

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 3, pp. 954–971

A CHEBYSHEV–DAVIDSON ALGORITHM FOR LARGE
SYMMETRIC EIGENPROBLEMS∗

YUNKAI ZHOU† AND YOUSEF SAAD‡

Abstract. A polynomial filtered Davidson-type algorithm is proposed for symmetric eigenprob-
lems, in which the correction-equation of the Davidson approach is replaced by a polynomial filtering
step. The new approach has better global convergence and robustness properties when compared
with standard Davidson-type methods. The typical filter used in this paper is based on Chebyshev
polynomials. The goal of the polynomial filter is to amplify components of the desired eigenvectors in
the subspace, which has the effect of reducing both the number of steps required for convergence and
the cost in orthogonalizations and restarts. Numerical results are presented to show the effectiveness
of the proposed approach.

Key words. polynomial filter, Davidson-type method, global convergence, Krylov subspace,
correction-equation, eigenproblem

AMS subject classifications. 15A18, 15A23, 15A90, 65F15, 65F25, 65F50

DOI. 10.1137/050630404

1. Introduction. We consider a Davidson-type method for the standard eigen-
value problem

(1.1) Au = λu,

where A ∈ R
n×n is symmetric, n is large, and a large number of eigenpairs need to be

computed. We assume throughout that the eigenvalues wanted are the smallest ones.
There is a growing need for solving this type of problem efficiently. To cite just one
example, symmetric eigenvalue problems usually constitute the most time-consuming
part of electronic structure calculations [18, 12, 6].

The original Davidson method [11] was initially designed for diagonally dominant
matrices, which for eigenvalue problems means matrices whose off-diagonal elements
are small compared with the changes in magnitude between diagonal elements [19].
The Davidson approach sacrifices the attractive Krylov subspace structure, at the
cost of having to compute eigenpairs and associated residual vectors of a projection
matrix at each (outer) iteration. The trade-off is that the Davidson approach can
augment the subspace by a new vector potentially much better than the one based
on a strict Krylov subspace structure.

The “augmentation vector” added to the subspace at each step usually results
from solving a correction-equation. The efficiency of the standard Davidson-type
methods depends on the quality of the correction-equation used. Efficient (precondi-
tioned) linear equation solvers are often utilized to solve the correction-equations. The
original Davidson method uses the correction-equation (diag(A) − μI)t = −r, where

∗Received by the editors May 2, 2005; accepted for publication (in revised form) by D. Cal-
vetti March 28, 2007; published electronically October 5, 2007. This work was supported by the
U.S. Department of Energy under contract DE-FG02-03ER25585, by NSF grants ITR-0428774 and
CMMI-0727194, and by the Minnesota Supercomputing Institute.

http://www.siam.org/journals/simax/29-3/63040.html
†Department of Mathematics, Southern Methodist University, Dallas, TX 75275 (yzhou@

smu.edu).
‡Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

55455 (saad@cs.umn.edu).

954

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 955

r = Ax − μx is the residual vector corresponding to a Ritz pair (μ, x), and t is the
augmentation vector to be computed. In [19] better approximations of A are used to
replace the diagonal of A in the correction equation. However, it was noted in [19] that
using the “exact preconditioner” leads to stagnation, since t = (A − μI)−1r = −x
cannot augment the subspace. This led to the development of the more efficient
Jacobi–Davidson (JD) algorithm [32, 14, 31]. Work in the literature has shown that
the JD can be competitive with efficient Krylov subspace methods such as those in
[33, 17, 36, 42, 45]. In [41, 43] other correction-equations for Davidson-type methods
are derived.

The JD method can be related to the Newton method or the approximate Rayleigh-
quotient iteration (RQI). As such, it has been observed that the method can be rather
slow if the starting vector is far away from the desired eigenvector. We note that even
though RQI is globally convergent for symmetric eigenproblems (see [22], [23, p. 81]),
it may converge to an unwanted eigenpair. The global convergence can be slow when
the approximate RQI is used in a subspace method and the method is required to
converge to wanted eigenpairs. Global acceleration schemes for JD have been studied.
For example, in [5] a nonlinearized JD correction-equation is proposed; however, the
preconditioning may be difficult to apply for the nonlinearized correction-equation,
and the approach can become much more expensive than the JD method when the
number of desired eigenpairs is large. Another approach to achieving better global
convergence, as suggested in [19, 14], is to apply an Arnoldi or Lanczos method to get
a good initial vector and then apply the JD algorithm.

In this paper, we explore a different Davidson-type approach called the Chebyshev–
Davidson method. There is no need to form or solve any correction-equations within
this approach; instead, intervalwise filtering based on Chebyshev polynomials is uti-
lized.

The Chebyshev–Davidson approach is very suitable for problems where solving
(preconditioned) equations is expensive, e.g., when good preconditioners for correction-
equations are either unknown or too expensive to construct.

Details of the Chebyshev–Davidson method are presented in sections 3–4. Com-
parisons with existing representative eigenvalue algorithms are in section 6. The
Chebyshev–Davidson method (written in Fortran95) has been applied to solve a class
of highly challenging problems with dimension over a few millions, where more than
ten thousand eigenpairs need to be computed.

2. Advantages of polynomial filtering. The global convergence of a Davidson-
type method can be improved in a natural and systematic way via polynomial filtering.
We first make the following three observations. The first is on the well-known poly-
nomial filtering argument: For a symmetric matrix A with the eigendecomposition
A = QΛQT , any polynomial ψ(s) : R → R satisfies

(2.1) ψ(A)v = Qψ(Λ)QT v ∀v ∈ R
n.

The second observation is on the fast local convergence of JD. It is shown in [43]
that the locally fast convergence of JD is mainly caused by the retention of the ap-
proximate RQI direction in the basis of the projection subspace. Assume throughout
that (μ, x) denotes the current Ritz pair that best approximates a wanted eigenvalue,
and the Ritz vector x is of unit length, and let r = Ax − μx denote the residual. It
was observed in [43] that the JD correction equation,

(2.2) Solve for t ⊥ x from (I − xxT)(A− μI)(I − xxT)t = r,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

956 YUNKAI ZHOU AND YOUSEF SAAD

can be simplified to

(2.3) Solve for t from (I − xxT)(A− μI)t = r.

The right projection by (I − xxT) and the final orthogonality constraint t ⊥ x can
be omitted. It is the approximate RQI direction, which is an approximation to (A−
μI)−1x, that leads to the success of the JD approach. The left projector (I − xxT)
in (2.2) is crucial in retaining the important approximate RQI direction in the JD
direction (solution t of (2.2)). This can be readily seen by writing (2.2) or (2.3) as

(2.4) (A− μI)t = r + x α,

where α is a nonzero scalar. The left projector also improves the conditioning of (2.2)
and (2.3) on the x⊥ subspace—the subspace in which a vector to augment the current
projection subspace is sought, but this property is irrelevant for this paper.

Note that the exact RQI direction is (A−μI)−1x, which is the current Ritz vector
x filtered by the rational polynomial ϕ(s) = 1

s−μ . This polynomial significantly
magnifies the direction of a possibly wanted eigenvector corresponding to the Ritz
value μ (the current best approximation to a wanted eigenvalue of A).

The third observation is that one can improve global convergence by choosing a
polynomial ψ(s) which magnifies not only the direction corresponding to one single
point, but also directions corresponding to an interval containing wanted eigenvalues,
and at the same time dampens unwanted eigenvalues. With polynomial filtering, it
is unlikely that wanted eigenvalues will be missed, because when the whole interval
containing wanted eigenvalues is magnified, so is each wanted eigenvalue in the inter-
val. In contrast, standard Davidson-type methods may miss some wanted eigenvalues.
This is because correction-equations often resemble certain shift-invert formulations,
and the shift chosen at some step may approximate larger eigenvalues before all the
wanted smaller eigenvalues are computed. Chebyshev filtering offers an alternative
which can improve global convergence as well as robustness (in the sense that wanted
eigenvalues are not missed) of Davidson-type methods.

Note that polynomial filters have long been exploited to accelerate Arnoldi/Lanczos
algorithms; see, e.g., [26, 33]. Here we consider a natural application of Chebyshev
polynomials within a Davidson-type (non-Krylov) framework. This approach com-
bines the acceleration power of the Chebyshev filtering technique and the flexibility
and robustness of the Davidson approach.

To further explain the third observation, we suppose that the eigenvalues of A
are ordered as λ1 ≤ λ2 ≤ · · · ≤ λn, and that the wanted eigenvalues are located in
[λ1, λk]. If ψ(s) is chosen to approximate the step function

(2.5) φ(s) =

{
1, λ1 ≤ s ≤ λk,
0, λk < s ≤ λn,

then (2.1) shows that ψ(A)v ≈
∑k

i=1 αiqi, where qi is the ith column of Q and
αi = qTi v. That is, ψ(A)v is contained in the subspace spanned by the wanted
eigenvectors Q(:, 1 : k). If this ψ(A)v is augmented into the basis, convergence to
the wanted eigenvectors is expected to be much faster than augmenting the basis by
a vector closer to unwanted eigenvectors. This claim can be verified by explicitly
computing Q and using

∑k
i=1 αiqi (αi = qTi x, where x denotes the current Ritz

vector at each iteration) as the augmentation vector in a Davidson-type method. This
is equivalent to using a filter that exactly approximates (2.5). Note that this filter

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 957

leads to no gap among wanted eigenvalues, but in this ideal setting it can still lead
to fast convergence in a Davidson-type method. However, a low degree polynomial
cannot approximate (2.5) well. In real computations, a filter that can introduce more
favorable gaps for the wanted eigenvalues is far better than others that introduce no
gap.

For a subspace method applied to (1.1), the essence in obtaining fast convergence
is in augmenting the subspace by vectors close to the wanted invariant subspace of A.
Therefore, a convergence acceleration scheme should construct a suitable filter ψ so
that the vector ψ(A)v used for augmentation is contained in the wanted eigensubspace.
By this filtering we obtain better global convergence.

According to observations just made, it is essential to filter the current Ritz
vector x, not the residual vector r. Note that at each iteration of a Davidson-type
method, r is orthogonal to the projection basis, and this basis is used to approximate
the wanted eigenvectors; hence r can become orthogonal to the wanted eigenvectors
during the iteration. The residual vector r is not suitable for the filtering because,
when Q(:, 1 : k)T r ≈ 0, ψ(A)r = Qψ(Λ)QT r is approximately inside the subspace
spanned by unwanted eigenvectors.

We also mention that our own experiments, together with those in [13], show
that the preconditioned Davidson method based on equation (A − μI)t = r can be
inefficient because of the higher possibility of stagnation if this equation is solved more
accurately. An efficient correction-equation essentially should retain the approximate
RQI direction in its solution. Thus, the JD method is equivalent to (2.4), but the
x term in the right-hand side of (2.4) may be more important than the r term.
However, in the case of rather inaccurate solves with a fixed preconditioner, [1] shows
that (A− μI)t = r can have better performance than other correction equations.

3. Chebyshev polynomial filter. The observations in section 2 suggest that
polynomials which significantly magnify the lowest end of a wanted interval and damp-
ens unwanted intervals at the same time can be used as a filter to improve global
convergence. The well-known Chebyshev polynomials are a natural choice for this
task. Using Chebyshev polynomials to accelerate symmetric eigenvalue computations
dates back to [24, 25]. A nice discussion on Chebyshev accelerated subspace iteration
can be found in [23, pp. 329–330], where it is mentioned that the Lanczos method is
usually better than the Chebyshev accelerated (fixed dimension) subspace iteration
algorithm. Here we integrate Chebyshev filtering into a varying dimension Davidson-
type algorithm.

With Chebyshev acceleration, the subspace used in a Davidson-type method can
be of much smaller dimension than that is required by a Lanczos-type method for
good efficiency. Therefore the filtering approach leads to substantial savings in (re-)
orthogonalization costs.

Recall that the real Chebyshev polynomials of the first kind are defined by (see,
e.g., [23, p. 371], [27, p. 142])

Ck(t) =

{
cos(k cos−1(t)), −1 ≤ t ≤ 1,
cosh(k cosh−1(t)), |t| > 1.

Note that C0(t) = 1, C1(t) = t. Recall also the important three-term recurrence,

(3.1) Ck+1(t) = 2tCk(t) − Ck−1(t), t ∈ R.

A remarkable property of the Chebyshev polynomial is its rapid growth outside
the interval [−1, 1]. This property is illustrated in Figure 3.1. Here we plot only the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

958 YUNKAI ZHOU AND YOUSEF SAAD

−2 0 2
−400

−200

0

200

400
m=5

−2 0 2
−1

0

1

2

3
x 10

5 m=10

−2 0 2
−2

−1

0

1

2
x 10

8 m=15

−2 0 2
−5

0

5

10

15
x 10

10

m=20
−2 0 2

−1

−0.5

0

0.5

1
x 10

14

m=25
−2 0 2

−2

0

2

4

6

8
x 10

16

m=30

Fig. 3.1. Rapid increase outside [−1, 1] of Chebyshev polynomial of degree m.

polynomial on the [−2, 2] interval, but note that the farther away we are from [−1, 1],
the larger the magnitude of Ck(t). Suppose that the spectrum of A is contained in
[a0, b] and we want to dampen the interval [a, b] for a > a0; then we need only to map
[a, b] into [−1, 1] by an affine mapping. This mapping will map the wanted lower end
of the spectrum, i.e., the eigenvalues closer to a0, farther away from [−1, 1] than the
ones closer to a. Applying the three-term Chebyshev recurrence will then magnify
eigenvalues near a0 and dampen eigenvalues in [a, b], which is the desired filtering.

In practice, we need the lower bound a of the unwanted interval, which is easy
to approximate during each iteration in a Davidson-type method. The upper bound
b of the eigenvalues of A can by obtained by Gerschgorin’s theorem. It can also be
estimated by an upper-bound-estimator (Algorithm 4.3 in [47]), which applies a few
steps of Lanczos iteration with a final safeguard step.

The Chebyshev iteration, which dampens values in [a, b] while magnifying values
in the interval to the left of [a, b], is presented in Algorithm 3.1 below. Here we follow
the formula derived in [26], [27, p. 223] for the complex Chebyshev iteration and adapt
it to the real case. The iteration of the algorithm is equivalent to computing

(3.2) y = pm(A)x, where pm(t) = Cm

(
t− c

e

)
.

As defined in the algorithm, c is the center of the interval [a, b] and e its half-width;
both depend on the bounds used.

In Algorithm 3.1, the σ’s are used for scaling purposes; the a0 is a crude approx-
imation of the smallest eigenvalues of A. The following discusses certain details of
scaling. The three-term recurrence using pm(A) yields the iteration

xj+1 =
2

e
(A− cI)xj − xj−1, j = 1, 2, . . . ,m− 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 959

with x0 given and x1 = (A−cI)x0. This is equivalent to a power iteration of the form(
xj+1

xj

)
=

(
2
e (A− cI) −I

I 0

)
︸ ︷︷ ︸

B

(
xj

xj−1

)
.

A little analysis would show that all the eigenvalues of the nonsymmetric matrix B
are complex and of modulus one, except that those corresponding to eigenvalues of
A that are less than a are mapped to real eigenvalues larger than one in magnitude.
Therefore, as for the standard power method, a scaling at each step is recommended.
The simplest strategy, discussed in [27], is to consider the scaled sequence

x̃j =
Cj [

2
e (A− cI)]

Cj [
2
e (a0 − cI)]

x0,

where ρj = Cj [
2
e (a0 − cI)] is the scaling factor. This requires a0, but since it is only

used for scaling, a rough estimate of a0 is sufficient. For the first Chebyshev–Davidson
iteration, we can use a value a0 ≤ a; for the latter Chebyshev–Davidson steps, the
smallest Ritz value from the previous step can be used. The vector sequence is not
computed as shown above, because ρj itself can be large and this would defeat the
purpose of scaling. Instead, each x̃j+1 is updated using the scaled vectors x̃j and
x̃j−1. This is discussed in [27], and Algorithm 3.1 implements this scaling (the tildes
and vector subscripts are omitted).

Algorithm 3.1. [y] = Chebyshev filter(x,m, a, b, a0).
Purpose: Filter x by an m degree Chebyshev polynomial which dampens on [a, b].

1. e = (b− a)/2; c = (b + a)/2;
2. σ = e/(a0 − c); σ1 = σ;
3. y = (Ax− cx)σ1/e;
4. For i = 2 : m
5. σnew = 1

(2/σ1−σ) ;

6. ynew = 2(Ay − cy)σnew/e− σσnewx;
7. x = y; y = ynew; σ = σnew;
8. End For

Note that the filter is intervalwise; hence no shifts such as Chebyshev zeros or
Leja points are required. This is to be contrasted with pointwise filtering methods,
e.g., [33, 17, 2, 3].

Clearly, polynomials other than Chebyshev can be used for filtering. Several poly-
nomials are discussed in [34], with emphasis on approximating rational functions of
the form ϕ(s) = 1/(s − μ). In contrast, we do not approximate the (shift-inverted)
rational functions, but require polynomials to have the desired intervalwise filter-
ing property, i.e., dampen an interval and significantly magnify other intervals. We
choose Chebyshev polynomials because of their desirable filtering properties and ease
of implementation. Note that the Chebyshev filtering used in [34] is different from
Algorithm 3.1, since the former requires an additional parameter Δ, which is not
straightforward to specify. Another difference is that in [34] Chebyshev filtering is
used in a Lanczos-type algorithm, while here we integrate Chebyshev filtering into a
Davidson-type framework. The Rayleigh–Ritz step in a Davidson-type method read-
ily provides the necessary bounds for constructing efficient Chebyshev filters. The
resulting Chebyshev–Davidson method compares favorably with other methods, as
shown in section 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

960 YUNKAI ZHOU AND YOUSEF SAAD

Algorithm 3.1 requires no inner products, and this is another appealing feature of
Chebyshev acceleration, since inner products incur a global reduction which requires
additional communication costs in a parallel computing context.

4. Chebyshev polynomial accelerated Davidson method. The pseudocode
for the Chebyshev–Davidson method is presented in Algorithm 4.1 below. This code
is very different from other Davidson-type methods in the literature (e.g., [4]). We
use a natural but useful indexing scheme. The deflation of converged eigenvectors
is handled by indexing the columns of the projection basis V . No extra storage for
the converged eigenvectors is necessary. Moreover, restarting is simplified (as seen in
step 8f) by the indexing. The implementation does not require extra basis updates or
memory copies during the restart, since the updates in step 8g need to be performed
even when restart is not necessary. We note that putting restart at step 8f is better
than putting it at the end of the outer loop, because it saves operations in step 8g
when restarting is necessary.

We make a few comments on Algorithm 4.1. Comments (v)–(vii) are related to
the robust implementation of any Davidson-type methods.

(i) It is important that the bound upperb bounds all eigenvalues of A from above.
Otherwise the interval containing largest eigenvalues may also be magnified
through filtering, and this can drastically slow convergence or even lead to
wrong convergence. One inexpensive way for the bound estimation at step
5 is upperb =

∣∣∣∣A∣∣∣∣
1
; if A is available only through a matrix-vector-product

subroutine, then we can apply the upper-bound-estimator, Algorithm 4.1 in
[47], to get an upper bound.

(ii) The choice of the lower bound for the unwanted interval at each iteration is
one of the most critical ingredients of the method. The Chebyshev–Davidson
method allows quite flexible choices for this lower bound, without any extra
computations. Numerical results show that the choice at step 8l is remarkably
efficient. Other choices, such as the maximum of the current Ritz values, can
also be used as lowerb.

(iii) For the orthogonalization step 8b, we use the iterated Gram–Schmidt algorithm,
often referred to as the DGKS method [10].

(iv) The refinement at step 8g is performed at each step. One can avoid this step
until some eigenpair converges. But according to [23, p. 325], this refinement
is necessary in order to have faster convergence for the eigenvectors.

(v) The swap at step 8j may be performed by the following pseudocode:
set vtmp = V (:, kc);
For (i = kc − 1 : −1 : 1) Do

If (μ ≥ eval(i)), exit the For loop; End If
set eval(i+1) = eval(i), eval(i) = μ; set V (:, i+1) = V (:, i), V (:, i) = vtmp;

End For.
(Note that unnecessary memory copies in the above can be avoided with some
more involved programming.)

(vi) The noswap flag at steps 8i–k is used to improve robustness. This flag decreases
the possibility of counting converged unwanted eigenvalues as wanted ones.

(vii) At step 8j, a convergence test is performed only on the first Ritz pair among
the ksub− kc Ritz pairs available at each iteration. A simple loop can be added
to check the convergence of more than one Ritz pair. We note that for almost
all Davidson-type subspace methods, if all the ksub − kc Ritz pairs are checked
for convergence at each iteration step and no swap procedure is included, then
there is a high possibility of missing wanted eigenvalues.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 961

(viii) Algorithm 4.1 essentially contains a framework for Davidson-type methods
based on filtering. The Chebyshev filter at step 8a can be replaced by other
suitable filters. However, we mention that among the filters tried, including a
least square polynomial and a different implementation of Chebyshev polyno-
mials in [34], the filter as implemented in Algorithm 3.1 has the best numerical
behavior.

5. Analysis. The analysis given here serves to give a preliminary understand-
ing of the convergence for Algorithm 4.1. Therefore several simplifications of the
algorithm are made.

Assume that the eigenvalues of A are λ1 < λ2 ≤ · · · ≤ λn, and denote the
associated unit eigenvectors by q1, . . . , qn. According to (3.2) and the fact that the

Algorithm 4.1. Chebyshev–Davidson method.
(computing kwant number of smallest eigenpairs)
Input: x—initial vector; m—polynomial degree; kkeep—# of vectors to keep during
restart; dimmax—maximum subspace dimension; τ—convergence tolerance.
Output: converged eigenvalues eval(1 : kc) (in nonincreasing order) and their
corresponding eigenvectors V (:, 1 : kc), where kc denotes # of converged eigenpairs.
1. Start with the unit vector x, V = [x].
2. Compute W = [Ax], H = [μ], where μ = xTw.
3. Compute the residual vector: r = W (:, 1) − μx.
4. If

∣∣∣∣r∣∣∣∣ <= τ , set eval(1) = μ, kc = 1, H = []; Else, set kc = 0.
5. Estimate the upper bound (upperb) of eigenvalues.
6. Set lowerb = (upperb + μ)/2, a0 = lowerb.
7. Set ksub = 1 (ksub stores the current subspace dimension).
8. Outer Loop: Do while (iter ≤ itermax)

a. Call the Chebyshev polynomial filter:
[t] = Chebyshev filter(x,m, lowerb, upperb, a0).

b. Orthonormalize t against V (:, 1 : ksub) to get a unit vector V (:, ksub + 1);
set ksub ← ksub + 1; set kold ← ksub.

c. Compute W (:, ksub) = AV (:, ksub).
d. Compute the last column of the symmetric Rayleigh-quotient matrix H:

H(1 : ksub − kc, ksub − kc) = V (:, kc + 1 : ksub)
TW (:, ksub).

e. Compute the eigendecomposition of H: HY = Y D,
where diag(D) is in nonincreasing order. Set μ = D(1, 1).

f. If (ksub ≥ dimmax), then restart: set ksub = kc + kkeep.
g. Update basis: V (:, kc + 1 : ksub) ← V (:, kc + 1 : kold)Y (:, 1 : ksub − kc);

update W : W (:, kc + 1 : ksub) ← W (:, kc + 1 : kold)Y (:, 1 : ksub − kc).
h. Compute the residual vector: r = W (:, kc + 1) − μV (:, kc + 1).
i. Set noswap = 0, iter ← iter + 1.
j. Test for convergence: If

∣∣∣∣r∣∣∣∣ <= τ max(diag(D)), set kc = kc + 1,
set eval(kc) = μ; also swap eigenpairs if necessary (see comment (v))
so that converged eigenvalues are in nonincreasing order;
set noswap = 1 if any swap happens.

k. If (kc ≥ kwant and noswap == 0), Return eval(1 : kc) and V (:, 1 : kc) as
the converged wanted eigenpairs. Exit.

l. Update lower bounds: lowerb = median(diag(D));
If a0 > min(diag(D)), set a0 ← min(diag(D)).

m. Set the next Ritz vector for filtering: x = V (:, kc + 1).
n. Update H: H = D(kc + 1 : ksub, kc + 1 : ksub).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

962 YUNKAI ZHOU AND YOUSEF SAAD

interval of the eigenvalues to be dampened at each step is adaptively changing, we
see that the matrix applied at the jth step is

(5.1) p(j)
m (A) = C(j)

m ((A− cjI)/ej).

The first simplification assumes that the interval of the eigenvalues to be damp-
ened at each filtering step of Algorithm 4.1 is fixed. That is, the matrix involved is
fixed as pm(A) ≡ Cm((A− cI)/e). The second simplification assumes that no restart
is used in the algorithm.

We further assume that Algorithm 4.1 is a one-dimensional version. That is, in
step 8b we keep ksub ≡ 1 and set V (:, 1) = t/

∣∣∣∣t∣∣∣∣, and in step 8m we set x = V (:, 1).
Then the algorithm becomes a standard power method with the matrix pm(A). As a
result, the convergence will be governed by the ratio of the two dominant eigenvalues.
Note that the interval [a, b] of the eigenvalues to be dampened satisfies λ1 < a. The
(unique) dominant eigenvalue of the matrix pm(A) is Cm((λ1 − c)/e). So, in the one-
dimensional version of the algorithm, V (:, 1) converges to q1 with the convergence
factor

ρ =
maxj>1 |Cm((λj − c)/e)|

|Cm((λ1 − c)/e)| < 1.

Consider now the situation in which ksub can be increased. The simplified method
turns out to have a simple Krylov interpretation. Assume that we perform two steps
of the algorithm, i.e., that the dimension of the subspace is two. The first vector of
the basis is pm(A)x. The second is obtained as pm(A)x1, where x1 is an approximate
eigenvector from the one-dimensional space spanned by the first vector, which is
simply a multiple of pm(A)x. The subspace used in this case is

K2 = span{pm(A)x, pm(A)x1} = span{pm(A)x, p2
m(A)x} ,

which is the Krylov subspace of dimension two usually denoted by K2(pm(A), x).
Consider now the third step. The process will inject to the subspace a vector of the
form

pm(A)x2 with x2 ∈ K2 .

The vector x2 is a Ritz eigenvector computed from projecting A onto the subspace K2,
and it is a linear combination of vectors from K2, so we can write x2 = α1pm(A)x +
α2p

2
m(A)x. The new subspace K3 is again a Krylov subspace. Indeed,

K3 = span{pm(A)x, p2
m(A)x, pm(A)x2} ≡ span{pm(A)x, p2

m(A)x, p3
m(A)x} .

The result can be easily extended to an arbitrary step j for the simplified method.
Proposition 5.1. Assuming that the filtering interval is fixed and no restart is

applied, then step j of Algorithm 4.1 is mathematically equivalent to a Rayleigh–Ritz
process applied to A using the Krylov subspace

Kj (pm(A), x) .

In particular, this means that if one generated an orthogonal basis Vj of the Krylov
subspace Kj(pm(A), x) and computed the eigenvalues of V T

j AVj , these eigenvalues
would be identical with those of the simplified Algorithm 4.1. This is not quite a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 963

Krylov subspace method, because the projection uses A instead of the transformed
matrix pm(A). However, this simple result permits one to analyze the simplified
algorithm in a complete way by considering eigenvectors. Indeed, eigenvectors of A
and pm(A) are identical, and there are results which establish upper bounds for the
angle between the exact eigenvector and the Krylov subspace. This will be omitted,
and the reader is referred to [23] for details.

Although the simplified algorithm can be viewed from the angle of Krylov sub-
spaces, Algorithm 4.1 is not a Krylov method. There are a number of distinguishing
features, related to implementation and other practical aspects. In fact, Proposition
5.1 assumes that the polynomial is fixed, but the actual Chebyshev–Davidson method
adapts the filters by dynamically adjusting the bounds of the interval of eigenvalues
to be dampened at each iteration. This in practice leads to significantly more efficient
filters. The following presents a conservative analysis: Taking (5.1) into account, we
see that

K2 = span{p(1)
m (A)x, p(2)

m (A)p(1)
m (A)x},

K3 = span{p(1)
m (A)x, p

(2)
m (A)p

(1)
m (A)x, α1p

(3)
m (A)p

(1)
m (A)x + α2p

(3)
m (A)p

(2)
m (A)p

(1)
m (A)x},

where α2 �= 0 by the designed filtering (if the previous subspace can be augmented).
This list easily extends to Kj for any j. Letting

Φk(t) =

k∏
l=1

p(l)
m (t),(5.2)

then the last term in Kj contains Φj(A)x with a nonzero coefficient. The filtering
is designed such that the subspace contains a significant direction in Φj(A)x. Note
that Φj(A)x corresponds to an accelerated power method applied to x. Because of the
Rayleigh–Ritz refinement, there is a Ritz vector from Kj which converges to q1 at least

as fast as Φj(A)x does, where the convergence rate for Φj(A)x to q1 is
maxl>1 |Φj(λl)|

|Φj(λ1)|
under standard conditions [39, 16]. This rate can be considerably faster than the one
obtained using a fixed filtering interval. The convergence for the latter eigenvectors
follows from deflation; e.g., the second eigenvalue becomes dominant for the matrix
A restricted to the subspace orthogonal to q1.

6. Numerical results and discussion. We compare the Chebyshev–Davidson
method (denoted as ChebyD) with several other Davidson-type and Lanczos-type
methods.

The first part of the comparison is done using Matlab. We compare our algorithm
with the well-known JD method implemented in the publicly available Matlab code
JDQR [14]1 and JDCG [20].2 The JDCG code is for symmetric eigenproblems; the
linear solver used in JDCG is (preconditioned) CG. The JDQR code can solve both
symmetric and nonsymmetric problems; GMRES [28] is the default linear solver in
JDQR, and it is used for the numerical tests. Since we solve symmetric eigenproblems,
it is less costly to use MINRES [21] in the JD method. Moreover, since CG is usually
intended for positive definite problems, JDCG does not work as efficiently for indefinite
A as for positive definite A. So for further comparisons, we implemented the JD
method using the Matlab built-in MINRES as the linear solver. This code is denoted

1Code available at http://www.math.uu.nl/people/sleijpen/JD software/.
2Code available at http://mntek3.ulb.ac.be/pub/docs/jdcg/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

964 YUNKAI ZHOU AND YOUSEF SAAD

Table 6.1

Silicon quantum dot model Si34H36, indefinite. dim = 97569, kwant = 100. For ChebyD
m = 20, kkeep = 60; for JDminres #max le solve = 20.

Method CPU (sec.) #iter. #mvp
∣
∣
∣
∣AV − V D

∣
∣
∣
∣/

∣
∣
∣
∣A

∣
∣
∣
∣
1

ChebyD 1204 706 14806 4.16e-11
JDminres 1968 536 12306 6.44e-11
JDQR 3734 2183(-) 11850 2.73e-13
JDCG 3597 927 37899 2.90e-12
LOBPCG 24190 5289 528900 2.98e-10

Table 6.2

bcsstk32 from the NIST Matrix Market, indefinite. dim = 44609, kwant = 100. For ChebyD
m = 20, kkeep = 60; for JDminres #max le solve = 20.

Method CPU (sec.) #iter. #mvp
∣
∣
∣
∣AV − V D

∣
∣
∣
∣/

∣
∣
∣
∣A

∣
∣
∣
∣
1

ChebyD 418 587 12307 2.38e-11
JDminres 850 577 10360 3.55e-11
JDQR 1186 1441(-) 7639 5.80e-14
JDCG 1250 695 29810 8.86e-13
LOBPCG 1974 686 68600 9.96e-11

Table 6.3

Silicon quantum dot model Si87H76, indefinite. dim = 240369. kwant = 80. For ChebyD
m = 20, kkeep = 80; for JDminres #max le solve = 20.

Method CPU (sec.) #iter. #mvp
∣
∣
∣
∣AV − V D

∣
∣
∣
∣/

∣
∣
∣
∣A

∣
∣
∣
∣
1

ChebyD 2915 493 10333 3.15e-11
JDminres 3725 497 11409 2.69e-11
JDQR 7879 2390(-) 13246 2.86e-13
JDCG 7220 720 37520 2.48e-12
LOBPCG 13850 667 53360 1.19e-10

as JDminres. JDminres is mainly based on Algorithm 4.1, except that step 8a is
replaced by a linear equation solve using MINRES. The LOBPCG [15] code3 is also
used for comparison because it is a representative preconditioned eigensolver. We also
compared with IRBL [2, 3], but noticed that the IRBL code becomes less competitive
than other codes when kwant becomes large. Here we report only comparisons with
JDQR, JDCG, JDminres, and LOBPCG.

For the test examples listed in Tables 6.1–6.3, we compute the kwant smallest
eigenvalues and eigenvectors. The maximum subspace dimension is fixed at 2 ∗ kwant

for all methods, except that for LOBPCG it is 3 ∗ kwant. The silicon quantum dot
models are available from the University of Florida Sparse Matrix Collection.4 Figure
6.1 shows the sparsity structure of two test matrices used in Tables 6.1 and 6.2.

The accuracy is reported as
∣∣∣∣AV −V D

∣∣∣∣/∣∣∣∣A∣∣∣∣
1
, where the diagonal of D contains

the kwant converged eigenvalues, and V contains the corresponding eigenvectors. The
relative convergence tolerance is set to 10−10 for all methods. For each test problem,
the computed eigenvalues are cross validated; i.e., we compute the maximum difference
of the eigenvalues computed by different methods. All the differences are found to be
less than order 10−10.

3Code available at http://www-math.cudenver.edu/˜aknyazev/software/CG/toward/lobpcg.m.
4http://www.cise.ufl.edu/research/sparse/matrices/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 965

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nz = 2014701

 dimension = 44609, density = 0.10124%

Fig. 6.1. Structure plots of two test matrices Si34H36 and bcsstk32.

Initial vector is set as ones(n, 1) for all methods, so that the initial direction is
not biased for a certain method. The LOBPCG requires additional kwant − 1 vectors
for the initial block, for which random vectors are used.

In each table, “#iter” counts the total number of the outer loop, “#mvp” is
the number of matrix-vector products, and “#max le solve” is the maximum inner
iteration number for the linear equation solve by MINRES in JDminres. For JDQR,
help jdqr indicates where #iter and #mvp are stored, but the observed output
values from history(:,2) for #iter seem incompatible with the expected values. It
is possible that history(:,2) stores both the outer iteration count as well as the inner
iteration count, since the resulting number is often much larger than that of JDminres
and JDCG. We report #iter for JDQR only for reference, and put a (-) sign to signal
the difference. The #mvp for LOBPCG is reported by #iter times the block size
(which is kwant in LOBPCG).

All the Matlab numerical experiments were performed on an AMD PC with dual
Opteron 2.6GHz CPU and 8GB RAM. One of the CPU was dedicated to the com-
putation. The OS used was Red Hat EL4 Linux with kernel version 2.6.9. We used
Matlab version 7.2 (R2006a) for the computations.

Note that JDCG and LOBPCG both have preconditioned CG solvers included.
However, for the symmetric indefinite problems in Tables 6.1–6.3 (and other test
problems not reported here), our experiments showed that both methods work better
than their “preconditioned” counterparts with a standard preconditioner such as the
incomplete LU. Moreover, for these indefinite problems, it is not clear what precondi-
tioners can be used to accelerate the preconditioned CG solves. Therefore we report
comparisons with JDCG and LOBPCG without preconditioned solves. The examples
show that in situations where preconditioners are hard to obtain, approaches not re-
lying on solving correction-equations have a clear advantage and can provide effective
alternatives.

We recall that the “preconditioning” concept for eigenproblems is quite different
from preconditioning for linear equations. The latter tries to reduce the eigenvalue
gaps to make the condition number close to 1, while the former tries to introduce
more favorable gaps for wanted eigenvalues. This is why in eigenvalue problems, the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

966 YUNKAI ZHOU AND YOUSEF SAAD

preconditioned linear solvers are often applied to correction equations, which leads to
techniques that exploit shift-and-invert. In essence, a natural “preconditioner” for an
eigenvalue problem is a filter that can transform the spectrum in a desired way so as
to increase eigenvalue gaps. This “preconditioning” may not need a preconditioned
linear solver. In the Chebyshev–Davidson method, we realize the “preconditioning”
by dynamically constructing Chebyshev filters to filter the spectrum so that gaps
among wanted eigenvalues are properly magnified.

The reported results of ChebyD are typical for the Chebyshev–Davidson method.
For all the test runs, it is rather straightforward to select the polynomial degree
m. The effect of a varying degree m is illustrated in Figure 6.2. As seen from
this figure, with m increasing (before it becomes unnecessarily large), the number of
iterations decreases, the number of matrix-vector products increases, and the CPU
time decreases. Note that the CPU time difference for m from 26 to 47 is not large.
The test matrices are the Si10H16 and Si34H36 silicon quantum dots, but we note that
similar behavior is observed for a large number of other test models. In Tables 6.1–6.3
we used m = 20 to see how the algorithm performs with a low degree polynomial.
A better CPU time for Chebyshev–Davidson can be obtained with a larger m. The
results in Tables 6.1–6.3 show that even without a fine-tuned m, the Chebyshev–
Davidson method outperforms other Davidson-type methods.

The numerical results in Tables 6.1–6.3 and Figure 6.2 also show that a smaller
#mvp count does not necessarily imply smaller CPU time. Eigenvalue algorithms
may require substantial amounts of work not related to matrix-vector products. For
example, in Figure 6.2, #mvp increases with m increasing, but because #iter de-
creases, there is less reorthogonalization cost involved; this explains why the CPU
time decreases as m increases. As pointed out in [30], for large sparse eigenprob-
lems where a large number of eigenpairs need to be computed, the total cost can be
dominated by the reorthogonalization cost.

Regarding global convergence, Figure 6.3 shows one example where convergence
of the Chebyshev–Davidson method is much faster than that of the standard JD ap-
proach. However, we would like to mention that for symmetric eigenproblems, a JD
method often has good global convergence. For the same example as in Figure 6.3, a
fine-tuned value of #max le solve for JDminres can make the global convergence of
ChebyD and JDminres become similar.

The Chebyshev–Davidson algorithm was also implemented in Fortran95; its par-
allel version has been integrated into an electronic structure calculation package called
PARSEC (pseudopotetial algorithm for real-space electronic calculations). PARSEC
uses real-space pseudopotential implementation of density functional theory methods.
The original ideas behind PARSEC date back to the early 1990s [8, 9]. Originally,
PARSEC had three diagonalization methods: a preconditioned Davidson method
[29, 35] called Diagla, the symmetric eigensolver from ARPACK [33, 17], and the thick-
restart Lanczos method (TRLan) [40, 42]. The Chebyshev–Davidson algorithm was
subsequently integrated into PARSEC (around October, 2005). Due to its efficiency
and robustness, it was quickly adopted as the default eigensolver by our collaborators
in material science. In the latest version of PARSEC, a true diagonalization is per-
formed only at the first step of the self-consistent loop, after which diagonalizations
are replaced by a nonlinear Chebyshev-filtered-subspace (CheFS) method [47, 46].
Nevertheless, the first diagonalization step can still be highly challenging. This is
because a relatively complex material system can contain several thousand atoms, in
which case the dimension of the discretized Hamiltonians can easily exceed several
millions. Even more challenging is the fact that the number of eigenpairs needed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 967

10 15 20 25 30 35 40 45 50
60

80

100

120

140

160

180

200

220

polynomial degree m

C
PU

 s
ec

on
ds

CPU time changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
500

600

700

800

900

1000

1100

1200

1300

1400

1500

polynomial degree m

C
PU

 s
ec

on
ds

CPU time changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

800

900

polynomial degree m

of

 it
er

at
io

ns

of iter. changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

800

900

1000

polynomial degree m

of

 it
er

at
io

ns

of iter. changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

polynomial degree m

of

 m
at

−
ve

c
pr

od
uc

ts

of mat−vec products changes with m

k

want
=60

k
want

=80

k
want

=100

10 15 20 25 30 35 40 45 50
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

4

polynomial degree m

of

 m
at

−
ve

c
pr

od
uc

ts

of mat−vec products changes with m

k

want
=60

k
want

=80

k
want

=100

Fig. 6.2. Changes in CPU time, number of iterations, and number of matrix-vector products
with a varying polynomial degree m. Figures on the left are for quantum dot Si10H16, with n =
17077. Figures on the right are for quantum dot Si34H36, with n = 97569. The m is varied as
m = 14 : 3 : 47 in Matlab notation. For each model, the same initial vector ones(n, 1) is used for
each m. The number of vectors to keep during restart is simply set as kkeep = 60 for all these tests.
Three cases where kwant = 60, 80, 100 are demonstrated.

is proportional to the number of valence electrons in the atoms, which commonly
exceed several thousand. In these cases, high memory demand is clearly a concern.
Moreover, eigenvalue algorithms that are efficient for exterior eigenvalues can have
problems converging for interior eigenvalues.

Table 6.4 shows the dimension of the discretized Hamiltonians and the number of
needed eigenpairs for four silicon nanocrystals and two metallic (iron) clusters. The

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

968 YUNKAI ZHOU AND YOUSEF SAAD

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

bcsstk33, nnz = 591904

 dimension = 8738, density = 0.77522%

0 10 20 30 40 50 60 70 80 90
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

bcsstk33, dim = 8738, m = 25, #max_le_solve = 25

ChebyD
JDminres

Fig. 6.3. The matrix bcsstk33 is from the NIST Matrix Market. Structure plot is on the
left. On the right is the residual norm plot for the first 10 smallest eigenvalues. This shows that
ChebyD can have much better global convergence than JDminres. Here m = 25 for ChebyD and
#max le solve = 25 for JDminres. The initial vector used is ones(n, 1) for both methods.

Table 6.4

The Chebyshev–Davidson method applied to compute kwant number of eigenvalues and eigen-
vectors. For the silicon nanocrystals, the polynomial degree is m = 17; for the iron clusters, m = 20.
The computations are performed on the SGI Altix cluster (1.6GHz per processor) at the Minnesota
Supercomputing Institute.

Material Matrix dimension n kwant # Processors CPU hours
Si2713H828 1074080 5843 16 7.83
Si4001H1012 1472440 8511 16 18.63
Si6047H1308 2144432 12751 32 45.11
Si9041H1860 2992832 19015 48 102.12

Fe326 2985992 3912 24 11.62
Fe360 3262312 4320 24 16.55

reported CPU time is what the Chebyshev–Davidson method used to finish the first
step diagonalization in the self-consistent loop.

Physical significance of the numerical results are discussed in [37, 38]. In [37] we
report the largest iron-cluster first principle DFT simulations that have been pub-
lished. The results are used to clarify a decade-old controversy regarding the depen-
dence of magnetic moment on the size of iron clusters. As to first principles DFT
calculations on silicon nanocrystals, previously reported results seem not have gone
beyond 2000 atoms; in contrast, we were able to do first principle calculations on a
sequence of silicon nanocrystals with up to 10,000 atoms [46, 7].

Although success in these challenging DFT calculations depends more on the non-
linear CheFS method, we must mention that the Chebyshev–Davidson method plays
a crucial role in the computations since it provides the CheFS method with a desired
initial subspace. A suitable initial subspace can substantially reduce the number of
iterations required for the CheFS method to reach self-consistency (convergence).

The other three eigensolvers (Diagla, ARPACK, and TRLan) in PARSEC were
also used for computing initial subspaces, but we noticed that they became impractical

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 969

for the largest material systems in Table 6.4, in terms of both memory requirement
and convergence speed. In comparison, Diagla is quite efficient when n and kwant

are moderate, but it becomes slower than ARPACK and TRLan when n and kwant

become large. TRLan is the fastest among these three solvers; it is observed in [47]
to be about twice as fast as ARPACK because of the reduced reorthogonalization.
But both TRLan and ARPACK require too much memory because of the requirement
that the maximum subspace dimension be around 2kwant.

To address the huge memory demand related to standard restart when n and
kwant are large, we introduced an inner-outer restart technique into the Chebyshev–
Davidson algorithm. The outer restart is the same as the standard restart, but the
inner restart corresponds to a standard restart restricted to an inner subspace with
dimension much smaller than kwant. This reduces the maximum dimension of the
outer subspace from 2kwant to kwant. Therefore the Chebyshev–Davidson algorithm
requires about half the memory required by a method with only standard restart. It
did not have a memory requirement problem for all the materials reported in Table
6.4. More details about the inner-outer restart may be found in [44].

As to CPU time, we compared the Chebyshev–Davidson method with TRLan on
the two smallest nanocrystals in Table 6.4. Using the same number of CPU nodes,
TRLan spent 8.65 CPU hours on Si2713H828 and 34.99 CPU hours on Si4001H1012

for the first step diagonalization. The comparison is not completely fair since we
employed an additional trick in the Chebyshev–Davidson routine, which corresponds
to a subspace filtering step so that the last few basis vectors are only approximate
eigenvectors. The number of these vectors not converged to full accuracy is bounded
above by the dimension of the inner subspace used for inner restart. It is rather
straightforward to add this subspace filtering step inside a Davidson-type iteration.
Both this trick and the inner-outer restart are due to the remarkable flexibility of a
Davidson-type method in adjusting basis vectors. A Lanczos-type method does not
have this flexibility because of the need to keep a Krylov structure. In TRLan all the
basis vectors are converged to the same full accuracy, which can be too costly since
high accuracy is often not necessary for the last few vectors in the subspace, especially
when the diagonalization is performed at the first step of the self-consistent loop to
provide an initial subspace.

We also mention that the adaptive Chebyshev filter (based on [26, 27]) and the
choice of bounds to achieve efficient filtering, as presented in this paper, are essential
to the development of the nonlinear CheFSI method in [47, 46].

7. Conclusion. A Chebyshev–Davidson algorithm has been presented for solv-
ing large symmetric eigenvalue problems. It essentially consists of filtering out the
unwanted portion of the spectrum by using adaptive Chebyshev polynomials of the
matrix. Comparisons with existing Davidson- and Lanczos-type methods show that
the Chebyshev–Davidson method is efficient and robust.

Advantages of the Chebyshev filtering approach include not requiring correction-
equations (hence no preconditioned linear solves are necessary), and robust global
convergence because of the intervalwise filtering. The Chebyshev filters are easily
controllable within the Davidson-type framework, and thus they can be conveniently
tuned to filter the full spectrum in the desired way to accelerate global convergence.

Acknowledgments. We thank Professor Calvetti for her constructive comments,
especially the suggestion on testing the effect of the polynomial degree in the Chebyshev–
Davidson algorithm, which improved our understanding of this parameter.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

970 YUNKAI ZHOU AND YOUSEF SAAD

REFERENCES

[1] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminara, A comparison of
eigensolvers for large-scale 3d model analysis using AMG-preconditioned iterative methods,
Int. J. Numer. Methods Engrg., 64 (2005), pp. 204–236.

[2] J. Baglama, D. Calvetti, and L. Reichel, IRBL: An implicitly restarted block-Lanczos
method for large-scale Hermitian eigenproblems, SIAM J. Sci. Comput., 24 (2003),
pp. 1650–1677.

[3] J. Baglama, D. Calvetti, and L. Reichel, irbleigs: A MATLAB program for computing a
few eigenpairs of a large sparse Hermitian matrix, ACM Trans. Math. Softw., 5 (2003),
pp. 337–348.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ. Tools
11, SIAM, Philadelphia, PA, 2000.

[5] J. H. Brandts, Solving eigenproblems: From Arnoldi via Jacobi-Davidson to the Riccati
method, in Numerical Methods and Applications, Lecture Notes in Comput. Sci. 2542,
Comput. Sci., Springer, New York, 2003, pp. 167–173.

[6] J. Chelikowsky and Y. Saad, Electronic structure of clusters and nanocrystals, in Handbook
of Theoretical and Computational Nanotechnology, M. Rieth and W. Schommers, eds.,
American Scientific Publishers, Stevenson Ranch, CA, to appear.

[7] J. R. Chelikowsky, M. L. Tiago, Y. Saad, and Y. Zhou, Algorithms for the evolution of
electronic properties in nanocrystals, Comp. Phys. Comm., 177 (2007), pp. 1–5.

[8] J. R. Chelikowsky, N. Troullier, and Y. Saad, Finite-difference-pseudopotential method:
Electronic structure calculations without a basis, Phys. Rev. Lett., 72 (1994), pp. 1240–
1243.

[9] J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Higher-order finite-difference
pseudopotential method: An application to diatomic molecules, Phys. Rev. B, 50 (1994),
pp. 11355–11364.

[10] J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization and stable
algorithms for updating the Gram–Schmidt QR factorization, Math. Comp., 30 (1976),
pp. 772–795.

[11] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.

[12] R. M. Dreizler and E. K. U. Gross, Density Functional Theory: An Approach to the Quan-
tum Many-Body Problem, Springer-Verlag, Berlin, 1990.

[13] Y. T. Feng, An integrated multigrid and Davidson method for very large scale symmetric
eigenvalue problems, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 3543–3563.

[14] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst, Jacobi–Davidson style QR
and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998),
pp. 94–125.

[15] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block precon-
ditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.

[16] R. B. Lehoucq, Implicitly restarted Arnoldi methods and subspace iteration, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 551–562.

[17] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solu-
tion of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods,
Software Environ. Tools 6, SIAM, Philadelphia, 1998; software available online at:
http://www.caam.rice.edu/software/ARPACK/.

[18] R. M. Martin, Electronic Structure : Basic Theory and Practical Methods, Cambridge Uni-
versity Press, Cambridge, UK, 2004.

[19] R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method for computing eigen-
values of sparse symmetric matrices, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 817–825.

[20] Y. Notay, Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric
eigenproblem, Numer. Linear Algebra Appl., 9 (2002), pp. 21–44.

[21] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[22] B. N. Parlett, The Rayleigh quotient iteration and some generalizations for nonnormal ma-
trices, Math. Comp., 28 (1974), pp. 679–693.

[23] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics in Appl. Math. 20, SIAM,
Philadelphia, PA, 1997.

[24] H. Rutishauser, Computational aspects of F. L. Bauer’s simultaneous iteration method,
Numer. Math., 13 (1969), pp. 4–13.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A CHEBYSHEV–DAVIDSON ALGORITHM 971

[25] H. Rutishauser, Simultaneous iteration method for symmetric matrices, in Handbook for
Automatic Computation (Linear Algebra), J. H. Wilkinson and C. Reinsh, eds., Springer-
Verlag, 1971, vol. II, pp. 284–302.

[26] Y. Saad, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems,
Math. Comp., 42 (1984), pp. 567–588.

[27] Y. Saad, Numerical Methods for Large Eigenvalue Problems, John Wiley, New York, 1992.
[28] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869.
[29] Y. Saad, A. Stathopoulos, J. Chelikowsky, K. Wu, and S. Öğüt, Solution of large eigen-

value problems in electronic structure calculations, BIT, 36 (1996), pp. 563–578.
[30] Y. Saad, Y. Zhou, C. Bekas, M. Tiago, and J. Chelikowsky, Diagonalization methods in

PARSEC, Phys. Status Solidi (B), 243 (2006), pp. 2188–2197.
[31] G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema, and H. A. van der Vorst, Jacobi-

Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT,
36 (1996), pp. 595–633.

[32] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi–Davidson iteration method for linear
eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.

[33] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357–385.

[34] D. C. Sorensen and C. Yang, Accelerating the Lanczos Algorithm via Polynomial Spectral
Transformations, Technical Report TR97-29, Department of Computational and Applied
Mathematics, Rice University, Houston, TX, 1997.

[35] A. Stathopoulos, S. Öğüt, Y. Saad, J. Chelikowsky, and H. Kim, Parallel methods and
tools for predicting materials properties, Comput. Sci. Eng., 2 (2000), pp. 19–32.

[36] G. W. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM J. Matrix Anal.
Appl., 23 (2001), pp. 601–614.

[37] M. L. Tiago, Y. Zhou, M. Alemany, Y. Saad, and J. R. Chelikowsky, Evolution of mag-
netism in iron from the atom to the bulk, Phys. Rev. Lett., 97 (2006), paper 147201.

[38] M. L. Tiago, Y. Zhou, Y. Saad, and J. R. Chelikowsky, Electronic Properties and En-
ergetics of Nanometer-size Silicon Nanocrystals, Technical report, ICES, University of
Texas/Austin, Austin, TX, in preparation.

[39] D. S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the eigen-
value problem, Linear Algebra Appl., 41 (1991), pp. 19–47.

[40] K. Wu, A. Canning, H. D. Simon, and L.-W. Wang, Thick-restart Lanczos method for
electronic structure calculations, J. Comput. Phys., 154 (1999), pp. 156–173.

[41] K. Wu, Y. Saad, and A. Stathopoulos, Inexact Newton preconditioning techniques for large
symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 7 (1998), pp. 202–214.

[42] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems,
SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.

[43] Y. Zhou, Studies on Jacobi-Davidson, Rayleigh quotient iteration, inverse iteration generalized
Davidson and Newton updates, Numer. Linear Algebra Appl., 13 (2006), pp. 621–642.

[44] Y. Zhou, A Block Chebyshev–Davidson Method with Inner-Outer Restart for Large Eigenvalue
Problems, Technical report, Department of Mathematics, Southern Methodist University,
Dallas, TX, in preparation.

[45] Y. Zhou and Y. Saad, Block Krylov-Schur Method for Large Symmetric Eigenvalue Problems,
Technical report 2004/215, Minnesota Supercomputing Institute, University of Minnesota,
2004.

[46] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Parallel self-consistent-field calcula-
tions using Chebyshev-filtered subspace acceleration, Phys. Rev. E, 74 (2006), paper 066704.

[47] Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Self-consistent-field calculation
using Chebyshev-filtered subspace iteration, J. Comput. Phys., 219 (2006), pp. 172–184.

