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Abstract

A procedure is presented for the computation of bounds to eigenvalues of the generalized hermitian eigenvalue problem and
to the standard hermitian eigenvalue problem. This procedure is applicable to iterative subspace eigenvalue methods and to bott
outer and inner eigenvalues. The Ritz values and their corresponding residual norms, all of which are computable quantities,
are needed by the procedure. Knowledge of the exact eigenvalues is not needed by the procedure, but it must be known that the
computed Ritz values are isolated from exact eigenvalues outside of the Ritz spectrum and that there are no skipped eigenvalue:
within the Ritz spectrum range. A multipass refinement procedure is described to compute the bounds for each Ritz value. This
procedure requires @) effort wherem is the subspace dimension for each pass.
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1. Background occurs in many applications. In this equation the ma-
trices are of dimensioV,H =HT,M =MT andM is
positive definite. An important special case is $tan-
dard hermitian eigenvalue problem for whichM = 1.
All of the results in this manuscript apply to both the
generalized and the standard problems. One approach
to the numerical solution of E¢1.1)is to expand the
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The projected subspace representation of the matri- contracted in order to satisfy various resource limita-
cesH andM are denotedH) = XTHX and (M) = tion constraints, and in how preconditioners are used
XTMX. In many cases, the basis vectorsXirwill be in order to accelerate the convergence of the itera-
chosen such thgM) = 1, but we consider the general tive procedures for the particular eigenpairs of interest.
case hereafter. An approximatigrio an eigenvector  The bounds relations examined in this manuscript ap-
will be written as a linear combination of the basis vec- ply to all of these various hermitian subspace methods
tors,y = Xc (for simplicity, the vector norm relation  (including the Lanczo$3], Davidson[4], SPAM [5],
y'My = 1 is assumed hereafter). A measure of the er- Generalized Davidson Inverse Iterati@®], Jacobi—
ror of the vectow is the residual vector Davidson[7], and Generalized Jacobi—Davids[8j
methods).
r=®H-pMy. (1.3) The present work focuses on assessing the accu-
r =0 if and only ify is an exact eigenvector and racy of the computed eigenvalues. Lower and upper
is the corresponding exact eigenvalue. Otherwise, aSbounds,blf andb;f, respectively, are desired that sat-

discussed in more detail iAppendix A the quan- isfy
tity ~/rTM—1r, hereafter called theesidual norm, is
a measure of the error in both the eigenvector and the b} < ix <b]. (1.5)

eigenvalue. The expansion coefficietare usually

determined from the subspace eigenvalue equation As discussed in more detail below, the mapping of the

Ritz value indexj and the eigenvalue indéxdepends
((H) = pj(M))c; =0. 1.4) on whether the eigenvalues are inner or outer, and on
whether the highest or lowest eigenvalues are com-
puted. The further goal is that these bounds may be
computed during the iterative procedure, so that they
may be used not only to assess the accuracy of the final
results, but also to allow the iterative procedure to be
terminated when a predetermined accuracy has been
achieved in order to avoid unnecessary computational
effort.

Several standard inequalities are used to this end.
The first is the Ritz Bound from the Ritz variational
principle[1,9] (see Eqs(A.3)—(A.16)).

It is convenient to assume that the subspace eigenval-
ues{p;; j=1...m}, called theRitz values, and the
exact eigenvalueg.y; k=1...N} are indexed in in-
creasing order. This is not a requirement in order to ap-
ply the results of this manuscript, but this assumption
simplifies the subsequent notation and discussions. It
is convenient to use the Parlett index convenfidrior
which negative integers are used to index eigenvalues
ordered from highest to lowest (i.e-1 = Ay, A_2=
AN=1, .., Ao (N—1) = A2, Ay = A1). We refer to a set

of the lowest eigenvaluda; kK =1...m}, orto a set

of the highest eigenvaludé_;; k =1...m} asouter

eigenvalues, we refer to either or both of the highest Mo Py p-jShoj forj=1..m. (1.6)

and lowest eigenvalugé s, Ay} asextremal eigenval-  This bound relation places strict upper bounds on each
ues, and we refer to a sequence of eigenvalues that areyf the lowestn exact outer eigenvalues, and it places
in the interior of the spectrurfi; k=m...n; 1< strict lower bounds on the highestexact outer eigen-

m < n < N} asinner eigenvalues. values. No additional information beyond the Ritz val-

The above choice for the expansion coefficients s themselves is required, so these bounds are com-
and approximate eigenvalyeis optimal in severalre-  pytaple.
spects[1,2]. In particular, this choice minimizes the  The second inequality used is the Residual Norm
residual norm with respect to variationsgrend with Bound[1] (see Egs(A.17)—(A.28), which requires

respect to the vector coefficients. Iterative subspace ihe Ritz values along with the corresponding residual
methods solve Eq1.4) several times as the subspace orms.

dimensionm is increased or decreased and as the

basis vectors are expanded, contracted, or otherwise /rTM—lrj > |hi — pjl. (1.7)
changed during the iterative procedure. The various

subspace methods differ in how the individual basis These bounds are computable, but they are often very
vectorsx; are generated, in how the basis vectors are conservative.
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The next inequality used in this procedure is the y; may be combined with Eq1.8),
Gap Theorem Bounf,10] (see Eqs(A.29)—(A.46).
r'M=2r;,  riM-1r;

J U Vi Vi
— = [k — pjl- (1.8) Y
Vi When it is necessary to distinguish which bound is
The Gap Bound is tighter than the Residual Norm being discussed, Eq1.8), with the exact eigenvalue

Bound when /r;M—lrj < y;, but it requires know- gap, will be called theExact Gap Bound, whereas

. . Eq. (1.12) with y;, will be called theComputed
edge of the exact eigenvalues, and therefore it cannot ) . L
. . . .. Gap Bound. With the above separation conditions, the
be computed during the iterative process. However, if

) ) i ) . Computed Gap Bound is tighter than the Residual
a Ritz value of interesp; is separated in the following Norm Bound, although it is not as tight as the Exact

Sense Gap Bound.

_ [Tt A fourth bound that will be used is the Spread
§; < (:01 r;M r]), (1.9) Bound[1]. This applies only to the extremal eigen-

T ' values (see Eq$A.49)—(A.53).
(oj +/rjM~1r;) <sF o
rM~r
with TR e — el fork =1, (1.13)
o

57 =Max-,;{b; ], 5T =Ming;{b;}  (1.10) The Spread Theorem requires knowledge of the exact
/ / matrix spreadg = (Ay — A1), which, although com-
and if it is further assumed that there are no skipped putable in some situations, is usually not available.
eigenvalues (i.e. eigenvalues that are poorly repre- However, if an upper bound™ is available such that
sented or not represented at all) within the computed o < o+, then useful inner bounds can be computed

spectrum range, then for the two extremal eigenvalues. For example, when
B . oo computing the largest eigenvalue of a positive definite
v, =Min{p; 87,87 —pj}<v; (1.11)  matrix, the upper bound to the eigenvalue is itself an

upper bound to the matrix spread. Combining this up-
per bound with Eq(1.13)results in the computable
bound

is a lower bound to the exact gap. This separation
is shown inFig. 1 This separation is equivalent to the
condition that there exists no expansion vector, or set
of expansion vectors, that would move the Ritz value rZM “r, rZM “r,

< < |k — okl fork =41

of interest outside of the range; —,/r;r.M—lrj, pj+ o L.14)

TM-1r. igen- LT .
\/F;M~7r;], or that would reveal some other eigen Subspace methods are often used in situations in
value inside the rande 8;“]. This computable value  which the matricedd andM are not explicitly com-

5~ 5t
Mer A J M

] | I
3 ¥ .
el 7o e |
R

Fig. 1. The inner Ritz valug; is isolated from the other Ritz values within the subspace by the Residual Norm bound. The exagt,gaylis
the computed lower bound to that gap/is. When the Ritz value is isolated in this manner, the upper and lower bounds to the exact eigenvalue
A computed by the Gap Theorem are tighter than those from the Residual Norm Bounds.
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puted and stored; instead, the products of these matri-themselves. The matrix may be known to be, for exam-
ces with the basis vectods are computed in operator  ple, positive semidefinite, or positive definite, or neg-
form. Bounds that require information about individ- ative definite, or other upper or lower bounds may be
ual matrix elements could not be used in these im- known based on physical insights of the model upon
portant applications because these individual matrix which the numerical eigenproblem is derived. Further-
elements are either not available or they would be pro- more, the rank of any degeneracies may be known
hibitively expensive to extract from the matrix—vector for the eigenvalue spectrum based on, for example,
product operation. The goal of the present work is to physical or mathematical invariance properties, group
find the best computable eigenvalue bounds given a settheory, or other physical or mathematical insights. In
of Ritz values, their residual norms, some knowledge these situations, the goal of the numerical calculation
of the eigenvalue spacings, and, optionally, an estimate is to compute quantitatively the eigenpairs, the qual-
of the matrix spread. This information is available for itative values being already known to some extent.
subspace methods even when the individual matrix el- This additional knowledge of the eigenvalue spectrum
ements are not explicitly available for examination. may be used to allow application of the Gap and the
There are several issues that must be addressed towar&pread Bounds even though the exact eigenvalues are
this goal. not known.
When computing the initial bounds from the resid-
(1) Under what conditions are the isolated Ritz value ual norms, two situations occur for each of the Ritz
and the nonskipped eigenvalue conditions satis- values: either a Ritz value is separated from the other
fied? values, or it is not separated. If it is separated, and if
(2) The error bounds for the different eigenvalues are there are no skipped eigenvalues, then one and only
coupled in the sense that depends on the other  one exact eigenvalue will occur in the ranpe —
by bounds fork # j.. How can all bpunds be /rlM—lrk, ok + /rzM—lrk]' If two (or more) Ritz
converged self-consistently without violating the  yajyes are not separated, then in the general case it
bound conditions at intermediate steps during the js known only that a single eigenvalue exists in the
optimization process or at the final values for these ombined residual norm value range. That is, the ap-
bounds? proximate eigenvectors associated with the two Ritz
(3) For inner eigenvalues, the upper and lower error yjyes may either both be approximating the same ex-
bounds on the eigenvalues are symmetric about 4¢t eigenpair, or they may be approximating two dis-

the computed Ritz valug;. For outer eigenval- tinct eigenpairs. Consider, for example, the standard
ues, the upper and lower error bounds are not gjgenvalue problem with

symmetric. How can this be addressed during the 0 0 10
bounds calculations? ¢
ounds calculations H=<s 0 1>’ X=<0 1>. (1.15)

These issues are addressed in order. In general, 010 00
given only the computed Ritz values and their corre- For this problemi = {—v/1+¢2,0,v/1+¢2}, p =
sponding residual norms, it cannot be guaranteed that{—¢, ¢}, and |r1| = |ro| = 1/+/2. Consider first the
there is no skipped eigenvalue. The skipped eigen- situation withe ~ 0.1. Both Ritz values are near the
value depends on information outside of the current singlei, = 0 exact eigenvalue, and it is only for this
subspaceX. However, in many applications, the gen- single exact eigenvalue that the Residual Norm Bound,
eral qualitative structure of the eigenvalues of inter- for either Ritz value, is seen to apply. The two Ritz
est is known beforehand. For example, the eigenpairs values are not separated by the residual norm bound,
may be known at a lower approximation level, on thus the eigenvalue bounds cannot be refined with
a coarser grid, with a smaller underlying model ba- the Gap Bound. Furthermore; < (p1 — |r1]) and
sis set, at nearby values of some set of external pa-A_1 > (o—1 + |[r—1|), so it is clear that this subspace
rameters, or from other physical insights known to representation does not satisfy the nonskipped eigen-
the user. In addition, the eigenvalue spacings may be value requirement for either of the nonzero eigenval-
known more accurately than the actual eigenvalues ues. On the other hand, consider this same problem
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with ¢ ~ 10. In this case the Ritz values are separated sociated withp,, cannot be estimated. This is because
by the Residual Norm Bound, and the two Ritz values there is nop,,+1 estimate available that could be used
are good approximations to the two nonzero extremal to approximate this gap. The refinement process there-
exact eigenvalues. However, there is a skipped eigen-fore begins withp,,_1 and proceeds down, in some
value in this case, and the Computed Gap Bounds can-order, eventually to the bounds fpg. Secondly, note
not be applied because lower bounds to the exact gapsthat the computed gap fags; depends only on the
cannot be determined from the subspace information. bounchIr whereas the computed gaps for the remain-
As noted above, it cannot be known simply by exam- ing eigenvalues must be estimated by examining both
ining the residual norms or the subspace eigenvaluesthe lower bounds to the higher eigenvalues and the up-
that an eigenvalue has been skipped, this information per bounds for the lower eigenvalues. Finally the upper
must be determined separately. bounds are given by the Ritz variational principle for
The coupling of the bounds for one eigenvalue all of the eigenvalues except fag, and for this eigen-
to the computed bounds for other, usually adjacent, value the computed Spread Bound may be applied op-
eigenvalues results in the necessity to compute a se-tionally (provided that an upper bound to the matrix
quence of bound values. At present, a closed-form spread is available), resulting in the situation in which
solution to this problem is not known to the authors. the Ritz value lies outside of the computed eigenvalue
Consequently, we adopt a straightforward bootstrap rangeb; < i1 < by < p1. The same considerations
approach to this problem. We begin the procedure apply also to the computation of the higheseigen-
by assigning Residual Norm Bounds to each of the values.
eigenvalues (along with the Ritz and Spread bounds As a practical matter, the computation of the resid-

if appropriate). Then, given the current bounds, all of yal norm /r}Mflrj for the above bounds calcula-
the bounds for each isolated eigenvalue are refined if ions requires either the explicit inversion of the met-
possible, and any improvements to the bounds are re-ric matrix M or the solution of the linear equation
tained for subsequent passes. Depending on the eigeny, g — r ;. The inverse may be computed with relatively
value spacings and the corresponding bounds, the finaljjtje effort when the metridvl is a unit matrix (i.e. the
bounds may be computed in a single refinement passsiandard eigenvalue problem), a diagonal matrix, or a
or they may require multiple passes. The bounds that pjock-diagonal matrix with small diagonal blocks. The
are computed in this process are valid at any interme- jinear equation solution is relatively simple in some
diate step, and this allows the process to be truncatedother applications, including, for example, the tridiag-
while still returning rigorous bounds. For example, onal or narrow-banded forms that occur in finite differ-
once the bounds are below a given threshold, indi- ence methods for which sparse LU or sparse Cholesky
cating convergence to some level of accuracy of the methods may be applied. In other applications for
eigenvalue, the process could be terminated if desired. \yhich the matrixM has no exploitable structure, the
The application of Eq1.9)—(1.12)appears to require  |inear equation solution requires a more general iter-
a scan ofn elements to compute the upper and lower ative approach, the effort for which might range from
gap bounds for each Ritz Value; this in turn ImplIeS minimal (e.g', using a preconditioned Conjugate gra-
O(m?) effort to refine the bounds for alt Ritz values  dient approach with a very efficient preconditioner) to
each pass. We avoid this effort by precomputing the something comparable to that required for the eigen-
§* array before the process begins, and then updatingproblem itself. It is assumed herein that some suit-
these elements, along with the corresponding elementaple method for computing the above residual norm is
of 67, in decreasing order as each eigenvalue bound available for the target problem such that the bounds

is refined. This results overall in only(@) effort for refinement process described above is practical.
each pass.

Because the outer eigenvalue bounds are not sym-
metric about the computed Ritz values, this introduces 2. Examples
an asymmetry into the calculation procedure. Con-
sider, for example, the computation of bounds for the  In this section a few examples are given to demon-
lowest fewm eigenvalues. First note that the gap as- strate the use of the bounds computations described in
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Sectionl. The first example is a model withh =5 the table. All of the bounds are converged after Pass 1;
and an unspecified/. The model Ritz values corre- in the subsequent pass all of the bounds are checked
spond to the lowest five eigenvalues. The model resid- for possible improvement and the refinement process
ual norms are sufficiently small for the Ritz values is terminated. It is clear that the final Gap and Spread
to be isolated from each other, and it is assumed that Bounds are a significant improvement over the origi-
these Ritz values are also isolated from any other exactnal Residual Bounds.

eigenvalues. The specific numerical values are cho- Table 2shows the refinement process for the same
sen to allow easy computation by hand in order to model problem except the Ritz values are assumed
understand the refinement process in defable 1 to correspond to inner exact eigenvalues. There are
summarizes the upper and lower bounds during the assumed to be an undetermined number of eigenval-
refinement process. During Pass 0, the lower boundsues below the first Ritz value and above the fifth Ritz
are initialized with the Residual Norm Bounds. The value. In Pass 0 both the upper and lower bound cor-
upper bound of the lowest eigenvalue is set with the responding to each Ritz value are initialized with the
Spread Bound withc™ = 10.0. The remaining up-  Residual Norm Bound. As discussed in Sectlpthe

per bounds are initialized with the Ritz bound. During Gap Bounds cannot be applied to the highest and low-
Pass 1, the lower bounds for the lowest four eigenval- est Ritz values because there is no information avail-
ues are refined using the Gap Bound expression. Onlyable about eigenvalues outside of the Ritz range, so
the bounds that are changed each pass are displayed ifower bounds to the gaps for these Ritz values can-

Table 1
Bound refinement for the lowest five Ritz values

j 1 2 3 4 5

pj 1.000000 2.000000 3.000000 4.000000 5.000000
IrjI  0.010000 0.010000 0.010000 0.010000 0.010000

Pass0 b 0.990006Y  1.990006" 2.990006Y  3.990006Y  4.990006V
bj 0.99999¢>  2.000006”  3.000006”  4.000006” 5.00000¢"
Pass1l b 0.99990¢?  1.999906" 2.99990?) 3.99989%) -
pt
J

© Ritz bound.

@) Residual bound.

@ Gap bound.

(3 spread bound wita+ = 10.0.

Table 2
Bound refinement for five inner Ritz values

j 1 2 3 4 5

pj 1.000000 2.000000 3.000000 4.000000 5.000000
Ir;j]  0.010000 0.010000 0.010000 0.010000 0.010000

PassO b,  0.990006Y 1.990006V 2.990006Y 3.990006Y  4.990006Y

J

bj 1.010006Y  2.010006Y 3.010006Y 4.010006Y 5.010006Y
Passl b, - 1.99989¢) 2.99989¢%7) 3.99989) —

bj - 2.000108)  3.000102 4.00010{2 -
Pass2 b, - - 2.99990(0) - -

bjf - - 3.0001060 - -

@) Residual bound.
@ Gap bound.
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not be computed. Consequently, during Pass 1 only the vectors for the Ritz procedure using the exact matrix.
eigenvalue bounds corresponding to the three middle With these two starting vectors, the lowest Ritz value
Ritz values are refined. In contrast to the first example is isolated as shown ifable 3 The expansion vectors

in Table 1 another pass is required to refine the mid- used during the iterative procedure are calculated us-
dle eigenvalue bound. All of the bounds are converged

after Pass 2; in the subsequent pass all of the bounds Eigenvalue Bounds

are checked for possible improvement and the refine- 10" ~_ ' ' ' T T T 7

ment process is terminated. It is clear that the final Gap 102 \\\

Bound is a significant improvement over the original \o\ \\

Residual Norm Bound for the three inner Ritz values 109 &

for which they can be applied. \ \ \ ]
Fig. 2 and Table 3show a practical application of 10 | _\

the bounds calculations to each iteration of a subspace F \ \\ ]

iterative procedure for a standard eigenvalue problem. -0 10° ¢ N :

The matrix has dimensioV = 197,655,128. This is W F \\\\

the real symmetric representation of the quantum me- 10 ——

chanical electronic Hamiltonian for the ethylene mole- o [ g \ \

cule, GHa, using a cc-pVTZ orbital basis set com- 3:2::253::@) \ E

puted with the COLUMBUS Program Systejhl]. 100 |

This is an example of an application in which indi- \

vidual matrix elements oH are not available, the 10'91 s 3 4 = & 7 8 o 10 11

required matrix—vector products are computed in op- Subspace lteration

erator form. The expansion basis consists of all sin- _ _ _ _
gle and double replacements from an MCSCF refer- Fi9: 2]; Th't?‘ graFf’hﬂ?'Sp'ag’s the 'r_‘t‘prot‘_’emfmtcr’]f ”:e "a”tou_s bounlds
ence expansion with 12 active valence orbitals and two 25 & MN¢ion 0! ‘e subspace reraton for the fowest eigenvaiue

. . of the GH,4 hamiltonian matrix. The plotted values are computed
frozen-core orbitals (theslcore orbitals of the two  5q;, — b¥|, whereiq is taken as the converged eigenvalue and

(?arbon atoms). A preliminary approximaig Ce}lCUla' by is either an uppeb] or lower b] eigenvalue bound for that
tion [12] was performed on the lowest two eigenpairs subspace iteration from the Ritz Variational Theorem, the Residual
in order to generate two qualitatively accurate starting Norm Theorem, and the Gap Theorem as discussed in the text.

Table 3

Upper and lower bounds for the lowest eigenvalfer each subspace iteration

Sub. iter. o1 Irq] 02 Iral bf —b7 b -1 A —by
1 —78.4232628319 7.307E-02 —78.0877800384 9.372E-02 2.209E-02 1.528E-03 2.056E-02
2 —78.4244055909 3.657E-02 —78.0877800858 9.372E-02 5.505E-03 3.857E-04 5.119E-03
3 —78.4247258142 1.594E-02 780877801056 9.372E-02 1.045E-03 6.548E-05 9.797E-04
4 —784247798274 6.168E—-03 —78.0877801305 9.372E-02 1.564E-04 1.146E-05 1.449E-04
5 —78.4247883942 3.243E-03 —780877801323 9.372E-02 4.323E-05 2.896E-06 4.033E-05
6 —78.4247902447 1.583E-03 —78.0877801336 9.372E-02 1.029E-05 1.046E-06 9.249E-06
7 —78.4247910433 9.545E-04 780877801388 9.372E-02 3.745E-06 2.470E-07 3.498E-06
8 —78.4247912409 4.337E-04 —78.0877801426 9.372E-02 7.730E-07 4.940E-08 7.236E-07
9 —78.4247912769 2.107E-04 —78.0877801451 9.372E-02 1.824E-07 1.340E-08 1.690E-07

10 —78.4247912855 1.066E-04 —78.0877801454 9.372E-02 4.666E-08 4.800E-09 4.186E-08

11 —78.4247912886 5.502E-05 780877801465 9.372E-02 1.244E-08 1.700E-09 1.074E-08

1 The Ritz values correspond to the lowest two subspace eigenvalues for a matrix of dimension 197,@!}“5j$2§bmputed from the
Ritz bound (i.e.bf = p1), andb; is computed from the Gap Bound (i.e. usipg = p2 — [r2| — p1). The converged Ritz valup; =
—784247912903 is taken as the exact eigenvalyeso the last two columns of this table are calculated only after the iterative procedure has
converged.
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ing the usual Davidson preconditioned residdal 2] (bir — b7) column of Table 3is a combination of the
approach. As can be seen, these expansion vectors imRitz upper bound with the Gap lower bound; these
prove the lowest Ritz value selectively, and the second bounds do not require knowledge of the exact eigen-
Ritz value and its corresponding residual norm, are value and therefore can be computed during the sub-
modified very little during the iterative procedure. The space iterative procedure. As seenTamble 3 these
actual subspace dimension is two for the first iteration, bounds would also allow termination on the fifth it-
increases to six on the fifth iteration, then is contracted eration for this absolute accuracy requirement. In con-
to three on the sixth iteration, then increases up to six trast, the Residual Norm Bound would require 11 it-
on the ninth iteration, and is contracted to three on erations in order to guarantee convergence to*if
the tenth iteration. These contractions of the expansion the Ritz value. If convergence to an absolute accuracy
subspace (sometimes callesitarts) are performedin ~ of 10~ in the Ritz value were required, then the Ritz
order to reduce the resource requiremdtty (e.g., and Gap Bounds would allow the process to termi-
memory, internode communications, and external disk nate on the eighth iteration, which is again consistent
space), but as seenfhiig. 2andTable 3 they do not af- with perfect hindsight knowledge of the eigenvalue;
fect significantly the convergence rate for this calcula- in contrast, the Residual Norm Bound would require
tion. Only the lowest two Ritz values and correspond- about 19 iterations to guarantee convergence of the
ing residual norms are used in the bounds refinementRitz value to 10°. For these types of accurate, large-
process. This calculation clearly demonstrates how the scale, molecular electronic structure calculations, typ-
Computed Gap Bound can be applied in a useful way ical convergence requirements in the Ritz values range
even when poorly converged Ritz values are used to from 10~ to 108 in absolute accuracy.
compute the lower bounds to the gaps.

Fig. 2 shows how the various upper and lower
bounds approach the exact eigenvalue as a function of3. Conclusions
the subspace iteration procedure. It is clear fiéigy 2
that the best upper bound each subspace iteration is A procedure is presented for the computation of
given by the Ritz bound and that the best lower bound bounds to eigenvalues of the generalized hermitian
is given by the Gap Bound; these values are shown in eigenvalue problem and to the standard hermitian
more detail inTable 3 bir in Table 3is computed from eigenvalue problem. This procedure is applicable to it-
the Ritz bound and; in Table 3is computed fromthe  erative subspace eigenvalue methods and to both outer
Gap Bound. As seen in the last two columns, the ex- and inner eigenvalues. The Ritz values and their corre-
pected relatiorb; < A1 < bf is satisfied throughout  sponding residual norms, all of which are computable
the procedure. The converged Ritz value is taken as quantities, are needed by the procedure. Knowledge of
the exact eigenvaluky, so the last two columns of this  the exact eigenvalues is not needed by the procedure,
table are calculated only after the iterative procedure but it must be known that the computed Ritz values
has converged. For this particular calculation, the up- are isolated from exact eigenvalues outside of the Ritz
per bound for a particular subspace iteration is always spectrum and that there are no skipped eigenvalues
closer to the exact eigenvalue than the lower bound for within the Ritz spectrum range. A multipass refine-
that iteration. It is also interesting to compare the Gap ment procedure is described to compute the bounds
Bounds to the Residual Norm Bounds each iteration. for each Ritz value. This procedure require&m)
In every iteration, the Gap Bounds are much tighter effort wherem is the subspace dimension for each
than the Residual Norm Bounds, the ratio of the two pass.
radii approaching 1on the last iteration. Application of this bounds computation procedure

If convergence of the eigenpair to an absolute ac- to model problems and to actual production problems
curacy of 104 in the Ritz value were required (equiv- demonstrates the usefulness of the procedure. This
alent to a relative accuracy of about one part if 10 procedure can be applied during the subspace iterative
for the lowest eigenvalue), then, with perfect-hindsight procedure in order to truncate the iterative process and
knowledge of the final eigenvalue, the iterative process to avoid unnecessary effort when converging specific
could have been terminated on the fifth iteration. The eigenvalues to a required target accuracy.
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Appendix A. Bounds T-1_ (Clmh=1 (clm)~1q (A7)
0 1/a '

In this appendix, several of the eigenvalue bounds gq. (A.4) may be transformed as
that are used in the algorithm of Sectiénare dis-
cussed. These bounds include the Ritz Variational (TT(H)"+1T)(T-1clm*1)
Bound, the Residual Norm bound, the Gap Theorem 1\, \[m+1] —1~[m+1N L [m+1]
Bound, and the Spread Theorem bound. These bounds (T M) T)(T c )p (A-8)
are well known for the standard eigenvalue problem and written in partitioned form as
[1,2], and the derivations that are given in this appen- (]
dix are included primarily for completeness and also to <'° + h) (U) = (U> plm 1, (A.9)
extend the bounds to the generalized eigenvalue prob- 8 v v
lem. To this end, we use the generalized hermitian Eg. (A.9) has the same eigenvalues as the original
eigenvalue equation equation(A.4). The matrixT has transformed the gen-
eralized eigenvalue equation into a standard eigen-

(H—=2M)z =0 (A1) value equation. There are, of course, an infinite num-
or in the equivalent matrix form ber of such trz_insformations that would achieve that
goal. The particulail chosen above also transforms
HZ =Mz (A.2) the firstm-dimensional leading sub-block to diagonal
. - . . form. An arbitrary eigenpair from EGA.9) may then
with an explicit metric matrixM, but the proofs for the b ; y elgenp 4A.9) may
" . e written
standard hermitian eigenvalue problem wih=1 -
follow directly. ™ h\(u u
v (5 D) w
Ritz Variational Bounds. Consider first the situation _ _
in which a subspace of dimensienis available. This The first row can be solved for the vectom terms
subspace results in the projected equation of the scalan. When substituted into the second row
to eliminateu, the result is
<H>[Yn]c[m] — (M)[mlc[m]p[m]_ (A.3)

t(,Iml -1y _
g—h'(p" —pl) "h=p. (A.12)
The superscript denotes the subspace dimension. ( _ ) .
When a new basis vector is added, the corresponding The left-hand side of EqA.11) may be written

projected equation is m

h2
— J
(Hy UGl _ Il ity (p gy L) =8 > oy (A-12)
j=1Pj
We define the transformation matrix in partitioned It is easily verified thatL(p) has horizontal asymp-
form as totes

ciml g _ _
Tz( 0 a> (A5 lim L(p)= lim L(p)=g. (A.13)
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Cauchy Interlace Relation

Fig. 3. This is an example of the Cauchy Interlace Relation for a ma-

trix of dimension four and for a submatrix of dimension three. The

vertical asymptotes (dashed lines) are located at the eigenvalues of
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ing function, there is one and only one intersection for
each of the branches. These intersections must there-
fore satisfy

1
o < o,

[m] [m+1] [m]
Pj SPjt1 SPji

+1
o <Al

forj=1...(m—-1), (A.15)

This is the Cauchy interlace relati¢h]. Consider
this inequality applied to a particular eigenvalue index
j (or —j, using the Parlett index convention) as the
subspace dimension approaches the matrix dimen-
sionN.

] ~X ’
plml < plm+ll o pIm+2) (A.16)
—j P —J
(N-1] [N] .
<Pl <Pl =

This is the Ritz variational principle. In words, the
ordered Ritz values from a subspace of dimengion

the submatrix. The eigenvalues of the full matrix of dimension four, '€ ea(fh upper bounds to the qurESpondmg |QWeSt
indicated by the open circles, are the intersections of the decreas- €xact eigenvalues of the full matrix, and those Ritz val-

ing branches of the functiofi(p) and of the increasing function
R(p) = p. The eigenvalues of the full matrix interlace those of the
submatrix.

Furthermore
2
dL(p) _ i o
do " =02

(A.14)

Thus L(p) is a decreasing function everywhere that
it is analytic (differentiable). The vertical asymptotes
are the result of the simple pole structurelap). The
analytic segment of. (p) that lies between two of the
poles is a branch of the functiah(p), and there are
m + 1 such branches. An example of this function is
plotted form = 3 in Fig. 3. According to Eq.(A.11),
the eigenvaluep” ™! for k = 1...m + 1 are those
special values of this function for whidh(p) = R(p)
whereR(p) = p is a simple linear function with pos-
itive unit slope. The intersections of these two func-
tions are shown irFig. 3. Because the branches of
L(p) are decreasing functions, aRdp) is an increas-

for —oco < p < co andp # pg.m].

ues are simultaneously lower bounds to the highest
exact eigenvalues of the full matrix.

For brevity, we do not consider here the spe-
cial cases individually that require detailed attention.
These include the situations in whiech= 0 for a par-
ticular eigenvector and the situations in which either or
both p™ and p*+1 contain degeneracies. We note
only that these situations are straightforward to an-
alyze and that the general Ritz variational principle
holds in these special situations just as it does in the
typical case discussed above.

Residual Norm Theorem. Given an hermitian matrix
H, a positive-definite metric hermitian mati, and
vectory, normalized ay'My = 1, the Rayleigh quo-
tientis
T

y'Hy +
p(Y,HM)=—-=y'H

y'™My
For brevity in this appendix, we use hereafter the short
notationp = p(y, H, M). The following proofs hold
for arbitrary Rayleigh quotients; the Ritz values used
in Section1 are Rayleigh quotients that satisfy also

(A.17)
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additional conditions. The residual vectoer (y) is
r=MH-—pM)y. (A.18)

Note thaty'r = 0. The vectoly may be expanded in
the basis of the exact eigenvectgrs; j=1...N},

which may be chosento be orthonomélvl Zr =8 k.

y=> zja; (A.19)
j

with

1=y'My=Y zMzjaer =) o2 (A.20)

j.k J
This allows the residual to be written in the eigenvec-
tor basis in terms of the exact eigenvalugs

r= Z(H —PM)Zja; = Z(?»,/ — p)a;Mz;. (A.21)
J J

Let 1, be the exact eigenvalue closesito

A —pl=Min{|x; —pl; j=1...N}. (A.22)
The quantity(r 'M ~1r) may be written
rim—1r = Z(kj — ,o)zajz. (A.23)

J

Each term in this summation is nonnegative. The in-
equality

N N
(M7 > ) 0w — p)%ad = (= p)? ) _of
j=1 j=1
= (i — p)? (A.24)

follows by replacing each nonnegative term in the
summation in Eq(A.23) by a nonnegative value of
lesser or equal magnitude. This results in the bound

VITM =1 > |a — p| (A.25)
which may be written in the form
o —VITM-lr < <p+vVriM-1r. (A.26)

Y. Zhou et al. / Computer Physics Communications 167 (2005) 90-102

There are several other interesting proofs of the
Residual Norm Bound (see, for example, Chapter 4 of
Parlett[1]). The above proof was chosen for this ap-
pendix because it is in the same spirit as the following
proof of the Gap Theorem Bound.

It should be emphasized that although the above
Residual Norm Bound is rigorous, this does not im-

ply immediately thato;, — ,/rZM—lrk << por +

,/rZM —1r, for a given Ritz and eigenpair indéx The
bound only states that, given a Rayleigh quotignt
there is at least one eigenvalue indethat satisfies the
bound. Additional knowledge that there are no skipped
eigenvalues, or knowledge of exactly which eigenval-
ues are skipped, is required in order to match up the
index of a Ritz valuep; with an exact eigenvaluk.

The Gap Theorem. The Gap Bound is slightly more
involved. We present here the proof given by Par-
lett [1], but extended in a straightforward manner to
the generalized eigenvalue problem. For the Rayleigh
quotiento(y, H, M), the gapy =y (p) is defined as

y=Min{|rA; —pl; j=1...N, j#k}. (A.29)

In words, the gaypy is the distance from the Rayleigh
quotientp to the nearest exact eigenvalue other than
Ak, the eigenvalue that is being approximateddoyt

is assumed hereafter thgt is a nondegenerate eigen-
value and that the gap is strictly positive. The vegtor
can be decomposed in thez; plane as

y =2, Cosp +w Sing (A.30)

with wiMw = 1 andw'Mz, = 0. We note that the
phases of the vector andw are not specified in any
way, and the quadrant of the plane rotation angle
arbitrary to within these phases, but this is unimportant
to the proof at hand. This plane decomposition allows
the residual to be written

I = (b — p)Mz Cosp + (H — pM)WSing. (A.31)

This results in the relation

In the special case of the standard eigenvalue equation,

M =1, these inequalities result in the familiar Resid-
ual Norm Bound

(A.27)
(A.28)

Irl > 1a — pl,
p=Ir< i <p+Irl

O=yTr
= —p)CoLp +W'(H— pM)WSirt¢. (A.32)

It is clear from this expression that the two factors
(Ax — p) and W' (H — pM)w) have opposite signs.
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Eq. (A.32) can be solved for C8 to give
wi(H = pM)w
Ak — p)

Substitution of the identity C8% + Sirf¢ = 1 into
Eqgs.(A.32) or (A.33)results in

CoS¢p=— Sirt ¢. (A.33)

: —(Ak — p)
Sif ¢ =
¢ wWi(H — pM)W — (A4 — p)

_ —(Ak — p)

“wiH = pM — M + pM)w

=k =p)

“wiH = A, Mw

__ M=ol (A.34)

W (H — AeM)w| '
The quantity(r M ~r) may be written
r"™M~1r = 0y — p)2Co€ ¢ + W' (H — pM)
x M~L(H — pM)WSir? ¢. (A.35)

Substitution of Eq(A.33) gives

r"™M~1r = —w'(H — pM)W(rx — p) SirP ¢
+WIH = M + M — pM)
x M~YH — pM)WSIir? ¢
=w'(H = MM ~L(H — pM)WSIr? ¢.
(A.36)

Expanding the vectow in the eigenvector basis with
coefficientsy; gives

-1l _ a T
r'™™M~1r =Sirt¢ Z Zi(H — M)
G
x M7H(H — pM)z; 2 (A.37)

=Sir*¢ Y 0= —p)x; (A38)
J (k)
=Sirt ¢ Z ;= Akl - 1a — plxZ. (A.39)
J (k)
Eq. (A.39) holds because the two facto(s; — Ax)
and(x; — p) are always the same sign for each term

in the summation. Replacing each of the positive terms
|A; — pl by the smaller valug results in the inequality

(M~ >y Sit e D [a — .
J k)

(A.40)
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The inequality
Do —mdxF=| D] 0 —ax?
J (k) J (k)
= |wi(H — AM)w| (A.41)
results in the relation
r'™M~2r >y Wi (H = M)w| Sirf¢. (A.42)

Substitution using Eq(A.34) gives the inequalities

r’M—1r

Z | = pl, (A.43)

rim—1r
YV

In the special case of the standard eigenvalue equa-
tion, M = 1, these inequalities result in the familiar
Gap Theorem Bounds

rim—1r

p— <M<p+ (A.44)

Ir[?

r
7 2 Ak — pl, (A.45)

Ir|? Ir|?
p——<h<p+—. (A.46)
14 14

As for the previous Residual Norm Bound, this re-
lation only states that, given a Rayleigh quotient
there is at least one eigenvalue indekat satisfies the
bound. Additional knowledge that there are no skipped
eigenvalues, or knowledge of exactly which eigenval-
ues are skipped, is required in order to match up a Ritz
valuep; with an exact eigenvalug,. Compared to the
Residual Norm Bound in E§A.25), it may be verified
that the Gap Bound is tighter than the Residual Norm
Bound whenvrTM—1r < y. The Gap Bound may be
computed even when this relation is not satisfied, but
such a bound would be looser than the Residual Norm
Bound in this case.

The Spread Theorem. The Spread Theorem applies
only to the special casds=1 ork = N (or equiva-
lently to k = —1 or k = —N using the Parlett index
convention), that is, to the two extremal eigenvalues
only. Replace each of the nonnegative tefis- p| in

Eq. (A.39) by the larger quantity = (Ay — A1). This
guantity o is called theSpread of the pencil(H, M).
This results in the inequality

(M~ <o SiPg > |a; — alxh
J k)

(A.47)
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The equality (compare E@¢A.41))

Z |A; —)»kl)(,2 = Z (Aj —/\k))(,2
J (k) J (k)

= [w'(H — M)W (A.48)
follows from the fact that each of the terrs; — i)
has the same sign for an extremal eigenvalue. Com-

bining Egs.(A.34), (A.47), and (A.48Yesults in the
inequality

r’mM—1r

< Ak = pl. (A.49)

Fork =1 we havei; — p| = p — A1 which results in
an upper bound to the lowest eigenvalue
rim—1r

.

Fork = N we have|A; — p| = Ay — p which results
in a lower bound to the highest eigenvalue

rimMm—1r

M<p— (A.50)

o+ < Aw. (A51)

The Spread Theorem therefore providie®er bounds

to the two extremal eigenvalues. In the special case
of the standard eigenvalue equatidh,= 1, these in-
equalities result in the inner bounds

Ir|?
M<p—— (A.52)
(o2
and
Ir|?
+ <Ay (A.53)

From these expressions it is clear than the Spread
Bound is always superior to the Ritz bound for any
finite value of the matrix spread. If no informa-
tion about the matrix spread is available, then in the
limit ¢ — oo, the spread bound approaches the sim-
ple Ritz variational bound. In this sense, the Spread

Y. Zhou et al. / Computer Physics Communications 167 (2005) 90-102

Theorem may be thought of as an improvement to the
Ritz Bound that utilizes limited additional information
about the matrix spectrum and the residual norm.
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