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Abstract

This paper investigates the decay rate of the Hankel singular values of linear dynamical systems. This issue is of
considerable interest in model reduction by means of balanced truncation, for instance, since the sum of the neglected
singular values provides an upper bound for an appropriate norm of the approximation error. The decay rate involves a
new set of invariants associated with a linear system, which are obtained by evaluating a modi2ed transfer function at
the poles of the system. These considerations are equivalent to studying the decay rate of the eigenvalues of the product
of the solutions of two Lyapunov equations. The related problem of determining the decay rate of the eigenvalues of the
solution to one Lyapunov equation will also be addressed. Very often these eigenvalues, like the Hankel singular values,
are rapidly decaying. This fact has motivated the development of several algorithms for computing low-rank approximate
solutions to Lyapunov equations. However, until now, conditions assuring rapid decay have not been well understood.
Such conditions are derived here by relating the solution to a numerically low-rank Cauchy matrix determined by the
poles of the system. Bounds explaining rapid decay rates are obtained under some mild conditions. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In the theory of function approximation by means of truncated Fourier series expansions or truncated
wavelet expansions, there are explicit results relating the approximation error to the decay rate of the Fourier
or wavelet coe:cients. For example, the following result can be found in [6]. Consider functions f de2ned
on the interval [0; 1], which are possibly discontinuous but have bounded variation. If we approximate f by
means of a truncated n-term Fourier series expansion or by means of a truncated n-term wavelet expansion, the
approximation error decays asymptotically as n−1=2; n−1, respectively. Furthermore, if additional smoothness
assumptions on f are made, the decay is faster.

The purpose of this paper is to explore the issue of decay of the approximation error as applied to linear
dynamical systems.
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Linear time invariant (LTI) systems

�:

{
ẋ(t) = Ax(t) + Bu(t);

y(t) = Cx(t) + D0u(t);
⇔ �:=

(
A B

C D0

)
;

where A∈Rn×n; B∈Rn×m; C ∈Rp×m; D0 ∈Rp×m, arise frequently in many branches of engineering. Closely
related to � are two continuous-time Lyapunov equations

AP + PAT + BBT = 0; ATQ + QA+ CTC = 0: (1)

Under the assumption that A is stable, it is well known that the above equations have unique symmetric
non-negative de2nite solutions P;Q∈Rn×n, called the controllability and observability grammians, respec-
tively. In many applications, such as circuit simulation, or time-dependent PDE problems, n is quite large,
while the number of inputs m and outputs p usually satis2es m;p�n. In such problems we seek to approxi-
mate the system � of dimension n with a system

�̂=

(
Â B̂

Ĉ

)

of lower dimension, say k ¡n. In doing so we would like to preserve stability and come up with an error
bound which describes how closely the approximant behaves like the original system. The method known as
balanced truncation yields reduced order systems which ful2ll these goals. In particular this method provides
an apriori computable error bound, in terms of the Hankel singular values of �

�1¿ · · ·¿ �k¿ �k+1¿ · · ·¿ �n:

These are de2ned as the non-zero singular values of the Hankel operator H associated with �. It turns out
that they are equal to the square roots of the eigenvalues of the product of grammians PQ in (1); for details
see [2]. The error bound is

‖�− �̂‖∞6 2(�k+1 + · · · + �n);

where ‖ · ‖∞ denotes the largest magnitude of the transfer function of the error system evaluated on the
imaginary axis. Thus, the smaller the sum of the tail of the Hankel singular values, the better the approximation.

More precisely, the purpose of this paper is twofold: 2rst, to investigate the decay rate of the eigenvalues
of one gramian, and second, to investigate the decay rate of the eigenvalues of the product of the two
gramians, that is the decay rate of the Hankel singular values.

We begin by considering only one of the two equations in (1)

AP + PAT + BBT = 0: (2)

In general and especially when n is large it is unwise to solve for P directly since this requires O(n3) Nops
and O(n2) storage. Many have observed that the eigenvalues of P generally decay very fast [11,20]. Because
of this, P may be approximated by a low-rank matrix. Several iterative methods for computing a low-rank
approximation to P have been proposed [11,14,16,20,21]. See [12,3] for new results and a recent survey of
such methods. There are some results on the eigenvalue bounds for the solution of Lyapunov equations [8,17],
but these do not explain why (2) permits the very low-rank approximate solutions observed in practice. The
eigenvalue bounds surveyed in [17] focus mainly on AP + PAT + S = 0 with S ∈Rn×n positive semide2nite,
and the special low rank structure of S = BBT is not fully exploited. Moreover the lower bounds for small
eigenvalues of P are trivially zeros. Penzl [19] took into account the low rank structure of BBT. He established
upper bounds on the ratios �k(P)=�1(P) for symmetric A, but this approach depends heavily on symmetry and
is not easily generalized to the non-symmetric case.
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The 5rst goal of this paper, is to derive decay rates that are direct estimates of the error of the best rank
k approximation to P. In contrast to the Penzl estimates, our results do not establish explicit bounds for the
eigenvalues of P. Instead, we obtain an outer product representation of the solution of the form

P =
n∑

j=1

�jzjz∗j with �1¿ �2¿ · · ·¿ �n ¿ 0:

When A has an eigenvector basis that is not too ill conditioned, the norms of vectors zj are uniformly bounded
by a modest constant and hence the ratio �k+1=�1 gives an order of magnitude relative error estimate for a
rank k approximation to P.

These results lead directly to an explanation of why it is often possible to approximate P with a very
low-rank matrix. They are closely related to the eigenvalue decay rates of Penzl [19] which are the only
such results we are aware of. His results are stated in terms of the condition number of A which is assumed
symmetric. Our bounds are functions of the eigenvalues of A and make no symmetry assumptions. We give
some numerical results and compare the two. These results show that the bounds given here seem to give a
signi2cantly better indication of the actual decay rate of the eigenvalues of P.

Next we turn our attention to the Hankel singular values of �. Due to their importance in model reduction,
in particular balanced model reduction of large-scale systems, there has been some activity recently on the
issue of the decay rate of these singular values. It has been observed that in many cases these quantities decay
very fast and therefore the corresponding systems are easy to approximate. Two recent approaches are [4,5].

Our second goal in this paper is to present a diOerent approach to the problem of determining the decay
rate of the Hankel singular values. It is based on a new set of system invariants. If the transfer function of
the system in question is Z =p=q, the invariants are the magnitudes of p=q∗ evaluated at the poles of Z . The
main result states that these invariants and the Hankel singular values are related by means of multiplicative
majorization relations.

The paper is organized as follows. After some preliminary results on the Cauchy matrix, the issue of decay
rate of the eigenvalues of one grammian is investigated in Section 3. In Section 4 the general problem of
the decay rate of the eigenvalues of the product of two grammians is addressed. Section 5 presents some
numerical experiments. Finally, we oOer some concluding remarks.

2. Cauchy matrices

Our results will depend heavily on properties of Cauchy matrices. They appear fundamentally in direct
formulas for solutions of Lyapunov equations. Moreover, there are closed-form expressions for elements of
Cholesky factors and inverses of Cauchy matrices that lend themselves to derivation of the decay estimates
we seek.

Given two vectors x; y∈Cn, let �i; �i denote their ith entry, respectively. The Cauchy matrix C(x; y)∈Cn×n

is de2ned as follows:

C(x; y)ij =
1

�i + �∗j
; i; j = 1; : : : ; n: (3)

It readily follows that C(x; y)∗ = C(y; x), where the superscript ∗ denotes complex conjugation followed by
transposition. De2ne the vector d(x; y)∈Cn whose ith entry is

d(x; y)i =

∏
k �=i(�i − �k)∏
k(�i − �∗k )

and D(x; y) = diag(d(x; y)): (4)

If the components of x and y are such that no entry of d(x; y) takes a value of 0 or ∞, then C(x; y) is
nonsingular and the following result holds.
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Lemma 2.1. With the notation established above

C(x; y)[D(y∗; x∗)]−1C(y∗; x∗)[D(x; y)]−1 = In: (5)

The proof of this result follows from the closed form expression of the inverse of the Cauchy matrix [13].
Actually this result is quoted for real x and y, and a slight extension is necessary to obtain the correct formula
for complex x and y.

The special case x=y=‘:=(�1; �2; : : : ; �n)T is of interest here. It turns out that when C is positive de2nite,
there are explicit formulas, due to Gohberg and Koltracht [9], for the elements of the Cholesky factors.

Lemma 2.2. If Real(�i)¡ 0 for all i; then −C(‘; ‘) is positive de5nite. Moreover; if −C(‘; ‘) = LRL∗ is
the Cholesky factorization; then

�k =
−1

2Real(�k)

k−1∏
j=1

∣∣∣∣�k − �j
�∗k + �j

∣∣∣∣2 ;
where $= diag(�1; �2; : : : ; �n).

Remark 2.1. It is well known (see e.g. [13]) that Cauchy and the closely related Hilbert matrices are badly
conditioned. Relationship (5) can be used to obtain the best diagonal conditioning of Cauchy and Hilbert
matrices. For details on the solution of this problem see [1].

3. Eigenvalue decay rates for system grammians

3.1. A canonical grammian and the Cauchy kernel

In this section, we establish the main result on the decay rates of the eigenvalues of a single Lyapunov
equation. We consider the SISO case, so B is a column vector which will be denoted by b, and the Lyapunov
equation is

AP + PAT + bbT = 0: (6)

We assume that A is a stable matrix (all eigenvalues in the open left-half plane). Let Ac be the companion
matrix for A

Ac = J − geT
n ;

where J is a left shift matrix with ones on the 2rst subdiagonal and zeros elsewhere. The vector gT =
()0; )1; : : : ; )n−1) de2nes the characteristic polynomial of A with

q(s):=det(sI − A) = sn + )n−1sn−1 + · · · + )1s + )0: (7)

De2ne G to be the solution of the canonical Lyapunov equation

AcG + GAT
c + e1eT

1 = 0:

Let b be any vector such that (A; b) is controllable and let K = [b; Ab; A2b; : : : ; An−1b] be the Krylov or
controllability matrix. Since (A; b) is controllable, K is non-singular and Ke1 = b. It follows easily from the
Cayley Hamilton theorem that AK = KAc. We immediately have the following lemma.

Lemma 3.1. P solves AP + PAT + bbT = 0 if; and only if; P = KGKT.
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Proof. This is easily seen by multiplying the Lyapunov equation on the left; right by K; KT to get

0 = K(AcG + GAT
c + e1eT

1 )KT = AKGKT + KGKTAT + bbT:

Since A is stable; this solution is unique and the lemma is proved.

This result provides a direct relationship of P with the Krylov or controllability matrix K , but further
analysis is needed to derive decay rates. These rates will be a function of the eigenvalues �j of the matrix
A. When A is diagonalizable, one has

YAc = .Y;

where Y is the Vandermonde matrix of eigenvalue powers. The jth row of Y is

eT
j Y = [1; �j; �2

j ; : : : ; �
n−1
j ]

and .= diag(�1; �2; : : : ; �n). We shall de2ne the Cauchy kernel to be the matrix

C:=YGY ∗:

This kernel will provide the decay rates we seek due to the following result.

Lemma 3.2. Let X be a matrix of right eigenvectors for A so that AX =X. and assume the columns of X
each have unit norm. Then

Cij =
−1

�i + �∗j

is Hermitian positive de5nite and

P = XbCX ∗
b ;

where Xb = X diag(b̂) with b̂= X−1b.

Proof. First observe that

K = [b; Ab; A2b; : : : ; An−1b]

= [X b̂; X.b̂; X.2b̂; : : : ; X.n−1b̂]

= XbY:

From Lemma 3.1 we have P=KGKT =XbYG(XbY )∗ =XbCX ∗
b . Since the pair (A; b) is controllable; b cannot

be orthogonal to any left eigenvector of A. Hence; no component of b̂=X−1b is zero and the matrix diag(b̂)
is non-singular. Moreover;

AXb = Xb. and X−1
b b= e;

where eT = (1; 1; : : : ; 1). Therefore;

0 = X−1
b (AP + PAT + bbT)X−∗

b = .C + C.∗ + eeT:

By inspection; one 2nds that C is a Cauchy matrix with Cij = −1=(�i + �∗j ). Since A is stable; . is stable
and C must be positive de2nite. This concludes the proof.

We are now prepared to derive a decay rate based upon the eigenvalues of A. Since C is positive de2nite,
it has a Cholesky factorization. Moreover, if diagonal pivoting is included to bring the maximum diagonal
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element to the pivot position at each stage of the factorization, we may assume an ordering of the eigenvalues
of A and hence a symmetric permutation of the rows and columns of C such that

C = LRL∗

with $=diag(�1; �2; : : : ; �n) and with L unit lower triangular and such that each column Lej satis2es ‖Lej‖∞=1.
The explicit formula in Lemma 2.2 gives �k = (−1=2Real(�k))

∏k−1
j=1 |(�k − �j)=(�∗k + �j)|2 in terms of the

eigenvalues of A and one may think of the diagonal pivoting in the Cholesky factorization as a means
to order (i.e. index) these eigenvalues. Let �(A) denote the spectrum of A. If the 2rst k − 1 eigenvalues
Sk−1 = {�j: 16 j6 k − 1} ⊂ �(A) have been selected and indexed, then the kth eigenvalue �k is selected
according to

�k = argmax


 −1

2Real(�)

k−1∏
j=1

∣∣∣∣ �− �j
�∗ + �j

∣∣∣∣2 : �∈ �(A) \Sk−1


 :

We shall call this selection the Cholesky ordering. Now, given a 2xed � in the open left-half plane, the
function

0(1) =
�− 1
�∗ + 1

is a linear fractional transformation that maps the open left-half plane onto the open unit disk. Thus, |0(�j)|¡ 1
for every �j ∈ �(A). From this, we may conclude that the sequence {�j} is decreasing with �1 =
−1=2max{Real(�i)} = max|Cij|. These results may be summarized in the following theorem.

Theorem 3.1. Let P =
∑n

j=1 �jzjz
∗
j ; solve the Lyapunov equation (6); and de5ne Pk =

∑k
j=1 �jzjz

∗
j ; with

�1¿ �2¿ · · ·¿ �n ¿ 0; given above and zj = XbLej. Then

‖P − Pk‖26 (n− k)2�k+1(22(X )‖b‖2)2:

Proof. The previous discussion has established

‖P − Pk‖2 =

∥∥∥∥∥∥
n∑

j=k+1

�jzjz∗j

∥∥∥∥∥∥
2

6 �k+1(n− k)max
j¿k

‖zj‖2
2

since the �j are decreasing and ‖zjz∗j ‖2 = ‖zj‖2
2. Due to ‖Lej‖∞ = 1; we have ‖Lej‖26 (n − j + 1)1=2; and

thus

‖zj‖2 6 ‖X ‖2‖b̂‖2‖Lej‖2

= ‖X ‖2‖X−1b‖2(n− j + 1)1=2

6 22(X )‖b‖2(n− k)1=2

for j¿k. This completes the proof.

Therefore, when A has an eigenvector basis that is well conditioned, the norms of the vectors zj are
uniformly bounded by a modest constant and hence the ratio �k+1=�1 gives an order of magnitude relative
error estimate of �k+1=�1 for a rank k approximation to P. Departure from normality will increase the condition
number of X and render this bound useless. One might see the low-rank phenomenon accentuated through
small components of b̂. On the other hand, the components of b̂ may be magni2ed in a way that cancels the
eOects of the rapidly decaying �j.
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3.2. Generalization to MIMO

The bounds of the previous section only apply to the case where B = b is a single vector. However, this
result still has implications for the general case. Let B = [b1; b2; : : : ; bm], where bi ∈Rn; i = 1; 2; : : : ; m. Note
that Eq. (2) may be written as

AP + PAT +
m∑
i=1

bibT
i = 0:

Let Pi be the solution to

APi + PiAT + bibT
i = 0; i = 1; 2; : : : ; m:

From Theorem 3.1 above, we have

Pi = XiCX ∗
i = XiLRL∗X ∗

i ; where Xi = X diag(X−1bi):

Let

Zj ≡ [X1Lej; X2Lej; : : : ; XmLej] = [z1j; z2j; : : : ; zmj];

where zij = X diag(X−1bi)Lej. Linearity of the Lyapunov equation yields

P =
m∑
i=1

Pi =
n∑

j=1

�jZjZ∗
j :

With this notation we may establish the following result.

Theorem 3.2. Let P̂km =
∑k

j=1 �jZjZ
∗
j . If �k+1=�1 ¡3; then P̂km is an approximation to P of rank at most

km which satis5es

‖P − P̂km‖26 3�1m(n− k)2(22(X )‖B‖2)2

with �1 ≈ ‖P‖2.

Proof. Since ZjZ∗
J =

∑m
i=1 zijz

∗
ij ; it follows that

‖ZjZ∗
j ‖2 6

m∑
i=1

‖zijz∗ij‖2

6mmax
i

‖zijz∗ij‖2

6mmax
i

(n− k)(22(X )‖bi‖2)2

6m(n− k)(22(X )‖B‖2)2

for j¿k; where the estimates of Theorem 3.1 are applied to each ‖zijz∗ij‖2 and the 2nal result follows from
an argument analogous to that of Theorem 3.1.

Obviously, there is a close connection between these bounds and the behavior of the Krylov (controllability)
sequence B; AB; A2B; : : : ; An−1B. The following well-known result makes this connection precise.

Proposition 3.1. Let A∈Rn×n be stable and B∈Rn×m. Suppose P is the unique solution to AP+PAT+BBT=0;
and let K = [B; AB; A2B; : : : ; An−1B]. Then Rank(P) = Rank(K).

A proof of this result may be found, for instance, in [2]. This fact is numerically reNected in our decay
rates.
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4. Decay rate of the Hankel singular values

The estimates of the previous section are useful but fairly crude. In this section we present a set of bounds
based on a new set of system invariants. The theory requires us to consider the transfer function of the system:
Z =p=q, n= deg q. The invariants we introduce are the magnitudes of p=q∗ evaluated at the poles of Z . The
main result states that these invariants and the Hankel singular values are related by means of multiplicative
majorization relations.

Once again, we consider the SISO case, and we will assume for convenience that the eigenvalues �i of A are
distinct and that the system is stable. The usual assumption of minimality (controllability and observability)
will also be made.

The Hankel singular values of the system � are de2ned as the square roots of the eigenvalues of the
product of the controllability grammian P and the observability grammian Q de2ned by (1)

�i(�) =
√
�i(PQ); i = 1; : : : ; n: (8)

These quantities are assumed ordered in decreasing order �i¿ �i+1. It is well known that these Hankel singular
values are invariant under state space transformations. Furthermore, they turn out to be the singular values of
the so-called Hankel operator associated with the system. For details we refer to [2].

We now introduce a new set of system invariants as follows. Let the transfer function be

Z(s) = C(sI − A)−1B + D0 =
p(s)
q(s)

:

Due to the minimality of the above realization, the eigenvalues of A are the same as the poles of Z(s), that
is, the roots of the denominator polynomial q(s). Let q(s) be as de2ned in (7). We will make use of the
standard de2nition

q(s)∗ = q∗(−s) =
n∑

k=0

)∗k (−s)k : (9)

We now de2ne the following quantities:

4i =
p(�i)
q∗(�i)

=
p(s)
q(s)∗

∣∣∣∣
s=�i

; |4i|¿ |4i+1|; i = 1; : : : ; n− 1: (10)

Recall that the Hankel singular values of all-pass systems satisfy the property: �1 = · · · = �n. A consequence
of the above de2nition is that the same holds for the 4’s.

Lemma 4.1. A system is all-pass (unitary) if; and only if; the 4i are all equal: 41 = · · · = 4n. In this case
the Hankel singular values of the system and the 4i; i = 1; : : : ; n; are all equal.

The proof of this result is given in Remark 4.4.

4.1. Multiplicative majorization

To state the main result of this section, we need the notion of multiplicative majorization. This is a
partial ordering relation between vectors. Let 4∈Cn; �∈Rn be the vectors whose ith entry is equal to 4i; �i,
respectively. We say � majorizes 4 multiplicatively, and write |4| ≺5 �, if the following relations hold:

|4| ≺5 � ⇔
k∏
i=1

|4i|6
k∏
i=1

�i; k = 1; : : : ; n− 1 and
n∏
i=1

|4i| =
n∏
i=1

�i: (11)

The result quoted next is due to Sherman and Thompson [22].
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Lemma 4.2. Let the matrices 6;U; P satisfy the relationship 6=UP; where P¿ 0 is positive de5nite and U
is unitary. If 4i = �i(6); |4i|¿ |4i+1| and �i = �i(P)¿ �i+1; i = 1; : : : ; n− 1; then multiplicative majorization
holds; namely

|4| ≺5 �:

The converse is also true. Given P and 4i satisfying the above multiplicative majorization relations, there
exist a matrix 6, where 4i are its eigenvalues, and a unitary matrix U such that 6=UP. The main result of
this section is

Theorem 4.1. The vector of Hankel singular values � majorizes the absolute value of the vector of new
invariants 4 multiplicatively

|4| ≺5 �: (12)

Remark 4.1. (a) The last relationship of the main result; namely that the product of the |4i| is equal to the
product of the Hankel singular values was 2rst reported in the discrete-time case; by Mullis and Roberts [18].

(b) It follows from the majorization inequalities that
∏n

i=1 |4n−i+1|¿
∏k

i=1 �n−i+1, for i=1; 2; : : : ; n−1, and
with equality holding for i = n. This implies

k∑
i=1

log|4n−i+1|¿
k∑
i=1

log �n−i+1;

that is, the logarithmic sum of the tail of the Hankel singular values can be bounded above by the logarithmic
sum of the tail of the 4i.

4.2. Interpretation of Theorem 4.1

The issue in balanced model reduction is how fast the Hankel singular values decay to zero. In many cases
the poles (natural frequencies) of the system are known together with a state space realization

�=

(
A B

C D0

)
:

Thus in principle, one can compute the 4i, with relatively small computational eOort. The main theorem then
says that the (discrete) curve whose kth value is the product

∏k
i=1 |4i|, is of importance. It is actually best to

plot the logarithm of this curve, namely
∑k

i=1 log|4i|, because the 4i tend to decrease rapidly and their product
even more so. The main result asserts that given this curve, the corresponding curve for the Hankel singular
values

∑k
i=1 log �i, will remain above, and in addition the two curves will have to converge at the last point∑n

i=1 log �i =
∑n

i=1 log|4i|. Furthermore, the curves are monotone decreasing (Fig. 1).
Stated diOerently, let �k be known. Then the �‘; ‘¿k, will lie in the region bounded from above by log �k

and
∑

log|4k |.

Remark 4.2. A consequence of the main result is that non-minimum phase systems are harder to approximate
than minimum phase ones. Recall that minimum-phase systems are systems with stable zeros; i.e. zeros which
lie in the left half of the complex plane. The result follows from the de2nition (10) since; assuming that the
poles are the same; each 4i for a minimum-phase system will be smaller than the 4i for a system with all
zeros in the right half of the complex plane.
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Fig. 1. Five pairs of 4=� curves for all-pole systems of order 19 are depicted. The 4 curve is always the lower one. The units on the
y-axis are orders of magnitude. The curves of the right-hand side of the 2gure are from upper to lower, as follows. The 2rst system has
poles with real part equal to −1. The next has poles which are on a 45

◦
angle with respect to the negative real axis. The third one has

real poles only. Finally, the last two pairs have their poles spread apart by a factor of 10 with respect to the previous two pairs.

4.3. The proof of Theorem 4.1

Consider again the system � where the previous assumptions hold. Due to the fact that the poles are
distinct, the transfer function can be decomposed in a partial fraction expansion of the type

Z(s) =
p(s)
q(s)

=
p(s)∏n

i=1(s− �i)
= D0 +

n∑
i=1

bi
s− �i

: (13)

It follows that p(s) = D0q(s) +
∑n

i=1 bi
∏

j �=i(s− �j). Therefore p(�i) = bi
∏

j �=i(�i − �j). Notice also that

q(s)∗|s=�i =
n∏

j=1

(�i + �∗j ):

From the partial fraction decomposition follows the state space realization

�=

(
A B

C D0

)
; A= diag([�1; : : : ; �n]); B =




1
...

1


 ; C = [b1 · · · bn]:

Then the controllability grammian is equal to the Cauchy matrix with x=y=‘ (the vector of eigenvalues �j),
while the observability grammian is a diagonally scaled version of the Cauchy matrix with x = y = ‘∗ (the
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vector of complex conjugate eigenvalues). Let B be the diagonal matrix whose entries on the diagonal are
bi. Then

P = −C(‘; ‘) = −




1
�1 + �∗1

1
�1 + �∗2

: : :
1

�1 + �∗n
1

�2 + �∗1

1
�2 + �∗2

: : :
1

�2 + �∗n
...

...
. . .

...
1

�n + �∗1

1
�n + �∗2

: : :
1

�n + �∗n




∈Cn×n ⇒ Q = −BC(‘∗; ‘∗)B∗:

From the above remarks it follows that d(‘; ‘)i =p(�i)=q∗(�i)=bi =
∏

j �=i(�i− �j)=
∏

j(�i + �∗j ). Thus from the
previous discussion and in particular Lemma 2.1, we conclude that

C(‘; ‘)D(‘∗; ‘∗)−1C(‘∗; ‘∗)D(‘; ‘)−1 = In:

This implies

P[BD(‘∗; ‘∗)]−1Q[D(‘; ‘)B∗]−1 = In:

From here we proceed as follows. Let T be a balancing transformation, i.e. TPT ∗ = T−∗QT−1 = 9, where
9= diag(�1; : : : ; �n), are the Hankel singular values of �. Then

TPT ∗︸ ︷︷ ︸
9

T−∗(BD(‘∗; ‘∗))−1T ∗︸ ︷︷ ︸
D̂−∗

T−∗QT−1︸ ︷︷ ︸
9

T (D(‘; ‘)B∗)−1T−1︸ ︷︷ ︸
D̂−1

= 9D̂
−1
9D̂

−1
= In

⇒
√
9D̂

−∗√
9︸ ︷︷ ︸

U∗

√
9D̂

−1√
9︸ ︷︷ ︸

U

= In;

where
√
9 denote the square root of 9, i.e.

√
9
√
9 = 9; then the above equality implies

√
9D̂

−1√
9 = U ,

where U is unitary UU ∗ = U ∗U = In. Therefore,
√
9U ∗√9 = D̂. Then, since, �i(D̂) = d(‘; ‘)i, and since

�i(
√
9U ∗√9) = �i(U9), Lemma 4.2 together with (10), yield the desired result (12).

4.4. A sharpening of the main result

Recall (3) and (4). We associate with the �i’s and �i’s the following vectors �↑ ∈Rn and �↓ ∈Rn:

�↑k =
|bk |

�k + �∗k

k−1∏
i=1

∣∣∣∣ �k − �i
�k + �∗i

∣∣∣∣2 ; �↓k =
|bk |

�k + �∗k

n∏
i=k+1

∣∣∣∣ �k − �i
�k + �∗i

∣∣∣∣2 ; k = 1; 2; : : : ; n: (14)

It will be assumed in the sequel that the �i are arranged so that the entries of �↑ turn out to be in decreasing
Cauchy ordering: �↑k ¿ �↑k+1. From our earlier discussion it follows that if the system is given by (13), the
4i are

4k =
bk

�k + �∗k

∏
i �=k

�k − �i
�k + �∗i

: (15)

Notice that �↑� �↓ = 4� T4= |4|2, where � denotes point-wise multiplication. It should also be noticed that as
mentioned earlier [9], the L–D–U factorization of the Cauchy matrix can be written explicitly as C = LRU ,
where L is lower triangular with ones on the diagonal, U is upper triangular with ones on the diagonal, and
$= diag �↑.
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Suppose that we are given a matrix A=diag(�1; : : : ; �n)∈Cn×n, and B=[b1b2 · · · bn]T ∈Cn. In this case the
solution of the Lyapunov equation AP + PA∗ + BB∗ = 0 is precisely the Cauchy matrix scaled by B:Ci; j =
bib∗j =(�i + �∗j ). Because of the above mentioned fact on the L–D–U factorization we have the following
result due to Alfred Horn [15]; it states that the vector of eigenvalues of a positive de2nite matrix majorizes
multiplicatively the vector whose ith entry is the quotient of the determinants of the ith over the (i − 1)st
principal minors of the matrix.

Lemma 4.3. Let P be the solution to the Lyapunov equation with eigenvalues �i(P). Then; the vector �↑;
is majorized multiplicatively by the vector of eigenvalues �(P). Furthermore; the former multiplicatively
majorizes the vector 4

|4| ≺5 �↑ ≺5 �(P): (16)

Remark 4.3. (a) In [1] it was shown that the optimal conditioning of Cauchy matrices by means of diagonal
scaling is given by

:k = |�k + �∗k |
∏
i �=k

∣∣∣∣�k + �∗i
�k − �i

∣∣∣∣ :
This implies that for optimally conditioned Lyapunov equations we must have �↑ � �↓ = eT = [1 1 · · · 1].

(b) Inequalities (16) are a re2ned version of the result concerning the decay rate of the eigenvalues of a
single grammian; see Theorem 3.1.

Remark 4.4. Connection with Fuhrmann’s results. In Ref. [7]; the signed Hankel singular values 5 (i.e. the
eigenvalues) of the Hankel operator; and the corresponding eigenvectors; are characterized by means of a
polynomial equation as follows:

pr = 5q∗r∗ + q<; (17)

where Z = p=q is the transfer function of the system; � is a Hankel singular value; 5 = 3�; 3 = ±1; is
the corresponding signed singular value; (·)∗ is as de2ned earlier; and r; < are unknown polynomials of
degree less than n = deg q. Let a; b be polynomials satisfying the Bezout equation aq + bq∗ = 1. Then
the coe:cients of the polynomial r and the eigenvalues 5 of the Hankel operator are determined from the
eigenvalue decomposition of the matrix M =Kb(A)p(A); where A is any matrix with characteristic polynomial
equal to q and K = diag(1;−1; 1;−1; : : :). For details of this polynomial approach see [7].

We notice that (17) can be rewritten as follows:
p
q∗

= 5
r∗

r
+

q
q∗

<
r

⇒ 4i =
p
q∗

∣∣∣∣
s=�i

= 5
r∗

r

∣∣∣∣
s=�i

;

where −�i are the roots of q (poles of �). It follows therefore that 4i is equal to some singular value times
the magnitude of the corresponding all-pass r∗=r, evaluated at s = �i; to stress the dependency on the jth
singular value we write rj instead of r:

4i =
p(�i)
q∗(�i)

= �j
r∗j (�i)
rj(�i)

; j = 1; : : : ; n: (18)

Thus the ratio of 4i and �j is a quantity depending on the all-pass function de2ned by the polynomial r which
in turn de2nes the eigenvectors of the Hankel operator.

We are now ready to prove Lemma 4.1. Necessity: if the system is all pass, i.e. Z=2q∗=q, for some 2∈R,
by de2nition (10) of the 4i we have 4i = 2 for all i. Su:ciency: if all the 4i; i= 1; : : : ; n, are equal, since the
degree of r is at most n− 1, (18) implies r = r∗. Therefore p= 2q∗, where 2 = 4i = �j for all i; j.
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5. Numerical examples and discussion

In this section, we illustrate the eOectiveness of the Cholesky estimates for decay rates of the eigenvalues
of the system grammians derived in Section 3 (see Theorem 3.1). We have observed essentially the same
quality of results for the decay rate estimates for the Hankel singular values. As the two are intimately related,
we only report on the results for the eigenvalues of one grammian here.

Even though the results of Section 3 do not establish direct bounds on the eigenvalues of P they seem to
predict the behavior of these eigenvalues quite well. We illustrate this with some computational results and
compare our estimates to those derived by Penzl [19]. To our knowledge these were the only eigen-decay
estimates available prior to the results given here. Penzl’s results are only valid for symmetric A. When m=1
(the SISO case), these bounds are

�k+1(P)
�1(P)

6


k−1∏

j=0

2(A)(2j+1)=(2k) − 1
2(A)(2j+1)=(2k) + 1


2

: (19)

Our estimates are derived from the diagonal elements of the Cholesky factor of C and do not require symmetry
of A. They are of the form

�k =
−1

2Real(�k)

k−1∏
j=1

∣∣∣∣�k − �j
�k + �j

∣∣∣∣2 ;
where the �j’s have been indexed according to the Cholesky ordering imposed by diagonal pivoting. Thus
�k=�1 will be estimates of �k(P)=�1(P).

Even though these two results are derived in very diOerent ways, they are closely related. In fact, Penzl
derived his bounds from expressions involving the same linear fractional transformations that led to our results.
However, in that case, they arose from ADI approximations to the solution of (2).

Our computations indicate that a great deal may be lost in replacing estimates involving all of the eigenvalues
�j of A with a condition number. In Fig. 2 we show the results of our estimates versus Penzl’s in comparison
to the eigenvalues of P where A is the standard 2nite diOerence approximation to the 1-D Laplacian of order
100.

Fig. 2. Comparison of estimates: discrete Laplacian.
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Fig. 3. Comparison of estimates: non-symmetric A.

Fig. 2 gives a semilog graph of the Cholesky estimates �k=�1, the Penzl estimates, and the actual eigenvalue
ratios �k(P)=�1(P) for 16 k6 60. The horizontal dotted line indicates where these ratios fall below machine
precision eps ≈ 10−16. In Fig. 3, we show the same comparison for a random nonsymmetric A of order 200
with a few eigenvalues near the imaginary axis (distance about 0.01).

In Fig. 4 we compare Cholesky estimates to actual eigen-decay on LTI examples that are more closely
related to engineering applications. Two of the examples are simple model problems, a 2nite element model
of heat conduction in a plate with boundary controls and a 2nite element model of a clamped beam with
a control force applied at the free end. These are labeled “heat model” and “struct model”, respectively. A
third example labeled “CD player model” is a simpli2ed model of a CD player tracking mechanism that has
been described in detail in [10]. The fourth example labelled “ISS 1r-c04 model” is an actual 2nite element
discretization of the Nex modes of the Zvezda Service Module of the International Space Station (ISS). There
are 3 inputs and 3 outputs, namely the roll, pitch, yaw jets, and the readings of the roll, pitch, yaw rate gyros,
respectively. This example was provided by Draper Labs, Houston. Since A is nonsymmetric in all of these
systems, the Penzl estimates do not apply. However, the Cholesky ratios give very good approximations to
the actual eigen-decay rates for all of these examples.

Fig. 3 indicates that the condition number 2(A) alone may not be enough to determine the decay rate
eOectively. It seems that the decay rate depends on the full spectrum of A as indicated by the Cholesky
estimates. Moreover, one can easily see that clustered eigenvalues of A can make the Cauchy kernel have
low numerical rank (hence P will have low numerical rank), but 2(A) can be arbitrarily large at the same
time. Hence the right-hand side in (19) fails to predict the rapid eigen-decay rate. In fact, the eigen-decay
rate can be extremely fast even when 2(A) is large. This is illustrated by means of the example shown in
Fig. 5 where A has been constructed to have two clustered eigenvalues as follows:

for iter = 1:4
A = − 10 (̂6 + iter) ∗ eye(n) + diag (rand(n; 1)) ∗ 100;
A(n,n) = −1e− 5;

end

For the non-symmetric case, Penzl [19] constructed an example to show that even in the SISO case, the
eigen-decay rate can be arbitrarily slow. In the extreme case the ratios remain almost constant at 1; the
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Fig. 4. Eigen-decay rate vs. Cholesky estimates for some real LTI systems.
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Fig. 5. Fast eigen-decay rate for large cond(A).

Fig. 6. Decay rates for Penzl’s example.

example is: put n= 2d+ 1, m= 1, A= diag(−1; A1; A2; : : : ; Ad)∈Rn×n, B = [1; 1; : : : ; 1]T ∈Rn, where

Aj = Aj(t) =

[
−1 jt=d

−jt=d; −1

]
; j = 1; 2; : : : ; d:

Consider d= 50; t = 10; 100; 1000. From the construction of A, 2(A) = ‖A‖2‖A−1‖2
∼= t, and the eigenvalue

ratios are almost 1 for large t. We tried this example with d = 300; t = 10; 100; 103; 104. As can be seen
from Fig. 6, the eigen-decay rate of P slows down when A has eigenvalues with increasingly dominant
imaginary parts. Penzl [19] suggests that the dominant imaginary parts of the eigenvalues cause the decay
rate to slow down. This observation is relevant, but further analysis seems to indicate that relative dominance
of the imaginary parts to the real parts, together with the absence of clustering in the spectrum of A are
important factors (see also [12]).
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Fig. 7. Fast eigen-decay rate: A has clustered eigenvalues with dominant imaginary parts.

This is illustrated in Fig. 7 by constructing A with eigenvalues having large imaginary parts, clustered
around three points: {−1;−1+t i;−1−t i}. Again we construct: n=2d+1; A=diag(−1; A1; A2; : : : ; Ad)∈Rn×n,
B = [1; 1; : : : ; 1]T ∈Rn, while we modi2ed Aj as follows:

Aj = Aj(t) =

[
−1 t + j=d

−t − j=d; −1

]
; j = 1; 2; : : : ; d:

Again, we take t = 10; 100; 103; 104 for comparison.
In this example, despite the presence of eigenvalues with increasingly dominant imaginary parts, the

eigen-decay rate of P does not deteriorate because of the clustered eigenvalues. For each t; A has only
3 clustered eigenvalues, and thus the Cauchy kernel (3) has low numerical rank for each t. Hence, the
eigen-decay rate of P continues to be fast regardless of the magnitude of t as demonstrated in Fig. 7. We
also see that 2(A) is irrelevant to the decay rate in this case since 2(A) ∼= t for each t.

The Cholesky estimates are not shown in Figs. 5–7 to keep the plots simple. However, in all these cases the
Cholesky ratios were computed and again they approximate the actual eigen-decay rates well. All computations
were done in Matlab 5.3.0 on a Sun Sparc Ultra-60 under SunOS 5.6. Machine epsilon is approximately 10−16.

5.1. Cases of non-decay or slow-decay

The solution of Eq. (2) may be the identity P=I . As an example, if T=−TT, choose A=T−5e1eT
1 ; b=

√
25e1

for some 5¿ 0. Then

AI + IAT + bbT = 0:

Thus, it is possible to have no eigen-decay for the solution of (2); these cases are related to all-pass systems.
Numerical studies on non-decay cases show that eigenvalues of A with small real parts and not so small
imaginary parts, or with dominant imaginary parts and lack of clustering relative to maxj|Real(�j)| are con-
tributing factors. However, Fig. 8 shows that even in the slow-decay or non-decay case, (5) still approximates
the actual decay rate well.

Remark 5.1. (a) Cholesky ratio (5) involves only the eigenvalues of A; while P depends on both A and b;
so there may be considerable discrepancy between the Cholesky ratio and the actual eigen-decay rate for
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Fig. 8. Eigen-decay rate and Cholesky estimates for the slow-decay cases.

Fig. 9. MIMO cases: the eOect of diOerent p.

some b. However; when A has a moderately well-conditioned eigenvector basis (5) usually gives an accurate
prediction of the numerical rank of P.

(b) On the other hand, b is taken into account in Theorem 4.1 and in the re2ned bounds (16).
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The result of Theorem 3.2 suggests that the rank of P will increase with the rank of B. Fig. 9 gives one
example of the eOect of increasing m (the number of columns of B). Note in this example that the spectrum
of A contains relatively clustered points with dominant real parts, which implies the fast eigen-decay rate.

6. Conclusions

In the 2rst part of this paper we related the rank of the grammian P in (2), to the diagonal elements of the
diagonally pivoted Cholesky factor of the Cauchy kernel generated by the eigenvalues of A. We compared
the resulting Cholesky estimates to others with favorable results. Our estimates seem to be quite accurate for
both symmetric and non-symmetric A so long as A has a moderately conditioned eigenvector basis.

In the second part we investigated the problem of decay of the Hankel singular values. We found that they
satisfy multiplicative majorization inequalities with respect to a new set of invariants which we called 4i.

Our results do depend upon the assumption that A is diagonalizable. Further, work is needed to fully
understand the implications of matrices A that are defective or highly non-normal. Moreover, our results
depend on complete knowledge of the spectrum of A. Hence, they may not be practical for gaining apriori
estimates for the eOective rank of the grammians. It would be desirable to give practical and tight upper
bounds on the estimates derived in the 2rst part of the paper.
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