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Abstract

A procedure is presented for the computation of bounds to eigenvalues of the generalized hermitian eigenvalue pro
to the standard hermitian eigenvalue problem. This procedure is applicable to iterative subspace eigenvalue methods a
outer and inner eigenvalues. The Ritz values and their corresponding residual norms, all of which are computable q
are needed by the procedure. Knowledge of the exact eigenvalues is not needed by the procedure, but it must be kno
computed Ritz values are isolated from exact eigenvalues outside of the Ritz spectrum and that there are no skipped e
within the Ritz spectrum range. A multipass refinement procedure is described to compute the bounds for each Ritz va
procedure requires O(m) effort wherem is the subspace dimension for each pass.
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1. Background

Thegeneralized hermitian eigenvalue problem

(1.1)(H − λkM)zk = 0

* Corresponding author. Tel.: +630-252-3584, fax: 630-2
4470.

E-mail addresses: zhou@mcs.anl.gov(Y. Zhou),
shepard@tcg.anl.gov(R. Shepard),minkoff@mcs.anl.gov
(M. Minkoff).
0010-4655/$ – see front matter Published by Elsevier B.V.
doi:10.1016/j.cpc.2004.12.013
occurs in many applications. In this equation the m
trices are of dimensionN , H = H†, M = M†, andM is
positive definite. An important special case is thestan-
dard hermitian eigenvalue problem for which M = 1.
All of the results in this manuscript apply to both t
generalized and the standard problems. One appr
to the numerical solution of Eq.(1.1) is to expand the
approximate eigenvectors in a linearly independent
sis {xj ; j = 1 . . .m}. These vectors may be collecte
into the matrix

(1.2)X = [x | x | . . . | x ].
1 2 m
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The projected subspace representation of the m
cesH and M are denoted〈H〉 = X†HX and 〈M〉 =
X†MX. In many cases, the basis vectors inX will be
chosen such that〈M〉 = 1, but we consider the gener
case hereafter. An approximationy to an eigenvecto
will be written as a linear combination of the basis ve
tors, y = Xc (for simplicity, the vector norm relation
y†My = 1 is assumed hereafter). A measure of the
ror of the vectory is the residual vector

(1.3)r = (H − ρM)y.

r = 0 if and only if y is an exact eigenvector andρ
is the corresponding exact eigenvalue. Otherwise
discussed in more detail inAppendix A, the quan-
tity

√
r†M−1r, hereafter called theresidual norm, is

a measure of the error in both the eigenvector and
eigenvalue. The expansion coefficientsc are usually
determined from the subspace eigenvalue equatio

(1.4)
(〈H〉 − ρj 〈M〉)cj = 0.

It is convenient to assume that the subspace eigen
ues{ρj ; j = 1 . . .m}, called theRitz values, and the
exact eigenvalues{λk; k = 1 . . .N} are indexed in in-
creasing order. This is not a requirement in order to
ply the results of this manuscript, but this assumpt
simplifies the subsequent notation and discussion
is convenient to use the Parlett index convention[1] for
which negative integers are used to index eigenva
ordered from highest to lowest (i.e.λ−1 ≡ λN,λ−2 ≡
λN−1, . . . , λ−(N−1) ≡ λ2, λ−N ≡ λ1). We refer to a se
of the lowest eigenvalues{λk; k = 1 . . .m}, or to a set
of the highest eigenvalues{λ−k; k = 1 . . .m} asouter
eigenvalues, we refer to either or both of the high
and lowest eigenvalues{λ1, λN } asextremal eigenval-
ues, and we refer to a sequence of eigenvalues tha
in the interior of the spectrum{λk; k = m. . . n; 1 <

m � n < N} asinner eigenvalues.
The above choice for the expansion coefficientc

and approximate eigenvalueρ is optimal in several re
spects[1,2]. In particular, this choice minimizes th
residual norm with respect to variations inρ and with
respect to the vector coefficients. Iterative subsp
methods solve Eq.(1.4) several times as the subspa
dimensionm is increased or decreased and as
basis vectors are expanded, contracted, or other
changed during the iterative procedure. The vari
subspace methods differ in how the individual ba
vectorsx are generated, in how the basis vectors
j
contracted in order to satisfy various resource lim
tion constraints, and in how preconditioners are u
in order to accelerate the convergence of the ite
tive procedures for the particular eigenpairs of inter
The bounds relations examined in this manuscript
ply to all of these various hermitian subspace meth
(including the Lanczos[3], Davidson[4], SPAM [5],
Generalized Davidson Inverse Iteration[6], Jacobi–
Davidson[7], and Generalized Jacobi–Davidson[8]
methods).

The present work focuses on assessing the a
racy of the computed eigenvalues. Lower and up
bounds,b−

j andb+
j , respectively, are desired that s

isfy

(1.5)b−
j � λk � b+

j .

As discussed in more detail below, the mapping of
Ritz value indexj and the eigenvalue indexk depends
on whether the eigenvalues are inner or outer, and
whether the highest or lowest eigenvalues are c
puted. The further goal is that these bounds may
computed during the iterative procedure, so that t
may be used not only to assess the accuracy of the
results, but also to allow the iterative procedure to
terminated when a predetermined accuracy has b
achieved in order to avoid unnecessary computatio
effort.

Several standard inequalities are used to this e
The first is the Ritz Bound from the Ritz variation
principle[1,9] (see Eqs.(A.3)–(A.16)).

(1.6)λj � ρj , ρ−j � λ−j for j = 1 . . .m.

This bound relation places strict upper bounds on e
of the lowestm exact outer eigenvalues, and it plac
strict lower bounds on the highestm exact outer eigen
values. No additional information beyond the Ritz v
ues themselves is required, so these bounds are
putable.

The second inequality used is the Residual No
Bound [1] (see Eqs.(A.17)–(A.28)), which requires
the Ritz values along with the corresponding resid
norms.

(1.7)
√

r†
j M−1rj � |λk − ρj |.

These bounds are computable, but they are often
conservative.
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The next inequality used in this procedure is
Gap Theorem Bound[1,10] (see Eqs.(A.29)–(A.46)).

(1.8)
r†
j M−1rj

γj

� |λk − ρj |.

The Gap Bound is tighter than the Residual No

Bound when
√

r†
j M−1rj < γj , but it requires knowl-

edge of the exact eigenvalues, and therefore it ca
be computed during the iterative process. Howeve
a Ritz value of interestρj is separated in the followin
sense

(1.9)
δ−
j <

(
ρj −

√
r†
j M−1rj

)
,

(
ρj +

√
r†
j M−1rj

)
< δ+

j

with

(1.10)δ−
j = Maxk<j

{
b+
k

}
, δ+

j = Mink>j

{
b−
k

}
and if it is further assumed that there are no skip
eigenvalues (i.e. eigenvalues that are poorly re
sented or not represented at all) within the compu
spectrum range, then

(1.11)γ −
j ≡ Min

{
ρj − δ−

j , δ+
j − ρj

}
� γj

is a lower bound to the exact gapγj . This separation
is shown inFig. 1. This separation is equivalent to th
condition that there exists no expansion vector, or
of expansion vectors, that would move the Ritz va

of interest outside of the range[ρj −
√

r†
j M−1rj , ρj +√

r†
j M−1rj ], or that would reveal some other eige

value inside the range[δ−, δ+]. This computable value
j j
γ −
j may be combined with Eq.(1.8),

(1.12)
r†
j M−1rj

γ −
j

�
r†
j M−1rj

γj

� |λj − ρj |.

When it is necessary to distinguish which bound
being discussed, Eq.(1.8), with the exact eigenvalu
gap, will be called theExact Gap Bound, whereas
Eq. (1.12), with γ −

j , will be called theComputed
Gap Bound. With the above separation conditions, t
Computed Gap Bound is tighter than the Resid
Norm Bound, although it is not as tight as the Ex
Gap Bound.

A fourth bound that will be used is the Spre
Bound [1]. This applies only to the extremal eige
values (see Eqs.(A.49)–(A.53)).

(1.13)
r†
kM−1rk

σ
� |λk − ρk| for k = ±1.

The Spread Theorem requires knowledge of the e
matrix spread,σ = (λN − λ1), which, although com
putable in some situations, is usually not availab
However, if an upper boundσ+ is available such tha
σ � σ+, then useful inner bounds can be compu
for the two extremal eigenvalues. For example, wh
computing the largest eigenvalue of a positive defin
matrix, the upper bound to the eigenvalue is itself
upper bound to the matrix spread. Combining this
per bound with Eq.(1.13) results in the computabl
bound

(1.14)

r†
kM−1rk

σ+ �
r†
kM−1rk

σ
� |λk − ρk| for k = ±1.

Subspace methods are often used in situation
which the matricesH andM are not explicitly com-
s
nvalue
Fig. 1. The inner Ritz valueρj is isolated from the other Ritz values within the subspace by the Residual Norm bound. The exact gap iγ , and
the computed lower bound to that gap isγ −. When the Ritz value is isolated in this manner, the upper and lower bounds to the exact eige
λk computed by the Gap Theorem are tighter than those from the Residual Norm Bounds.
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puted and stored; instead, the products of these m
ces with the basis vectorsX are computed in operato
form. Bounds that require information about indivi
ual matrix elements could not be used in these
portant applications because these individual ma
elements are either not available or they would be p
hibitively expensive to extract from the matrix–vect
product operation. The goal of the present work is
find the best computable eigenvalue bounds given a
of Ritz values, their residual norms, some knowled
of the eigenvalue spacings, and, optionally, an estim
of the matrix spread. This information is available f
subspace methods even when the individual matrix
ements are not explicitly available for examinatio
There are several issues that must be addressed to
this goal.

(1) Under what conditions are the isolated Ritz va
and the nonskipped eigenvalue conditions sa
fied?

(2) The error bounds for the different eigenvalues
coupled in the sense thatbj depends on the othe
bk bounds fork �= j . How can all bounds be
converged self-consistently without violating t
bound conditions at intermediate steps during
optimization process or at the final values for the
bounds?

(3) For inner eigenvalues, the upper and lower e
bounds on the eigenvalues are symmetric ab
the computed Ritz valueρj . For outer eigenval
ues, the upper and lower error bounds are
symmetric. How can this be addressed during
bounds calculations?

These issues are addressed in order. In gen
given only the computed Ritz values and their cor
sponding residual norms, it cannot be guaranteed
there is no skipped eigenvalue. The skipped eig
value depends on information outside of the curr
subspaceX. However, in many applications, the ge
eral qualitative structure of the eigenvalues of int
est is known beforehand. For example, the eigenp
may be known at a lower approximation level,
a coarser grid, with a smaller underlying model b
sis set, at nearby values of some set of external
rameters, or from other physical insights known
the user. In addition, the eigenvalue spacings may
known more accurately than the actual eigenval
d

,

themselves. The matrix may be known to be, for exa
ple, positive semidefinite, or positive definite, or ne
ative definite, or other upper or lower bounds may
known based on physical insights of the model up
which the numerical eigenproblem is derived. Furth
more, the rank of any degeneracies may be kno
for the eigenvalue spectrum based on, for exam
physical or mathematical invariance properties, gr
theory, or other physical or mathematical insights.
these situations, the goal of the numerical calcula
is to compute quantitatively the eigenpairs, the qu
itative values being already known to some exte
This additional knowledge of the eigenvalue spectr
may be used to allow application of the Gap and
Spread Bounds even though the exact eigenvalue
not known.

When computing the initial bounds from the res
ual norms, two situations occur for each of the R
values: either a Ritz value is separated from the o
values, or it is not separated. If it is separated, an
there are no skipped eigenvalues, then one and
one exact eigenvalue will occur in the range[ρk −√

r†
kM−1rk , ρk +

√
r†
kM−1rk]. If two (or more) Ritz

values are not separated, then in the general ca
is known only that a single eigenvalue exists in
combined residual norm value range. That is, the
proximate eigenvectors associated with the two R
values may either both be approximating the same
act eigenpair, or they may be approximating two d
tinct eigenpairs. Consider, for example, the stand
eigenvalue problem with

(1.15)H =
(0 ε 0

ε 0 1
0 1 0

)
, X =

(1 0
0 1
0 0

)
.

For this problemλ = {−√
1+ ε2,0,

√
1+ ε2}, ρ =

{−ε, ε}, and |r1| = |r2| = 1/
√

2. Consider first the
situation withε ≈ 0.1. Both Ritz values are near th
singleλ2 = 0 exact eigenvalue, and it is only for th
single exact eigenvalue that the Residual Norm Bou
for either Ritz value, is seen to apply. The two R
values are not separated by the residual norm bo
thus the eigenvalue bounds cannot be refined w
the Gap Bound. Furthermore,λ1 < (ρ1 − |r1|) and
λ−1 > (ρ−1 + |r−1|), so it is clear that this subspac
representation does not satisfy the nonskipped ei
value requirement for either of the nonzero eigenv
ues. On the other hand, consider this same prob
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with ε ≈ 10. In this case the Ritz values are separa
by the Residual Norm Bound, and the two Ritz valu
are good approximations to the two nonzero extre
exact eigenvalues. However, there is a skipped eig
value in this case, and the Computed Gap Bounds
not be applied because lower bounds to the exact
cannot be determined from the subspace informat
As noted above, it cannot be known simply by exa
ining the residual norms or the subspace eigenva
that an eigenvalue has been skipped, this informa
must be determined separately.

The coupling of the bounds for one eigenva
to the computed bounds for other, usually adjac
eigenvalues results in the necessity to compute a
quence of bound values. At present, a closed-fo
solution to this problem is not known to the autho
Consequently, we adopt a straightforward bootst
approach to this problem. We begin the proced
by assigning Residual Norm Bounds to each of
eigenvalues (along with the Ritz and Spread bou
if appropriate). Then, given the current bounds, al
the bounds for each isolated eigenvalue are refine
possible, and any improvements to the bounds are
tained for subsequent passes. Depending on the e
value spacings and the corresponding bounds, the
bounds may be computed in a single refinement p
or they may require multiple passes. The bounds
are computed in this process are valid at any inter
diate step, and this allows the process to be trunc
while still returning rigorous bounds. For examp
once the bounds are below a given threshold, in
cating convergence to some level of accuracy of
eigenvalue, the process could be terminated if des
The application of Eqs.(1.9)–(1.12)appears to requir
a scan ofm elements to compute the upper and low
gap bounds for each Ritz value; this in turn impl
O(m2) effort to refine the bounds for allm Ritz values
each pass. We avoid this effort by precomputing
δ+ array before the process begins, and then upda
these elements, along with the corresponding elem
of δ−, in decreasing order as each eigenvalue bo
is refined. This results overall in only O(m) effort for
each pass.

Because the outer eigenvalue bounds are not s
metric about the computed Ritz values, this introdu
an asymmetry into the calculation procedure. C
sider, for example, the computation of bounds for
lowest fewm eigenvalues. First note that the gap
-
l

sociated withρm cannot be estimated. This is becau
there is noρm+1 estimate available that could be us
to approximate this gap. The refinement process th
fore begins withρm−1 and proceeds down, in som
order, eventually to the bounds forρ1. Secondly, note
that the computed gap forρ1 depends only on th
boundδ+

1 whereas the computed gaps for the rema
ing eigenvalues must be estimated by examining b
the lower bounds to the higher eigenvalues and the
per bounds for the lower eigenvalues. Finally the up
bounds are given by the Ritz variational principle
all of the eigenvalues except forλ1, and for this eigen-
value the computed Spread Bound may be applied
tionally (provided that an upper bound to the mat
spread is available), resulting in the situation in wh
the Ritz value lies outside of the computed eigenva
rangeb−

1 � λ1 � b+
1 < ρ1. The same consideration

apply also to the computation of the highestm eigen-
values.

As a practical matter, the computation of the res

ual norm
√

r†
j M−1rj for the above bounds calcula

tions requires either the explicit inversion of the m
ric matrix M or the solution of the linear equatio
Ms = rj . The inverse may be computed with relative
little effort when the metricM is a unit matrix (i.e. the
standard eigenvalue problem), a diagonal matrix,
block-diagonal matrix with small diagonal blocks. T
linear equation solution is relatively simple in som
other applications, including, for example, the tridia
onal or narrow-banded forms that occur in finite diffe
ence methods for which sparse LU or sparse Chole
methods may be applied. In other applications
which the matrixM has no exploitable structure, th
linear equation solution requires a more general i
ative approach, the effort for which might range fro
minimal (e.g., using a preconditioned conjugate g
dient approach with a very efficient preconditioner)
something comparable to that required for the eig
problem itself. It is assumed herein that some s
able method for computing the above residual norm
available for the target problem such that the bou
refinement process described above is practical.

2. Examples

In this section a few examples are given to dem
strate the use of the bounds computations describe
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Section1. The first example is a model withm = 5
and an unspecifiedN . The model Ritz values corre
spond to the lowest five eigenvalues. The model re
ual norms are sufficiently small for the Ritz valu
to be isolated from each other, and it is assumed
these Ritz values are also isolated from any other e
eigenvalues. The specific numerical values are c
sen to allow easy computation by hand in order
understand the refinement process in detail.Table 1
summarizes the upper and lower bounds during
refinement process. During Pass 0, the lower bou
are initialized with the Residual Norm Bounds. T
upper bound of the lowest eigenvalue is set with
Spread Bound withσ+ = 10.0. The remaining up
per bounds are initialized with the Ritz bound. Duri
Pass 1, the lower bounds for the lowest four eigen
ues are refined using the Gap Bound expression. O
the bounds that are changed each pass are display
 n

the table. All of the bounds are converged after Pas
in the subsequent pass all of the bounds are che
for possible improvement and the refinement proc
is terminated. It is clear that the final Gap and Spr
Bounds are a significant improvement over the or
nal Residual Bounds.

Table 2shows the refinement process for the sa
model problem except the Ritz values are assum
to correspond to inner exact eigenvalues. There
assumed to be an undetermined number of eigen
ues below the first Ritz value and above the fifth R
value. In Pass 0 both the upper and lower bound
responding to each Ritz value are initialized with t
Residual Norm Bound. As discussed in Section1, the
Gap Bounds cannot be applied to the highest and l
est Ritz values because there is no information av
able about eigenvalues outside of the Ritz range
lower bounds to the gaps for these Ritz values c
Table 1
Bound refinement for the lowest five Ritz values

j 1 2 3 4 5

ρj 1.000000 2.000000 3.000000 4.000000 5.000000
|rj | 0.010000 0.010000 0.010000 0.010000 0.010000

Pass 0 b−
j

0.990000(1) 1.990000(1) 2.990000(1) 3.990000(1) 4.990000(1)

b+
j

0.999990(3) 2.000000(0) 3.000000(0) 4.000000(0) 5.000000(0)

Pass 1 b−
j

0.999900(2) 1.999900(2) 2.999900(2) 3.999899(2) –

b+
j

– – – – –

(0) Ritz bound.
(1) Residual bound.
(2) Gap bound.
(3) Spread bound withσ+ = 10.0.

Table 2
Bound refinement for five inner Ritz values

j 1 2 3 4 5

ρj 1.000000 2.000000 3.000000 4.000000 5.000000
|rj | 0.010000 0.010000 0.010000 0.010000 0.010000

Pass 0 b−
j

0.990000(1) 1.990000(1) 2.990000(1) 3.990000(1) 4.990000(1)

b+
j

1.010000(1) 2.010000(1) 3.010000(1) 4.010000(1) 5.010000(1)

Pass 1 b−
j

– 1.999899(2) 2.999899(2) 3.999899(2) –

b+
j

– 2.000101(2) 3.000101(2) 4.000101(2) –

Pass 2 b−
j

– – 2.999900(2) – –

b+
j

– – 3.000100(2) – –

(1) Residual bound.
(2) Gap bound.
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not be computed. Consequently, during Pass 1 only
eigenvalue bounds corresponding to the three mid
Ritz values are refined. In contrast to the first exam
in Table 1, another pass is required to refine the m
dle eigenvalue bound. All of the bounds are conver
after Pass 2; in the subsequent pass all of the bo
are checked for possible improvement and the refi
ment process is terminated. It is clear that the final G
Bound is a significant improvement over the origin
Residual Norm Bound for the three inner Ritz valu
for which they can be applied.

Fig. 2 andTable 3show a practical application o
the bounds calculations to each iteration of a subsp
iterative procedure for a standard eigenvalue probl
The matrix has dimensionN = 197,655,128. This is
the real symmetric representation of the quantum
chanical electronic Hamiltonian for the ethylene mo
cule, C2H4, using a cc-pVTZ orbital basis set com
puted with the COLUMBUS Program System[11].
This is an example of an application in which ind
vidual matrix elements ofH are not available, the
required matrix–vector products are computed in
erator form. The expansion basis consists of all s
gle and double replacements from an MCSCF re
ence expansion with 12 active valence orbitals and
frozen-core orbitals (the 1s core orbitals of the two
carbon atoms). A preliminary approximateBk calcula-
tion [12] was performed on the lowest two eigenpa
in order to generate two qualitatively accurate start
vectors for the Ritz procedure using the exact mat
With these two starting vectors, the lowest Ritz va
is isolated as shown inTable 3. The expansion vector
used during the iterative procedure are calculated

Fig. 2. This graph displays the improvement of the various bou
as a function of the subspace iteration for the lowest eigenv
of the C2H4 hamiltonian matrix. The plotted values are compu
as |λ1 − b±

1 |, whereλ1 is taken as the converged eigenvalue a

b1 is either an upperb+
1 or lower b−

1 eigenvalue bound for tha
subspace iteration from the Ritz Variational Theorem, the Resi
Norm Theorem, and the Gap Theorem as discussed in the text
–02

–03

–04

–04

–05

–06

–06

–07

–07

–08

–08

re has
Table 3
Upper and lower bounds for the lowest eigenvalue1 for each subspace iteration

Sub. iter. ρ1 |r1| ρ2 |r2| b+
1 − b−

1 b+
1 − λ1 λ1 − b−

1

1 −78.4232628319 7.307E–02 −78.0877800384 9.372E–02 2.209E–02 1.528E–03 2.056E

2 −78.4244055909 3.657E–02 −78.0877800858 9.372E–02 5.505E–03 3.857E–04 5.119E

3 −78.4247258142 1.594E–02 −78.0877801056 9.372E–02 1.045E–03 6.548E–05 9.797E

4 −78.4247798274 6.168E–03 −78.0877801305 9.372E–02 1.564E–04 1.146E–05 1.449E

5 −78.4247883942 3.243E–03 −78.0877801323 9.372E–02 4.323E–05 2.896E–06 4.033E

6 −78.4247902447 1.583E–03 −78.0877801336 9.372E–02 1.029E–05 1.046E–06 9.249E

7 −78.4247910433 9.545E–04 −78.0877801388 9.372E–02 3.745E–06 2.470E–07 3.498E

8 −78.4247912409 4.337E–04 −78.0877801426 9.372E–02 7.730E–07 4.940E–08 7.236E

9 −78.4247912769 2.107E–04 −78.0877801451 9.372E–02 1.824E–07 1.340E–08 1.690E

10 −78.4247912855 1.066E–04 −78.0877801454 9.372E–02 4.666E–08 4.800E–09 4.186E

11 −78.4247912886 5.502E–05 −78.0877801465 9.372E–02 1.244E–08 1.700E–09 1.074E

1 The Ritz values correspond to the lowest two subspace eigenvalues for a matrix of dimension 197,655,128.b+
1 is computed from the

Ritz bound (i.e.b+
1 = ρ1), andb−

1 is computed from the Gap Bound (i.e. usingγ −
1 = ρ2 − |r2| − ρ1). The converged Ritz valueρ1 =

−78.4247912903 is taken as the exact eigenvalueλ1, so the last two columns of this table are calculated only after the iterative procedu
converged.
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ative
and
ific
ing the usual Davidson preconditioned residual[4,12]
approach. As can be seen, these expansion vector
prove the lowest Ritz value selectively, and the sec
Ritz value and its corresponding residual norm,
modified very little during the iterative procedure. T
actual subspace dimension is two for the first iterati
increases to six on the fifth iteration, then is contrac
to three on the sixth iteration, then increases up to
on the ninth iteration, and is contracted to three
the tenth iteration. These contractions of the expan
subspace (sometimes calledrestarts) are performed in
order to reduce the resource requirements[12] (e.g.,
memory, internode communications, and external d
space), but as seen inFig. 2andTable 3, they do not af-
fect significantly the convergence rate for this calcu
tion. Only the lowest two Ritz values and correspon
ing residual norms are used in the bounds refinem
process. This calculation clearly demonstrates how
Computed Gap Bound can be applied in a useful w
even when poorly converged Ritz values are use
compute the lower bounds to the gaps.

Fig. 2 shows how the various upper and low
bounds approach the exact eigenvalue as a functio
the subspace iteration procedure. It is clear fromFig. 2
that the best upper bound each subspace iteratio
given by the Ritz bound and that the best lower bou
is given by the Gap Bound; these values are show
more detail inTable 3. b+

1 in Table 3is computed from
the Ritz bound andb−

1 in Table 3is computed from the
Gap Bound. As seen in the last two columns, the
pected relationb−

1 � λ1 � b+
1 is satisfied throughou

the procedure. The converged Ritz value is taken
the exact eigenvalueλ1, so the last two columns of thi
table are calculated only after the iterative proced
has converged. For this particular calculation, the
per bound for a particular subspace iteration is alw
closer to the exact eigenvalue than the lower bound
that iteration. It is also interesting to compare the G
Bounds to the Residual Norm Bounds each iterat
In every iteration, the Gap Bounds are much tigh
than the Residual Norm Bounds, the ratio of the t
radii approaching 104 on the last iteration.

If convergence of the eigenpair to an absolute
curacy of 10−4 in the Ritz value were required (equi
alent to a relative accuracy of about one part in 16

for the lowest eigenvalue), then, with perfect-hindsi
knowledge of the final eigenvalue, the iterative proc
could have been terminated on the fifth iteration. T
-
(b+

1 − b−
1 ) column ofTable 3is a combination of the

Ritz upper bound with the Gap lower bound; the
bounds do not require knowledge of the exact eig
value and therefore can be computed during the s
space iterative procedure. As seen inTable 3, these
bounds would also allow termination on the fifth
eration for this absolute accuracy requirement. In c
trast, the Residual Norm Bound would require 11
erations in order to guarantee convergence to 10−4 in
the Ritz value. If convergence to an absolute accur
of 10−6 in the Ritz value were required, then the R
and Gap Bounds would allow the process to ter
nate on the eighth iteration, which is again consist
with perfect hindsight knowledge of the eigenvalu
in contrast, the Residual Norm Bound would requ
about 19 iterations to guarantee convergence of
Ritz value to 10−6. For these types of accurate, larg
scale, molecular electronic structure calculations, t
ical convergence requirements in the Ritz values ra
from 10−4 to 10−8 in absolute accuracy.

3. Conclusions

A procedure is presented for the computation
bounds to eigenvalues of the generalized hermi
eigenvalue problem and to the standard hermi
eigenvalue problem. This procedure is applicable to
erative subspace eigenvalue methods and to both o
and inner eigenvalues. The Ritz values and their co
sponding residual norms, all of which are computa
quantities, are needed by the procedure. Knowledg
the exact eigenvalues is not needed by the proced
but it must be known that the computed Ritz valu
are isolated from exact eigenvalues outside of the
spectrum and that there are no skipped eigenva
within the Ritz spectrum range. A multipass refin
ment procedure is described to compute the bou
for each Ritz value. This procedure requires O(m)

effort wherem is the subspace dimension for ea
pass.

Application of this bounds computation procedu
to model problems and to actual production proble
demonstrates the usefulness of the procedure.
procedure can be applied during the subspace iter
procedure in order to truncate the iterative process
to avoid unnecessary effort when converging spec
eigenvalues to a required target accuracy.
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Appendix A. Bounds

In this appendix, several of the eigenvalue bou
that are used in the algorithm of Section1 are dis-
cussed. These bounds include the Ritz Variatio
Bound, the Residual Norm bound, the Gap Theor
Bound, and the Spread Theorem bound. These bo
are well known for the standard eigenvalue probl
[1,2], and the derivations that are given in this app
dix are included primarily for completeness and also
extend the bounds to the generalized eigenvalue p
lem. To this end, we use the generalized hermi
eigenvalue equation

(A.1)(H − λkM)zk = 0

or in the equivalent matrix form

(A.2)HZ = MZλ

with an explicit metric matrixM, but the proofs for the
standard hermitian eigenvalue problem withM = 1
follow directly.

Ritz Variational Bounds. Consider first the situatio
in which a subspace of dimensionm is available. This
subspace results in the projected equation

(A.3)〈H〉[m]C[m] = 〈M〉[m]C[m]ρ[m].

The superscript denotes the subspace dimens
When a new basis vector is added, the correspon
projected equation is

(A.4)〈H〉[m+1]C[m+1] = 〈M〉[m+1]C[m+1]ρ[m+1].

We define the transformation matrixT in partitioned
form as

(A.5)T =
(

C[m] β

0 α

)

.

with

(A.6)

〈M〉[m+1] =
( 〈M〉[m] w

w† x

)
,

q = (〈M〉[m])−1w,

α = (x − w†q)−1/2,

β = −αq.

This results in

(A.7)T−1 =
(

(C[m])−1 (C[m])−1q
0 1/α

)

Eq.(A.4) may be transformed as(
T†〈H〉[m+1]T

)(
T−1C[m+1])

(A.8)= (
T†〈M〉[m+1]T

)(
T−1C[m+1])ρ[m+1]

and written in partitioned form as

(A.9)

(
ρ[m] h
h† g

)(
U
v

)
=

(
U
v

)
ρ[m+1].

Eq. (A.9) has the same eigenvalues as the orig
equation(A.4). The matrixT has transformed the gen
eralized eigenvalue equation into a standard eig
value equation. There are, of course, an infinite nu
ber of such transformations that would achieve t
goal. The particularT chosen above also transform
the firstm-dimensional leading sub-block to diagon
form. An arbitrary eigenpair from Eq.(A.9) may then
be written

(A.10)

(
ρ[m] h
h† g

)(
u
v

)
=

(
u
v

)
ρ[m+1].

The first row can be solved for the vectoru in terms
of the scalarv. When substituted into the second ro
to eliminateu, the result is

(A.11)g − h†(ρ[m] − ρ1
)−1h = ρ.

The left-hand side of Eq.(A.11) may be written

(A.12)L(ρ) = g −
m∑

j=1

h2
j

(ρ
[m]
j − ρ)

.

It is easily verified thatL(ρ) has horizontal asymp
totes

(A.13)lim
ρ→−∞L(ρ) = lim

ρ→+∞L(ρ) = g.
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Fig. 3. This is an example of the Cauchy Interlace Relation for a
trix of dimension four and for a submatrix of dimension three. T
vertical asymptotes (dashed lines) are located at the eigenvalu
the submatrix. The eigenvalues of the full matrix of dimension fo
indicated by the open circles, are the intersections of the dec
ing branches of the functionL(ρ) and of the increasing functio
R(ρ) = ρ. The eigenvalues of the full matrix interlace those of
submatrix.

Furthermore

dL(ρ)

dρ
= −

m∑
j=1

h2
j

(ρ
[m]
j − ρ)2

� 0

(A.14)for −∞ < ρ < ∞ andρ �= ρ
[m]
j .

Thus L(ρ) is a decreasing function everywhere th
it is analytic (differentiable). The vertical asymptot
are the result of the simple pole structure ofL(ρ). The
analytic segment ofL(ρ) that lies between two of th
poles is a branch of the functionL(ρ), and there are
m + 1 such branches. An example of this function
plotted form = 3 in Fig. 3. According to Eq.(A.11),
the eigenvaluesρ[m+1]

k for k = 1 . . .m + 1 are those
special values of this function for whichL(ρ) = R(ρ)

whereR(ρ) = ρ is a simple linear function with pos
itive unit slope. The intersections of these two fun
tions are shown inFig. 3. Because the branches
L(ρ) are decreasing functions, andR(ρ) is an increas-
ing function, there is one and only one intersection
each of the branches. These intersections must th
fore satisfy

ρ
[m+1]
1 � ρ

[m]
1 ,

(A.15)ρ
[m]
j � ρ

[m+1]
j+1 � ρ

[m]
j+1 for j = 1 . . . (m − 1),

ρ[m]
m � ρ

[m+1]
m+1 .

This is the Cauchy interlace relation[1]. Consider
this inequality applied to a particular eigenvalue ind
j (or −j , using the Parlett index convention) as t
subspace dimensionm approaches the matrix dime
sionN .

(A.16)

λj = ρ
[N ]
j � ρ

[N−1]
j � · · ·

� ρ
[m+2]
j � ρ

[m+1]
j � ρ

[m]
j ,

ρ
[m]
−j � ρ

[m+1]
−j � ρ

[m+2]
−j � · · ·

� ρ
[N−1]
−j � ρ

[N ]
−j = λ−j .

This is the Ritz variational principle. In words, them
ordered Ritz values from a subspace of dimensiom

are each upper bounds to the corresponding lowem

exact eigenvalues of the full matrix, and those Ritz v
ues are simultaneously lower bounds to the highesm

exact eigenvalues of the full matrix.
For brevity, we do not consider here the sp

cial cases individually that require detailed attenti
These include the situations in whichv = 0 for a par-
ticular eigenvector and the situations in which eithe
both ρ[m] andρ[m+1] contain degeneracies. We no
only that these situations are straightforward to
alyze and that the general Ritz variational princi
holds in these special situations just as it does in
typical case discussed above.

Residual Norm Theorem. Given an hermitian matrix
H, a positive-definite metric hermitian matrixM, and
vectory, normalized asy†My = 1, the Rayleigh quo
tient is

(A.17)ρ(y,H,M) ≡ y†Hy
y†My

= y†Hy.

For brevity in this appendix, we use hereafter the sh
notationρ ≡ ρ(y,H,M). The following proofs hold
for arbitrary Rayleigh quotients; the Ritz values us
in Section1 are Rayleigh quotients that satisfy al
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additional conditions. The residual vectorr ≡ r(y) is

(A.18)r = (H − ρM)y.

Note thaty†r = 0. The vectory may be expanded i
the basis of the exact eigenvectors{zj ; j = 1 . . .N},
which may be chosen to be orthonormal,z†

j Mzk = δjk .

(A.19)y =
∑
j

zjαj

with

(A.20)1= y†My =
∑
j,k

z†
j Mzkαjαk =

∑
j

α2
j .

This allows the residual to be written in the eigenv
tor basis in terms of the exact eigenvaluesλj .

(A.21)r =
∑
j

(H − ρM)zj αj =
∑
j

(λj − ρ)αj Mzj .

Let λk be the exact eigenvalue closest toρ

(A.22)|λk − ρ| = Min
{|λj − ρ|; j = 1 . . .N

}
.

The quantity(r†M−1r) may be written

(A.23)r†M−1r =
∑
j

(λj − ρ)2α2
j .

Each term in this summation is nonnegative. The
equality

r†M−1r �
N∑

j=1

(λk − ρ)2α2
j = (λk − ρ)2

N∑
j=1

α2
j

(A.24)= (λk − ρ)2

follows by replacing each nonnegative term in t
summation in Eq.(A.23) by a nonnegative value o
lesser or equal magnitude. This results in the boun

(A.25)
√

r†M−1r � |λk − ρ|
which may be written in the form

(A.26)ρ −
√

r†M−1r � λk � ρ +
√

r†M−1r.

In the special case of the standard eigenvalue equa
M = 1, these inequalities result in the familiar Res
ual Norm Bound

(A.27)|r| � |λk − ρ|,
(A.28)ρ − |r| � λk � ρ + |r|.
,

There are several other interesting proofs of
Residual Norm Bound (see, for example, Chapter
Parlett[1]). The above proof was chosen for this a
pendix because it is in the same spirit as the follow
proof of the Gap Theorem Bound.

It should be emphasized that although the ab
Residual Norm Bound is rigorous, this does not i

ply immediately thatρk −
√

r†
kM−1rk � λk � ρk +√

r†
kM−1rk for a given Ritz and eigenpair indexk. The

bound only states that, given a Rayleigh quotientρ,
there is at least one eigenvalue indexk that satisfies the
bound. Additional knowledge that there are no skipp
eigenvalues, or knowledge of exactly which eigenv
ues are skipped, is required in order to match up
index of a Ritz valueρj with an exact eigenvalueλk .

The Gap Theorem. The Gap Bound is slightly mor
involved. We present here the proof given by P
lett [1], but extended in a straightforward manner
the generalized eigenvalue problem. For the Rayle
quotientρ(y,H,M), the gapγ ≡ γ (ρ) is defined as

(A.29)γ = Min
{|λj − ρ|; j = 1 . . .N, j �= k

}
.

In words, the gapγ is the distance from the Rayleig
quotientρ to the nearest exact eigenvalue other th
λk , the eigenvalue that is being approximated byρ. It
is assumed hereafter thatλk is a nondegenerate eige
value and that the gap is strictly positive. The vectoy
can be decomposed in they–zk plane as

(A.30)y = zk Cosφ + w Sinφ

with w†Mw = 1 andw†Mzk = 0. We note that the
phases of the vectorszk andw are not specified in an
way, and the quadrant of the plane rotation angleφ is
arbitrary to within these phases, but this is unimport
to the proof at hand. This plane decomposition allo
the residual to be written

(A.31)r = (λk − ρ)Mzk Cosφ + (H − ρM)w Sinφ.

This results in the relation

0= y†r

(A.32)= (λk − ρ)Cos2 φ + w†(H − ρM)w Sin2 φ.

It is clear from this expression that the two facto
(λ − ρ) and (w†(H − ρM)w) have opposite signs
k
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Eq.(A.32) can be solved for Cos2 φ to give

(A.33)Cos2 φ = −w†(H − ρM)w
(λk − ρ)

Sin2 φ.

Substitution of the identity Cos2 φ + Sin2 φ = 1 into
Eqs.(A.32) or (A.33)results in

Sin2 φ = −(λk − ρ)

w†(H − ρM)w − (λk − ρ)

= −(λk − ρ)

w†(H − ρM − λkM + ρM)w

= −(λk − ρ)

w†(H − λkM)w

(A.34)= |λk − ρ|
|w†(H − λkM)w| .

The quantity(r†M−1r) may be written

r†M−1r = (λk − ρ)2 Cos2 φ + w†(H − ρM)

(A.35)× M−1(H − ρM)w Sin2 φ.

Substitution of Eq.(A.33) gives

r†M−1r = −w†(H − ρM)w(λk − ρ)Sin2 φ

+ w†(H − λkM + λkM − ρM)

× M−1(H − ρM)w Sin2 φ

(A.36)

= w†(H − λkM)M−1(H − ρM)w Sin2 φ.

Expanding the vectorw in the eigenvector basis wit
coefficientsχj gives

r†M−1r = Sin2 φ
∑

j ( �=k)

z†
j (H − λkM)

(A.37)× M−1(H − ρM)zjχ
2
j

(A.38)= Sin2 φ
∑

j ( �=k)

(λj − λk)(λj − ρ)χ2
j

(A.39)= Sin2 φ
∑

j ( �=k)

|λj − λk| · |λj − ρ|χ2
j .

Eq. (A.39) holds because the two factors(λj − λk)

and(λj − ρ) are always the same sign for each te
in the summation. Replacing each of the positive te
|λj −ρ| by the smaller valueγ results in the inequality

(A.40)r†M−1r � γ Sin2 φ
∑

j ( �=k)

|λj − λk|χ2
j .
The inequality

∑
j ( �=k)

|λj − λk|χ2
j �

∣∣∣∣ ∑
j ( �=k)

(λj − λk)χ
2
j

∣∣∣∣
(A.41)= ∣∣w†(H − λkM)w

∣∣
results in the relation

(A.42)r†M−1r � γ
∣∣w†(H − λkM)w

∣∣Sin2 φ.

Substitution using Eq.(A.34) gives the inequalities

(A.43)
r†M−1r

γ
� |λk − ρ|,

(A.44)ρ − r†M−1r
γ

� λk � ρ + r†M−1r
γ

.

In the special case of the standard eigenvalue e
tion, M = 1, these inequalities result in the famili
Gap Theorem Bounds

(A.45)
|r|2
γ

� |λk − ρ|,

(A.46)ρ − |r|2
γ

� λk � ρ + |r|2
γ

.

As for the previous Residual Norm Bound, this r
lation only states that, given a Rayleigh quotientρ,
there is at least one eigenvalue indexk that satisfies the
bound. Additional knowledge that there are no skipp
eigenvalues, or knowledge of exactly which eigenv
ues are skipped, is required in order to match up a
valueρj with an exact eigenvalueλk . Compared to the
Residual Norm Bound in Eq.(A.25), it may be verified
that the Gap Bound is tighter than the Residual No
Bound when

√
r†M−1r < γ . The Gap Bound may b

computed even when this relation is not satisfied,
such a bound would be looser than the Residual N
Bound in this case.

The Spread Theorem. The Spread Theorem applie
only to the special casesk = 1 or k = N (or equiva-
lently to k = −1 or k = −N using the Parlett inde
convention), that is, to the two extremal eigenvalu
only. Replace each of the nonnegative terms|λj −ρ| in
Eq.(A.39) by the larger quantityσ = (λN − λ1). This
quantityσ is called theSpread of the pencil(H,M).
This results in the inequality

(A.47)r†M−1r � σ · Sin2 φ
∑

|λj − λk|χ2
j .
j ( �=k)
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The equality (compare Eq.(A.41))∑
j ( �=k)

|λj − λk|χ2
j =

∣∣∣∣ ∑
j ( �=k)

(λj − λk)χ
2
j

∣∣∣∣
(A.48)= ∣∣w†(H − λkM)w

∣∣
follows from the fact that each of the terms(λj − λk)

has the same sign for an extremal eigenvalue. C
bining Eqs.(A.34), (A.47), and (A.48)results in the
inequality

(A.49)
r†M−1r

σ
� |λk − ρ|.

For k = 1 we have|λk − ρ| = ρ − λ1 which results in
an upper bound to the lowest eigenvalue

(A.50)λ1 � ρ − r†M−1r
σ

.

For k = N we have|λk − ρ| = λN − ρ which results
in a lower bound to the highest eigenvalue

(A.51)ρ + r†M−1r
σ

� λN.

The Spread Theorem therefore providesinner bounds
to the two extremal eigenvalues. In the special c
of the standard eigenvalue equation,M = 1, these in-
equalities result in the inner bounds

(A.52)λ1 � ρ − |r|2
σ

and

(A.53)ρ + |r|2
σ

� λN .

From these expressions it is clear than the Spr
Bound is always superior to the Ritz bound for a
finite value of the matrix spreadσ . If no informa-
tion about the matrix spread is available, then in
limit σ → ∞, the spread bound approaches the s
ple Ritz variational bound. In this sense, the Spr
Theorem may be thought of as an improvement to
Ritz Bound that utilizes limited additional informatio
about the matrix spectrum and the residual norm.
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