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a b s t r a c t

We propose a block Davidson-type subspace iteration using Chebyshev polynomial
filters for large symmetric/hermitian eigenvalue problem. The method consists of three
essential components. The first is an adaptive procedure for constructing efficient block
Chebyshev polynomial filters; the second is an inner–outer restart technique inside a
Chebyshev–Davidson iteration that reduces the computational costs related to using a
large dimension subspace; and the third is a progressive filtering technique, which can
fully employ a large number of good initial vectors if they are available, without using a
large block size. Numerical experiments on several Hamiltonian matrices from
density functional theory calculations show the efficiency and robustness of the proposed
method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

One of the fundamental problems in computational science and engineering is the standard eigenproblem
Au ¼ ku; ð1Þ
where A 2 Cn�n is symmetric/hermitian, and n is large. Significant research efforts have been devoted to developing practical
methods for large-scale eigenproblems in the passed several decades. There exist abundant literature in this field (see
references in e.g. [1–5]). Typical methods include the Krylov subspace methods [6–9], preconditioned non-Krylov methods
[10–15], and multigrid methods [16–20]. A rather comprehensive comparison of a few state-of-the-art eigensolvers was
performed in [21], where the solvers were applied to compute a few interior eigenvalues encountered in electronic-structure
calculations. The generalized Davidson GD + k method [14,15] was found to have better performance in terms of speed than
other solvers compared in [21].

In many realistic applications, the matrices involved are of large-scale. An additional challenge from these applications is
that the dimension of the wanted eigensubspace is also large; for example, one may need hundreds or thousands of eigen-
pairs of matrices with dimension over several millions. These applications often challenge the limit of both computer hard-
ware and numerical algorithms.

Even though there exist many eigenvalue algorithms, not as many are specifically designed for computing a large number
of eigenpairs, and relatively few are designed for effectively reusing a large number of good initial guesses when they are
. All rights reserved.
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available. This situation where a large number of good initial vectors exist is quite common in the self-consistent-field cal-
culations in quantum chemistry and material science [22,23].

Subspace iteration (e.g. [4,1,3,2]) is the primary method that can take advantage of a large number of available initial vec-
tors. The standard subspace iteration usually refers to the block power method or simultaneous iteration [24,25], i.e., the
subspace used is of fixed dimension. Fixed dimension subspace iteration using Chebyshev filters for symmetric eigenvalue
problems appeared in late 60’s [24–26]. Later researches show that a Lanczos-type method (see [1, p. 330]) can be more
efficient than a fixed dimension Chebyshev subspace iteration.

Block methods (e.g. [27–30]) are efficient for relatively small block sizes, but they become less efficient when the block
size is over several hundreds. Moreover, a very large block size can lead to overwhelming memory demand. To reuse all
available good initial vectors, most block methods use a block size that equals the number of initial vectors. This becomes
impractical if there are hundreds or thousands or more good initial vectors. Therefore, standard block methods may not
effectively utilize a large number of good initial vectors when they are available.

In [31] a Chebyshev–Davidson method is proposed, where the Chebyshev filtering is integrated into a Davidson-type sub-
space iteration. Therefore advantages related to varying dimension subspace iteration are preserved.

In this paper we develop a block version of the Chebyshev–Davidson algorithm proposed in [31]. A two-indexes trick is
deployed, which allows flexible implementation of the restarted block method, including changing block sizes conveniently
within the Chebyshev–Davidson iteration if necessary. Furthermore, we propose an inner–outer restart approach, which can
effectively reduce the memory requirement, and a progressive filtering technique, which can fully exploit a large number of
good initial vectors without the need to use an unnecessarily large block size.

The progressive filtering exploits an advantage a Davidson-type method has over a Lanczos-type method, namely that in a
Davidson-type method one has more flexibility in augmenting the basis with new vectors. This advantage is gained by the
cost of computing actual residual vectors after a Rayleigh–Ritz refinement at each iteration. Lanczos-type methods do not
have to compute actual residuals, the saved computation leads to the constraint that they need to keeps a strict Krylov struc-
ture [32].

Our proposed block method can also work efficiently for the more common cases where no good initial vectors are
available.

Throughout the paper, r(A) denotes the full spectrum of A, kwant denotes the number of wanted eigenvalues. For simplic-
ity we assume that the wanted eigenvalues are the smallest kwant values of r(A).

2. Block Chebyshev polynomial filter and filter bounds

The first kind Chebyshev polynomial which is essential to our filtering method first appeared in 1854 [33]. The well-
known polynomial is defined as (see e.g. [1, p. 371, 3, p. 142])
CkðtÞ ¼
cosðk cos�1ðtÞÞ; �1 6 t 6 1;

coshðk cosh�1ðtÞÞ; jtj > 1:

(
ð2Þ
Associated with this definition is the following 3-term recurrence,
Ckþ1ðtÞ ¼ 2tCkðtÞ � Ck�1ðtÞ; t 2 R; ð3Þ
here clearly C0(t) = 1 and C1(t) = t.
Note that cosh(kx) = (ekx + e�kx)/2, it is natural to expect the exponential growth of the Chebyshev polynomial outside the

interval [�1, 1]. This useful property is well-emphasized in [1, p. 371]. In fact, under comparable conditions, jCk(x)j as defined
in (2) grows fastest outside [�1, 1] among all polynomials with degree 6 k [34] [35, p. 31].

Let r(A) # [a0, b]. In order to approximate the lower end of r(A) contained in [a0, a] where a0 < a < b, essentially one only
needs to map [a, b] into [�1, 1]. This is easily realized by an affine mapping defined as LðtÞ :¼ ðt � cÞ=e, where c ¼ aþb

2 and
e ¼ b�a

2 denote respectively the center and half-width of a given interval [a, b]. However, in many applications, the a can
be unknown. (For example, one needs to compute a given number of smallest eigenvalues of a matrix.) This does not cause
a problem for the Chebyshev–Davidson method, since essentially one only needs to dampen [ai, b] with a0 < ai, and then
gradually update ai so that all the wanted number of eigenvalues are computed. The filtering lower bound ai at the ith iter-
ation can be readily obtained from the Ritz values available at that iteration step. For the situation that a is known, (for exam-
ple, one wants to compute all the eigenvalues no greater than a), the Chebyshev–Davidson method provides a more
attractive approach since it can target directly at dampening [a, b]. In contrast, existing methods (e.g. [6,36,8,27–30]) usually
do not provide direct means to compute eigenvalues on a given interval.

The block Chebyshev iteration, which utilizes the three-term recurrence (3) with the goal to dampen values on a given
interval [a, b] is presented in Algorithm 2.1. The iteration of the algorithm is equivalent to computing
Y ¼ CmðLðAÞÞX: ð4Þ
The iteration formula is adapted from the complex Chebyshev iteration used in [37]. However, unlike the non-block
version used in [37,31], Algorithm 2.1 does not use a scaling factor normally applied to prevent overflow. This is sound in
practice because the polynomial degree m used is not high, more importantly, the Chebyshev iteration is used inside the
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Chebyshev–Davidson algorithm, which follows the Chebyshev iteration by a normalization step, this effectively prevents
overflow, as shown by extensive usage of Algorithm 2.1 in a wide range of applications. Without using the scaling factor
saves computation, and it waives the need to provide an estimate for the smallest eigenvalue.

The construction of Algorithm 2.1 appears to only target at dampening [a, b] by mapping this interval into [�1, 1]. How-
ever, the property of ‘‘fastest growth outside [�1, 1]” of the Chebyshev polynomial automatically gives this filter significant
power to magnify the part of spectrum to the left of [a, b]. This ideally corresponds to approximating the eigensubspace asso-
ciated with the lower end of r(A).

Algorithm 2.1 shows that a desired Chebyshev filter can be easily adapted by changing the two endpoints of the higher
end of r(A).

Algorithm 2.1. [Y] = Chebyshev_filter(X, m, a, b).

Purpose: Filter vectors in X by an m degree Chebyshev polynomial that dampens on the interval [a, b]. Output the
filtered vectors in Y.
1. e = (b � a)/2; c = (b + a)/2;
2. Y = (AX � cX)/e;
3. Do i = 2 to m

4. Ynew = 2(AY � cY)/e � X;
5. X = Y;
6. Y = Ynew;
7. End Do
The upper bound should bound r(A) from above in order not to magnify the higher end of the spectrum. An upper bound
estimator is constructed in [38], it is based on a k-step standard Lanczos decomposition
AVk ¼ VkTk þ fkeT
k ;
where k is a small integer, Vk contains the k Lanczos basis, Tk is a size-k tridiagonal matrix, fk is a vector, and ek is a length-k
unit vector with the first element equal to one. The bound estimator in [38] used maxi6k jki(Tk)j + kfkk2 as an upper bound for
r(A). Although this upper bound estimator worked extremely well in practice, a theoretical proof that it guarantees an upper
bound was not available in [38]. In [39] we provide such a theoretical proof after adding a natural condition that is usually
true in practice. Here we improve the estimator by sharpening the bound as maxi6kkiðTkÞ þ kfkk2 eT

k Qk

�� ��
1, where Qk contains

eigenvectors of Tk. Note that the absolute value maxi6k jki(Tk)j is sharpened by maxi6kki(Tk), and kfkk2 is scaled by a factor 61.
The improved estimator is listed in Algorithm 2.2. In practice, we found that k = 5 or 6 in Algorithm 2.2 is sufficient to provide
a value that bounds r(A) from above.

Algorithm 2.2. Estimating an upper bound of r(A) by k-step Lanczos

1. Generate a random vector v, set v v/kv k2;
2. Compute f = Av; a = f Hv; f f � av; T(1,1) = a;
3. Do j = 2 to min(k,10)
4. b = kfk2; v0 v; v f/b;
5. f = A v; f f � bv0;
6. a = f Hv; f f � av;
7. T(j, j � 1) = b; T(j � 1, j) = b; T(j, j) = a;
8. End Do
9. Compute eigen-decomposition of T: TQ = QD, where Q is orthonormal. Return maxiki(T) + kfk2keTQk1 as the upper

bound.

The main advantage of Algorithm 2.2 is that it provides an effective upper bound via only a small number of matrix–vec-
tor products. This is useful since in many applications the matrices involved are not constructed explicitly but instead ac-
cessed via matrix–vector product subroutines. Moreover, the small number of matrix–vector products required implies
that computing the upper bound costs very little extra computation.

The upper bound obtained from Algorithm 2.2 provides the higher (or right) endpoint, but the filter also needs a lower
(or left) endpoint of the interval to be dampened. By utilizing the structure of a Davidson-type method, namely that Ritz
values are computed at each iteration, we can obtain this lower endpoint quite conveniently without extra computation.

The lower endpoint for the first filtering step is easy to obtain: since at this step no eigenvalues of A have converged, the
lower endpoint can be any value between miniki(A) and the computed upper bound. By the Courant–Fisher min–max the-
orem [1, p. 206] we see that any of ki(T) computed in Algorithm 2.2 can be used for this purpose. We can also take a weighted
value, e.g. (kmin(T) + kmax(T))/2, or (3 kmin(T) + kmax(T))/4, such that about half or larger portion of the higher end of r(A) will be
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dampened at the first filtering. Alternatively, if several good initial vectors are available, we may compute the Rayleigh-quo-
tients using some of the initial vectors and use the average of these Rayleigh-quotients as the lower endpoint for the first
iteration.

At each step of the latter iterations, the Ritz values computed at the current Chebyshev–Davidson step readily provide a
suitable lower endpoint for the filtering. The main idea is that we only need a lower endpoint that is larger than some
wanted eigenvalues which have not converged. For example, we can use the largest Ritz value, or the second largest Ritz
value, or a value between the two largest Ritz values. (Observed numerical results show only very minor differences
among these choices.) The Courant–Fisher min–max theorem guarantees that a lower endpoint chosen this way will be
larger than some wanted eigenvalues that have not converged, and at the same time smaller than the upper bound com-
puted by Algorithm 2.2. Hence an effective block Chebyshev filter can be constructed from these two bounds by calling
Algorithm 2.1.

As discussed above, the extra work associated with computing bounds for the block Chebyshev filtering is negligible. The
main computations for the filtering are the matrix–vector products by the three-term recurrences in Algorithm 2.1 (Steps 2
and 4).

The polynomial degree m is a free parameter. It might be useful to adaptively adjust m as the iteration proceeds. Our
numerical experiences show that a straightforward application of the technique in [25] (or [1, p. 330]) for adapting m is less
satisfactory than using a fixed m. However, extensive numerical experiences show that an m for overall fast convergence is
quite easy to choose. For example, an m within 15–25 often works well, and a slightly larger m (say, m = 30) may be preferred
over a smaller m if the lower end of the spectrum is highly clustered. This rule of thumb agrees with the properties of Cheby-
shev polynomials.
3. Block Chebyshev–Davidson method with inner–outer restart

In this section, we present the block Chebyshev–Davidson subspace iteration with inner–outer restart. Throughout, V de-
notes the matrix whose columns form a basis of the current projection subspace; kb denotes the block size; dimmax denotes
the maximum dimension of the subspace spanned by V; and actmax denotes the maximum dimension of the active subspace.
Here the active subspace, denoted as Vact, refers to the current subspace V deflated by the converged eigenvectors. Clearly,
actmax 6 dimmax. Note that Vact does not consume additional memory, it is just part of the columns in V.

The inner–outer restart technique is introduced mainly to reduce memory requirement and reorthogonalization cost. The
outer-restart corresponds to the standard (thick) restart, i.e., the subspace is reduced to a smaller size (denoted as kro plus the
number of converged eigenvalues) when its dimension exceeds dimmax. The inner-restart corresponds to reducing the dimen-
sion of the active subspace to a smaller value (denoted as kri) when it exceeds actmax.

With inner–outer restart, the maximum dimension of V can be kept relatively small. This is because the inner-restart re-
fines the basis vectors several times before the outer-restart becomes necessary. Therefore the dimmax can be kept small with-
out scarifying convergence speed. Usually dimmax only needs to be slightly larger than kwant, e.g. dimmax = kwant + actmax. In
contrast, Lanczos-type methods with standard restart often require the subspace to be of dimension 2 * kwant in order to com-
pute kwant eigenvalues efficiently.

With actmax kept small and dimmax only slightly larger than kwant, the memory used by the block Chebyshev–Davidson
method is about half of the memory required by Lanczos-type method with standard restart. Therefore, inner–outer restart
technique can reduce memory requirement quite significantly, especially for large problems where kwant is over several thou-
sands and the dimensions of matrices are over several millions.

The inner–outer restart is mainly based on two observations. The first one is that, in a Davidson-type method, a Rayleigh–
Ritz refinement step is usually performed at each iteration. This refinement contains three steps:

RR.1 Computing the last column of the Rayleigh-quotient matrix H (where H = VH * A * V is symmetric/hermitian);
RR.2 Computing an eigen-decomposition of H (denoted as HY = YD);
RR.3 Refining the basis as V V * Y.

The last two steps can be expensive when the size of H becomes too large, which is the case when kwant is large and only
standard restart is applied (in which case dimmax � 2 * kwant for Lanczos-type methods).

The inner-restart tries to reduce the work required by the Rayleigh–Ritz refinement. We do not wait until the size of H
exceeds dimmax to perform the standard restart. Instead, we restart much earlier than when dimmax is reached, and progres-
sively refine the basis during the process.

The inner-restart is essentially a standard restart restricted to the active subspace Vact. That is, when actmax is reached, the
last few columns in the window are truncated. Since the truncation is after a Rayleigh–Ritz refinement step, the columns in
the window have been ordered so that the last few columns are least important, and the inner-restart keeps the current best
non-convergent vectors in the active subspace.

Since we always work with the active block Vact, the Rayleigh–Ritz steps only need to be performed on Rayleigh-quotient
matrices of size not exceeding actmax. This reduces the cost both in eigen-decomposition (step RR.2) and in the basis refine-
ment (step RR.3).
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Sliding window

Fig. 1. Illustration of the inner–outer restart process: the ‘‘sliding window” corresponds to the active subspace. The inner-restart means truncating the
active subspace into a smaller subspace after a Rayleigh–Ritz refinement step, whenever the maximum dimension of the active subspace is reached. This is
done by keeping the left part of the active subspace until the dotted line.
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Fig. 1 illustrates the inner–outer restart process. We work with the active block Vact, the maximum size of Vact is controlled
by actmax that is usually much smaller than kwant. The active block acts like a window sliding through V: during the process
the size of the window is reduced when it reaches actmax, and the window slides forward only when one or more new basis
vectors converge. The converged eigenvectors are always deflated to the beginning columns of V, and the window contains
only the non-converged vectors in V. The basis vectors inside the window are progressively refined during this inner-restart
process until it reaches the end of V, after which we apply outer-restart if necessary.

The second observation is that a larger dimmax may incur more reorthogonalization cost at each iteration. That is, if we
perform restart only when dimmax is reached, then more non-converged basis vectors are involved in the reorthogonalization
per iteration. But if we perform inner-restart, then the number of non-converged vectors involved in the reorthogonalization
per iteration is less than actmax. Note that orthogonalization cost can be quite significant since orthogonalizing k vectors is of
O(nk2) complexity, it can easily be of O(n2) if k �

ffiffiffi
n
p

.
The price paid for the reduced refinement and reorthogonalization cost per iteration is that the inner–outer restart nor-

mally requires more iterations to reach convergence. However, the total cputime for the inner–outer restart approach can be
much smaller than that of only using standard restart.

The inner–outer restart technique mainly works within a low dimensional subspace Vact. Therefore this technique may be
inefficient inside a standard Lanczos-type method, because low subspace dimension corresponds to low degree of the (im-
plicit) Lanczos polynomial filters, which can lead to slow convergence. It is the suitably constructed Chebyshev filters inside
a Davidson-type subspace method that makes this technique efficient.

We point out that the inner–outer restart is closely related to the locking associated with Davidson-type subspace iter-
ative methods such as [12,40], since all these approaches perform restarts within an active subspace with restricted dimen-
sion. More precisely, implementations of existing locking and restart methods use two separate matrices, one to store the
deflated converged eigenvectors (denoted as Q, which is of size kwant), the other to store the basis of the active subspace (de-
noted as V, of size actmax). Therefore the main memory used is dimmax = kwant + actmax.

The inner–outer restart may be considered as an extension to the existing locking + restart methods in two ways: Firstly,
we do not separate Q from V, which waives memory copy from V to Q each time a basis vector is converged. Moreover, sep-
arating Q and V implies that the memory occupied by the size-kwant matrix Q does not participate in the subspace refinement
and truncation, all essential calculations are performed on V, therefore the dimension of V usually cannot be small. In our
approach as seen in Fig. 1, we can use all vectors (except the converged ones) for subspace iteration purpose. For example,
at the early stage of iteration we can use a suitably large window size for inner iteration (and this size can be independent of
actmax), at the end of iteration the total number of vectors used for iteration is actmax + kwant � nc where nc denotes the num-
ber of vectors that have converged. Hence in theory inner–outer restart may converge fairly rapidly with dimmax = kwant + 20,
while existing locking + restart implementations could have difficulty converging hundreds or thousands of eigenpairs with
an active subspace of dimension only 20. Secondly, the inner–outer restart approach works for the general case dimmax =
kwant + c, where c is a positive integer, e.g. c ¼ dactmax

2 e if actmax is relatively large.
Now we address the situation where a large number of good initial vectors are available. This scenario arises in a number

of specific applications. It appears that very few existing block methods were designed for efficiently exploiting this situa-
tion. The standard way for existing block methods to employ all available initial vectors is to use a block size large enough to
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include all initials. This approach usually is not practical if thousands or more good initial vectors are available, since it is
well-known that too large block sizes lead to huge memory demand but need not necessarily improve cache efficiency.

Here we introduce a progressive filtering technique that can conveniently utilize any number of available initial vectors.
We exploit an advantage of a Davidson-type method over Lanczos-type methods, namely that no specific Krylov structures
need to be kept during the iteration. In Chebyshev–Davidson method, we can include new appropriate vectors into the pro-
jection basis whenever necessary. A distinctive feature of the progressive filtering is that a large block size is not needed, but
we can still deploy all available initial vectors. The choice of block size can be the same as what has been practiced in stan-
dard block methods, such as choosing a block size between 3 and 30.

Arguably, when the number of available initial vectors is as large as kwant, the fixed dimension subspace iteration method
may be a best choice. The idea of our progressive filtering is a natural extension of this subspace iteration: instead of doing
subspace iteration on the full available initial vectors at once, we progressively iterate over blocks of the initials vectors.
Essentially we perform a Chebyshev accelerated variable-dimension subspace iteration, for which all available initial vectors
will be progressively utilized. One advantage of this approach is that it has freedom to augment potentially better new basis
vectors during the iteration process, instead of only resorting to the initials.

The implementation of the progressive filtering is quite simple. Assume that the initial vectors are ordered so that their
corresponding Rayleigh-quotients are in non-decreasing order (this is easy to realize in practice), we progressively filter all
initial vectors in the natural order, i.e., from first to the last. First, we start the Chebyshev–Davidson iteration by filtering the
first kb number of the initial vectors, where kb denotes a block size suitable for any standard block methods (e.g. 3 6 kb 6 30).
Then we progressively filter the remaining initial vectors and include the filtered vectors in the projection basis as follows:
Denote the number of eigenvalues that are converged at the current iteration step as ec, (here ec does not count the con-
verged eigenvalues from previous step), at the next iteration we filter ec number of the leftmost unused initial vectors
together with kb � ec number of the current best non-converged Ritz vectors, then augment the kb filtered vectors into
the projection basis. That is, we replace the just converged and deflated basis vectors by the same number of unused initial
vectors. Clearly, if no eigenvalues are converged at an iteration step, then we filter kb current best non-converged Ritz
vectors, same as in the standard block Chebyshev–Davidson with no good initial vectors available. The process continues
until all the initial vectors are progressively filtered, after this stage, we apply the standard block Chebyshev–Davidson
iteration until all kwant eigenpairs are converged.

Algorithm 3.1. contains the pseudo-code for the block Chebyshev–Davidson subspace iteration with inner–outer restart
for computing kwant smallest eigenpairs. Matlab syntax is used to denote matrices and function calls. For simplicity, we only
present the main structure of the algorithm and neglect several less essential details.

In Algorithm 3.1, kb denotes the block size; ksub counts the dimension of the projection subspace V, where ksub 6 dimmax; kc

counts the number of converged eigenpairs, and V(:, 1:kc) always contains the converged and deflated eigenvectors; the ac-
tive projection subspace is contained in V(:, kc + 1:ksub).

The design of Algorithm 3.1 uses a systematic indexing for the basis vectors in V. The key component of the indexing is
what we called the two-indexes trick: We use two indexes, ksub and the dimension of the active subspace kact, which are re-
quired to satisfy kact + kc = ksub throughout the iterations. By this design, deflation and restarts can be achieved simply by
adjusting indexes. For example, deflation (also called ‘‘locking”) is conveniently realized by not using any V(:, 1:kc) for pro-
jection when computing H, and by keeping all the basis vectors in V(:, 1:ksub) orthonormal; and restarts are conveniently
realized as in Step iv.6 and Step iv.12. Both deflation and restarts require no additional memory copies.

Each iteration adds kb vectors to the projection basis at Step iv.2. Although we use a fixed block size, the design of this
algorithm, which is mainly controlled by two indexes ksub and kact, easily allows one to use varying block sizes if necessary.
(That is, the kb at Steps iv.1 and iv.2 can be different from the kb at previous steps, which provides freedom in choosing how
many vectors to filter at Step iv.1. For example, one can use the last two size-kb blocks from Algorithm 2.1 to augment the
subspace instead of using only the last size-kb block. This may be useful when m is relatively large and the starting kb is too
small, but we do not pursue this further in this paper.)

Input variables to Algorithm 3.1 include kwant and a matrix or a subroutine for matrix–vector products. Optional param-
eters include m the Chebyshev polynomial degree, dimmax the largest dimension of the subspace, kb the block size, actmax the
maximum dimension of the active subspace, kro and kri two integers controlling respectively number of vectors to keep dur-
ing the outer and the inner-restarts, s the convergence tolerance, and Vinit which contains the size-kinit non-increasingly or-
dered (according to Rayleigh-quotients) initial vectors. The output variables are the converged eigenvalues eval(1:kc) and
corresponding converged eigenvectors V(:, 1:kc), where kc is the number of converged eigenpairs.

Algorithm 3.1. Block Chebyshev–Davidson algorithm with inner–outer restart.

(i) Compute upperb via Algorithm 2.2, set lowb = (3kmin(T) + kmax(T))/4.
(ii) Set Vtmp = Vinit(:, 1:kb), (construct kb � kinit random vectors if kinit < kb); set ki = kb (ki counts # of used vectors in Vinit).

(iii) Set kc = 0, ksub = 0 (ksub counts the dimension of the current subspace); set kact = 0 (kact counts the dimension of the
active subspace).

(iv) Loop: while itmax is not exceeded
1. [V(:, ksub + 1:ksub + kb)] = Chebyshev_filter(Vtmp, m, lowb, upperb).
2. Orthonormalize V(:, ksub + 1:ksub + kb) against V(:, 1:ksub).
3. Compute W(:, kact + 1:kact + kb) = AV(:, ksub + 1:ksub + kb); set kact = kact + kb; set ksub = ksub + kb.
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4. Compute the last kb columns of the Rayleigh-quotient matrix H:
H(1:kact, kact � kb + 1:kact) = V(:, kc + 1:ksub)0W(:, kact � kb + 1:kact), then symmetrize H.

5. Compute eigen-decomposition of H(1:kact, 1:kact) as HY = YD, where diag(D) is in non-increasing order. Set
kold = kact.

6. If kact + kb > actmax, then do inner restart as: kact = kri, ksub = kact + kc.
7. Do subspace rotation (final step of Rayleigh–Ritz refinement) as: V(:, kc + 1:kc + kact) = V(:, kc + 1:kold)Y(1:kold, 1:kact),

W(:, 1:kact) = W(:, 1:kold)Y(1:kold, 1:kact).
8. Test for convergence of the kb vectors in V(:, kc + 1, kc + kb), denote number of newly converged Ritz pairs at this

step as ec. If ec > 0, then update kc = kc + ec, save converged Ritz values in eval (sort eval(:) in non-increasing order),
and deflate/lock converged Ritz vectors (only need to sort V(:, 1:kc) according to eval(1:kc)).

9. If kc P kwant, then return eval(1:kc) and V(:, 1:kc), exit.
10. If ec > 0, set W(:, 1:kact � ec) = W(:, ec + 1:kact), kact = kact � ec.
11. Update H as the diagonal matrix containing non-converged Ritz values H = D(ec + 1:ec + kact, ec + 1:ec + kact).
12. If ksub + kb > dimmax, do outer restart as: ksub = kc + kro, kact = kro.
13. Get new vectors for the next filtering:

Set Vtmp = [Vinit(ki + 1:ki + ec), V(:, kc + 1:kc + kb � ec)]; ki = ki + ec;
14. Set lowb as the median of non-converged Ritz value in D.

Remarks on Algorithm 3.1: (i) the convergence test at step 8 should quit testing whenever the first non-convergence is
detected; (ii) the default values of the optional parameters actmax, kro and kri can be readily determined by kwant, kb and
the matrix dimension; e.g. the kro and kri usually need not be inputed, they default to values related to other parameters such
as kri ¼maxðbactmax

2 c; actmax � 3kbÞ and kro = dimmax � 2kb � kc; (iii) the orthogonalization at step 2 is performed by the DGKS
method [41]; random vectors are used to replace any vectors in V(:, ksub + 1:ksub + kb) that may become numerically linearly
dependent to the current basis vectors in V; (iv) When no initial vectors are available, simply set kinit = 0. In this case the
algorithm will start from random initial vectors; Algorithm 3.1 can also conveniently address 0 6 kinit 6 kwant, where kinit

can be 0 or as large as kwant, using a standard block size kb.

4. Analysis

Denote the center and half-width of the interval to be dampened at the jth step of Algorithm 3.1 as cj and ej, respectively,
then the Chebyshev polynomial applied at the jth step can be expressed as
pðjÞm ðAÞ ¼ CðjÞm ððA� cjIÞ=ejÞ:
In the following we discuss convergence property of Algorithm 3.1 under some simplified assumptions. Assume that dimmax

and actmax are large enough so that no restart is necessary in Algorithm 3.1. Denote the linearly independent kb starting vec-
tors as V1. Then, the subspaces generated by Algorithm 3.1 at the first three steps can be written respectively as
K1 ¼ span pð1Þm ðAÞV1
� �

; K2 ¼ span K1;pð2Þm ðAÞK1
� �

;

K3 ¼ span K2;apð3Þm ðAÞK1 þ bpð3Þm ðAÞpð2Þm ðAÞpð1Þm ðAÞV1
� �

;

where the filter is designed to make b – 0 if the previous subspace can be augmented. Extending the above notation to the
jth step, we see that the last term in the subspace Kj generated by the simplified block Chebyshev–Davidson method contains
UjðAÞV1; ð5Þ
where
UjðAÞ ¼
Yj

l¼1

pðlÞm ðAÞ:
The expression (5) shows that the subspace generated by the simplified block Chebyshev–Davidson method always includes
the vectors that are generated by an accelerated fixed dimension subspace iteration applied to V1. Therefore, applying the
results in [42,43] for subspace iteration, and by the property of Rayleigh–Ritz refinement from subspace acceleration, we
see the convergence rate to the wanted eigensubspace V1 (corresponding to k1; . . . ; kkb

) can be bounded as
distðUjðAÞV1;V1Þ 6 C
maxl>kb

jUjðklÞj
minl6kb

jUjðklÞj
; ð6Þ
where r(A) is assumed to be in non-increasing order, and we also assume the standard gap condition ðkkb
< kkbþ1Þ. The con-

stant C is proportional to
distðV1;V1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� distðV1;V1Þ2

q :
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The bound (6) can be pessimistic since it mainly uses the last term associated with a fixed dimension subspace iteration, but
(6) serves to explain two cases where the convergence can be fast. The first case is a small C, i.e., when the canonical angle
between V1 and V1 is small; this provides the reason why good initial vectors should be used when they are available. The

second case is a small
maxl>kb

jUjðklÞj
minl6kb

jUjðklÞj
, the Chebyshev filtering is designed to quickly reduce the value of this term.

Convergence rate for the restarted method is more tedious to establish. Intuitively, since Rayleigh–Ritz refinement com-
bined with restart always keeps the current best Ritz vectors in the subspace, and the filters are designed to constantly im-
prove the current subspace towards the wanted eigenspace, convergence is in practice not a problem. However, it is well-
known that restart may slow down the convergence speed, this is one side effect of using limited memory.
5. Numerical results

We present numerical results of Algorithm 3.1 executed without any simplification. Four Hamiltonian matrices from den-
sity functional theory (DFT) electronic-structure calculations are used for the numerical experiments.1 These matrices are
symmetric and indefinite. Table 1 lists some statistics of each matrix.

These matrices are constructed from solving the Kohn–Sham equation
1 Ma
2 http
3 http
AW ¼ ��h2

2me
r2 þ Veff ðx; y; zÞ

 !
W ¼ kEW; ð7Þ
in density functional theory [45,46]. We use real-space pseudopotential method via a high order finite difference scheme
[47,48]. In (7), kE is the energy eigenvalue, W(x, y, z) is the wave function also called the eigenfunction, Veff is the effective sys-
tem potential, me is the electron mass, and �h is the Planck’s constant.

The problem is set up inside a spherical region of radius # centered at the origin. The eigenfunctions satisfy
Dirichlet boundary conditions on the sphere and they vanish outside the spherical region. That is, W(x, y, z) = 0 for

any
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
P #. An uniform grid is laid on a cubical region containing the sphere. Fig. 2 illustrates this grid,

where H = {(x, y, z) : jxj, jyj, jzj 6 #} is the region containing the sphere. A 12th order centered finite difference scheme on
the uniform grid laid on the cubical region is used to discretize the Laplacian.

The potential term Veff contains a local component (diagonal matrix) added to the discretized Laplacian. In addition, there
are nonlocal components around each atom which correspond to adding low-rank matrices to the Laplacian [47,48]. Since
the potential Veff depends on the wave functions W, the eigenproblem (7) is nonlinear and is often solved via a self-consistent
loop. Each matrix in Table 1 corresponds to the final Hamiltonian for which self-consistency has been reached.

In DFT calculations the number of wanted eigenpairs corresponds to the number of occupied states, which is proportional
to the number of valence electrons in a material system. Therefore, the more valence electrons, the more smallest eigen-
values one need to compute. And the corresponding eigenvectors are used to compute charge density which is needed
for updating Veff. Here for simplicity of numerical comparisons in Matlab, we do not restrict kwant to be the number of occu-
pied states.

We implement Algorithm 3.1 (denoted as ‘‘chebdav”) in Matlab and compare with two representative codes: JDCG2 [40]
and LOBPCG3 [49]. JDCG is a Davidson-type method based on JDQR [50]. It takes symmetry into account and therefore is more
efficient than JDQR for symmetric eigenproblems. LOBPCG is a block preconditioned eigensolver. A block Krylov-type method
IRBL [51,52] was also used for comparison but was found to be less competitive when kwant becomes relatively large. Therefore
we only report comparisons of chebdav with JDCG and LOBPCG.

Fig. 3 shows CPU time comparisons computing kwant = 150 smallest eigenvalues and corresponding eigenvectors for the
four matrices listed in Table 1. We compare the common case where no good initial vectors are available. To address this
case, we simply set kinit = 0 for chebdav. For simplicity, we use a fixed polynomial degree m = 25, a fixed block size kb = 6,
and a fixed actmax = 60, for all computations by chebdav in Fig. 3. The convergence tolerance is set to 10�10 for all methods.
The memory usage of chebdav and JDCG is comparable, with the maximum subspace dimension set to 210 and the active
subspace dimension set to 60 for both methods. These choices of dimensions give close to best performance for JDCG for
the targeted problems in Fig. 3, much better than using the default values of JDCG which are mainly for small kwant problems.
LOBPCG uses about three times larger memory, since it uses a block size equal to kwant and the active subspace contains three
such blocks. Note that JDCG is not a block method, we set ones(n, 1) as its initial; the initials for chebdav are ones(n, 1) aug-
mented by kb � 1 = 5 random vectors; while the initials of LOBPCG are ones(n, 1) augmented by kwant � 1 = 149 random vec-
tors. (We note that repeated calling to LOBPCG with a smaller block size and with locking took much longer to converge than
the reported time in Fig. 3.) The speedup rate of chebdav over JDCG and LOBPCG as shown in Fig. 3 is representative for
kwant P 100, as observed from rather extensive test runs on various type of hermitian matrices.

To test the efficiency of the progressive filtering of available initial vectors, we use the 150 eigenvectors computed by
JDCG (as in Fig. 3) and perturbed them by 10�c*rand(n, 150) as initials to chebdav and LOBPCG. Table 2 shows comparison
trices are available from the University of Florida Sparse Matrix Collection [44] under group name PARSEC.
://mntek3.ulb.ac.be/pub/docs/jdcg/.
://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m.

http://mntek3.ulb.ac.be/pub/docs/jdcg/
http://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m


Fig. 2. A typical configuration using an uniform grid for electronic structure calculation of a localized system. The region inside the outer sphere represents
the domain where the wave functions are allowed to be nonzero. The small dots inside the sphere represent atoms [48]. The actual grid is much finer than
the one shown in this figure.

Table 1
Dimension and number of non-zeros (nnz) of four test matrices. The materials correspond to a water molecule,
a silicon dioxide and two hydrogen passivated germanium and silicon quantum dots. The subindex of each
atom name shows the number of the corresponding atom.

Matrix name H2O SiO2 Ge99H100 Si87H76

Dimension 67,024 155,331 112,985 240,369
nnz 2,216,736 11,283,503 8,451,395 10,661,631

Table 2
CPU minutes comparison using the same 150 initial vectors. Chebdav uses kb = 10, with degree m = 20. The
block size for LOBPCG is 150. The total memory used by LOBPCG is about three times more than that of
chebdav.

Matrix Si87H76 H2O SiO2 Ge99H100

Chebdav (10�6) 45.08 9.54 37.25 18.50
LOBPCG (10�6) 196.33 92.07 266.50 136.47
Chebdav (10�8) 26.18 5.91 10.94 10.98
LOBPCG (10�8) 116.53 57.68 146.47 52.00

0

200

400

600

800

1000

1200

C
PU

 m
in

ut
es

CPU minutes for converging lowest 150 eigenvalues

Si87H76   H2O   SiO2 Ge99H100

lobpcg
jdcg
chebdav

0

5

10

15

20

25

C
PU

 s
pe

ed
up

 

Acceleration scale (w.r.t. chebdav)

Si87H76   H2O   SiO2 Ge99H100

lobpcg
jdcg
chebdav

Fig. 3. CPU time comparisons of chebdav, JDCG and LOBPCG for converging 150 eigenpairs of the matrices in Table 1. The second figure plots the CPU time
of LOBPCG and JDCG over that of chebdav, which shows that chebdav is an order of magnitude faster than LOBPCG, and about three times faster than JDCG.
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Fig. 4. The effect of block sizes on converging 100 smallest eigenpairs for Ge99H100 (left) and Si87H76 (right), with other parameters fixed (m = 25,
actmax = 60, dimmax = 150).
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converging the smallest 150 eigenpairs for c = 6 and 8. Since JDCG is non-block, we only compare with LOBPCG in Table 2.
With LOBPCG using a block size 150, we are essentially comparing with an accelerated subspace iteration. The convergence
tolerance is set to 10�10. Table 2 shows that the progressive filtering can effectively utilize all available initial vectors without
using a large block size. However, comparing the data in Table 2 with Fig. 3 we also notice that LOBPCG achieves faster accel-
eration utilizing good initial vectors: Table 2 shows that chebdav is on average only around five times faster than LOBPCG.
This may be attributed to the fact that subspace iteration type methods are particularly good for utilizing many initial
vectors.

To examining the effect of block sizes, we input different kb to Algorithm 3.1 but fix all other parameters. Fig. 4 shows two
representative results with kb varying from 1 to 25 with a stride length 2. Clearly, the block version is consistently more
efficient than the non-block version (kb = 1). We also see that the number of matrix–vector products does not determine
the total CPU time for convergence. From Fig. 4 we see that kb > 15 is less efficient than kb around 10. This is mainly because
that we use a relatively small actmax = 60, which leads to more frequent inner-restarts for kb > 15 than for kb � 10. (Remark:
While not reported here, we observed better efficiency for kb = 25 if we use larger actmax, e.g. actmax = 120.)

For the comparisons in Fig. 4 we simply set the polynomial degree as m = 25. To test the effect of different polynomial
degrees, we fix all other parameters but input m (where m varies from 15 to 40 with a stride length 2) to Algorithm 3.1.
Fig. 5 lists two representative examples for the Hamiltonians from DFT calculations. As seen from Fig. 5, the main trend
is that increasing m appears to improve the efficiency. This is not too surprising since the Hamiltonians have quite clustered
eigenvalues. But it is reasonable to expect that when m becomes too large it will be counterproductive.

Another important parameter related to inner-restart is actmax. As mentioned earlier, our intuition is that if the dimension
of the active subspace is too large, then it can incur more cost related to orthogonalization and basis refinement. In this case,
although the iteration can converge in less steps costing less matrix–vector products, it can take longer CPU time than using
an active subspace with suitable dimension. Fig. 6 confirms this intuition. In Fig. 6 we intensionally set dimmax at a high value
so that outer-restart becomes not necessary (since convergence is achieved before dimmax is reached). The observed differ-
ence is mainly related to actmax, which takes value from 20 to 215 with a stride length 15. The kb is intensionally set to a small
3 so that actmax > 140 may be considered too large relative to this block size. Fig. 6 also shows that if actmax is too small, then
it causes too frequent inner-restarts and takes far more iteration steps (hence longer CPU time) to converge.

The convergence tolerance used in Figs. 4–6 is 10�10. The results in these figures demonstrate that Algorithm 3.1 is robust
and works conveniently with different parameters. Generally, users only need to specify 5 6 kb 6 15, 15 6m 6 35, and actmax

around 10kb. These parameters combined with the default values set in our code for the remaining parameters should gen-
erally lead to quite decent efficiency for Algorithm 3.1.

All the calculations in Matlab were performed on a Dell-R710 computer with two quad-core Intel X5550 Xeon CPU (clock
speed 2.66 GHz) and 144 Gb RAM at the SMU HPC center.

We also implemented Algorithm 3.1 in Fortran95 and integrated it into the DFT package called PARSEC.4 PARSEC, evolved
since early 90’s, is now one of the major real-space pseudopotential DFT packages. Previously PARSEC has three diagonaliza-
tion solvers: A preconditioned block Davidson method called Diagla [53,54], the symmetric eigensolver from ARPACK [7,36]
and the Thick-Restart Lanczos method (TRLanc) [55,8]. All of the four solvers utilize MPI for parallel functionality.
4 http://parsec.ices.utexas.edu/.

http://parsec.ices.utexas.edu/


15 20 25 30 35 40
600

700

800

900

1000

1100

C
PU

 s
ec

on
ds

polynomial degree m

CPU seconds w.r.t. polymonial degree

15 20 25 30 35 40
1.9

1.95

2

2.05

2.1

2.15

2.2x 104

#m
at

−v
ec

t−
pr

od
uc

t

polynomial degree m

Number of mat−vect products  w.r.t. m

15 20 25 30 35 40
1200

1400

1600

1800

2000

2200

C
PU

 s
ec

on
ds

polynomial degree m

CPU seconds w.r.t. polymonial degree

15 20 25 30 35 40
2.7

2.75

2.8

2.85

2.9 x 104

#m
at

−v
ec

t−
pr

od
uc

t

polynomial degree m

Number of mat−vect products  w.r.t. m

Fig. 5. The effect of polynomial degree on converging 100 smallest eigenpairs for Si87H76 and (left) and SiO2 (right), with other parameters fixed (kb = 6,
actmax = 60, dimmax = 150).

20 40 60 80 100 120 140 160 180 200 220
1000

1100

1200

1300

1400

1500

C
PU

 ti
m

e

actmax

CPU seconds w.r.t. actmax

20 40 60 80 100 120 140 160 180 200 2201

1.5

2

2.5

3

3.5 x 104

#m
at

−v
ec

t−
pr

od
uc

t

actmax

Number of mat−vect products  w.r.t. act max

20 40 60 80 100 120 140 160 180 200 220
2000

2200

2400

2600

2800

3000

3200

C
PU

 ti
m

e

actmax

CPU seconds w.r.t. actmax

20 40 60 80 100 120 140 160 180 200 220
1

1.5

2

2.5
3

3.5

4
4.5 x 104

#m
at

−v
ec

t−
pr

od
uc

t

actmax

Number of mat−vect products  w.r.t. act max

Fig. 6. The effect of the actmax size on converging 100 smallest eigenpairs for Ge99H100 (left) and Si87H76 (right), with other parameters fixed (kb = 3, m = 25,
dimmax = 250).

9198 Y. Zhou / Journal of Computational Physics 229 (2010) 9188–9200
ARPACK is one of the most robust and efficient general purpose eigensolvers, especially for nonsymmetric eigenproblems.
It also serves as a standard benchmarking tool for sparse eigenvalue calculations (e.g. [56]). TRLanc is specifically for sparse
symmetric eigenproblems, for which more efficient restarting schemes can be employed.

Table 3 shows comparison of Algorithm 3.1 with ARPACK and TRLanc on a relatively large silicon quantum dot Si4001H1012.
This quantum dot contains 4001 silicon atoms with surface passivation by 1012 hydrogen atoms. The Hamiltonian size is
1,472,440, which reduces to 368,110 by exploiting 4 symmetric group operations. The number of eigenpairs needed is
8524. Diagla is not listed in Table 3 since it did not finish computation within the given 20-h CPU limit. All source codes
Table 3
Comparison of three eigensolvers on a silicon quantum dot Si4001H1012, for which kwant = 8524.
Each solver runs paralelly using 128 SunBlade x6420 cores (CPU clock at 2.3 GHz) on Ranger.
Major parameters used for chebdav are kb = 5, m = 20, actmax = 400 and dimmax = kwant + act-
max = 8924. While for ARPACK and TRLanc, dimmax = 2kwant = 17,048.

Solver Chebdav TRLanc ARPACK

#Mat-Vect products 830,530 109,664 108,942
CPU seconds 9361.89 27,266.28 47,872.40
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are compiled using PGI compiler with same optimization flags. For BLAS/LAPACK calls we use the system optimized AMD
Core Math library (ACML). The calculations were performed on the TeraGrid supercomputer named Ranger at the Texas Ad-
vanced Computing Center, using 128 SunBlade x6420 (AMD Opteron) cores.

For the results in Table 3, chebdav used none good initial vectors, it starts with an initial block containing four random
vectors and the same initial vector as for ARPACK and TRLanc. From the Matlab experiments we see that the parameters used
for chebdav in Table 3 are likely suboptimal. However, even with these parameters, chebdav is several times faster than AR-
PACK and TRLanc, and it uses only about half the memory. We again see that the number of matrix–vector products is not the
only factor that determines CPU time. TRLanc costs slightly more matrix–vector products than ARPACK, but it is close to
twice faster than ARPACK due to its improved restarting scheme. While chebdav costs the most matrix–vector products,
the efficiency gained through these products by the targeted Chebyshev filtering significantly offset the cost elsewhere, such
as reorthogonalization and subspace refinement. Moreover, chebdav mainly depends on matrix–vector products, therefore it
scales better than ARPACK and TRLanc which involve more inner-product operations.

Due to its robustness and efficiency, our block Chebyshev–Davidson is adopted as the default eigensolver for the first step
diagonalization in PARSEC. Using Algorithm 3.1 as the first step diagonalization solver, PARSEC has successfully solved a ser-
ies of challenging problems in density functional calculations, including Hamiltonians with dimension about three million,
where more than 19,000 eigenpairs need to be computed. Interested readers may refer to [57–59].

6. Conclusions

We propose a block Chebyshev–Davidson algorithm with inner–outer restart for large hermitian/symmetric eigenvalue
problem. The essential component is an adaptive procedure for constructing efficient block Chebyshev filters. This procedure
is conveniently realized by adapting the filtering bounds at each iteration to properly magnify the wanted portion of the
spectrum. An inner–outer restart technique is also employed to reduce the subspace dimension, thus effectively reduces
the computational cost related to using an unnecessarily large subspace in a Davidson-type subspace method. We also em-
ploy a progressive filtering technique which enables the full employment of a large number of good initial vectors if they are
available, without using a too large block size. Numerical experiments are performed on several Hamiltonian matrices from
density functional theory calculations in material science. Comparisons with several well-known eigenvalue packages con-
firm the remarkable efficiency and robustness of the block Chebyshev–Davidson algorithm.
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