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Abstract Stewart’s Krylov–Schur algorithm offers two advantages over
Sorensen’s implicitly restarted Arnoldi (IRA) algorithm. The first is ease of
deflation of converged Ritz vectors, the second is the avoidance of the potential
forward instability of the QR algorithm. In this paper we develop a block
version of the Krylov–Schur algorithm for symmetric eigenproblems. Details
of this block algorithm are discussed, including how to handle rank deficient
cases and how to use varying block sizes. Numerical results on the efficiency of
the block Krylov–Schur method are reported.

Keywords Block method · Krylov–Schur · Lanczos · Implicit restart

1 Introduction

Sorensen’s implicitly restarted Arnoldi (IRA) algorithm [27] is one of the
most successful eigenvalue methods and the ARPACK package [17] based
on IRA is the best-known public package and the workhorse for large
eigenproblems ever since its appearance in the late 1990s. In [32] Stewart
proposed the Krylov–Schur method which is mathematically equivalent to
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IRA but offers two practical advantages. First, it is easier to deflate converged
Ritz vectors. Second, the potential forward instability of the QR algorithm
[20, 34] is avoided. This forward instability can cause unwanted Ritz vectors
to persist in the Arnoldi decomposition, hence one needs to employ additional
elaborate purging procedures to purge the unwanted Ritz vectors [16, 28].
These two advantages are gained by giving up the strict upper Hessenberg
form in the Arnoldi decomposition. Instead a Rayleigh quotient matrix is
used, which leads to the (general) Krylov decomposition, as proposed in [32].
For numerical consideration we restrict ourselves to the orthonormal Krylov
decomposition which may be considered as a general Arnoldi factorization.
One performs the Schur decomposition on the Rayleigh quotient matrix.
Note that the Ritz values are contained in the diagonal blocks of the (quasi)-
triangular Schur factor, therefore, it is easier to perform deflation and purging
with this decomposition than with the Arnoldi decomposition, which uses
Rayleigh quotient of upper Hessenberg form. The advantage is more obvious
for symmetric eigenvalue problems because the (quasi)-triangular Schur factor
becomes diagonal. In the symmetric case, the Krylov–Schur method is called
Krylov-spectral [33], since the Schur decomposition reduces to the spectral
decomposition. As mentioned in [32], the Krylov-spectral method is identical
to the thick restart method of Wu and Simon [35]. Here we note that the
advantages of Krylov-spectral are gained by losing one advantage of IRA—
the flexibility in applying shifts that are not Ritz values.

In this paper we develop a block version of the Krylov–Schur method
for symmetric eigenproblems. We notice a third advantage of Krylov–Schur
method over IRA: It is relatively easier to develop a block version method
based on the Krylov–Schur structure. The reason is that in the contraction
phase, the Krylov–Schur method does not use implicit shifted QR to filter
unwanted Ritz values; while a genuine block version IRA would require block
implicit shifted QR decompositions to apply unwanted Ritz values as shifts.
Efficient methods for block implicit shifted QR decomposition have been hard
to construct (e.g. [18]). The IRBL method presented in [1, 2] actually uses
explicit shifted QR decomposition for this purpose, which may not be as stable
as the original IRA/IRL based on implicit QR decomposition.

The need for a block version eigensolver arises in many applications.
Block eigensolvers remain important throughout the development of modern
numerical linear algebra. Literature on block eigensolvers includes [1, 3, 6, 8–
12, 21, 23–26]. Both block methods and non-block methods have their merits
(see [19, pp. 316–320] for a concise discussion). Block methods are more
efficient for multiple or clustered eigenvalues. Moreover, a block method
is the natural choice when several good initial vectors are available. This
situation is common for the self-consistency iteration in electronic structure
calculations, where a former loop provides good initial vectors for the next
loop. One other advantage of a block method over a non-block method is
better utilization of cache. This can yield a significant gain for large dense
matrix–vector products; while for large sparse matrix–vector products, the
cache performance gain comes from less frequent access to the storage scheme
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(data structure) describing the sparse matrix; although this gain may be less
significant if the matrix–vector products can be directly coded without using
any storage schemes.

The advantages of block methods come with extra complexities in algorithm
description and coding. The most noticeable complexity is the so called rank
deficient case, which is the situation when some vectors in a new block become
linearly dependent. Even though much was written on block methods, there
lack detailed discussions on the rank deficient cases. It is likely that differ-
ent authors have different implementations. A block Lanczos method was
proposed in [8] with a detailed discussion of deflation of linearly dependent
Lanczos vectors, but the method can only use BLAS-2 and the block size
keeps decreasing. In this paper we give a detailed discussion on how to deal
with rank deficiency. Rank revealing pivoted QR decomposition (BLAS-3)
is used for the rank deficient case. Block size is reduced whenever there is
rank deficiency. In the block Krylov–Schur method, the block size can also be
increased naturally, this is discussed in Section 2.2. Therefore the block size
is adapted when necessary. Adaptive block Lanczos methods exist in [3, 36],
where block size is increased when needed. In contrast, the block size in our
block Lanczos code is not increased, block size is increased only in the Krylov–
Schur cycle if necessary.

In the next section we describe the block Krylov–Schur method for sym-
metric eigenproblems. We continue to use the term Krylov–Schur instead of
Krylov-spectral to follow the terminology initiated by Stewart. We present
a detailed discussion on the rank deficient case in Section 2.1. The idea of
adaptive block size is discussed in Section 2.2. Note that the adaptive idea in
[3] only refers to increasing block size for the Lanczos decomposition, while
here we refer to both increasing and decreasing block size adaptively inside the
Krylov–Schur loop. In Section 3 we discuss the block Lanczos decomposition,
which is an important step for the Krylov–Schur method. Section 5 presents
numerical results of block Krylov–Schur, including comparisons of our Matlab
code to the Matlab codes IRBL [1, 2], LOBPCG [11] and Matlab eigs, and
comparisons of our Fortran code to ARPACK [17].

2 Block Krylov–Schur for symmetric eigenproblems

We now describe the Krylov–Schur method. The Krylov–Schur method be-
longs to the implicit restart category, i.e., the restarting vector is obtained not
by explicit polynomial filtering but by implicit filtering. Sorensen [27] achieved
the implicit polynomial filtering by utilizing the property of the shifted QR
algorithm. The implicit polynomial filtering for Krylov–Schur is not obvious.
However, the following theorem shows the equivalence between Krylov–
Schur and IRA. We denote by I RA(k, m) and KS(k, m), the subspaces with
maximum dimension m which is contracted to dimension k at restart, by the
IRA and Krylov–Schur method, respectively.
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Theorem 2.1 Starting from the same initial vector, if at each restart, KS(k, m)

and I RA(k, m) filter away the same m−k Ritz values that are distinct from the
remaining k Ritz values, then the basis vectors after contraction of both methods
span the same subspace.

Proof See [32] or [33, pp. 331–332]. ��

Theorem 3.4 in [31] contains essentially the same equivalence result as the
above Theorem 2.1 but with a different proof. Theorem 2.1 holds true for
a general matrix, hence it is also true for the symmetric case that we are
interested in.

The block Krylov–Schur method is a natural block extension of the Krylov–
Schur method. From Theorem 2.1 we know that the single vector Krylov–
Schur method is mathematically equivalent to the highly successful IRA. As
mentioned in the introduction, the Krylov–Schur method has two advantages
over IRA. Therefore we can expect the block Krylov–Schur method to offer
the efficiency of IRA, the ease of deflation, and the advantages of a block
method.

The general cycle of block Krylov–Schur method for symmetric H ∈ R
n×n

contains four steps: (here b denotes the block size; ks denotes the starting basis
size, it is also the basis size after contraction; kf denotes the final basis size;
ks < kf ; and V denotes the orthonormal basis, T the Rayleigh-quotient matrix)

1. Augment a size ks block Krylov decomposition, HVks = Vks Tks + FBT ,
where F ⊥ Vks , F ∈ R

n×b
, B ∈ R

ks×b , to a size kf block Krylov decompo-
sition: HVkf = Vkf Tkf + F̃ ET

kf
, (F̃ ⊥ Vkf );

(this is essentially a block Lanczos augmentation step);
2. Compute the Schur (spectral) decomposition of Tkf :

Tkf Qkf = Qkf Dkf , where the Ritz values are ordered so that the first ks

Ritz pairs are wanted pairs;
3. Contract the size kf orthogonal basis to size ks:

Vks ← Vkf Qkf (:, 1 : ks);
4. The size ks Krylov decomposition now can be written as:

HVks = Vks Dks + F̃ BT , where BT = ET
kf

Qkf (:, 1 : ks);
repeat from step 1.

Actually, at the very beginning of the block Krylov–Schur cycle, one applies
a block Lanczos iteration to build a size kf Lanczos decomposition. The
method then iterates 2 → 3 → 4 → 1 as listed above. The multiplication by
H at step 1 is usually achieved via a user supplied external subroutine.

The augmentation of Krylov decomposition by block Lanczos at step 1
is important, and will be discussed in Section 3. We devote a subroutine
block_lanczos() (presented later in Algorithm 3.1) for this augmenta-
tion. The variable blkcontrol is used to control the block size. With this
block Lanczos decomposition ready, it is relatively easy to describe the
block Krylov–Schur method in a more detailed pseudo code. We first call
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block_lanczos() to get a size-kf Lanczos decomposition, then compute the
spectral decomposition of the size-kf Rayleigh-quotient matrix T. Then the
size-kf basis V is contracted into a size-ks basis, based on the selection criteria
of the computed Rayleigh–Ritz pairs.

In order to directly call the block_lanczos() code without changing the
interface, in the block Krylov–Schur code we add one block of basis vectors
to V and update T accordingly before calling block_lanczos() again. As
seen from the first and third pictures in Fig. 1, after the contraction and after
adding the residual terms to the last rows of T, we do one more step of
block augmentation, which adds the last block_size columns to T and makes T
symmetric before passing it to block_lanczos() for further augmentation.

The detailed pseudo code is shown in Algorithm 2.1 (Fig. 2). Where the
integer max_subspdim is the maximum subspace dimension allowed; and
blkcontrol=1 means that the block size can be increased when necessary.
The seemingly complicated indexing in the pseudo code handles the deflation
of converged Ritz pairs. In the next subsections we provide more details on
Algorithm 2.1. One important detail of the block Krylov–Schur method is how
to handle the rank deficient case.
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Fig. 1 Sample structure of the Rayleigh-quotient matrix T (block_size=3). The first figure contains
the diagonal term after the contraction phase, with residual terms added at the last block_size
rows. One additional step block augmentation leads to the last block_size columns which makes
T symmetric. The second figure is the contracted T augmented by block Lanczos. The third figure
also contains the diagonal term after the contraction phase with correction terms added. It is the
same as the first figure, except that the converged Ritz values at the beginning of the diagonal have
been deflated, so the active T only consists of the part with nonzero residuals (or off-diagonals).
The fourth figure is the deflated T augmented by block Lanczos. Note that the size of the active T
remains the same because the size of T increases after each deflation
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Fig. 2 Pseudocode for the Block Krylov–Schur method

2.1 Handling the rank deficient case

Implementations of block methods are more complicated than their non-
block counterparts, partly because vectors in a new block can become linearly
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dependent at some stage of the iteration. This rank deficiency can appear in
any block method. Hence what we discuss in this subsection also treats the
rank deficient case for the block Lanczos decomposition in Section 3.

Suppose we already have a size-k block Krylov–Schur decomposition of
H ∈ R

n×n,

HVk = VkTk + FBT ,

VT
k Vk = Ik, FT Vk = 0, F ∈ R

n×b
. (1)

The next step is to augment the size-k orthonormal basis Vk into a size-(k + b)

orthonormal basis. Let the QR decomposition of F be F = QR. Then (1) can
be written as

HVk = [Vk, Q]
[

Tk

RBT

]
. (2)

If F is of full rank, then we know QT Vk = 0 and Q contains the wanted size-
b new augmentation vectors. In the case when F is rank deficient, we need
a more careful examination of the QR decomposition of F. A rank revealing
pivoted QR decomposition is more appropriate for this case. Let the pivoted
thin QR decomposition of F be F P = QR, where P is the permutation matrix.
We express QR in the following rank revealing form,

F P = QR = [Q1, Q2]
[ [R11, R12]

0

]
= Q1[R11, R12], (3)

where Q1 ∈ R
n×r and R11 is a r × r non-singular upper triangular matrix (r :=

rank(R) = rank(F)). From (3) it is clear that F ⊥ Vk now only guarantees
Q1 ⊥ Vk, but not Q2 ⊥ Vk.

For a block method with fixed block size, Q2 must be re-orthonormalized
against Vk to make sure that the augmented basis [V, Q1, Q2] will continue to
be orthonormal. Using Q2 instead of other vectors avoids the need to generate
new vectors and the need to orthogonalize the new vectors against Q1. This is
because the block Gram–Schmidt orthogonalization

Q2 ← Q2 − Vk(VT
k Q2),

with re-orthogonalization if necessary, gives a Q2 that still satisfies Q2 ⊥ Q1.
Certainly this favorable situation may be lost if some vectors in Q2 happen to
be in range{Vk}. In this case one has to generate random vectors to replace
the zero vectors produced from the block Gram-Schmidt step, and one can not
waive the re-orthogonalization of the newly generated vectors against Q1.

In order to uniformly treat all possible cases, including the case when some
vectors in Q2 may be in range{Vk}, we choose to use not block Gram-Schmidt
but instead a single vector version Gram-Schmidt with re-orthogonalization.
This approach is essentially the DGKS [7] method that is used in ARPACK
[17]. The difference is that this single vector version DGKS is now used in a
block method. Our code orthonormalizes vectors in Q2, one by one against Vk

until all vectors in Q2 that are not in range{Vk} are used up. This process will
produce Q̂2 ⊥ [Vk, Q1]. During the process, the second step Gram-Schmidt
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refinement will count the number of vectors in Q2 that are in range{Vk}, these
vectors will be replaced by random vectors after all vectors in Q2 are tried.
And the random vectors are orthonormalized against [Vk, Q1, Q̂2] to give the
desired size-(k + b) orthonormal basis.

2.2 Using adaptive block sizes

In a block method, the block size need not be fixed. It is advantageous that the
method can adaptively adjust its block size at different stages of the iteration.
We propose two natural ways to achieve this goal. Note that in both cases
the goal is to keep a valid F = QM decomposition where Q is an orthogonal
matrix which contains the orthonormal basis of F, and M = QT F. After this
decomposition is achieved, the Krylov augmentation can be carried out in a
standard way.

The first is to shrink the block size when F becomes rank deficient. That
is, if the rank revealing QR of F is (3) and 0 < r < b , then the block size b is
reduced to r. The basis is augmented as [Vk, Q1] and the triangular factor R
replaced by

[R11, R12]P−1. (4)

In the extremal case that r = 0, one can reset the block size to any suitable
value. A good choice is to apply the method discussed above by orthogo-
nalizing vectors in Q2 against Vk, and set the new block size as the number
of vectors in Q2 that are not in range{Vk}. If this number is 0, one has to
generate random vectors and perform a suitable orthogonalization to produce
orthonormal vectors for augmentation. In any of these cases when r = 0, the
update of the upper triangular factor R is simply a zero matrix of the same size
as the updated block size.

The second is to adaptively increase the block size if the current block size is
determined to be too small. This readily fits in the block Krylov–Schur method.
Because in Algorithm 2.1 step III.1 we compute the eigenvalues of T, if the
size of clustering of these Ritz values is larger than the current block size, then
we can increase the block size to be at least the size of the clustering. This
idea is in the same vein as in [3]. The difference is that in [3], the block size is
adjusted at each step, which means the Ritz values have to be computed at each
step of the block Lanczos iteration; while in block Krylov–Schur, we adjust the
block size only after step III.1 of Algorithm 2.1 when the current Ritz values
become available. The advantage is that we can keep the standard update
of block Lanczos which does not require Ritz value computations at each
step; moreover, adjusting block size too frequently can increase the coding
complexity but may not offer much computational efficiency because of the
extra Ritz value computations and block size determinations.

To increase the block size we make the following observations. Suppose that
the pivoted QR decomposition of F [same notations as in (3)] is,

F = QRP−1 = [Q1, Q2]
[ [R11, R12]

0

]
P−1 = Q1[R11, R12]P−1, (5)
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where F can be of full rank or rank deficient (if r = b then R12 = ∅). Then the
size-k block Krylov decomposition HVk = VkTk + FBT becomes,

HVk = VkTk + Q1[R11, R12]P−1 BT

= [Vk, Q1]
[

Tk

[R11, R12]P−1 BT

]
. (6)

Suppose now the block size should be increased to b̂ > b . One just needs to
construct b̂ − r new basis vectors. This is achieved by generating b̂ − b random
vectors, orthogonalizing these vectors and the b − r vectors Q2 in (5) against
[Vk, Q1] to make an orthonormal basis of size b̂ − r. Denote the new basis as
Q̂2, then the following holds,

HVk =
[

Vk, [Q1, Q̂2]
]⎡
⎣ Tk[ [R11, R12]P−1 BT

0

]⎤
⎦ . (7)

Therefore the block Krylov–Schur iteration can continue based on (7), with
the current block size b̂ . Note that updating Tk by adding a zero matrix
corresponding to the newly added basis Q2 makes the update economical,
any other choice would violate the original Krylov decomposition HVk =
VkTk + FBT and incur the need to compute residual vectors corresponding
to the newly constructed basis.

In our code we assign an integer variable blkcontrol to control the
change of the block size, blkcontrol=0 means fixed block size. In the code
block_lanczos() we do not increase the block size, so if blkcontrol 	=0,
then the block size decreases whenever F becomes rank deficient. While in
krylov_schur(), the block size can increase when necessary if the input
from the main program is blkcontrol=1, otherwise the block size output from
block_lanczos() is kept fixed.

Choosing a best b̂ > b when the previous block size b is determined to
be too small is a nontrivial task, [3, 36] presented some adaptive techniques.
We actually take a more straightforward approach here: we use deflation and
reorthogonalization, including reorthogonalization to the deflated converged
eigenvectors; by this we can find all the required eigenpairs inside a cluster
even when the updated b̂ is less than the true size of the eigen cluster.

The other coding detail is that the LAPACK routine dgeqp3() for the
pivoted QR decomposition (same for the function qr() in Matlab) does not
produce a permutation matrix P as listed in (5), only a vector containing
the permutation information is returned. That is, we only get F(:, e) = QR
where the vector e contains the column pivoting information, but we need
a factorization of the original F. Notice that as long as we get the reverse
permutation array of e, i.e., a vector denoted as inve s.t. e(inve( j )) = j for
j = 1 : size(F, 2), then it is easy to verify that F = QR(:, inve). Hence the P−1

expression in (4) and (5–7) is not a problem.
We note that for a truly robust implementation, a rank revealing pivoted QR

decomposition as in [4] should be used, because the pivoted QR implemented
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in LAPACK dgeqp3() and Matlab qr() is not guaranteed to give an accurate
numerical rank s.t. rank(R)=rank(F). One would have to determined rank(F)

separately from the pivoted QR decomposition, which may be costly. Cur-
rently our Fortran code uses dgeqp3() and Matlab code uses qr() directly,
this is not the best solution. But the approaches we discussed for the rank
deficient cases should be straightforward to implement when a rank revealing
pivoted QR decomposition routine becomes available in the future release of
LAPACK.

2.3 Deflation of converged wanted eigenpairs

As mentioned in the introduction, one main advantage of the Krylov–Schur
method is its convenience in deflating converged Ritz vectors. This advantage
is preserved in the block Krylov–Schur method. Suppose that the block Krylov
decomposition is (8) and the spectral decomposition of T is (9),

HṼ = ṼT + FBT , (8)

T X = X D. (9)

Denote V = Ṽ X, and let the QR decomposition of F be F = QR, then

HV = V D + QRBT X. (10)

We order the spectral decomposition of T so that the Ritz pairs at the
beginning parts of V and D approximate the wanted eigenpairs of H better
than the latter parts. If the residual term RBT X has structure [0, B̂T ], then
(10) can be written as,

H[Vc, Vnc] = [Vc, Vnc]
[

Dc

Dnc

]
+ Q[0, B̂T ]. (11)

It follows readily that (11) reduces to

HVc = Vc Dc,

HVnc = Vnc Dnc + QB̂T . (12)

That is, the converged Ritz vectors Vc and the converged Ritz values Dc are
deflated at the beginning parts of V and D respectively. One only needs to
work with (12)—the nonconverged (active) part, for the next Krylov–Schur
iterations, with the exception that new basis vectors need to be orthogonalized
against Vc. Stewart pointed out [33, p. 347] that the deflation in the Krylov–
Schur method is closely related to the implicit deflation in [22, pp. 180–183].

It is easy to see that in this block method we can do deflation vector by
vector based on the residual norm of each column in RBT X. There is no need
to insist that deflation in a block method should be done block by block. The
ease of deflation is one of the powerful features of the Krylov–Schur method.
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3 Block Lanczos decomposition

Now we focus on the remaining important step of the block Krylov–Schur
method, namely the block Lanczos decomposition. As is expected, the pop-
ularity of the Lanczos method [15] in the last several decades has resulted
in many publications on block variants of the Lanczos method. However, as
noted in the introduction, it is still useful to provide detailed discussions of the
rank deficient case. In Section 2.1 we presented an approach based on BLAS-
3 rank revealing pivoted QR decomposition for the rank deficient case in the

Fig. 3 Pseudocode for a Block Lanczos decomposition
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Krylov–Schur decomposition. This approach is also used to handle the possible
rank deficiency in the block Lanczos decomposition.

Pseudocode (Algorithm 3.1) describes how to expand a size-k general
Lanczos decomposition of a symmetric H to a size-kf general Lanczos decom-
position (Fig. 3). That is, starting from

HV(:, 1 : k) = V(:, 1 : k)T(1 : k, 1 : k) + FET
k ,

V(:, 1 : k)T V(:, 1 : k) = Ik, FT V(:, 1 : k) = 0, (13)

the code will expand V and T into the following size-kf decomposition,

HV(:, 1 : kf ) = V(:, 1 : kf )T(1 : kf , 1 : kf ) + F̂ ET
kf
,

V(:, 1 : kf )
T V(:, 1 : kf ) = Ikf , F̂T V(:, 1 : kf ) = 0. (14)

The decompositions (13) and (14) are called general Lanczos decomposition
because the Rayleigh-quotient matrices T in them are not block tri-diagonal,
instead they are of the forms pictured in Fig. 1. By the extra augmenta-
tion step in the krylov_schur() code, the residual matrix B in a Krylov
decomposition is augmented into T(1 :k, 1 :k) so that the last term in (13)
closely resembles a block Lanczos decomposition. One can then call any
block Lanczos code to augment (13) into (14). With this design, the coding
complexity of Krylov–Schur method is isolated in the krylov_schur() part
without affecting the block Lanczos part.

In Algorithm 3.1, b denotes the block size. The integer blkcontrol is used to
control the change of block size: if blkcontrol=0 then the block size remains
constant through out the Lanczos decomposition, otherwise the block size is
reduced when F is rank deficient.

We note that the reorthogonalization approach used is full
reorthogonalization.

4 Block size constraint of block methods based on Krylov-type decomposition

In this section we briefly discuss the special situation when a large number
of good initial vectors are available. This situation is common in the self-
consistent calculations based on the density functional theory [13].

An accepted rule on block methods based on Krylov (e.g., Lanczos or
Arnoldi) decompositions is that a large block size does not yield good effi-
ciency. Besides hardware concerns (cache size, etc), and the less significant
gain for a block method on sparse matrix–vector products, a large block size
can potentially reduce the efficiency of a restarted Krylov subspace method.
This is because for a restarted method with a fixed maximum subspace
dimension, if the maximum degree of the Krylov polynomial for a single vector
method is kdeg, then the maximum polynomial degree for a method with block-
size b is f loor(kdeg/b), which can be too low to be effective if b is large.
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It is tempting to include all the available good initial vectors in the basis
V0 and then augment V0 using a smaller block size. The problem with this
approach is that in the Krylov-type decomposition setting, at the beginning the
relation

AV0 = V0T + N, where T = VT
0 AV0,

needs to be satisfied. The familiar relation N = FET for a low rank F or-
thogonal to V0 generally does not hold. That is, N needs to have as many
columns as V0 does. Using a block size smaller than the column size of this
N will violate the Krylov decomposition and will not result in the desirable
T = VT AV when V0 is augmented into V. The Davidson-type method that
gives up the Krylov subspace structure may be better suited for the task of
including a large number of good initial vectors and then using a suitable small
block size to augment the basis, see e.g. [29, 30, 37].

5 Numerical results

We developed both Matlab and Fortran codes of the block Krylov–Schur (KS)
method. Currently our codes only solve the standard symmetric eigenprob-
lems. For the numerical results in this paper we always compute the nneed
number of eigenvalues with the smallest algebraic values together with their
eigenvectors.

We first test the Matlab code. All the Matlab comparisons are performed on
a Dell PC with dual Intel Xeon 2.66G Hz CPU and 1 GB RAM running Debian
Linux with Linux kernel version 2.4.25. The Matlab version is 6.5 (R13).

Our Matlab block Krylov–Schur code is compared with two available Mat-
lab codes on block eigensolvers: irbleigs of IRBL [1, 2] and lobpcg of LOBPCG
[11]. As presented in [1, 2], irbleigs showed a very good numerical behavior for
relatively large symmetric eigenproblems. However, our experience with the
code shows that the good numerical behavior is somewhat restricted to the case
where a small number of eigenpairs is required. When the required number
of eigenpairs increases, the efficiency of irbleigs deteriorates. Table 1 shows a
comparison of KS, IRBL and LOBPCG (without preconditioning) on a 2-D
Laplacian (all Laplacians used in this paper are finite difference discretizations
on the unit domain with zero Dirichlet boundary condition).

The block size of KS and IRBL is chosen to be 4. The starting vectors for KS
and IRBL are the same random matrix with four columns. IRBL automatically
adjusts its block size. To fit the interface of lobpcg, this random matrix is
augmented into nneed columns to be the initial vectors of LOBPCG; that is,
the block size of LOBPCG is nneed. The maximum restart number is set to
2,500. Table 1 shows that irbleigs did not converge within 2,500 restarts for
nneed=300. In several test runs, irbleigs often has convergence problem for
nneed>90 if the maximum restart number is less than 2,000. In contrast, KS
converged easily and encountered no problem with increasing nneed. Table 1
shows that KS computed 300 eigenpairs in much less cputime than it took
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Table 1 Accuracy and cpu (seconds) comparison on a 2-D Laplacian

nneed 15 45 90 105 135 150 300

irbl err. 1.89e-6 1.77e-7 1.28e-6 2.17e-6 1.54e-6 1.23e-6 –
lobpcg err. 3.82e-8 4.58e-9 5.28e-10 3.07e-9 6.04e-10 2.29e-9 7.68e-10
ks err. 1.30e-8 1.33e-8 6.36e-9 5.33e-9 9.15e-10 1.23e-9 7.83e-10
irbl cpu 21.30 213.56 672.86 935.78 1,488.49 1,931.58 –
lobpcg cpu 53.18 108.47 309.23 322.84 483.32 508.28 2,036.24
ks cpu 14.06 20.62 37.97 49.40 78.92 84.82 214.34

ndim = (70 × 70) = 4,900. nneed is the number of required eigenpairs. We compute the smallest
algebraic values. The accuracy (err.) is the largest actual residual norm of converged eigenpairs.
The difference of each eigenvalue computed by the three methods (not reported here) is constantly
smaller than 10−14.

IRBL and LOBPCG to compute 90 eigenpairs. We also tried the more difficult
1-D Laplacian with dimension 2,000, in this case IRBL did not converge for
nneed>15 within 2,500 restarts. LOBPCG and KS both converged to similar
accuracy, with KS being at least five times faster than LOBPCG for increasing
nneed. The efficiency deterioration of irbleigs for a large nneed may be related
to the fact that irbleigs automatically adjusts its block size to a large value
according to nneed, and this large block size is fixed during the iteration, which
makes the block Lanczos update less efficient; moreover, it may be difficult to
compute a relatively large number of approximate Leja points. We also notice
that IRBL computes eigenvalues with same high accuracy as LOBPCG and
KS, but the eigenvectors computed by irbleigs do not have as high accuracy
as LOBPCG and KS. LOBPCG turns out to be more efficient than IRBL for
larger nneed. One possible reason that LOBPCG becomes less efficient than
KS for larger nneed is that the local optimal is computed from a subspace
of dimension 3 ∗ nneed, and this “local” subspace is larger than the global
subspace (dimension ≈ 2∗ nneed) used in KS.

In the following we compare our Matlab code with the Matlab v6.5 eigs.
This eigs function is essentially the Fortran ARPACK accessed via the Matlab
mex interface, hence it is very efficient and well tuned. While it is not realistic
to expect codes written directly in Matlab to compare favorably with eigs in
cputime, especially for relatively large eigenproblems with a not too small
nneed, our goal is to see if a block method can have some advantages. We
use two silicon quantum dot models from materials science, Si10H16 and SiO,
where Si10H16 is the hydrogenated silicon, with ten silicon atoms passivated
by 16 hydrogen atoms, and SiO is an monoxidized silicon. The matrices are
obtained from ab initio DFT calculations after the self-consistency is reached
[5, 14]. Figure 4 shows the sparsity structures of the corresponding Hamiltonian
matrices. The largest multiplicity for the computed eigenvalues of Si10H16 and
SiO is 3 and 2 respectively.

For the numerical test, the blksize is set to 3. We first compute blksize
converged eigenpairs (V, D) by eigs, then apply perturbations to V by using

V0 = V(:, 1 : blksize) + 10−i ∗ rand(ndim, blksize), for i = 2 : 10 (15)
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Fig. 4 Sparsity structures of the Hamiltonian matrices of the silicon quantum dots Si10H16 and
SiO, with dimension 17,077 and 33,401 respectively

as the initial three vectors for the block Krylov–Schur method. The column
sums of V0 is used as the initial vector for eigs. The convergence tolerance is set
to 10−11. We compute nneed=15, 25, 35 eigenpairs. The contracted subspace
dimension ks is set to nneed; and the augmented subspace dimension kf is set
to 2∗nneed, which is extended slightly after deflation by each method.

Figure 5 shows the cputime results for Si10H16 and SiO, respectively. It
may seem surprising that the improved initial vectors do not necessarily lead
to faster overall convergence. However, this is not surprising because nneed
is at least five times larger than the number of good initial vectors. If we
set blksize=nneed, then as predicted, the improved initial vectors lead to
less iteration steps to convergence for the block method, but blksize=nneed
actually takes longer cputime to converge than with blksize=3 except when
the perturbation in (15) becomes smaller than 10−9. It may also seem surprising
that for both models, nneed=15 usually takes longer to converge than nneed=
25. This is not surprising if we note that the augmented subspace dimension
is set to 2∗nneed, which means that the degree of the Krylov polynomial
for nneed=15 is smaller than that for nneed=25. As seen from both Fig. 5,
the cputime for the Matlab block Krylov–Schur code is comparable with
the Matlab eigs. For these two tests, Krylov–Schur uses more cputime with
blksize=1 than with blksize=3, this confirms the advantage of the block
method. We also note that for nneed>50 the eigs which is essentially based
on a Fortran package wins more in cputime.

Finally we present comparisons between our Fortran block Krylov–Schur
code and the Fortran ARPACK. The first example is a 2-D Laplacian with
ndim = 62,500, 78,400 and 90,000. The block size is set to 4.

As can be seen from Table 2, even though the restart numbers and
matrix–vector multiplications of the block Krylov–Schur both exceed those of
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Fig. 5 Cputime comparison
for block Krylov–Schur (with
three improved initial
vectors) and eigs (with one
improved initial vector) for
Si10H16 (top) and SiO
(bottom)
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ARPACK, the cputime of the block method is smaller. The gain in cputime
can be attributed to the fact that the eigenvalues of the 2-D Laplacian of the
tested dimensions are not well separated, and that the block size 4 fits the
multiplicity of the eigenvalues, hence the block method has an advantage.
The computation is done on the IBM power4 supercomputer running AIX
5.2 of the Minnesota Supercomputing Institute. All codes are compiled by
the IBM Fortran compiler xlf_r using optimization flags: -O4 -qstrict
-qmaxmem=-1 -qtune=pwr4 -qarch=pwr4.

We also test our codes on two larger Silicon quantum dot models: Si34H36

and an oxidized silicon SiO2. The sparsity structures and dimensions of the
Hamiltonian matrices are shown in Fig. 6. The eigenvalues for these models
are not very clustered, actually the computed nneed eigenvalues of SiO2 are
all simple. Thus ARPACK is expected to be very efficient for these models.
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Table 2 Comparison of Fortran block Krylov–Schur code with ARPACK on a 2-D Laplacian
with different ndim

# mat-vec mult # restart cpu (seconds)

ndim = 62,500
ARPACK 4,935 31 853.81
KS 5,856 (1,464) 33 691.48

ndim = 78,400
ARPACK 5,469 34 1,289.69
KS 6,672 (1,668) 38 1,040.28

ndim = 90,000
ARPACK 5,912 37 1,607.77
KS 7,132 (1,783) 41 1,257.10

nneed=100. tol=10−12. Maximum subspace dimension is set to 300. All the source codes are
compiled with the same optimization flags. The numbers in parenthesis correspond to the number
of block matrix–vector multiplications.

On the IBM AIX power4 supercomputer ARPACK is constantly faster than
the block Krylov–Schur code. However, the block Krylov–Schur code is faster
than ARPACK on a Sun Blade-2000 workstation that has 6 GB RAM, using
one of the dual 900 Mhz UltraSparcIII cpus. The compiler used on the
Sun workstation is Sun f90 compiler, with optimization flags: -64 -fast
-dalign -native -xO5 (Table 3).

The comparisons between our Fortran block Krylov–Schur package and
ARPACK are preliminary, but we expect that a well developed package based
on the block version of the Krylov–Schur algorithm will be quite useful in some
situations such as when the eigenvalues have high multiplicity or are clustered.

Fig. 6 Sparsity structures of the Hamiltonian matrices of the silicon quantum dots Si34H36 and
SiO2, with dimension 97,569 and 155,331 respectively
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Table 3 Comparison of Fortran block Krylov–Schur code with ARPACK on Si34H36 and SiO2

# mat-vec mult # restart cputime (IBM) cputime (SUN)

ndim = 97,569
ARPACK 1,424 17 235.30 s 1,092.70 s
KS 1,719 (573) 19 271.85 s 960.01 s

ndim = 155,331
ARPACK 1,652 22 573.65 s 2,347.08 s
KS 2,103 (701) 26 678.01 s 2,194.42 s

nneed=50, blksize=3, tol=10−12. Maximum subspace dimension is set to 150. The numbers in
parenthesis correspond to the number of block matrix–vector multiplications. On each platform all
the source codes are compiled with the same optimization flags.

6 Conclusions

In this paper we studied an extension of the Krylov–Schur algorithm into a
block version. We proposed to use the rank revealing pivoted QR to handle
the rank deficient cases that can cause difficulties in block methods. We also
introduced ways to adaptively adjust the block size during iterations inside
the block Krylov–Schur algorithm. We developed a Matlab code of the block
Krylov–Schur method, and the numerical comparisons show that, this code is
efficient and robust. We also developed a Fortran package based on the block
Krylov–Schur method. The preliminary comparisons with the Fortran package
ARPACK are encouraging.

References

1. Baglama, J., Calvetti, D., Reichel, L.: IRBL: an implicitly restarted block-lanczos method for
large-scale Hermitian eigenproblems. SIAM J. Sci. Comput. 24, 1650–1677 (2003)

2. Baglama, J., Calvetti, D., Reichel, L.: Irbleigs: a MATLAB program for computing a few
eigenpairs of a large sparse Hermitian matrix. ACM Trans. Math. Software 5, 337–348 (2003)

3. Bai, Z., Day, D., Ye, Q.: ABLE: an adaptive block Lanczos method for non-Hermitian
eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 1060–1082 (1999)

4. Bischof, C.H., Quintana-Ortí, G.: Computing rank-revealing QR factorizations of dense ma-
trices. ACM Trans. Math. Software 24, 226–253 (1998)

5. Chelikowsky, J.R., Troullier, N., Saad, Y.: Finite-difference-pseudopotential method: elec-
tronic structure calculations without a basis. Phys. Rev. Lett. 72, 1240–1243 (1994)

6. Dai, H., Lancaster, P.: Preconditioning block Lanczos algorithm for solving symmetric eigen-
value problems. J. Comput. Math. 18(4), 365–374 (2000)

7. Daniel, J., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and stable algo-
rithms for updating the Gram–Schmidt QR factorization. Math. Comp. 30, 772–795 (1976)

8. Freund, R.W.: Band Lanczos method. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der
Vorst, H. (eds.), Templates for the Solution of Algebraic Eigenvalue Problems: A Practical
Guide, pp. 80–88. SIAM, Philadelphia (2000)

9. Golub, G.H., Luk, F.T., Overton, M.L.: A block Lanczos method for computing the singular
values and corresponding singular vectors of a matrix. ACM Trans. Math. Software 7, 149–169
(1981)

10. Grimes, R.G., Lewis, J.G., Simon, H.D.: A shifted block Lanczos algorithm for solving sparse
symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15, 228–272 (1994)

11. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block precon-
ditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)



Numer Algor (2008) 47:341–359 359

12. Knyazev, A.V., Neymeyr, K.: Efficient solution of symmetric eigenvalue problems using multi-
grid preconditioners in the locally optimal block conjugate gradient method. ETNA 15, 38–55
(2003)

13. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects.
Phys. Rev. 140, A1133–A1138 (1965)

14. Kronik, L., Makmal, A., Tiago, M., Alemany, M., Jain, M., Huang, X., Saad, Y., Chelikowsky,
J.: PARSEC—the pseudopotential algorithm for real-space electronic structure calcu-
lations: recent advances and novel applications to nano-structures. Phys. Status Solidi B 243,
1063–1079 (2006)

15. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. J. Res. Nat. Bur. Standards 45, 255–282 (1950)

16. Lehoucq, R., Sorensen, D.C.: Deflation techniques for an implicitly restarted Arnoldi itera-
tion. SIAM J. Matrix Anal. Appl. 17, 789–821 (1996)

17. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK user’s guide: solution of large scale eigen-
value problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia. Available at
http://www.caam.rice.edu/software/ARPACK/ (1998)

18. Miminis, G., Paige, C.: Implicit shifting in the QR and related algorithms. SIAM J. Matrix
Anal. Appl. 12, 385–400 (1991)

19. Parlett, B.N.: The symmetric eigenvalue problem. No. 20 in Classics in Applied Mathematics.
SIAM, Philadelphia, PA (1998)

20. Parlett, B.N., Le, J.: Forward instability of tridiagonal QR. SIAM J. Matrix Anal. Appl. 4,
279–316 (1993)

21. Saad, Y.: On the rates of convergence of the Lanczos and the block Lanczos methods. SIAM
J. Numer. Anal. 17, 687–706 (1980)

22. Saad, Y.: Numerical methods for large eigenvalue problems. John Wiley, New York. Available
at http://www.cs.umn.edu/~saad/books.html (1992)

23. Sadkane, M.: Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue prob-
lems. Numerische Mathematik 64, 195–212 (1993a)

24. Sadkane, M.: A block Arnoldi–Chebyshev method for computing leading eigenpairs of large
sparse unsymmetric matrices. Numerische Mathematik 64, 181–194 (1993b)

25. Sadkane, M., Sidje, R.B.: Implementation of a variable block Davidson method with deflation
for solving large sparse eigenproblems. Numer. Algor. 20(2), 217–240 (1999)

26. Scott, D.S.: Block Lanczos software for symmetric eigenvalue problems. Technical report
ORNL/CSD-48, Oak Ridge National Laboratory, Oak Ridge, TN (1979)

27. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J.
Matrix Anal. Appl. 13, 357–385 (1992)

28. Sorensen, D.C.: Deflation for implicitly restarted Arnoldi methods. Technical report
CAAM:TR98-12, Rice University (1998)

29. Stathopoulos, A.: Nearly optimal preconditioned methods for Hermitian eigenproblems under
limited memory. Part I: seeking one eigenvalue. SIAM J. Sci. Comput. 29(2), 481–514 (2007)

30. Stathopoulos, A., McCombs, J.R.: Nearly optimal preconditioned methods for Hermitian
eigenproblems under limited memory. Part II: seeking many eigenvalues. SIAM J. Sci.
Comput. 29(5), 2162–2188 (2007)

31. Stathopoulos, A., Saad, Y., Wu, K.: Dynamic thick restarting of the Davidson and the implicitly
restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 227–245 (1998)

32. Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal.
Appl. 23, 601–614 (2001)

33. Stewart, G.W.: Matrix Algorithms II: Eigensystems. SIAM, Philadelphia (2001)
34. Watkins, D.S.: Forward stability and transmission of shifts in the QR algorithm. SIAM J.

Matrix Anal. Appl. 16, 469–487 (1995)
35. Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems.

SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)
36. Ye, Q.: An adaptive block Lanczos algorithm. Numer. Algor. 12, 97–110 (1996)
37. Zhou, Y.: A block Chebyshev–Davidson method with inner-outer restart for large eigenvalue

problems. Technical report, Southern Methodist University (to be submitted)

http://www.caam.rice.edu/software/ARPACK/
http://www.cs.umn.edu/~saad/books.html

	Block Krylov--Schur method for large symmetric eigenvalue problems
	Abstract
	Introduction
	Block Krylov--Schur for symmetric eigenproblems
	Handling the rank deficient case
	Using adaptive block sizes
	Deflation of converged wanted eigenpairs

	Block Lanczos decomposition
	Block size constraint of block methods based on Krylov-type decomposition
	Numerical results
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


