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Abstract

We study the eigenvalues of a matrix A perturbed by a few special low-rank matrices. The
perturbation is constructed from certain basis vectors of an invariant subspace of A, such as
eigenvectors, Jordan vectors, or Schur vectors. We show that most of the eigenvalues of the
low-rank perturbed matrix stayed unchanged from the eigenvalues of A; the perturbation can
only change the eigenvalues of A that are related to the invariant subspace. Existing results
mostly studied using eigenvectors with full column rank for perturbations, we generalize the
results to more general settings. Applications of our results to a few interesting problems
including the Google’s second eigenvalue problem are presented.

Key words: eigenvalue, low-rank, Jordan, Schur, canonical form, invariant subspace,
perturbation, Google matrix

1 Introduction

In recent years, much attention has been directed at the second eigenvalue problem of a Google
matrix (e.g. [7, 8, 6, 10, 11]), where a Google matrix is a special rank-1 perturbation of a row
stochastic matrix. This “second eigenvalue” problem is critical for the convergence rate of the
power-related methods used for Google’s PageRank computation (see [9] and references therein),
moreover, the problem has its own theoretic interests.

The original study of the problem in [7] utilizes properties of Markov chain and ergodic
theorem. The result is generalized using purely algebraic derivation in [8, 6, 10], where all
(including the second) of the eigenvalues of a Google matrix can be explicitly expressed.

A Google matrix can be considered as a special case of the following specially low rank
perturbed matrix

A+ UV H, where A ∈ Cn×n, and U, V ∈ Cn×k (1)

where A is a general n × n matrix, it can be real or complex, and k ≥ 1. The superscript ()H

denotes the conjugate transpose.
The U matrix is usually restricted to k linearly independent eigenvectors of A. This case is

of considerable interests and has been studied in [2, 4, 12, 13, 5]. Besides including the Google
matrix as its special case, the eigenproblem of (1) has applications in various other situations
(see the many applications in e.g. [5]).

∗Department of Mathematics, Southern Methodist University, Dallas, TX 75275 (yzhou@smu.edu). Supported
in part by the National Science Foundation under Grant No. CMMI-0727194 and OCI-0749074.

1



We generalize U from eigenvectors of A to a basis of an invariant subspace of A, and also
extend to the cases where U is not linearly independent. The conclusion on the eigenvalues of the
perturbed matrix is quite similar to those perturbed by explicit eigenvectors. More specifically,
the nice feature that most eigenvalues remain the same under the perturbation is kept; and the
eigenvalues that are changed can be readily computed from a special k × k matrix.

We use a proof technique which is based on expressing a similarity transformation, not in
the form of A = XBX−1, but in the more convenient invariant (sub)space form of AX = XB,
or more generally AX̃ = X̃B, where B is of upper triangular form and X̃ contains columns of
X. This simple technique is applicable to all the results in Section 2, and it simplifies the proofs
in [2, 12, 13] when we restrict U in (1) to eigenvectors of A.

2 Main results

The statement of each theorem in this section starts with a canonical form of A. The avail-
ability of a canonical form makes the proof straightforward, since it makes a desired similarity
transformation readily available. If one starts only with the basis of an invariant subspace,
then the proof will begin with adding linearly independent vectors to the basis to construct a
similarity transformation, and then to show that the two-sided projection of A on the added
vectors preserve certain eigenvalues. The approach we take is simpler and can quickly reveal the
essence of the change of eigenvalue due to a given perturbation.

Lemma 2.1. Let the Jordan canonical form of A ∈ Cn×n be A = XJX -1. Assume that J

contains two diagonal blocks J =

[
J1

J2

]
, where J1 ∈ Ck×k with k < n. Partition X accord-

ingly as X = [X1, X2] such that AXi = XiJi, i = 1, 2. Let V be any matrix in Cn×k. Then
the eigenvalues of A + X1V

H are the union of the eigenvalues of J1 + V HX1 and the diagonal
elements of J2.

Proof: Note that

(A+X1V
H)[X1, X2] = [X1J1, X2J2] +X1V

H[X1, X2]

= [X1(J1 + V HX1), X2J2 +X1V
HX2]

= [X1, X2]

[
(J1 + V HX1), V HX2

J2

]
.

Therefore A + X1V
H is similar to the block upper triangular matrix

[
(J1 + V HX1), V HX2

J2

]
,

which proves the result.
In fact, there is no need to assume that the Jordan form contains two (disjoint) diagonal

blocks. We can obtain the same result on the eigenvalues of the perturbed matrix by dropping
this assumption. In Theorem 2.1, clearly, if span{X2} contains a dimension n−k invariant
subspace of A, then J12 is a k by n−k zero matrix.

Theorem 2.1. Let the Jordan canonical form of A ∈ Cn×n be A = XJX -1. Partition J into

four subblocks as J =

[
J1 J12

J2

]
, where J1 ∈ Ck×k with k < n. Partition X accordingly as
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X = [X1, X2] such that AX1 = X1J1 and AX2 = X1J12 +X2J2. Let V be any matrix in Cn×k.
Then the eigenvalues of A+X1V

H are the union of the eigenvalues of J1+V HX1 and the diagonal
elements of J2.

Proof: Using the same trick as in Lemma 2.1 ,

(A+X1V
H)[X1, X2] = [X1J1, X1J12 +X2J2] +X1V

H[X1, X2]

= [X1(J1 + V HX1), X1J12 +X2J2 +X1V
HX2]

= [X1, X2]

[
(J1 + V HX1), J12 + V HX2

J2

]
.

ThereforeA+X1V
H is similar to the block upper triangular matrix

[
(J1 + V HX1), J12 + V HX2

J2

]
,

whose eigenvalues are the union of the eigenvalues of the two diagonal blocks J1 + V HX1 and
J2.

When Jordan blocks are diagonal, the Jordan vectors become eigenvectors. Therefore,
Lemma 2.1 and Theorem 2.1 may be considered as a generalization of the results in [3, 2,
4, 12, 13, 5] where eigenvectors are used to construct the low-rank perturbation matrix.

There is no particular need to restrict ourselves to Jordan vectors, we can further generalize
the results using Schur vectors which are numerically more stable to compute, as stated in
Theorem 2.2.

Theorem 2.2. Let the Schur canonical form of A ∈ Cn×n be A = QSQH, where S is upper

triangular and Q is unitary. Partition S into subblocks S =

[
S11 S12

S22

]
, with S11 ∈ Ck×k, k < n.

Partition Q accordingly as Q = [Q1, Q2] such that AQ1 = Q1S11 and AQ2 = Q1S12 + Q2S22.
Let V be any matrix in Cn×k, and Q̂1 be any matrix in Cn×k such that span{Q̂1} ⊆ span{Q1},
(i.e., Q̂1 = Q1M for an M ∈ Ck×k). Then the eigenvalues of A + Q̂1V

H are the union of the
eigenvalues of S11 +MV HQ1 and the diagonal elements of S22.

Proof: Again, we construct a similarity transformation expressed in an invariant space form:

(A+ Q̂1V
H)[Q1, Q2] = [Q1S11, Q1S12 +Q2S22] +Q1MV H[Q1, Q2]

= [Q1(S11 +MV HQ1), Q1S12 +Q2S22 +Q1MV HQ2]

= [Q1, Q2]

[
(S11 +MV HQ1), S12 +MV HQ2

S22

]
.

Therefore the block upper triangular matrix

[
(S11 +MV HQ1), S12 +MV HQ2

S22

]
is similar to

A+ Q̂1V
H, which proves the result.

Besides using Schur vectors, another feature of Theorem 2.2 distinguishable from existing
results is that we do not need full rank-k Schur vectors to construct the perturbation matrix
Q̂1V

H. The Q̂1 can be rank deficient.
Similar result holds when A is perturbed by a low-rank matrix constructed from the left

eigen-/Jordan-/Schur- vectors of A. We only list in Theorem 2.3 the one that uses Schur vectors
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and skip the other cases which can be constructed similarly. Note that the perturbation vectors
need to be associated with an invariant subspace of A, in the left Schur vectors case, they are
the last (instead of the first) k Schur vectors.

Theorem 2.3. Let the Schur decomposition of A ∈ Cn×n be QHA = SQH, where S is upper

triangular and Q is unitary. Partition S into subblocks S =

[
S11 S12

S22

]
, with S22 ∈ Ck×k,

k < n. Partition QH accordingly as QH = [Q1, Q2]
H such that Q

H

2 A = S22Q
H

2 and Q
H

1 A =

S11Q
H

1 + S12Q
H
2 . Let V be any matrix in Cn×k, and Q̂2 be any matrix in Cn×k such that

span{Q̂2} ⊆ span{Q2}. Then the eigenvalues of A+V Q̂H
2 are the union of the diagonal elements

of S11 and the eigenvalues of S22 +QH
2VM

H, where M ∈ Ck×k satisfies Q̂2 = Q2M .

The proof is similar to that of Theorem 2.2, which can be obtained by a similarity trans-
formation of A + V Q̂H

2 to a block upper triangular matrix. Again, the transformation can be
succinctly expressed in an invariant (sub)space form.
Proof: [

QH
1

QH
2

]
(A+ V Q̂H

2) =

[
S11Q

H
1 + S12Q

H
2

S22Q
H
2

]
+

[
QH

1VM
HQH

2

QH
2VM

HQH
2

]
=

[
S11 S12 +QH

1VM
H

S22 +QH
2VM

H

] [
QH

1

QH
2

]
Therefore the eigenvalues of A+ V Q̂H

2 are the eigenvalues of S11 and S22 +QH
2VM

H.
Comment: The result in Theorem 2.3 may be obtained directly by applying Theorem 2.2 to

AH, noticing that AH and A have the same eigenvalues.
We note that the arbitrariness of the V matrix may be used to absorb the scaling factor M

for Qi. Therefore the M matrix in Theorems 2.2 and 2.3 is not essential. We use it to emphasize
that the full rank assumption of Q̂i is not necessary. This M also implies that the columns in
Q̂i need not be of unit length. With an explicit M addressing the possible rank deficiency in
Q̂i, the V can be any fixed given matrix in Cn×k.

The same proof extends to the case where Q is not unitary. In this case we construct Q-1

instead of QH for the similarity transformation. This is essentially Theorem 2.1 for the case
where A is perturbed by span{X̂1} ⊆ span{X1}. We state it as a corollary.

Corollary 2.1. Assume the same notations and conditions as in Theorem 2.1. Then for any
X̂1 = X1M , where M ∈ Ck×k, the eigenvalues of A+ X̂1V

H are the union of the eigenvalues of
J1 +MV HX1 and the diagonal elements of J2.

Replacing Schur vectors by Jordan vectors in Theorem 2.3, we can readily obtain similar
results for the case where partial left Jordan vectors are used for perturbation, we skip the
details for this case.

3 Some applications

In this section we apply the results in the previous section to a few interesting problems.
First, we look at the Brauer’s Theorem [1, 11].
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Theorem 3.1. Let the eigenvalues of A ∈ Cn×n be λi, i = 1, ..., n. Let x1 be the right eigenvector
of A associated with λ1. Then for any v ∈ Cn, the eigenvalues of A + x1v

H are λ1 + vHx1 and
λi, i = 2, ..., n.

This result can be proved directly in a very simple and elementary manner, it is also straight-
forward to see it as a special case (k = 1) of Theorem 2.1 or Theorem 2.2.

Applying Theorem 2.3 we also see a corresponding Brauer’s Theorem where the perturbation
is by a left eigenvector.

Corollary 3.1. Let the eigenvalues of A ∈ Cn×n be λi, i = 1, ..., n, with y1 the left eigenvector
of A associated with λ1. Then for any v ∈ Cn, the eigenvalues of A + vyH

1 are λ1 + yH
1v and

λi, i = 2, ..., n.

We now look at the well-known Google’s second eigenvalue problem, first addressed in [7].
The result is generalized in [8, 6] to cover all eigenvalues. The generalized result can be sum-
marized as the following.

Theorem 3.2. Let H ∈ Cn×n be a row stochastic matrix with eigenvalues {1, λ2, λ3, . . . , λn}.
Let e = [1, 1, . . . , 1]T ∈ Rn and let v ∈ Rn be a probability vector. Then the eigenvalues of the
Google matrix G = αH + (1− α)evT are {1, αλ2, αλ3, . . . , αλn}.

Row stochasticity of a matrix means that each row of the matrix sums to 1. Therefore
He = e, which means e is a right eigenvector of H associated with the eigenvalue 1. Clearly, the
eigenvalues of αH are α and αλi, i = 2, ..., n. Applying Theorem 2.1 for the special case k = 1,
we see that the perturbed matrix αH+(1−α)evT changes only the eigenvalue of αH associated
with e from α into α + (1 − α)vTe, which is 1 since a probability vector v satisfies vTe = 1.
This neat deduction however is not new, similar derivation using the Brauer’s Theorem already
appeared in [11, 3].

Since the magnitude of all eigenvalues of a stochastic matrix is upper bounded by 1, and the
α is related to a certain probability, normally α ∈ (0, 1), we see that the eigenvalues of G satisfy
|λi(G)| = α|λi(H)| ≤ α < 1 for i > 1. Theorem 3.2 readily reveals that the second eigenvalue
equals to α only when 1 is a multiple eigenvalue of H.

Next we look at a generalization of Brauer’s Theorem. In [2, 12, 13] the theorem is generalized
to the higher rank perturbation case. We summarize the result in the following.

Theorem 3.3. Let the eigenvalues of A ∈ Cn×n be λi, i = 1, ..., n. Let xi be a right eigenvector
of A associated with λi, (i = 1, ..., k). Assume that X = [x1, ..., xk] is of rank-k. Then for any
V ∈ Cn×k, the eigenvalues of A + XV H are the union of {λi}i=k+1,...,n and the eigenvalues of
diag(λ1, . . . , λk) + VHX.

The result is a special case of Lemma 2.1: under the given conditions of Theorem 3.3,
the Jordan block J1 in Lemma 2.1 turns into the diagonal matrix diag(λ1, ..., λk), and the
corresponding Jordan vectors in X1 are here denoted as the X matrix. Therefore Theorem 3.3
follows immediately from Lemma 2.1, which simplifies the proofs in [2, 12, 13].

We note that the full rank condition on X = [x1, ..., xk] is not necessary for the result in
Theorem 3.3 to hold. A common technique is to use the eigenvalue continuity argument [1, 11] to
address the rank deficiency. Another algebraic approach to bypass the possible rank deficiency in
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X is to resort to various properties of determinants, which is nicely done in [4] (see also [5, p.25]).
A more straightforward way is to utilize the same technique as used in Theorem 2.2. In fact,
replacing diag(λ1, ..., λk) by a Schur block easily removes the condition of linear independence
on X. Although the final k × k matrix appears more complicated than diag(λ1, ..., λk) + VHX,
the computational cost for computing the eigenvalues of a k×k matrix remains the same, unless
V is specifically chosen to make V HX diagonal.

Finally we look at a generalization of Theorem 3.2 which may be called the Google’s k-th
eigenvalue problem.

Theorem 3.4. Let H ∈ Cn×n be a row stochastic matrix with eigenvalues {λ1, λ2, λ3, . . . , λn},
let the right eigenvectors of H associated with {λi}i=1,...,k be X = [x1, x2, . . . , xk], where λ1 = 1
and x1 = [1, 1, . . . , 1]T. Let V = [v1, . . . , vk] ∈ Cn×k. Then the eigenvalues of the matrix G =
α0H+

∑k
i=1 αixiv

T
i are the union of {α0λi}i=k+1,...,n and the eigenvalues of α0diag(λ1, . . . , λk)+

diag(α1, . . . , αk)VHX.

The proof is straightforward by Corollary 2.1 if we notice that G = α0H + XMV H where
M = diag(α1, . . . , αk) .

There are various ways to narrow the choice of V and the αi’s to make the final result
resemble the succinct form of the original Google’s second eigenvalue problem. However we
stop here since this generalized problem does not seem to have practical value: The H in real
applications is often of enormous dimension, computing the eigenvectors of H other than the
known one x1 = [1, 1, . . . , 1]T can quickly become prohibitive.

Acknowledgement: The author thanks the two anonymous referees for their constructive
comments that improved the paper. He thanks one referee particularly for the comment made
right after Theorem 2.3.
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