ,un], U∗U= I (note ‖x‖= 1).
Together with the known condition x∗r= 0, (18) and (22) lead to

x∗(A− �I)t= 1

1− �
x∗r+

n∑
i=2

(x∗uiu∗i r)= 0 �

A much simpler proof is to multiply (18) on the left by x∗ to get

(1− �)x∗(A− �I)t= 0 (23)

Under the condition that � is not an eigenvalue of A (as in Proposition 4.1), we see that the
matrix (I− � xx∗)(A− �I) is non-singular if � �= 1. In this case (18) has only one solution, which
is readily verified to be −x. However, this means that (18) with � �= 1 has the same stagnation

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 629

problem associated with the exact preconditioned Davidson method. Therefore, Lemma 4.1 reveals
that �= 1 (JD [19]) is the only viable choice for the class of methods in (18) to retain the RQI
direction.

The proof of Proposition 4.1 shows that the essence is to make the coefficient of xR non-zero.
But Lemma 4.1 means that (18) does not generalize much over JD, except that if t̃ is a solution of
(5), then t= (I− xx∗)t̃ is a solution of (18) for �= 1.

To really generalize the formulation so that � is not restricted only to 1, we first construct the
following:

(I− � xz∗)(A− �I)t= − r (24)

where z represents one of certain suitable unit vectors. It is not hard to see a more general formu-
lation, which we express in the following as one step of Algorithm 2.1.

5(a) Solve (approximately) for t from

(A− �I− � xy∗)t= − r (25)

where y is a given suitable vector and � is a suitable non-zero constant.
Clearly, one can absorb � into y, or keep � but make y of unit length. We do not make this

distinction since it is non-essential. Note that (24) is a special case of (25) when y is in the direction
of (A∗ − �̄I)z. So we focus discussion on (25).

The following result establishes what kind of a given y can be suitable (in the sense that xR is
retained in the subspace generated by Algorithm 2.1).

Theorem 4.1
Assuming that � is not an eigenvalue of A. If y and a non-zero scalar � satisfy

�y∗(A− �I)−1x �= 1 and y∗x �= 0 (26)

then Algorithm 2.1 via (25) produces a subspace that includes the (approximate) RQI direction.

Proof
By assumption (A− �I) is non-singular. Define

	 := y∗(A− �I)−1x− 1

�
(27)

The first part of (26) leads to 	 �= 0. Therefore, by the Sherman–Morrison formula [35, p. 188],
(A− �I− � xy∗) is non-singular and its inverse is[

I− 1

	
(A− �I)−1xy∗

]
(A− �I)−1

Note that x= (A− �I)−1r and xR = (A− �I)−1x, we see that the unique solution to (25) is

t= − x+ 1

	
(y∗x)xR (28)

Since y∗x/	 �= 0, xR is clearly retained in t, hence it is in the subspace generated by Algorithm 2.1
using (25). �

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

630 Y. ZHOU

Because xR is unknown, it may be difficult to make sure �y∗xR �= 1. However, (28) reveals that
essentially one only needs to guarantee y∗x �= 0; while the choice of � can be rather free, since a
small 	 (i.e. �y∗xR ≈ 1) is actually beneficial.

The generality of (25) is in the choice of y and �. E.g. y= − x leads to the inflated Newton
scheme (17); while y= (A + A∗)x and �= 1 lead to the constrained Newton scheme (16). And
from (20) we see that IIGD is a special case of (25). Note that the simplified JD (18) with �= 1 is
a special case of (25) with y= (A∗ − �̄I)x and �= 1. Clearly, the corresponding matrix should be
singular. This is also easy to see by the Sherman–Morrison Lemma, noticing that with the chosen
(y, �) the 	 defined by (27) is zero. Theorem 4.1 does not apply to this (y, �) pair because y∗x= 0.
The magic of JD is that although the matrix in (5) is singular, it is non-singular on x⊥ unless � is
a multiple eigenvalue of A. By choosing �= 1, JD naturally satisfies the condition (23), and there
are ample freedom to make x∗(A − �I)t �= 0 so that the approximate RQI direction is retained.
Another interesting point is that if Theorem 4.1 is theoretically applied to JD (rigorously it does
not apply), then JD corresponds to the limit 0/0 case in (28).

Theorem 4.1 shows that when � is not an eigenvalue of A, there are many (y, �) pairs which can
make the matrix in (25) non-singular. One may choose (y, �) to make (25) more favourable for an
iterative linear solver.

In the real case, a non-trivial difference between (25) with y= (A+ AT)x and the constrained
Newton scheme (16) is worth mentioning: There exists many values of � for the following (29) to
have similar numerical efficiency as (16):

[A− �I− �xxT(A+ AT)]t= − r, (� �= 1) (29)

This is very much the same as what is observed in Reference [38] on the choice of � for the inflated
Newton scheme (17). Both cases seem may be explained by the normalization step (e.g. 5(b) in
Algorithm 2.1).

Note that the Jacobian matrix in (16) is derived by applying Newton method to (15). The above
observation suggests that Newton method may not be the most straightforward way to explain the
efficiency of the discussed Davidson-type methods. We think that the essence for the efficiency is
in properly retaining the (approximate) RQI direction in the subspace. In Section 6 we will present
several concrete numerical results to support this view. One interesting numerical experiment is to
choose y in (25) as a random vector (this will generally make y∗x �= 0) and compare it with the
better known schemes JD (5), the constrained Newton (16) and the inflated Newton (17).

As mentioned earlier, the quadratic convergence rate of the Newton method generally requires
that the Jacobian be non-singular at a solution, this can pose difficulty for eigenvalues with geometric
multiplicity greater than 1. In contrast, the convergence property of RQI does not have this constraint
(actually, there is no concept of Jacobian involved in RQI), and the convergence rate of RQI is not
affected by eigenvalue multiplicity. Moreover, RQI for normal matrices has cubic convergence rate;
while it requires verifying additional condition (relating to the second derivative at a solution) to
claim that a Newton scheme has a cubic convergence rate. Therefore, interpretations via RQI can
be more convenient than via the Newton method in understanding the Davidson-type or JD-type
methods discussed in this paper. (Note that in Reference [19] RQI is used to discuss the convergence
rate of JD.) The subtle difference is possibly caused by the fact that Newton method is mainly for
solving equations, where both the direction and the magnitude of the direction matter; while for
the x in Ax= �x, only its direction is essential.

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 631

5. SIMPLIFICATION OF JACOBI–DAVIDSON AND IIGD

We present two schemes that simplified JD and IIGD in some sense.
By Lemma 4.1, the only viable choice for (18) is �= 1, as done in JD. This leads to the following

simplified JD.
5(a) Solve approximately for t from

(I− xx∗)(A− �I)t=−r (30)

Clearly,−x is a solution of (30), and this solution should be avoided. Fortunately, when we solve
(30) by a Krylov method starting for a vector not parallel to x, then the solution generally has a
strong component in x⊥ because of the projection (I−xx∗). If the initial vector of the Krylov solver
is chosen to be orthogonal to x (e.g. a zero initial vector), then the approximate solution is actually
in x⊥, as would be obtained by JD. One referee pointed out that it is mentioned in Reference [21,
Section 3.2, Remark 9] that the right projection in (5) can be dropped if (5) is solved by a Krylov
method with an initial vector orthogonal to x.

Numerical results in the next section will show that (30) performs as well as JD. When (30) and
(5) are solved by GMRES with small fixed iteration steps, there is not much difference in residual
reduction and convergence steps between the two equations. We note that the right projection by
(I − xx∗) in (5) is not performed at each iteration step, and the final t ⊥ x is waived. The more
essential term in (5) is the left projector (I− xx∗), which not only retains the (approximate) RQI
direction in t but also improves the conditioning of the correction equation on the x⊥ subspace.

For A=A∗, generally the original JD (5) should be preferred over (30) since one can apply a
symmetric solver to (5). For A �=A∗ problems, or for A=A∗ when an available symmetric solver
requires the matrix to be positive definite, then (30) may be preferred over (5). Since (30) saves
projections, it can use less total CPU time than (5).

One advantage of JD over IIGD is that IIGD requires two equation-solves in the inner iteration,
which is more expensive than the one equation-solve JD. Equality (21) suggests the following
simplified IIGD, which requires only one equation-solve.

5(a) Solve approximately for t from:

(A− �I) t= x; then compute �= 1/(x∗t), t← (�t− x) (31)

This modification mainly exploits the fact that in exact solve for (6), (A− �I)−1r= x. It saves
almost half the computational cost at each inner iteration of IIGD. A second look at (31) re-
veals that essentially it is approximate RQI with an additional scaled Gram–Schmidt step, the
same scheme presented in observation 4.1(c) of [19], except that (31) adds a Gram–Schmidt
step. The above observation to (31) shows that, in exact solve case, IIGD (6) is also essen-
tially RQI with a scaled Gram–Schmidt step to make t ⊥ x. Related remarks may be found in
References [19, 31]. One difference between (6) and the JD-type method (30) is that the projection
(I − xx∗) is applied to the solution of the RQI equation for IIGD, while for (30) it is applied to
(A − �I) before the system-solve. The latter has advantage because of better conditioning on the
x⊥ subspace.

In very crude approximate solve cases, approximate RQI is known not to be better than (5).
We present (31) in order to see how well approximate RQI performs when the approximate solve
becomes more accurate. Numerical results show that actually (31) performs well with increasingly
accurate system-solve by GMRES. (One example in References [19, 31] shows that the approximate

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

632 Y. ZHOU

RQI without the scale Gram–Schmidt step performs well when the linear-solves become quite
accurate.) But this good performance is not observed if the linear solver is BICGSTAB. The reason
may be that GMRES is less sensitive to ill conditioning. As for JD-type equation (5) or (30), there
is no as big difference between GMRES and BICGSTAB as (31).

In the large-scale setting, the correction equations are often solved by preconditioned iterative
methods, so we briefly comment on preconditioned forms of correction equations. As mentioned
in the Introduction, preconditioned methods for linear systems can be applied to the correction
equations (e.g. References [19–21, 23]). We use (31) as a simple example: If at step j we have a good
preconditioner K j for (A−�I), then we solve K j t = x and compute � = 1/x∗t. Then the updating
vector can be obtained by (�t − x), which is orthogonal to x—the wanted direction in order to
augment the projection basis. The straightforward preconditioned form of (6) would require solving
two preconditioned equations to get the orthogonalization constant � (� = x∗K−1j r/x∗K−1j x),
unless fixed preconditioners are used. Equation (31) reduces the two system-solves to one system-
solve, even for the preconditioned formulation. The problem is that in the approximate solve
scenario, K−1j r can contain useful information that enhance the approximate RQI direction K−1j x.
As pointed out in Reference [19], JD offers the better combination of both directions by solving
only one equation at each iteration. This is gained by using a well-designed correction equation.
Clearly, schemes represented by (25) also offer better combination of both directions by only one
equation-solve per iteration; preconditioned forms based on (25) can offer a similar advantage.
By working with better conditioned matrices, the important RQI direction may be approximated
better via an iterative equation solver.

6. NUMERICAL RESULTS AND DISCUSSIONS

The purpose of this section is to numerically show the importance of the approximate RQI direction
on the efficiency of the different schemes discussed. Because of the locally fast convergent nature
of these methods, for the numerical tests we first compute the required eigenvector v1 by Matlab
built-in function eigs, then perturb v1 as v1← v1+ pert ∗ rand(n, 1) and use the same perturbed
vector as the initial vector. The value of pert and the mode of the sought eigenvalues are printed
on each plot. (For approaches that try to improve the global convergence, interested readers are
referred to References [16, 21, 43–45].)

The linear solvers used are the Matlab built-in gmres.m and a modified BICGSTAB code based
on the bicgstab.m for Reference [36]. This bicgstab.m does two matrix–vector products at each
of its iteration step. The Matlab built-in bicgstab.m returns a zero vector far too often when the
maximum iteration number is set small, hence it is not used for the tests. We note that the Matlab
built-in gmres.m is more fine tuned than the modified bicgstab.m used.

The Matlab code used for the tests is more sophisticate than Algorithm 2.1. We implemented
both restart and deflation. For all the numerical tests, the outer iteration tolerance (the � in Algorithm
2.1) is set to 10−12.

All numerical tests are performed using Matlab version 7.0.1 (R14) on an Intel-xeon PC (2G
RAM, dual 3GHz CPU), the OS is Debian Linux with Kernel version 2.6.10.

In approximate solve cases, IIGD is not better than JD, hence in the first two numerical tests,
we mainly compare JD (5), JDm (30) and IIGDm (31).

The first two tests are on silicon quantum dot models Si10H16 and Si34H36 from material science.
The matrices correspond to silicon atoms passivated by hydrogen atoms. They are obtained from ab

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 633

Figure 1. Sparsity structures of Si10H16 (left) and Si34H36 (right).

initio calculations after the self-consistency is reached. Both of them are symmetric real. Figure 1
shows their sparsity structures.

The maximum subspace dimension is set to 20 for these two tests. When the subspace dimension
exceeds 20, the outer loop restarts from a subspace of dimension 6.

Figure 2 shows the convergence behaviour of one eigenpair for JD (5), JDm (30) and IIGDm (31)
solved by GMRES and BICGSTAB for Si10H16. The maximum inner iteration number (itmax) is
set to 5, 8, 11 and 17, with inner iteration tolerance 10−3 (this is the tol passed to a linear solver). We
observe no difference for JD and JDm by GMRES; while there are noticeable difference between
JD and JDm by BICGSTAB (we note that the bicgstab.m used is not a sophisticated and stable
enough implementation of BICGSTAB, we present the results by this bicgstab.m only as a reference
to the Matlab built-in gmres.m); for IIGDm, there is always a big difference between solves by
GMRES and solves by BICGSTAB, which means that JD and JDm are more stable than IIGDm.
But we note that IIGDm can outperform JD and JDm when the linear solves by GMRES become
more accurate.

Figure 3 shows the convergence behaviours of JD (5), JDm (30) and IIGDm (31) solved by
GMRES and BICGSTAB for Si34H36. The itmax is set to 8, 11, 14 and 20, with fixed linear
solve tolerance 10−4. Again we see no difference for JD and JDm by GMRES. And again IIGDm
by GMRES performs as well as JD and JDm with increasingly accurate linear solves. The good
performance of IIGDm by GMRES is one example to show the importance of the approximate
RQI direction.

The rest of the tests numerically compare the inflated Newton, the constrained Newton and
their modifications with the JD-type methods (5) and (30). Tests are performed on non-symmetric
matrices as well as on symmetric ones. Two of the matrices are from material science, they
correspond to GaAsH6 and Si5H12. Their sparsity structures are shown in Figure 4. These two

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

634 Y. ZHOU

Figure 2. Residual reduction of Model Si10H16, n = 17017.

matrices are very close to being symmetric. When the matrices are non-symmetric, we compute a
partial Schur decomposition with eigenvalues satisfying a specified mode.

GMRES is used as the linear solver for all the remaining tests. We present results on computing
multiple eigen/Schur pairs. Both restart and deflation are applied, so that the results would represent
the efficiency of the tested schemes in more realistic situations.

In Figures 5–8, the labels in the legend signal the following: the ‘inflate’ denotes the inflated
Newton (17); the ‘random’ denotes (25) with y being set to a new random vector at each matrix–
vector product of the inner iteration; the ‘cons’ denotes the constrained Newton (16); the ‘consm’
denotes (29), we actually simplify it into

[A− �I+ �xx∗A]t = −r (32)

with � �= −2; the ‘jd’ and ‘jdm’ refer to JD and JDm, respectively, as before. We also experiment
with the following equation:

[A− �I+ x(r+ �x)∗]t = −r (33)

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 635

0 10 20 30 40 50 60
outer iterations (linear solve itmax=8, tol=0.001)

 lo
g 10

 o
f

th
e

re
si

du
al

 n
or

m

 lo
g 10

 o
f

th
e

re
si

du
al

 n
or

m

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

 lo
g 10

 o
f

th
e

re
si

du
al

 n
or

m

0 5 10 15 20 25 30 35
outer iterations (linear solve itmax=11, tol=0.001)

0 5 10 15 20 25 30 35
outer iterations (linear solve itmax=14, tol=0.001)

 lo
g 10

 o
f

th
e

re
si

du
al

 n
or

m

 Si34H36, real symmetric, mode =SR, n =97569, pert=0.1

 Si34H36, real symmetric, mode =SR, n =97569, pert=0.1 Si34H36, real symmetric, mode =SR, n =97569, pert=0.1

 Si34H36, real symmetric, mode =SR, n =97569, pert=0.1

0 5 10 15 20 25 3530
outer iterations (linear solve itmax=20, tol=0.001)

Figure 3. Residual reduction of Model Si34H36, n = 97569.

where � = � if |�| > 1, and � = 1 otherwise. Clearly, (33) is just another special case of (25), we
use ‘rpx’ to denote (33). Setting y = A(r + �x) in (25) leads to another equation, with similar
behaviour to (33), so only (33) is used for the tests. Noticing that Ax = r + �x, we see that (33)
is [A− �I+ xx∗A∗]t = −r when |�| > 1.

Figure 5 shows the residual reduction plot for the GaAsH6 model. We see that the ‘random’
scheme is as efficient as other schemes in computing the first two eigenvalues, but it becomes less
efficient computing the rest 3 eigenvalues. Figure 6 shows the residual plot for the Si5H12 model.
We see that the gap between ‘random’ and the other schemes shrinks when the linear solves
become more accurate.

Tables I and II contain other two comparisons of the schemes on computing a size-10 eigen/Schur
decomposition. The maximum subspace dimension used is 30 in both cases; and the outer loop
starts from a subspace of dimension 15 after restart. The results of ‘rpx’ is not reported (to save
space in the table), but we note that for both of these models ‘rpx’ is slightly worse than the other
schemes except ‘random’.

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

636 Y. ZHOU

Figure 4. Sparsity structures of GaAsH6 (left) and Si5H12 (right).

A common feature seen in Tables I and II is that under-solving or over-solving the correction
equations is not cost-effective. And over-solving usually can be rather expensive in terms of CPU
time, although it uses less total iteration steps.

We performed many other test runs on different types of matrices with different parameters, and
we observed similar phenomenas to what are presented here.

Now we spend some discussion on the ‘random’ scheme. This scheme is chosen mainly for
numerical experiments. As seen from Tables I and II, ‘random’ works fine for computing the first
eigen/Schur pair. Similar phenomena are observed from many other tests (including those in Tables
I and II, although it cannot be seen from the total iteration steps). But ‘random’ can become
much less efficient than other schemes when more eigenpairs are computed, especially when the
solves are crude. Clearly, one cannot expect a scheme that uses a random vector at each step of
iteration to be competitive; a subspace method that uses a random vector for augmentation generally
will not converge. What is different here is that using a random vector y in (25) always leads to
convergence for all the tests we performed; and the other schemes with known fast convergent
rate seldom converge twice faster than ‘random’. We consider this another good example to
show the importance of the approximate RQI direction. One reason that ‘random’ becomes less
efficient in computing more eigenpairs may be related to reusing information, i.e. it may not use the
information that have been built into the subspace when converging other eigenpairs as efficiently
as other schemes. Another more probable reason may be that when the linear solves are crude, the
wanted RQI direction is not well approximated because of higher noise in the correction term (�xy∗
to A − �I); this seems to explain why the difference between ‘random’ and the other schemes
become smaller when the linear solves become more accurate.

The analysis in Section 4 shows that, in exact arithmetic, the essence of the discussed schemes to
be efficient is to retain the RQI direction in the subspace; and all these schemes may be considered
equivalent in this sense. Moreover, the numerical results in this section show that, in rounded
arithmetic, with approximate equation solves, and with restart and deflation, these schemes (except
the ‘random’ one) also have rather similar efficiency. We consider this as a good agreement

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 637

Figure 5. Residual reduction of Model GaAsH6, n = 61349. The size-5 partial Schur decomposition
with ‘SR’ eigenvalue mode are computed.

between theory and numerical schemes, where roundoff errors should subject to well-designed
numerical schemes based on correct theory.

A rough conclusion is that none of the discussed schemes is a clear winner; one scheme may be
more efficient than the others for a certain type of problems. (This agrees with a similar conclusion
in Reference [37].) Moreover, the linear solvers used can also affect the efficiency of a scheme. We
note that in Reference [38] where the linear solver is MG and the eigenproblems are from structure
dynamics, the inflated Newton scheme is reported to have better performance than JD. As for the
problems tested here, such a consistent advantage is not observed. But we agree that (17) is one of
the best schemes represented by (25).

We draw some other conclusions from the numerical experiments: (i) Including the approximate
RQI direction in the subspace is very important for the discussed Davidson-type methods to be
efficient. (ii) JD-type equations (5) and (30) are more stable than IIGD-type (31), in the sense that
applying different linear solvers to them does not lead to drastic differences. (iii) The simplified

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

638 Y. ZHOU

Figure 6. Residual reduction of Model Si5H12, n = 19896. The size-5 partial Schur decomposition
with ‘SR’ eigenvalue mode are computed.

JDm (30), i.e. without the right projection for the matrix–vector product at each inner iteration and
the final t ⊥ x requirement, can be as stable and efficient as JD (5) that performs these projections.
(iv) The general formula (25) represents a large class of schemes that can be as efficient as JD-type
methods.

Note that preconditioners are not used in the experiments, but the above conclusions should be
valid for preconditioned equation solves, because approximate solves can be regarded as solving
from preconditioned equations.

Finally, we report an interesting observation related to the inflated Newton scheme that is not
noted in References [37, 38]. For the above presented results and many other results not reported
here, the value of � used is within 1–50, other values do not have any significant difference.
But we observed quite significant difference between a small value � and a large value � for some
matrices from the NIST matrix market. Two typical matrices are olm1000 and sherman3, where

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 639

Figure 7. Residual reduction of olm1000. Linear solver used is GMRES. The six computed ‘SR’
eigenvalues are: −1.01633831e + 04, −1.01630831e + 04, −1.01625831e + 04, −1.01618831e + 04,

−1.01609833e+ 04, −1.01598835e+ 04. Left picture, � = 3; right picture, � = �.

Figure 8. Residual reduction of sherman3, where cond(A)>6e + 16. The five computed ‘LR’
eigenvalues are: 6.75844005e + 06, 6.35064445e + 06, 5.70779495e + 06, 4.88197142e + 06,

3.94007715e+ 06. Left picture, � = 3; right picture, � = �.

eigenvalues with large magnitude are computed. As seen from Figures 7 and 8, a small � value
leads to the much slower ‘inflate’ and ‘random’ which do not include information related
to the current eigenvalue in the correction term; while schemes that use this information, (i.e.
the Ax term in ‘cons’ and ‘consm’, and the �x term in ‘rpx’) are not affected by the small �
value. After increasing � to the magnitude of �, all the schemes become similar again. This can
be explained by Theorem 4.1 as follows. Because in both of these examples, the xR is of small
norm (in the order of 1/|�|), so the y∗xR is also in the order of 1/|�| when y is set to x or a

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

640 Y. ZHOU

Table I. CPU time (in seconds) of different correction equations solved by GMRES for Model GaAsH6.
The digits in the parenthesis are total number of outer iterations for the size-10 Schur decomposition
with ‘SR’ mode to converge. The computed eigenvalues (keeping 9 digits) are: −1.14249099e + 00,
−9.10538900e− 01, −6.69170075e− 01, −6.69170075e− 01, −5.70362441e− 01, −5.70362441e− 01,
−5.22600834e − 01, −7.75795983e − 02, −4.35314664e − 02, −5.99235789e − 03. The CPU time of
‘cons’ is larger because of the A∗ term, but we note that with more careful programming, the cost of

each ‘cons’ step can be made similar to that of ‘consm’ (32), even in the non-symmetric case.

itmax inflate jd jdm cons consm random

9 344.8 (250) 356.6 (254) 348.2 (253) 1607.2 (253) 361.9 (263) 775.8 (546)
12 331.3 (185) 351.5 (193) 336.3 (188) 1501.3 (185) 336.8 (186) 586.1 (315)
15 369.3 (162) 388.5 (168) 371.1 (164) 1589.8 (160) 362.7 (160) 570.7 (245)
18 383.1 (137) 377.3 (133) 378.9 (136) 1654.9 (139) 379.1 (136) 555.9 (195)
21 399.3 (119) 395.8 (117) 389.1 (117) 1585.2 (116) 391.4 (117) 510.7 (149)
24 404.3 (102) 409.2 (102) 404.1 (102) 1674.3 (107) 418.5 (105) 499.8 (122)
27 438.3 (94) 438.9 (93) 439.1 (94) 1710.6 (97) 442.8 (95) 538.5 (112)

Table II. CPU time (in seconds) of different correction equations solved by GMRES for Model Si34H36.
The digits in the parenthesis are total number of outer iterations for the 10 eigenpairs with ‘SA’ mode to
converge. The computed eigenvalues (keeping 9 digits) are: −1.15862684, −1.12438398, −1.12438283,
−1.12438126, −1.07704853, −1.07704726, −1.06245140, −1.06245056, −1.06245016, −1.01335308.
itmax inflate jd jdm cons consm random

9 447.7 (208) 452.4 (207) 441.0 (206) 437.8 (205) 418.9 (196) 791.0 (358)
12 441.2 (157) 443.7 (155) 443.9 (158) 441.8 (157) 449.6 (160) 667.0 (230)
15 457.9 (128) 473.2 (130) 468.8 (131) 465.5 (130) 494.6 (138) 629.8 (171)
18 510.4 (115) 523.5 (116) 518.9 (117) 541.6 (122) 541.6 (122) 632.3 (139)
21 548.4 (102) 547.6 (100) 544.1 (101) 586.4 (109) 636.3 (118) 655.7 (119)
24 641.8 (100) 604.1 (93) 596.2 (93) 622.6 (97) 701.0 (109) 714.9 (109)
27 718.7 (95) 720.4 (94) 711.0 (94) 748.9 (99) 703.7 (93) 804.7 (105)

random vector. Note that the 	 as defined in (27) satisfies 1/	 = �/(�y∗xR − 1), which is now in
the order of �. Therefore, the (y∗x/)xR term in (28) is in the order of �/�, which is insignificant
comparing with the unit length x when � is small. An � comparable to � strengthens the RQI
direction in (28), hence improves the convergence speed. Once again we see the importance of the
approximate RQI direction. And these two examples show that in rounded arithmetic, one needs
to include a numerically significant approximate RQI direction for a Davidson-type scheme to
be efficient.

7. CONCLUDING REMARKS

We studied Jacobi–Davidson, IIGD and several schemes based on Newton method for eigenvalue
computations. We analysed that being able to keep the RQI direction in the solution of a correction
equation constitutes the essence of efficiency for a diverse form of Davidson-type methods. The
left projector (I− xx∗) is found to be essential for Jacobi–Davidson to retain the approximate RQI
direction. A simplified Jacobi–Davidson is proposed based on this study. A general formulation

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

ON JACOBI–DAVIDSON, RQI, IIGD AND NEWTON UPDATES 641

which has more freedom in keeping the approximate RQI direction is constructed. Numerical results
confirmed that the approximate RQI direction at each outer iteration is crucial for the efficiency of
the studied schemes.

ACKNOWLEDGEMENTS

The author gratefully acknowledges Gerard L. G. Sleijpen for his many insightful comments and substantial
contributions that significantly improve the presentation of this paper. The superb reviews from the referees
are greatly acknowledged. Sincere thanks also go to Yousef Saad for helpful discussions and for his research
support, and to Dan Sorensen for introducing the author to eigenvalue computations. Ron Shepard and
Mike Minkoff at Argonne national Laboratory are acknowledged for interesting discussions. The valuable
NSF travel support from the Institute of Pure and Applied Mathematics to attend the Nanoscale Science
and Engineering Workshops at UCLA is also acknowledged.

REFERENCES

1. Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst H (ed.). Templates for the Solution of Algebraic Eigenvalue
Problems: A Practical Guide. SIAM: Philadelphia, PA, 2000.

2. Chaitin-Chatelin F. Eigenvalues of Matrices. Wiley: New York, 1993.
3. Cullum JK, Willoughby RA. Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Vol. I: Theory.

Classics in Applied Mathematics, vol. 41. SIAM: Philadelphia, PA, 2002.
4. Golub GH, Van Loan CF. Matrix Computations (3rd edn). Johns Hopkins University Press: Baltimore, MD, 1996.
5. Parlett BN. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics, vol. 20. SIAM: Philadelphia,

PA, 1998.
6. Saad Y. Numerical Methods for Large Eigenvalue Problems. Wiley: New York, 1992, http://www-users.

cs.umn.edu/ ∼saad/books.html
7. Stewart GW. Matrix Algorithms, Volume II: Eigensystems. SIAM: Philadelphia, PA, 2001.
8. Wilkinson JH. The Algebraic Eigenvalue Problem. Oxford University Press: Oxford, 1965.
9. Arnoldi WE. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly

Journal of Applied Mathematics 1951; 9:17–29.
10. Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral

operators. Journal of Research of the National Bureau of Standards 1950; 45:255–282.
11. Sorensen DC. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix

Analysis and Applications 1992; 13:357–385.
12. Ruhe A. Rational Krylov sequence methods for eigenvalue computations. Linear Algebra and Its Applications

1984; 58:391–405.
13. Lehoucq RB, Meerbergen K. Using generalized Cayley transformations within an inexact rational Krylov sequence

method. SIAM Journal on Matrix Analysis and Applications 1998; 20:131–148.
14. Stewart GW. A Krylov–Schur algorithm for large eigenproblems. SIAM Journal on Matrix Analysis and

Applications 2001; 23:601–614.
15. Davidson ER. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large

real symmetric matrices. Journal of Computational Physics 1975; 17:87–94.
16. Morgan RB, Scott DS. Generalization of Davidson’s method for computing eigenvalues of sparse symmetric

matrices. SIAM Journal on Statistical and Scientific Computing 1986; 7:817–825.
17. Crouzeix M, Philippe B, Sadkane M. The Davidson method. SIAM Journal on Scientific Computing 1994;

15:62–76.
18. Stathopoulos A, Saad Y, Fisher CF. Robust preconditioning of large, sparse, symmetric eigenvalue problems.

Journal of Computational and Applied Mathematics 1995; 64:197–215.
19. Sleijpen GLG, van der Vorst HA. A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM

Journal on Matrix Analysis and Applications 1996; 17:401–425. Reprinted in SIAM Review 2000; 42:267–293.
20. Sleijpen GLG, Booten AGL, Fokkema DR, van der Vorst HA. Jacobi–Davidson type method for generalized

eigenproblems and polynomial eigenproblems. BIT 1996; 36:595–633.

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

642 Y. ZHOU

21. Fokkema DR, Sleijpen GLG, van der Vorst HA. Jacobi–Davidson style QR and QZ algorithms for the reduction
of matrix pencils. SIAM Journal on Scientific Computing 1998; 20:94–125.

22. Hochstenbach ME, Sleijpen GLG. Two-sided and alternating Jacobi–Davidson. Linear Algebra and Its Applications
2003; 358:145–172.

23. Sorensen DC. Numerical methods for large eigenvalues problems. Acta Numerica 2002; 519–584.
24. Stathopoulos A, Saad Y, Wu K. Dynamic thick restarting of the Davidson, and the implicit restarted Arnoldi

methods. SIAM Journal on Scientific Computing 1998; 19:227–245.
25. Dongarra J, Duff I, Sorensen DC, van der Vorst HA. Numerical Linear Algebra for High-Performance Computers.

SIAM: Philadelphia, PA, 1998.
26. Daniel J, Gragg WB, Kaufman L, Stewart GW. Reorthogonalization and stable algorithms for updating the

Gram–Schmidt QR factorization. Mathematics of Computation 1976; 30:772–795.
27. Saad Y, Schultz M. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.

SIAM Journal on Statistical and Scientific Computing 1986; 7:856–869.
28. van der Vorst HA. Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric

linear systems. SIAM Journal on Statistical and Scientific Computing 1992; 13:631–644.
29. Davidson ER. Monster matrices: their eigenvalues and eigenvectors. Computers in Physics 1993; 7:519–522.
30. Olsen J, Jørgensen P, Simons J. Passing the one-billion limit in full configuration-interaction (FCI) calculations.

Chemical Physics Letters 1990; 169:463–472.
31. Sleijpen GLG, van der Vorst HA. The Jacobi–Davidson method for eigenvalue problems and its relation to

accelerated inexact Newton schemes. Proceeding of the Second IMACS International Symposium on Iterative
Methods in Linear Algebra, 1995.

32. Fokkema DR, Sleijpen GLG, van der Vorst HA. Accelerated inexact Newton schemes for large systems of
nonlinear equations. SIAM Journal on Scientific Computing 1998; 19:657–674.

33. Peters G, Wilkinson JH. Inverse iteration, Ill-conditioned equations and Newton’s method. SIAM Review 1979;
21:339–360.

34. Ruhe A. Computation of eigenvalues and vectors. In Sparse Matrix Techniques, Barker VA (ed.). Lecture Notes
in Mathematics, vol. 572. 1977; 130–184.

35. Dennis JE, Schnabel R. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Classics
in Applied Mathematics, vol. 16. SIAM: Philadelphia, PA, 1996.

36. Kelley CT. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics, vol. 16.
SIAM: Philadelphia, PA, 1995.

37. Wu K, Saad Y, Stathopoulos A. Inexact Newton preconditioning techniques for large symmetric eigenvalue
problems. Electronic Transactions on Numerical Analysis 1998; 7:202–214.

38. Feng YT. An integrated multigrid and Davidson method for very large scale symmetric eigenvalue problems.
Computational Methods in Applied Mechanics and Engineering 2001; 190:3543–3563.

39. Parlett BN. The Rayleigh quotient iteration and some generalizations for nonnormal matrices. Mathematics of
Computation 1974; 28:679–693.

40. Ostrowski AM. On the convergence of the Rayleigh quotient iteration for the computation of characteristic roots
and vectors. I–VI. Archive for Rational Methods and Analysis 1958/1959; 1–4:233–241, 423–428, 325–340,
341–347, 472–481, 153–165.

41. Dax A. The orthogonal Rayleigh quotient iteration method. Linear Algebra and Its Applications 2003; 358:23–43.
42. Notay Y. Convergence analysis of inexact Rayleigh quotient iteration. SIAM Journal on Matrix Analysis and

Applications 2003; 24:627–644.
43. Brandts JH. Solving Eigenproblems: From Arnoldi via Jacobi–Davidson to the Riccati Method. Springer Lecture

notes in Computer Science, vol. 2542. Springer: Berlin, 2003; 167–173.
44. Brandts JH. The Riccati method for eigenvalues and invariant subspaces of matrices with inexpensive action.

Linear Algebra and Its Applications 2003; 358:333–363.
45. Zhou Y, Saad Y. A Chebyshev–Davidson algorithm for large symmetric eigenproblems. SIAM Journal on Matrix

Analysis and Applications (submitted).

Copyright q 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:621–642
DOI: 10.1002/nla

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

