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Abstract

A meaningful rank as well as efficient methods for computing such a rank are necessary
in many areas of applications. Major methodologies for ranking often exploit principal
eigenvectors. Kleinberg’s HITS model is one of such methodologies. The standard approach
for computing the HITS rank is the power method. Unlike the PageRank calculations where
many acceleration schemes have been proposed, relatively few works on accelerating HITS
rank calculation exist. This is mainly because the power method often works quite well in
the HITS setting. However, there are cases where power method is ineffective, moreover, a
systematic acceleration over the power method is desirable even when power method works
well. We propose a practical acceleration scheme for HITS rank calculations based on filtered
power method by adaptive Chebyshev polynomials. For cases where the gap-ratio is below
0.85 for which power method works well, our scheme is about twice faster than the power
method. For cases where gap-ratio is unfavorable for the power method, our scheme can
provide significant speedup. When the ranking problems are of very large scale, even a
single matrix-vector product can be expensive, for which accelerations are highly necessary.
The scheme we propose is desirable in that it provides consistent reduction in number of
matrix-vector products as well as CPU time over the power method, with little memory
overhead.

Key words: HITS, ranking, principal eigenvector, Chebyshev filter, symmetric semidef-
inite matrix, filter bound, Lanczos

1 Introduction

Using principal eigenvector of non-negative matrices for ranking purpose has a history of over
half a century ([31], see [35] for a recent survey). The methodology is best represented by two
significant and extremely successful modern applications: the Google PageRank [26] and the
Hyperlink-Induced Topic Search (HITS) [19].

HITS, developed by Kleinberg in the 90’s, is used in the ask.com search engine. The resulting
two ranking vectors from HITS provide the so-called ExpertRanks. HITS method has broad
applications in areas where a certain ranking is sought, e.g., similarity ranking, academic citation
ranking, product quality ranking [21, 22, 10, 4, 9]. We refer to [22] for discussions on the strengths
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and weaknesses of HITS, together with literature on modifications to overcome the weaknesses.
The algorithm we discuss in this paper is applicable to the original HITS model as well as its
modifications.

The eigenproblems related to web search and data mining can be of enormous dimension.
Because of memory constraint, the dominant method for solving the PageRank and the HITS
eigenproblems has been the power method. Krylov subspace methods, which converge faster
than the power method, can quickly become impractical if the subspace dimension becomes
relatively large.

It is well-known that power method can be inefficient if the gap-ratio (the second largest
eigenvalue over the largest eigenvalue, in magnitude) is close to 1. For the standard PageRank
model, the gap-ratio is ingeniously engineered to be 0.85, which results in relatively fast con-
vergence of the power method. Many acceleration methods have been proposed for PageRank
calculations, most of them are geared to the case where the gap-ratio is close to 1. These include
extrapolation [17, 18, 7], linear system approach [13, 20], Krylov subspace methods [15, 36], and
relaxation type methods [14].

In contrast, relatively few works have appeared for accelerating HITS ranking vectors com-
putations. One reason is that the matrices for search-dependent HITS is usually not of very
large dimension [22]; the second reason is that the gap-ratio of HITS matrices is often not close
to 1, which makes the power method work reasonably well in practice.

Here we focus on accelerating the computation of the HITS ranking vectors. We propose a
practical acceleration scheme based on filtered power method, which means it can be used for
acceleration wherever power method is applicable: either for the search-dependent HITS, or the
search-independent HITS for which the matrices are usually of huge dimension and acceleration
is very desirable. Moreover, our acceleration scheme can significantly speed up calculation when
the gap-ratio is not favorable for the power method; even in the cases where the gap-ratio is
small, the acceleration scheme can still provide meaningful speedup.

We mention that the proposed scheme does not apply to accelerating PageRank calculations,
this is because the PageRank matrix is non-hermitian, which can have complex eigenvalues, while
the proposed scheme requires that all eigenvalues are real.

However, we point out that, besides the significance of HITS, the importance of accelerating
the solution of the eigenproblems related to matrices of form LLT or LTL can go far beyond the
HITS ranking. One main reason is that matrices of form LLT or LTL in the HITS eigenproblems
are closely related to the covariance or Gram matrices, which are central to modern large scale
statistical computations and data mining (e.g., [3, 16]). The acceleration scheme via filtering
described in this paper can be extended for computing more principal eigenvectors, such as in
truncated SVD calculations (essentially, computing principal eigenvectors of hermitian matrices
of form LLT or LTL). The extension has broad applications in recent data mining and machine
learning methods which utilize partial SVD (e.g. [2, 24, 8]).

The organization of the paper is as follows: Section 2 briefly reviews the HITS model; Section
3 describes the main acceleration algorithms; Section 4 presents formulas that lead to the main
algorithms together with related analysis of the algorithms; and Section 5 presents numerical
results.
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2 The HITS model

The HITS model expresses the hyperlink structure of the web using directed graphs. It divides
web pages into two categories: Hubs and Authorities. The premise of HITS is that appropriate
Hub and Authority ranking can be obtained by mutual enforcement between the two ranks,
since in general good Hubs tend to point to good Authorities, and good Authorities tend to
be pointed to by good Hubs [9, 22]. The ranking of Hubs and Authorities, when combined,
provides a balanced quality rank. Therefore the HITS model computes two ranking vectors,
one for the Hubs and one for the Authorities. Pages with high Authority ranks are expected to
have relevant content, while pages with high Hub ranks indicate that they contain hyperlinks
to relevant content.

Let vh and va denote respectively the Hub rank vector and the Authority rank vector. Let
the adjacency matrix of the directed graph be L, with dimension n × n. We can express the

HITS method as an iterative procedure for updating vh and va starting from given initials v
(0)
a

and v
(0)
h ,

v(k)
a = LTv

(k−1)
h , v

(k)
h = Lv(k)

a , for k = 1, 2, 3, ... (1)

Combining the two equations in (1) gives

v(k)
a = LTLv(k−1)

a , v
(k)
h = LLTv

(k)
h . (2)

Equations in (2) represent the power method without normalization applied to LTL and LLT.
Therefore, with normalization, the converged va and vh will be respectively the unit principal
eigenvector of LTL and LLT. That is,

LLTvh = λmaxvh, (3)

LTL va = λmaxva, (4)

where λmax is the largest eigenvalue of both LTL and LLT.
We assume that λmax is unique, which guarantees that power method will converge. If λmax

is not unique, one can employ a primitive trick ([22, p. 120], [11]) which applies power method
to the following modified HITS matrices for which λmax is unique,

ξLTL+
1− ξ

n
eeT, ξLLT +

1− ξ

n
eeT, where e = [1, 1, ..., 1]

︸ ︷︷ ︸

n

T. (5)

The matrices in (5) are also used for the query-independent HITS model [22, p. 124]. In the
query-independent scenario, the dimension n can be extremely large.

The gap-ratio of LTL or LLT in the HITS model is observed to be reasonably small, which
means that power method may converge reasonably fast. However, there is no theoretical result
that guarantees the gap-ratio to be small, and clearly the gap-ratio can be problem dependent.
In fact we encounter several realistic models for which the gap-ratio is unfavorable for the power
method. Therefore, it is desirable to be able to accelerate over the power method consistently,
regardless of the gap-ratio.
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3 The main algorithm

We mainly discuss computing the Hub rank vector vh of (3). The Authority rank vector va can
be readily obtained by a matrix vector product LTvh once vh converges. The same procedure
can be applied to converge va first, then obtain vh as Lva.

For the HITS eigenproblem (3), the LTL and LLT are symmetric positive semidefinite, their
spectra are on the real line. This property suits ideally for using Chebyshev filters to accelerate
the computation of the ExpertRank vectors.

The proposed algorithm is based on Chebyshev filter accelerated power method. Our acceler-
ation scheme is practical in that it uses only one more vector than the power method, because of
the 3-term recurrences needed for Chebyshev polynomials. Therefore the memory usage is mod-
erate comparing with the power method, and more economical comparing with Krylov subspace
methods that use a larger subspace dimension. Computational-wise, our scheme needs only one
additional inner product to compute a Rayleigh quotient per m matrix-vector multiplications,
where m is the polynomial degree; therefore the cost per iteration is similar to that of the power
method.

To apply Chebyshev polynomials for targeted filtering, we need to determine what filtering
bounds to use. Our numerical experiences show that applying Chebyshev filters in the standard
way with fixed filtering bounds does not work well. However, with dynamic, adaptively adjusted
filtering bounds as proposed in [41, 39], we can construct highly effective Chebyshev filters. This
is shown in our density functional theory (DFT) calculations [41, 40, 34], where adaptively con-
structed Chebyshev filters can routinely obtain an order of magnitude speedup over eigenvector
based approaches. But unlike in the DFT calculations, here the wanted spectrum is located at
the higher end instead of the lower end. This causes no problem and will be addressed in the
next subsection.

3.1 Estimating the bounds for filtering

It is well-known that Chebyshev polynomials are bounded by 1 on the interval [−1, 1] and
increase exponentially outside [−1, 1]. To employ the polynomials for accelerating eigenvalue
calculations, we mainly need to linearly map the unwanted spectrum into the [−1, 1] interval.
The wanted spectrum will be automatically mapped outside [−1, 1], thus magnified by the
Chebyshev polynomial filters.

For HITS ExpertRank we want to compute the eigenvector associated with the largest eigen-
value. Therefore the filters need to dampen the lower end of the spectrum. Since LTL and LLT

are positive semidefinite, their eigenvalues are nonnegative, hence the filtering lower bound of
the spectrum can be conveniently set to 0.

The upper bound of the total spectrum can be obtained by the estimator for hermitian
matrices [38].

However, in the HITS setting, it is not this total upper bound that determines the interval
to be dampened. Instead, it is what we call the filtering upper bound, i.e., the upper bound of
the unwanted spectrum, that determines filter efficiency. This filtering upper bound must be
smaller than the largest eigenvalue of LLT, denoted as λmax(LL

T), so that λmax(LL
T) will be

mapped outside [−1, 1] interval, by this it will be properly magnified instead of dampened by
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the filter constructed from the bound.
The main idea of the adaptive filtering is on adjusting the filtering upper bound. For a

procedure that can adaptively adjust this bound, we exploit the variational property related to
the Courant-Fisher minmax theorem [33, 27]. This is done in two stages.

At the first stage, we modify the bound estimator in [38] to output two bounds ul and uL,
with 0 < ul < uL. The ul is an estimate of the filtering upper bound, which is essential for the
filtering and needs to satisfy ul < λmax(LL

T). The uL is less essential and only needs to be a
rough estimate of λmax(LL

T), it can be less than λmax(LL
T), which is to be contrasted with [38]

where the upper bound estimate must bound the full spectrum from above. This is because the
wanted eigenvalues in [38] are located at the lower end of the spectrum, the goal of filtering is
to dampen all the higher end of the spectrum. While here the wanted eigenvalue is the largest
one, so we need to dampen the full lower end of the spectrum. In other words, the upper bound
sought in [38] serves the same purpose as the total lower bound 0 here. By utilizing the positive
semidefiniteness of LLT, we obtained this filtering lower bound 0 for free. The essential bound
to estimate is the filtering upper bound ul.

Pseudocode in Matlab style of the modified estimator are listed in Algorithm 3.1. This
estimator uses a k-step Lanczos procedure to compute a standard Lanczos decomposition [27, 30]

LLTVk = VkTk + fke
T
k , with V T

k Vk = Ik and V T
k fk = 0,

where Vk contains the k orthonormal Lanczos vectors. Exterior eigenvalues of LLT may be
roughly estimated by the exterior eigenvalues of the tridiagonal Rayleigh quotient matrix Tk.

Since here only a rough upper bound of λmax(LL
T) is needed, the Lanczos step k can be

set very small. In practice we set k = 3 so as to reduce memory requirement. Moreover, since
uL ≥ λmax(LL

T) is not necessary here, we simply use the largest Ritz value (plus an error term
which is standard in Lanczos error estimate) to estimate uL, as done at the last step in Algorithm
3.1. The post-processing step after the Lanczos decomposition as used in [38] to safeguard an
upper bound of the total spectrum is not needed here. The initial vector v0 input to Algorithm
3.1 can be a random vector, a vector with all one’s, or any user provided nonzero vector.

Algorithm 3.1. [ul, uL, v0] = Lanczos bounds(k, v0)

1. Set V (:, 1) = v0/‖v0‖2;
2. V (:, 2) = L(LTV (:, 1)); α = V (:, 2)TV (:, 1); V (:, 2)← V (:, 2)− αV (:, 1); T (1, 1) = α;

3. Do j = 2 to min(k, 5)

4. η = ‖V (:, j)‖2; V (:, j)← V (:, j)/η;

5. V (:, j + 1) = L(LTV (:, j)); V (:, j + 1)← V (:, j + 1)− ηV (:, j − 1);

6. α = V (:, j + 1)TV (:, j); V (:, j + 1)← V (:, j + 1)− αV (:, j);

7. T (j, j − 1) = η; T (j − 1, j) = η; T (j, j) = α;

8. End Do

9. Compute [Q,D] = eig(T (1 : k, 1 : k)); Find [uL, idx] = maxi λi(T ).

10. Return ul = (min(diag(D)) + uL)/2, uL = uL + ηQ(end, idx), and the Ritz vector
V (:, 1 : k)Q(:, idx) corresponding to the largest Ritz value as v0.
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To obtain the filtering upper bound ul and make it satisfy the necessary condition ul <
λmax(LL

T), we utilize the two extreme Ritz values from the Lanczos procedure: At the last
step of Algorithm 3.1, we set ul = (λmin(Tk) + λmax(Tk))/2. The ul obtained this way satisfies
ul < λmax(Tk) ≤ λmax(LL

T), according to the property of a Rayleigh quotient.
In addition to returning a filtering upper bound ul, Algorithm 3.1 serves another purpose:

Starting from v0, it provides a better initial vector than (LLT)kv0 to start the filtered power
method. This is because the Ritz vector corresponding to the largest Ritz value returned from
k-step Lanczos (Algorithm 3.1) is generally better than the vector obtained from applying k-step
power method to the same initial vector, thanks to the subspace acceleration provided by the
Lanczos iteration over the power method. Therefore it is better to use the Ritz vector returned
from Algorithm 3.1 as the initial vector for the Chebyshev filtered power iteration.

Algorithm 3.1 is called only once to provide the initial bound ul and an initial vector for
the first Chebyshev filtering. The other bound uL is used only for scaling purpose. There is
absolutely no need to run more Lanczos steps in Algorithm 3.1 in order to get a relatively good
estimate of the largest eigenvalue. In fact, we do not use the uL in the simplified filter (Algorithm
3.2).

At the second stage, which contains the main steps of the Chebyshev filtered power iteration,
we only need to adjust the filtering upper bound ul at each iteration (since the lower bound is
perfectly 0 and need not be changed). A simple yet practically effective adjustment is to use a
convex combination of the previous filtering upper bound ul and an easily computed Rayleigh
quotient (denoted as uu) returned from the Chebyshev filtering (Algorithm 3.2 or 3.3),

ul ← βul + (1− β)uu, where β ∈ (0, 1). (6)

By the Courant-Fisher minmax theorem [33, 27], the Rayleigh quotient uu (returned from
Algorithm 3.3 or Algorithm 3.2) satisfies uu < λmax(LL

T) before convergence. Together with
the fact that ul < λmax(LL

T) at each iteration, we see that the ul updated by (6) will always
be smaller than the true largest eigenvalue of LLT. By linearly mapping [0, ul] to [−1, 1] to
construct a Chebyshev filter, we can guarantee that the constructed filter will dampen the
unwanted spectrum of LLT enclosed by [0, ul]. The same filter will automatically magnify the
region surrounding the wanted eigenvalue λmax(LL

T), resulting in much improved gap-ratio for
the filtered matrix, which leads to consistent faster convergence than the power method.

3.2 The Chebyshev accelerated HITS algorithm

The well-known degree-k Chebyshev polynomial of the first kind is defined as (see e.g. [1, p.180])

Ck(t) =







cos(k cos−1(t)), |t| ≤ 1,
cosh(k cosh−1(t)), t > 1,
(−1)k cosh(k cosh−1(−t)), t < −1.

(7)

The intrinsic 3-term recurrence related to the orthogonal polynomials (7) is

Ck+1(t) = 2t Ck(t)− Ck−1(t), t ∈ R, k = 1, 2, .... (8)

Starting from C0(t) = 1 and C1(t) = t, one can apply (8) to conveniently compute higher order
Ck(t).
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An important property of (7) is the exponential growth of the polynomial outside the [−1, 1]
interval [27, p.371]. In fact, under comparable conditions, |Ck(x)| as defined in (7) grows fastest
outside [−1, 1] among all polynomials with degree ≤ k ([28, p.31]).

The main goal of our acceleration scheme is to utilize the exponential growth property outside
the [−1, 1] interval, so that gap-ratio of the filtered matrix will be optimal for convergence.
However, the design of the scheme does not focus on what is outside the [−1, 1] interval. Instead
we mainly focus on linearly mapping unwanted spectrum to the [−1, 1] interval for damping.
The exponential growth property will be automatically applied to the wanted spectrum that is
now mapped to an interval outside [−1, 1].

For the HITS rank calculation, we want to dampen the unwanted eigenvalues located at the
lower end [0, ul] of the spectrum. For this purpose we only need to map [0, ul] into [−1, 1] by
L(t) = (t− ul

2 )∗ 2
ul
. This affine mapping applied to any matrix A will transform the eigenvalues of

A located in [0, ul] into the eigenvalues of L(A) located in [−1, 1]. The associated matrix-vector
product with a vector v is implemented as

L(A)v = (Av − ul
2
v)(2/ul) .

The Chebyshev filter constructed to accelerate computing the HITS Hub rank vector vh is
listed in Algorithm 3.2. This algorithm uses a simplified Chebyshev filter without scaling, as
those used in [41, 37].

Only a single bound ul is needed to construct a filter via Algorithm 3.2. For constructing
the first filter, the ul can be obtained from Algorithm 3.1. For the remaining filtering steps,
each new ul can be readily adjusted by a convex combination (formula (6)) of the previous ul
and the Rayleigh quotient uu computed from previous call to Algorithm 3.2.

As pointed out at the end of Section 3.1, the ul updated by (6) is always smaller than
λmax(LL

T). This guarantees that the filter constructed will dampen [0, ul] but magnify the
region near λmax(LL

T), which results in better gap-ratio than that of the power method.

Algorithm 3.2. [Y, uu] = Chebyshev filter(X, m, ul).

1. e = ul/2;

2. Y = (L ∗ (LT ∗X))/e−X;

3. Do i = 2 to m− 1

4. Yt = (L ∗ (LT ∗ Y )− e ∗ Y ) ∗ (2/e)−X;

5. X = Y ; Y = Yt;

6. End Do

7. Yt = L ∗ (LT ∗ Y );

8. uu = (Y T
t ∗ Y )/(Y T ∗ Y );

9. Y = (Yt − e ∗ Y ) ∗ (2/e)−X;

Given an input vector X, Algorithm 3.2 essentially computes the filtered vector Y =
Cm(L(LLT))X using a degree-m Chebyshev polynomial. The 3-term recurrence (8) is used
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to update Cm(L(LLT))X. The output uu is the current Rayleigh quotient, which is used to
adjust the filtering upper bound ul for the next step filtering.

A scaled Chebyshev polynomial filter based on [29, 39] can be developed for the HITS rank
calculation. The formula derivation is discussed in the next section, we list the pseudocode in
Algorithm 3.3. The scaled version may be useful in term of preventing overflow, i.e., when the
degree m is large and no other scaling is applied.

Algorithm 3.3. [Y, uu] = Chebyshev filter scaled(X, m, ul, uL).

1. e = ul/2; σ = e/(uL − e); τ = 2/σ;

2. Y = (L ∗ (LT ∗X)− e ∗X) ∗ (σ/e);
3. Do i = 2 to m− 1

4. σnew = 1/(τ − σ);

5. Yt = (L ∗ (LT ∗ Y )− e ∗ Y ) ∗ (2 ∗ σnew/e)− (σ ∗ σnew) ∗X;

6. X = Y ; Y = Yt; σ = σnew;

7. End Do

8. σnew = 1/(τ − σ);

9. Yt = L ∗ (LT ∗ Y );

10. uu = (Y T
t ∗ Y )/(Y T ∗ Y );

11. Y = (Yt − e ∗ Y ) ∗ (2 ∗ σnew/e)− (σ ∗ σnew) ∗X;

The purpose of Algorithm 3.3 is again to filter the input vector X by a degree-m Chebyshev
polynomial that dampens on the interval [0, ul]. But now we apply Cm(1

e
(uL − e)) as a scaling

factor. The input bounds need to satisfy 0 < ul < uL, with ul < λmax(LL
T). Here the input uL

only needs to be a crude estimate of λmax(LL
T).

The e = ul/2 at the first step of Algorithm 3.3 is the only variable needed for the affine
transform which maps [0, ul] onto the [−1, 1] interval, the other two variables σ and τ are used
to realize the update of the scaled Chebyshev polynomial.

Essentially, Algorithm 3.3 computes

Y =
Cm(1

e
(LLT − eI))

Cm(1
e
(uL − e))

X . (9)

The degree-m matrix-vector product is again obtained via a 3-term recurrence, in which the
matrix needs to be the scaled matrix as in (9).

The scaled filter not only dampens on the [0, ul], it also simultaneously magnifies eigenvalues
located on [ul, λmax(LL

T)], with those close to λmax(LL
T) being magnified most significantly.

This is due to the continuity of the Chebyshev polynomial and its fastest growth property among
the degree-m polynomials outside the [−1, 1] interval. The filter improves the gap-ratio of the
filtered matrix, which is the essential reason for faster convergence.

Our main algorithm uses Algorithm 3.2, which is the simplified version of Algorithm 3.3, as
the default filter. The advantage of the simplified version is that there is no need to estimate the
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largest eigenvalue of LLT, only the filtering upper bound ul needs to be estimated. Moreover,
the computation costs slightly less than with scaling. The rationality of the simplified Algorithm
is discussed in Section 4.

The Chebyshev accelerated algorithm for computing HITS ExpertRank Hub vector is de-
scribed in Algorithm 3.4. It mainly relies on matrix-vector products L(LTv), which can be called
from a user provided subroutine.

The structure of Algorithm 3.4 contains an inner-iteration and an outer-iteration. This
structure is common in many algorithms that rely on matrix-vector products for solving large
scale problems. In web search algorithms, recent papers that have this inner-outer iteration
structure include [15, 14].

A ranking vector is a principal eigenvector of the nonnegative matrix LLT. Scaling of this
eigenvector by a constant does not change the rank. Usually the normalized principal eigenvector
with all nonnegative components is used for ranking. (Here, the adjacency matrix is likely non-
irreducible because the web graph is very likely not strongly connected. Therefore the Perron-
Frobenius theorem [25, p.673], which under irreducibility condition guarantees the existence
of an eigenvector with all positive components, may not apply.) We start Algorithm 3.4 with
a positive vector X0. However, the polynomial filtered matrix-vector product may flip the
direction of a vector, which results in negative components. We address this possibility at step
5 of Algorithm 3.4 by picking the vector with nonnegative components. The converged vector
will have nonnegative components and can be used for ranking purpose.

Algorithm 3.4. [X] = HITS chebyshev(X0, m, β, τ, itmax, method).

1. Call [ul, uL, X0] = Lanczos bounds(k,X0); set uu = uL;

2. Normalize the initial: X0 = X0/‖X0‖1.
3. Do i = 1 to itmax

4. If ( method == ’scaled’ )
Set uL = max(uu, uL);
Call [X, uu] = Chebyshev filter scaled(X0, m, ul, uL).

Else % default to non-scaled filtering
Call [X, uu] = Chebyshev filter(X0, m, ul).

End If

5. X = ±X/‖X‖1 (choose one from ± such that X has no negative components).

6. If ‖X −X0‖1 < τ , Stop.

7. Set X0 = X.

8. Set ul = βul + (1− β)uu.

9. End Do

Algorithm 3.4 is only slightly more complicated than the power method. Essentially, for each
mmatrix-vector products, the (LLT)mX0 in power method is replace by (scaled) Cm(L(LLT))X0.
Memory-wise, since we use k = 3 for the Lanczos iteration, and use only 3 vectors for the
Chebyshev filtering, the memory usage is essentially one more vector than that of the power
method, which makes the memory usage of the filtered method practical for very large n.
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4 Algorithm derivation and Analysis

Algorithms 3.3 and 3.2 construct filters that dampen on the interval [0, ul] for LLT. In fact it
is straightforward to construct Chebyshev filters that dampen on a general interval [a, b] for a
general hermitian matrix A. Now the affine mapping L(t) that maps [a, b] into [−1, 1] is

L(t) = t− c

e
, where c =

b− a

2
, e =

b + a

2
.

Any interval [a, b] is uniquely determined by its center c and its half-width e.
The 3-term recurrence for updating Chebyshev polynomials (7) applied to L(t) is

Ck+1(L(t)) = 2L(t) Ck(L(t))− Ck−1(L(t)), t ∈ R, k = 1, 2, ..., (10)

with C0(t) ≡ 1 and C1(L(t)) = L(t).
Define xk := Ck(L(A))x0 for any initial vector x0, (note x1 =

1
e
(A− cI)x0), then (10) leads

to the iteration

xk+1 = Ck+1(L(A))x0 =
2

e
(A− cI)xk − xk−1, k = 1, 2, ... . (11)

Stacking two consecutive vectors together, iteration (11) can be written as

[
xk
xk+1

]

=

[
0 I
−I 2

e
(A− cI)

]

︸ ︷︷ ︸

B

[
xk−1

xk

]

. (12)

Equation (12) shows that the Chebyshev iteration (11) is essentially a power iteration on a
transformed matrix B. The convergence of the Chebyshev iteration can be understood by the
eigenvalues of B.

First we need the following lemma.

Lemma 4.1. Let M be an n × n matrix with eigenvalues di, i = 1, ..., n. Then the eigenvalues

of the 2n× 2n matrix

[
0 I
−I M

]

are
di±
√

d2i−4

2 , i = 1, 2, ..., n .

Proof: The matrix

[
0 I
−I M

]

is full rank, therefore it has no zero eigenvalues. Let µ’s be its

eigenvalues, then µ 6= 0. By some properties of determinant, especially that det

(
D11 D12

D21 D22

)

=

det(D11)det(D22 −D21D
−1
11 D12), where D11 is nonsingular and Dij are square, we get

det

(
−µI I
−I M − µI

)

= det(−µM + µ2I + I) =
n∏

i=1

(µ2 − diµ+ 1) .

Therefore the eigenvalues µ’s should be the roots of µ2 − diµ + 1 = 0, which are
di±
√

d2i−4

2 ,
i = 1, ..., n.
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Denote the eigenvalues of A as λi(A), we can apply Lemma 4.1 to M = 2
e
(A− cI) to get the

eigenvalues of B as

λ
(1,2)
i (B) =

di ±
√

d2i − 4

2
, where di =

2

e
(λi(A)− c), i = 1, 2, ..., n. (13)

If λi(A) ∈ [a, b], then 2
e
(λi(A) − c) ≤ 2, the corresponding λ

(1,2)
i (B) are complex conjugate

and |λ(1,2)
i (B)| = 1. While if λi(A) ∈ (−∞, a)∪ (b,∞), then the corresponding λ

(1,2)
i (B) are real

and the one with larger magnitude is located outside the [−1, 1] interval. This easily establishes
the convergence of the Chebyshev iteration.

Lemma 4.2. Assume that the largest eigenvalue of the hermitian matrix A is unique, assume
that the filtering interval [a, b] satisfies a ≤ min

i=1,...,n
λi(A) and b < max

i=1,...,n
λi(A). Then the xk from

the Chebyshev iteration (11) converges to the principal eigenvector of A.

Proof: Let the eigenvalues of A in nonincreasing order be λ1(A) > λ2(A) ≥ ... ≥ λn(A),
with corresponding di defined as in (13). Since a ≤ λn(A) and b < λ1(A), by lemma 4.1

we have max
i=1,...,n

λ
(1,2)
i (B) =

d1 +
√

d21 − 4

2
> 1, which is the unique principal eigenvalue of B.

Thus from the power iteration (12) we get the convergence of xk, which is equivalent to the
convergence of xk in (11). Furthermore, xk converges to the principal eigenvector of A because
xk = Ck(L(A))x0 = Ck(

1
e
(A− cI))x0, and both scaling and shifting by a constant to A do not

change its eigenvectors.
The Chebyshev iteration (11) can be further scaled for stability purpose. A simple strategy

discussed in [30, p. 223] is to replace the Ck(L(A)) used in (11) for calculating xk = Ck(L(A))x0
by

C̃k(L(A)) :=
Ck

(
1
e
(A− cI)

)

ρk
, where ρk := Ck

(
1

e
(b̃− c)

)

. (14)

Here b̃ is a value outside [a, b]. In this case |1
e
(b̃− c)| > 1 and the scaling factor ρk will increase

exponentially as k increases, enhancing numerical stability of the Chebyshev filters. However,
if ρk is made too large (e.g., if the eigenvalues of C̃k(L(A)) all become negligibly small), then
the application of C̃k(L(A)) becomes insignificant, which is counter-productive to convergence
acceleration. This means that |b̃| cannot be much larger than λmax(LL

T).
Using same technique as in [30, p. 223], let σk+1 := ρk/ρk+1, we get the 3-term recurrence

for the scaled Chebyshev polynomial (14),

C̃k+1(L(A)) = 2σk+1
A− cI

e
C̃k(L(A))− σk+1σkC̃k−1(L(A)), k = 1, 2, ... . (15)

The formula for updating σk is straightforward to derive using (10),

σ1 =
ρ0
ρ1

=
e

b̃− c
, σk+1 =

Ck(
1
e
(b̃− c))

Ck+1(
1
e
(b̃− c))

=
1

2/σ1 − σk
. (16)
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Starting with a given x̃0 and x̃1 = C̃1(L(A))x̃0 = σ1

e
(A− cI)x̃0, applying (16) and (15), the

Chebyshev filtering x̃k+1 = C̃k(L(A))x̃0 on a given interval [a, b] can be realized as

x̃k+1 = 2
σk+1

e
(A− cI)x̃k − σk+1σkx̃k−1, k = 1, 2, ... . (17)

We can immediately express (17) as the following power iteration

[
x̃k
x̃k+1

]

=

[
0 I

−σk+1σkI
2 σk+1

e
(A− cI)

]

︸ ︷︷ ︸

B̃

[
x̃k−1

x̃k

]

. (18)

Using same technique and argument as that for Lemmas 4.1 and 4.2, we readily have the
following result:

Lemma 4.3. The eigenvalues of the matrix B̃ in (18) are λ
(1,2)
i (B̃) =

σk+1di±
√

σ2
k+1

d2i−4σk+1σk

2 ,
where di =

2
e
(λi(A)− c), i = 1, 2, ..., n. Under the same condition as in Lemma 4.2, and that

b̃ > b, then the xk from the Chebyshev iteration (17) converges to the principal eigenvector of A.

Algorithm 3.3 implements the scaled iteration (17), with A = LLT, [a, b] = [0, ul], and
b̃ = uL, where 0 < ul < λmax(LL

T), and ul < uL.
Since uL (or b̃) is used only for scaling purpose, we can make a simplification by passing

uL = ul to Algorithm 3.3. In this case we only need to guarantee that 0 < ul < λmax(LL
T),

which is true by the bound choices of ul discussed in section 3.1. Now that ul < uL is not kept
true, the scaling factor is ρk = Ck(1) = 1, which corresponds to the non-scaled iteration (11). In
this case the scaling is actually done by the normalization step (step 5) in Algorithm 3.4. This
normalization in practice is enough to avoid any potential overflow problem, especially when the
polynomial degree m is relatively small.

Algorithm 3.2 implements the simplified Chebyshev filter with damping bounds 0 and ul.
The output uu from Algorithm 3.2 or Algorithm 3.3 is used to update ul according to (6).

By some algebra and applying Lemmas 4.2 and 4.3, we can readily establish the convergence
of the main Algorithm 3.4. This is because Algorithm 3.4 is repeated application of Algorithm
3.3 or Algorithm 3.2 with normalization, while Algorithms 3.3 and 3.2 are essentially Chebyshev
iterations — with suitably chosen filtering bounds, they are guaranteed to converge.

Theorem 4.1. Assume LLT has a unique principal eigenvalue. Then Algorithm 3.4 produces a
vector that converges to the principal eigenvector of LLT.

Proof: Denote the filtering upper bound at the j-th step as ulj , then by property of Rayleigh
quotients, the ulj ’s generated in Algorithm 3.4 for calling the Chebyshev filters (Algorithms 3.3
and 3.2) always satisfy 0 < ulj < λmax(LL

T) and ul < uL.

Denote Lj(t) = (t − ulj

2 ) ∗ 2
ulj

. The unique largest eigenvalue of LLT is guaranteed to be

mapped into the unique largest eigenvalue of the filtered matrix: For Algorithm 3.2, the matrix

is Cm(Lj(LLT)); for Algorithm 3.3, it is the scaled matrix
Cm(Lj(LL

T))
Cm(Lj(uL))

.
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Then, by repeated application of Lemma 4.2 and Lemma 4.3 (essentially , each of them is a
power method applied to a dynamically updated filtered matrix), we conclude that Algorithm
3.4 converges to the principal eigenvector of LLT.

As the converge factor is concerned, at the j-th iteration of Algorithm 3.4 with damping
bounds 0 and ulj , the gap-ratio of the degree-m polynomial filtered matrix, Cm(Lj(LLT)),

is ξmj
=

max
i 6=1

∣

∣

∣

∣

Cm

(

2

ulj

(

λi(LL
T)−

ulj

2

))∣

∣

∣

∣

Cm

(

2

ulj

(

λ1(LLT)−
ulj

2

)) , where λ1(LL
T) is assumed as before the unique largest

eigenvalue of LLT. (The scaling of the filtered matrix,
Cm(Lj(LL

T))
Cm(Lj(uL))

as in Algorithm 3.4, has the

same gap-ratio.) Thanks to the fastest growth outside [−1, 1] property of Chebyshev polynomial
among degree-m polynomials, it is quite easy to make ξmj

smaller than the gap-ratio of the power
method. If we denote ξm = supjξmj

, then it takes O(ln τ/ ln ξm) iteration steps for Algorithm
3.4 to bring the error below a given tolerance τ .

Ideally, at iteration step j one would wish to find an optimal ulj for filtering such that
the gap-ratio ξmj

will be minimal for a given degree-m. However, this is not easy since the
λi(LL

T)’s are unknown. The convex combination (6) that we use for adaptively adjusting ul is
simple and convenient to realize, it also works well in practice. In the next section we present
numerical performance of Algorithm 3.4 and compare with the power method which is the de
facto standard method for HITS ranking calculations.

5 Numerical Results

Adjacency matrices of some realistic web graphs are used for the numerical tests. Relevant
information of these matrices are listed in Table 1. Except the commonly used Stanford-Berkeley
matrix, the remaining matrices† were generated using UbiCrawler [5, 6].

Graph-name dimension (#nodes) nnz (#arcs) sparsity λ2/λ1

stanford-berkeley 683,446 7,583,376 1.624e-05 0.9787

eu-2005 862 664 19,235,140 2.585e-05 0.7226

wikipedia-2006-09 2,983,494 37,269,096 4.187e-06 0.7559

wikipedia-2006-11 3,148,440 39,383,235 3.973e-06 0.7733

wikipedia-2007-02 3,566,907 45,030,389 3.539e-06 0.8119

arabic-2005 22,744,080 639,999,458 1.237e-06 0.6236

uk-2007-05 105,896,555 3,738,733,648 3.334e-07 0.8596

webbase-2001 118,142,155 1,019,903,190 7.307e-08 0.7971

Table 1: Dimension, number of nonzeros, and approximate sparsity of the adjacency matrices
for some realistic web graphs. Each graph-name contains the name of the web domain crawled.
Except the first graph, the graph-name also shows when the crawl was performed. The gap-ratio
λ2/λ1 is listed only as reference since it is unknown beforehand.

† Available at http://law.dsi.unimi.it and http://www.cise.ufl.edu/research/sparse/mat/Gleich/.
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The gap-ratio λ2(LL
T)/λ1(LL

T) of each test matrix listed in Table 1 is computed by Matlab
eigs, which provides mex interface to ARPACK [32, 23]. This ratio is generally not available
beforehand without extra computation, therefore it is listed only for reference and it is not used
for the design of our algorithm. An interesting observation from the calculation by eigs is that
λmax(LL

T) is unique for all these matrices, hence the primitive trick need not be applied.
The calculations were performed in Matlab on a Dell-R710 computer with two quad-core

Intel X5550 Xeon CPU (clock speed 2.66 GHz) and 144 Gb RAM, at the SMU HPC center.
To accelerate the matrix vector products we use the Bvgraph package [12], which provides

convenient mex interfaces for processing the adjacency matrices generated by UbiCrawler [5, 6].
For all the numerical experiments using Algorithm 3.4, the performance of the scaled filter

(Algorithm 3.3) is close to identical with the simplified filter (Algorithm 3.2). Therefore in
Figures 1 and 2, we only present results using the simplified filter in Algorithm 3.4.

Essentially there are two parameters to provide to Algorithm 3.4: m and β. These two
parameters largely determine the performance of the algorithm. For the adjacency matrices of
all the web graphs that we had access to, a small m (4 ≤ m ≤ 6) and β ∈ (0.75, 0.85) usually
provide decent acceleration over the power method. One exception is the Stanford-Berkeley
matrix, for which far better acceleration is achieved using a small β such as β = 0.2, which
means Algorithm 3.4 prefers ul to be increased fast instead of slowly for this problem.

In Figures 1 and 2, the cpu records CPU seconds, and the mvp counts total number of
matrix-vector products. The reported mvp count and CPU time for the filtered method (cheb)
include the call to the Lanczos bound estimator (Algorithm 3.1), whose cost is insignificant since
it performs only three Lanczos steps.

The convergence tolerance is set to 10−10, and the initial vector set to the vector with all
elements one. As seen from these plots, if a larger tolerance is used, say 10−6, the acceleration
scale over the power method is consistent with the scale obtained by using a lower tolerance.

The error labeled as “residual norm” denotes the norm of the difference between two consec-
utive vectors ‖xk+1 − xk‖1, obtained at step 6 of Algorithm 3.4 when determining convergence.

The gap-ratio in Table 1 shows that the Stanford-Berkeley matrix is difficult for the power
method. It is in this scenario that acceleration by suitable filtering is particularly desirable. The
first subgraph in Figure 1 shows that Algorithm 3.4 is about ten times faster than the power
method. Moreover, even for the cases where the gap-ratio is below 0.85, for which the power
method performs reasonably well, Algorithm 3.4 still can be about twice faster. This is seen
from Figures 1 and 2.

6 Concluding Remarks

We presented an acceleration scheme based on adaptive Chebyshev polynomials for HITS Ex-
pertRank vector calculations. The adaptiveness is realized by a simple convex combination (6)
of two readily available bounds at each filtering step. Power method is the standard practical
approach for HITS calculations, our proposed scheme can be considered as filter accelerated
power method, therefore it can be applied to accelerate convergence where a power method is
applicable. The filtered scheme provides consistent speedup, using mainly one more vector than
that of a power method. The speedup is significant especially when the gap-ratio is close to 1
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Figure 1: Acceleration of the filtered method over the power method on several web graphs
listed in Table 1. The filtered method is usually twice faster than the power method.
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Figure 2: Acceleration on two relatively large web graphs with over 100 million nodes and over
1 billion arcs. The nnz count from Bvgraph for uk-2007-05 is incorrect, possibly because the
nnz is so large that it caused a scalar overflow. But this count has no impact on the accuracy
since Bvgraph processes the matrix vector products correctly.

for which power method converges slowly.
The acceleration scheme requires two parameters: the polynomial degree m and the convex

combination scalar β as in (6). Both parameters are quite easy to select in practice. However,
analytical formulas that can guide the optimal choices of these parameters appear difficult to
derive. It may be more practical to construct adaptive procedures to adjust these parameters
during the iteration process, this will further enhance the acceleration but potentially make the
algorithm complicated. Another direction for future work is to extend the acceleration scheme
for approximating principal singular vectors, this has many applications in large scale statistical
computing and data mining where principal singular vectors play an important role (e.g., in
[8, 2, 24]).
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