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Abstract

We have recently presented a real-space method for electronic-structure calculations of periodic systems that is based on the Hohenberg–
Kohn–Sham density-functional theory. The method allows the computation of electronic properties of periodic systems in the spirit of traditional
plane-wave approaches. In addition, it can be implemented efficiently on parallel computers. Here we will show that the method’s inherent
parallelism, in conjunction with a newly designed approach for solving the Kohn–Sham equations, enables the accurate study of the ionic and
electronic properties of periodic systems containing thousands of atoms from first principles.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Solving the ionic and electronic structure of matter from
first principles is of great interest both from scientific and tech-
nological points of view. During the last decades, one of the
most successful ways of obtaining such information has been
the use of computational approaches based on the Hohenberg–
Kohn–Sham density-functional theory (DFT) [1,2]. However,
although DFT simplifies the problem enormously, the size of
systems susceptible to current quantum computation methods is
limited. As such, the development of efficient DFT-based meth-
ods is crucial for solving large-scale problems in condensed
matter physics. Of special interest are those methods that can
take advantage of massively parallel architectures. These ar-
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chitectures offer substantial improvements in terms of solution
time and memory requirements.

Plane-wave pseudopotential methods have been widely used
for electronic structure calculations of periodic systems [3].
Pseudopotential theory allows one to focus on the chemically
active valence electrons by replacing the strong all-electron
atomic potential by a weak pseudopotential, which effectively
reproduces the effects of the core electrons on the valence
states. This approximation significantly reduces the number
of eigenpairs to be handled, especially for heavier elements.
Moreover, since the core wave functions and the core oscilla-
tory region of the valence wave functions are removed, the use
of simple basis functions such as plane waves is straightfor-
ward. Expanding the electronic wave functions with respect to
a plane-wave basis is the natural way of representing a system
with periodicity (boundary conditions are periodic) and offers
a number of advantages. We mention two crucial advantages:
the basis does not depend on atomic positions; and only one
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parameter, the wavelength of the highest Fourier mode used
in the expansion, needs to be refined to control convergence.
However, plane-wave codes make use of fast Fourier trans-
form (FFT) to perform the matrix–vector product between the
Hamiltonian matrix and trial wave vectors. Since FFTs involve
nonlocal operations, its efficiency on parallel computer archi-
tectures is diminished by the need for global communications
among processors.

During the past decade, there has been increasing interest in
developing real-space pseudopotential methods [4]. Such meth-
ods have a number of points in their favor. First, implementation
of these approaches is simple: there is no “formal” basis, calcu-
lations being performed directly on a real-space grid that does
not depend on ion positions. The spacing of the grid is refined
until the calculation converges. The grid spacing plays the role
of the cutoff energy in the plane-wave approach. Second, real-
space methods are semi-local, which facilitates implementation
on parallel computers. In short, real-space methods not only
share the main advantages of plane wave representations, but
they can also be easily parallelized. This makes such methods
highly attractive for computation of the electronic ground states
of large, complex systems.

Although real-space methods are naturally formulated for lo-
calized systems (there is no periodicity implicit in the basis),
their application is not limited to such systems [5–7]. Recently,
we proposed a real-space pseudopotential approach for self-
consistent first-principles calculations of periodic systems [7].
The method was presented as an approach which offers the
same degree of accuracy as traditional plane-wave approaches,
and that can also perform efficiently on parallel computer ar-
chitectures following its inherent parallelism. In this paper we
go in detail through the method illustrating its capabilities. In
particular, we describe its parallel version and a newly imple-
mented approach to solve the Kohn–Sham equations that avoids
explicit diagonalization of the hamiltonian in each cycle of the
self-consistent loop. With all, the aim of this paper is to present
a method capable of addressing from first-principles challeng-
ing problems involving periodic systems. In Section 2 below we
describe the formalism of the method and the numerical algo-
rithms used to solve it, in Section 3 we illustrate its performance
on different test problems, and in Section 4 we summarize our
main conclusions.

2. Description of the method

According to DFT [1,2], the total energy Etot of a system
comprising electrons and ions (the latter in positions {Ra}) can
be written as a unique functional of the electron density ρ,

Etot[ρ] = T [ρ] + Eion
({Ra}, [ρ]) + EH [ρ] + Exc[ρ]

(1)+ Eion–ion
({Ra}

)
,

where T [ρ] is the kinetic energy, Eion({Ra}, [ρ]) is the elec-
tron–ion energy, EH [ρ] is the electron–electron Coulomb en-
ergy or Hartree potential energy, Exc[ρ] is the exchange-cor-
relation energy, and Eion–ion({Ra}) is the classical electrostatic
energy among the ions. Finding the electron density that min-
imizes the energy functional is equivalent to solving the set of
one-particle Kohn–Sham equations

(2)

[
−∇2

2
+ Vion(r) + VH (r) + Vxc(r)

]
ψn(r) = εnψn(r)

and setting

(3)ρ(r) =
∑
n

∣∣ψn(r)
∣∣2

,

where the sum runs over the occupied states. Vion and VH

are the ionic and Hartree potentials, respectively, and Vxc =
δExc/δρ. Here and in the rest of the text we use atomic units
(e = m = h̄ = 1) unless otherwise stated. Solving Eqs. (2) and
(3) requires finding a self-consistent solution for the charge den-
sity.

Structure optimization and molecular-dynamics simulations
require accurate calculation of the ionic forces {Fa}. If the sys-
tem has been brought to the Born–Oppenheimer surface (i.e. if
the single-particle wave functions are very close to the exact
eigenstates), the forces can be calculated from the Hellmann–
Feynman theorem [8],

(4)Fa = −∂Etot

∂Ra

.

2.1. Setting up the Kohn–Sham equations

We represent wave functions, the electron density and po-
tentials on a uniform, orthogonal three-dimensional real-space
grid. For simplicity, we assume the grid to be cubic, but the
extension to a general orthorhombic grid is straightforward. In
order to construct the grid, only two parameters need to be spec-
ified: the grid spacing h (the distance between adjacent points
in each of the three Cartesian directions) and the size L of the
unit cell or supercell described by the cubic grid. The grid is
then generated by the points

(5)r(i, j, k) ≡ (xi, yj , zk) = (ih, jh, kh),

with the integers i, j and k running from 1 to Ngrid = L/h.
The system is made periodic by replicating the unit cell and the
atoms it contains (the basis) throughout space, as illustrated in
Fig. 1. Here we assume that all the atoms belong to the same
species.

In order to model Eq. (2) on the real-space grid we use a
higher-order finite difference expansion [9] for the Laplacian
operator. We approximate the partial derivatives of the wave
function at a given point of the grid by a weighted sum over
its values at that point and its neighbors. The second partial
derivative in the x-direction, for example, has the form

(6)
∂2ψ

∂x2

∣∣∣∣
r(i,j,k)

=
N∑

n=−N

Cnψ(xi + nh,yj , zk),

where N is the order of the expansion (typically 6 in order to
ensure convergence). Under the assumption that the wave func-
tion can be approximated accurately by a power series in h, this
approximation is accurate to O(h2N+2). Algorithms are avail-
able that compute the coefficients Cn for arbitrary order in h

[10].
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Fig. 1. Two-dimensional illustration of a supercell representation. Upper panel:
supercell of size L (dashed frame) containing a diatomic molecule with interi-
onic distance x. Lower panel: supercell of size L (dashed frame) containing a
diatomic molecule with interionic distance L − x. (The molecules are oriented
along the x̂ direction of the supercells.) Owing the periodic nature of the super-
cell representation (the supercell and the basis are replicated trough the space)
both examples correspond to the same physical system.

In each iteration of the algorithm for self-consistent solu-
tion of the Kohn–Sham equations, the Hartree and exchange-
correlation potentials are set up directly on the real-space grid
using the approximation to the electron density obtained in the
previous iteration. For Vxc we use the local density approxima-
tion, according to which the value of Vxc at a given point is a
function of the electron density at that point. To construct VH ,
we solve the Poisson equation [∇2VH (r) = −4πρ(r)] using the
matrix formalism corresponding to the higher-order finite dif-
ference method, first setting the total charge in the supercell to
zero in order to prevent the system from becoming infinitely
charged due to the required periodicity. In particular, we opt
to use a readily available conjugate gradient solver from the
sparse matrix package SPARSKIT (the sparsity of the square
matrix representation of the Laplacian operator is clear from
the values we normally use for N , see above) [11]. In its non-
prediconditioned form, this algorithm accesses the matrix only
by performing matrix–vector products. In fact, the matrix is not
explicitly required, the matrix–vector products being done by
using the finite difference “stencil” of the operator which acts
directly on the input vector. This results in significant savings
in memory usage.

The remaining potential term in Eq. (2), the ionic term, is
determined using pseudopotential theory. We employ nonlocal
norm-conserving ionic pseudopotentials cast in the Kleinman–
Bylander form [12]. The ionic contribution due to one atom
of the system, V a

ion, is obtained as the sum of a local term
and a nonlocal term, the latter corresponding to an angular-
momentum-dependent projection [12,13]. Its effect on the wave
function in Eq. (2) is

(7)

V a
ion(r)ψn(r) = Vloc(ra)ψn(r) +

∑
lm

Ga
n,lmulm(ra)�Vl(ra),

where ra = r − Ra ; ulm is the atomic pseudopotential wave
function corresponding to the angular momentum quantum
numbers l and m; �Vl = Vl − Vloc is the difference between
Vl (the lth component of the ionic pseudopotential) and the lo-
cal potential Vloc; and the projection coefficients Ga

n,lm given
by

(8)Ga
n,lm = 1

〈�V a
lm〉

∫
ulm(ra)�Vl(ra)ψn(r)d3r

include the normalization factor

(9)
〈
�V a

lm

〉 = ∫
ulm(ra)�Vl(ra)ulm(ra)d3r.

The local and nonlocal terms in Eq. (7) must in principle
be evaluated and accumulated for all the atoms in the system,
i.e. for both the atoms in the basis and their periodic images
(see Fig. 1). However, the summation of nonlocal terms is ac-
tually performed over a finite number of atoms because, at dis-
tances greater than the pseudopotential core radius (a fraction
of a bond length) Vl is −Z/r for all l, where Z is the number
of electrons acting as valence electrons in the pseudopotential
(see the left-hand side panel of Fig. 2); this makes �Vl short-
ranged, so that the nonlocal terms need only be evaluated for
atoms belonging to the basis (and possibly its nearest replicas).
Furthermore, the integrals in Eqs. (8) and (9) can be efficiently
calculated in real space by direct summation over the grid points
surrounding each atom.

The situation is different for the local contribution to the
ionic potential, which involves a divergent summation of the
long-range Coulomb term −Z/r . However, this divergence can
be avoided by making use of the fact that the pseudopotentials
are short-ranged functions in reciprocal space (see the right-
hand panel of Fig. 2). The local ionic potential, Vion,loc, can
be calculated efficiently in reciprocal space and transferred to
the real-space grid by an FFT. We obtain the local ionic po-
tential in reciprocal space as in a plane wave calculation with
an energy cutoff of π2/2h2, the cutoff for which FFTs of the
wave functions and potentials require a grid of size N3

grid [14].
We first calculate the structure factor Sion(q) at wave vector
q = (2π/L)(nx,ny, nz) where nx , ny and nz are integers,

(10)Sion(q) =
∑
a

exp(iq · Ra),

where the sum is taken over the positions of all the atoms in a
single unit cell [15]. Vion,loc is then calculated as

(11)Vion,loc(q) = Sion(q)Vloc(q)

and transferred to the real-space grid by FFT. Note that we need
to perform this transformation once, just before we enter the
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Fig. 2. Real-space (left panel) and reciprocal-space (right panel) representations of the silicon pseudopotentials employed in the tests of our real-space approach.
The pseudopotentials were constructed using the Troullier–Martins prescription (Ref. [25]); the dashed line in the left panel corresponds to the core radius used in
their generation, 2.5 a.u.
loop for self-consistent solution of the Kohn–Sham equations;
since the local ionic potential is determined by the positions
of the ions, it does not change during the process of finding a
self-consistent solution for ρ.

When discretized as above, Eq. (2) adopts the form

−1

2

[
N∑

n1=−N

Cn1ψn(xi + n1h,yj , zk)

+
N∑

n2=−N

Cn2ψn(xi, yj + n2h, zk)

+
N∑

n3=−N

Cn3ψn(xi, yj , zk + n3h)

]

+ [
Vion(xi, yj , zk) + VH (xi, yj , zk)

(12)+ Vxc(xi, yj , zk)
]
ψn(xi, yj , zk) = εnψn(xi, yj , zk).

Since �Vl differs from zero only inside the pseudopotential
core radius and the Laplacian operator extends only to a few
neighbors around each grid point, the matrix representation of
Eq. (12) is very sparse.

The parallel implementation of the method detailed above
uses the Message Passing Interface (MPI) standard [16]. All
processors work during the most computationally intensive
parts, i.e. obtaining the eigenvalue/eigenvector pairs and solv-
ing the Poisson equation. In order to obtain a good load bal-
ancing among processors, we opt for a domain decomposition
approach. Within this approach the rectangular physical domain
is naturally divided in nearly equally-sized sub-cubes that are
ascribed as working units or local subdomains one by one to
the processors. They also compute the nonlocal component of
the forces. This allows for good memory balance since all the
major arrays, which store wave functions, are distributed.
2.2. Solving the Kohn–Sham equations

The bottleneck of self-consistent DFT-based methods is in
the solution of the Kohn–Sham equations (Eq. (2)). The abil-
ity of such methods to make use of efficient parallel algorithms
for extracting the eigenvalue/eigenvector pairs is essential for
tackling complex problems in condensed-matter physics. Tradi-
tional plane-wave representations of the Kohn–Sham equations
require intensive use of FFTs for their solution. This implicitly
entails a serious degradation of the performance of such codes
on massively parallel environments since FFTs’ need for global
communications among processors. In constrast, our method
only needs one FFT for the local part of the pseudopotential.
During the solution of Eq. (12), there is little communication
among processors. Two approaches can be followed in order
to solve the Kohn–Sham equations: explicit diagonalization,
using for instance the ARPACK package, or subspace filter-
ing techniques, which are very efficient if an initial guess of
eigenvectors is available. In either approach, the hamiltonian
matrix is never stored explicitly. Instead, it is defined implicitly
through matrix–vector products. We give details in the follow-
ing.

ARPACK (and its parallel version PARPACK) [17] is an
iterative method which requires the matrix only in the form
of matrix–vector products. When the matrix is symmetric, as
in Eq. (12), this package is based upon an algorithm variant
of the Arnoldi process called the implicit restarted Lanczos
method (for more details on the method consult Ref. [17]).
In order to obtain the eigenvalues and eigenvectors, a loop
until convergence is performed with successive calls to the
PARPACK’s routine, pdsaupd, which requires a reverse com-
munication interface. The matrix–vector routine is provided by
us [18]. The construction of the Arnoldi factorization inside
pdsaupd requires only two communication points: computation
of the norm of the distributed residual vector and its orthogo-
nalization to the basis vectors. The matrix–vector multiplication
takes three steps itself [19]. First, the contribution of the di-
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agonals in Eq. (12) (i.e. the potential and Laplacian diagonal)
are computed in parallel on all processors according to the par-
titioning of the physical domain explained above. Secondly,
the contribution to the Laplacian is considered on the rows of
each processor by using the stencil information. Since some of
the neighbors of the local subdomain may reside on different
processors, communication between nearest-neighbors proces-
sors is necessary. During the preprocessing phase, each proces-
sor locate which of their rows are needed in the stencils of other
processors. In the second step of the matrix–vector multiplica-
tion this information is exchanged among the processors and
the stencil multiplication proceeds completely in parallel. Fi-
nally, each of the rank-one updates of the nonlocal components
is computed as a distributed dot product; this last step first com-
putes all local dot products and then globally sums their values.
Thus, matrix–vector multiplication requires just two communi-
cation/synchronization points among the processors.

Since Eq. (12) must be solved self-consistently, a typical nu-
merical solution involves calculating eigenvalues and eigenvec-
tors of the Kohn–Sham hamiltonian for an initial charge density
and using them to construct a better charge density and hamil-
tonian. The cycle is iterated until the difference between the
input and output charge densities is smaller than an accuracy
threshold. If a new cycle is necessary, one can then use the re-
cently calculated eigenpairs as initial guess for the eigenpairs
of the hamiltonian in the new cycle, and refine them for the
new hamiltonian. This is the basic idea behind subspace filter-
ing [20].

Subspace filtering can be efficiently implemented by using
Chebyshev polynomials of the first kind [21]. These polyno-
mials are known for their rapid growth property: the k-order
polynomial Ck(t) is bound in the [−1,1] interval but it quickly
diverges if |t | > 1, the growth speed increasing with order. Con-
sider a hamiltonian for which the N lowest eigenvectors span a
subspace S . Also, assume that the highest possible eigenvalue
is b and the highest eigenvalue to be computed is a. Operating
a polynomial pk(H) where

(13)pk(H) = Ck

(
1

b − a
[2H − b − a]

)
on an arbitrary vector effectively suppresses its projection out-
side S . It is important to mention that the filter polynomial
pk(H) only suppresses the projection onto the subspace associ-
ated to the energy interval [a, b]. If b is not an upper bound for
eigenvalues, then components with very high energy are also
magnified, which can produce unwanted effects.

In practice, subspace filtering can be easily implemented
once good estimates for the bounds a and b are available. The
lower bound can be adjusted for the desired number of eigen-
values, and it is simply taken from the eigenvalues calculated
in the previous iteration. The upper bound can be estimated in
various ways [20,22]. In the present implementation, we use an
inexpensive Lanczos process with a safeguard. The polynomial
order is adjustable, and we observed that choices 8 < k < 20
usually give very good performance. More details about this
subspace filtering technique can be found in Refs. [20,22]. Ap-
plying pk(H) to wave functions is easily done with successive
matrix–vector operations. The performance of subspace filter-
ing is very good in parallel environment, and it can be more than
one order of magnitude faster than explicit diagonalization, as
we discuss below.

2.3. Calculation of the forces

The total ground-state energy (Eq. (1)) is given by

Etot[ρ] = T [ρ] +
∫

ρ(r)Vion,loc(r)d3r +
∑

a,n,lm

〈
�V a

lm

〉[
Ga

n,lm

]2

(14)+ EH [ρ] + Exc[ρ] + Eion–ion
({Ra}

) + α,

where the sum on n is performed over the occupied states and
α is the contribution of the non-Coulomb part of the pseudopo-
tential at q = 0,

(15)α = ZN2
a

L3

∫ (
Vloc(r) + Z

r

)
4πr2 dr.

From Eq. (4), the force on ion a is

Fa = −
∫

ρ(r)
∂Vloc(ra)

∂Ra

d3r − 2
∑
n,lm

〈
�V a

lm

〉
Ga

n,lm

∂Ga
n,lm

Ra

(16)− ∂Eion–ion

Ra

.

The first term on the right-hand side of Eq. (16) is the contribu-
tion from the local ionic potential, Fa,loc. It involves the integral
of a long-range function (Z/r2), but it is easily calculated in
reciprocal space, where there is no long-range tail [23],

(17)Fa,loc = −iL3
∑

q

q exp(iq · Ra)Vloc(q)ρ(q),

where ρ(q) is obtained by an FFT from the solution of the
Kohn–Sham equations on the real-space grid. The other elec-
tronic contribution to the force is due to the nonlocal com-
ponents of the pseudopotential. Taking advantage of its short
range, we calculate this term in real space. The remaining term
in Eq. (16) is the force exerted on the ion by other ions. As usual
for periodic systems [3], we evaluate this term by performing
two convergent summations, one over lattice vectors and the
other over reciprocal lattice vectors, using Ewald’s method [23].

The procedure we use to evaluate the expression given in
Eq. (16) gives very accurate values of the ionic forces, as we
demonstrate in Section 3. Note that Eq. (16) contains no term
representing the derivative of the basis set with respect to the
position of the ion (the “Pulay force” [24]).

3. Test of the method

3.1. Periodic boundary conditions

As a first test of our method, we studied the silicon dimer.
A diatomic molecule is an appropriate system for testing the
implementation of the periodic boundary conditions because its
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geometry is controlled by just one degree of freedom: the dis-
tance between ions or bond length. There are two main advan-
tages associated to this system. First, the adequate implemen-
tation of the periodic boundary conditions for the ground-state
energy (Eq. (14)) can be easily checked. Suppose we obtain the
energy of the dimer as a function of the bond length for super-
cells of increasing size L. Since the interactions between the
atoms that conform the basis and their replicated images dimin-
ish as L increases (more vacuum is put in between them, see
Fig. 1), the energy curves should approach the energy curve ob-
tained for the isolated molecule, which can be obtained with the
implementation of the finite-difference real-space pseudopoten-
tial approach without periodic boundary conditions [13]. Sec-
ondly, the force acting on each ion of the dimer can be cal-
culated “formally” by taking the numerical derivative of the
total energy of the dimer with respect to the bond length. The
resulting force can be compared with the one obtained from
the evaluation of the explicit Hellmann–Feynman expression of
Eq. (16). This comparison will allow us to test the accuracy of
the procedure that we employ to calculate the ionic forces.

For each size of the supercell considered, the real-space grid
was constructed with a spacing of h = 0.6 a.u. The core elec-
trons were represented by norm-conserving pseudopotentials
generated for the reference configuration [Ne]3s23p2 using the
Troullier–Martins prescription [25] (see Fig. 2), with a radial
cutoff of 2.5 a.u. for both s and p angular components. The po-
tential was made separable by the procedure of Kleinman and
Bylander [12], with the s potential chosen to be the local com-
ponent. The local density functional of Ceperley and Alder [26]
was used as parameterized by Perdew and Zunger [27], and the
single Γ point was employed in sampling the Brillouin zone
[28], as is appropriate for calculations on non-extended sys-
tems.

The binding energy curves obtained as a function of the bond
length for supercells of size 12.0,13.2,14.4,15.6, and 16.8 a.u.
(from bottom to top; solid lines) are plotted in Fig. 3. The bind-
ing energy of the isolated molecule obtained using the same
pseudopotential and grid used in the supercell calculations is
also shown (dashed line) [13]. Binding energies were com-
puted by subtracting the energy of the single atoms, calculated
within the same approach, from the energy of the molecule.
Fig. 3 confirms that our real-space method is consistent with
a supercell representation. The curves obtained within the su-
percell representation clearly trend to the curve obtained for
the isolated molecule when the size of the supercell increases.
The binding energy and equilibrium bond length of the sil-
icon dimer as obtained from our theoretical calculations are
0.178 and 4.16 a.u., respectively. These values can be compared
with available experimental data for the silicon dimer, 0.110
and 4.23 a.u. [29]. The value for the bond length is consistent
with the value reported in a previous work performed at the
same level of approximation to DFT considered here [30], and
agrees well with experiment. The result for the cohesive energy
shows the typical overbinding associated with the local-density
approximation [29]. Our motivation here is not to improve on
this formalism, but to test the implementation of the periodic
boundary conditions on our real-space method. Nevertheless,
Fig. 3. Binding energy curves of the silicon dimer as obtained from our
real-space code (solid lines). The energy curves correspond to calculations done
for supercells of size (from bottom to top) 12.0, 13.2, 14.4, 15.6, and 16.8
a.u. The binding energy curve obtained for the isolated molecule is also shown
(dashed line).

the current approach is not limited to the local-density approx-
imation. Working with generic, orbital-independent functionals
is straightforward since the local Hamiltonian is built only once.

The calculation of the total energy of dimers with interi-
onic distance x and L − x within our approach should give the
same result since both problems correspond to different repre-
sentations of the same physical system (see Fig. 1). This means
that the energy curves obtained within our approach must be
symmetric with respect to L/2. Although we do not show in
Fig. 3 results for energy curves at interionic distances bigger
than L/2, the obtained curves are perfectly symmetric. How-
ever, it is interesting to notice how the shape of the energy
curves obtained for the smaller supercells (lower part of Fig. 3)
clearly depart from a parabolic-like shape and try to “match”
the required symmetry when the interionic distances approach
L/2. Such a “deformation” in the shape of the curves can be
used to perform a stringent test of the accuracy of the method
we employ for evaluating the ionic forces. In Fig. 4, we plot
the ionic forces corresponding to the supercell calculations with
L = 12 a.u. as obtained from the numerical derivative of the en-
ergy curve (bottom line in Fig. 3), and from the evaluation of the
explicit Hellmann–Feynman expression of Eq. (16). The agree-
ment between the ionic forces is very good (differences are less
than 0.003 a.u.), keeping in mind the errors that are inherent to
the three point rule employed in the evaluation of the derivative
[31]). Both curves cross the zero constant-value line at 4.52 a.u.
and 6.00 a.u. The first interionic distance exactly corresponds to
the equilibrium bond length as extracted from the binding en-
ergy curve; the second one corresponds to L/2, in according to
the extreme value (in this particular case a maximum) that the
energy curve has at L/2 due to its required symmetry.
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Fig. 4. Ionic force of the silicon dimer as obtained from our real-space code
(Eq. (16)) for a supercell of size 12.0 a.u. (solid line). The ionic force obtained
from the numerical derivative of the corresponding energy curve (bottom line
in Fig. 3) is also shown (dashed line).

3.2. Efficiency

In order to test the performance of the parallel implementa-
tion of our code, we study a system composed of a cubic super-
cell of size 29.7 a.u. containing 216 silicon atoms. It has been
recently shown that first-principles molecular-dynamic tech-
niques are suitable for the calculation of the static and dynamic
properties of liquids when the number of atoms involved in the
simulation is of the order of hundreds [32]. In this size range of
simulations, an effective use of parallel architectures is very ad-
vantageous. The supercell was created by randomly disrupting
a 216-atom simple cubic cell in order to mimic the liquid state.
(This also avoids a symmetric distribution of load among the
processors.) The number of particles and size of the supercell
chosen give a number density that corresponds to the exper-
imental number density of liquid silicon close to its melting
point. The real-space mesh was constructed for a grid spacing
of 0.7 a.u., and the Brillouin zone was sampled at the Γ point
(this sampling was shown to be adequate for describing the
liquid state in a recent first-principles molecular-dynamic sim-
ulations involving a system of similar size than that considered
here [32]). Our test involved a matrix of size 74 088 requiring
480 eigenpairs, and it was executed in two IBM power4 nodes
(each node containing thirty-two 1.7 GHz-processors) of the
Minnesota Supercomputer Institute (http://www.msi.umn.edu).
As one can see in Fig. 5, the deviation of the obtained speed up
curve from the ideal behavior only starts to be appreciable when
a large number of processors are used. It is in this region of the
plot where the communication cost between processors starts
to outweigh the effectiveness of dividing the supercell into lo-
cal subdomains assigned to processors.

The cohesive energy of this system was calculated for var-
ious choices of grid spacing, and it is shown in Fig. 6. As ex-
pected, explicit diagonalization and subspace filtering provide
essentially the same cohesive energy. In addition, both methods
are consistent with results obtained with a plane wave-based
DFT code [33] and employing the same pseudopotential and pa-
rameterization [27] of the local density functional [26]. Ideally,
real-space and plane-wave calculations should predict exactly
Fig. 5. Relative speedup of the parallel implementation of our real-space
method (see the text).

Fig. 6. Cohesive energy of the 216-atom silicon system, calculated using
explicit diagonalization (“ARPACK”) and subspace filtering (“CheFSI”), for
various choices of grid spacing. For comparison, results obtained using a
plane-wave code (“PW”) are also shown. The numbers correspond to the
run-times (in hours) obtained for each of the tests (see the text).

the same cohesive energy when the precision parameter (grid
spacing in the former, energy cut-off in the latter) is converged.
From the properties of Fourier transforms, these two parame-
ters are linked to each other by the approximate relationship
(π/2h)2 < 2Ecut < (π/h)2. Fig. 6 shows that the rate of con-
vergence follows the rule above.

Table 1 shows the time spent during each self-consistent it-
eration. Explicit diagonalization shows very little decrease in
run-time between the first iteration and the subsequent ones.
In contrast, subspace filtering shows a speedup of more than
one order of magnitude, which clearly shows the advantages of
avoiding explicit diagonalization after the first iteration. Simi-
lar performance improvements have been observed in other test
systems [22]. Calculations presented in Table 1 were obtained
using a single IMP Power 3 node (16 processors, clock speed
375 MHz), located at the National Energy Research Scientific
Computing Center (NERSC), http://www.nersc.gov/.

http://www.msi.umn.edu
http://www.nersc.gov/
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Table 1
Run time per self-consistent iteration for the 216-atom silicon system

Iteration # Run-time per iteration (sec)

ARPACK CheFSI

1 3612.75 3765.89
2 3599.85 86.35
3 3613.14 88.61

Exact diagonalization was done using the ARPACK package. Subspace itera-
tion (“CheFSI”) was performed starting from an initial exact diagonalization.

3.3. Addressing challenging problems

There are problems of fundamental interest that can only
be addressed within supercell approaches. However, in some
of these problems, the use of supercell approaches introduce
critical limitations in their solution that are related to the small
number of atoms that can be treated within the approaches. One
of such problems is the characterization of defects and dopants
in semiconductor bulk materials. The supercell approach entails
the interaction between the defect or the dopant and its peri-
odic images (see Fig. 1). In case the supercells chosen were not
large enough to minimize such spurious interaction, the compu-
tational approach can significantly alter or fake the properties of
interest under study.

In order to illustrate the finite-size errors introduced by the
supercell approach we consider the study of bulk indium phos-
phide (InP) doped with zinc (Zn) [34]. This material is of great
technological interest since it constitutes one of the most com-
mon materials in use within optoelectronics. The substitution
of an In atom by a Zn, ZnIn, gives an electrically active ac-
ceptor state that experiment locates 35 meV above the valence
band edge (VBE) of the host material (the impurity has one
less valence electron than the substituted atom, giving a hole
as an electrical carrier). The characterization of such a shallow
impurity state from first-principles is very challenging. Shallow
states mainly consist of wavefunctions of the host bulk, thus be-
ing greatly delocalized in real space. Consequently, non-trivial
precautions must be taken to avoid (or at least minimize) the
spurious coupling between impurity wavefunctions correspond-
ing to neighboring supercells.

Placing the ZnIn impurity in cubic supercells with different
sizes resembling the host InP crystal allows us to take proper ac-
count of finite-size errors. In Fig. 7 we plot the charge density
associated to the acceptor impurity state introduced by ZnIn as
obtained from our real-space computational approach. In these
calculations, the local density approximation is used for the ex-
change and correlation potential [26,27], and the Brillouin zone
corresponding to each of the supercells is sampled at the Γ

point. It is apparent from the figure that “small” supercells con-
taining a few hundreds of atoms lead to significant overlap of
the impurity wavefuntion and their images. Increasing the size
of the supercell minimizes the coupling between states. In or-
der to mimic the behavior of a truly isolated ZnIn impurity, we
need to consider supercells containing thousands of atoms in
our calculations. The results obtained for the position of the
impurity state within the host band gap is in according with this
discussion. The 216 and 512-atom supercells locate the impu-
rity acceptor state 93 and 66 meV above the VBE, respectively
[34]. The value obtained for the 2744-atom system is 39 meV,
in rather good agreement with experiment (35 meV).

It is worth mentioning that the reported values for the bind-
ing energy of the ZnIn impurity state are well converged values
within DFT. The different cubic supercells of size L employed
to mimic the bulk crystal are obtained replicating the standard
cubic cell (which contains 8 atoms) n times in each of the carte-
sian directions (L = na, with a being the bulk lattice constant of
InP in the zinc-blende structure). Thus, sampling the Brillouin
zone of each of the supercells at the Γ point corresponds to
sampling the Brillouin zone of the standard cell over an equally
spaced mesh of n × n × n points centered at the Γ point. This
Fig. 7. Charge density associated to impurity state introduced in bulk InP by Zn-doping as obtained from our real-space first-principles approach for different sizes
of the supercell. Gray (red) symbols stand for In (P) atoms. The charge density is plotted at the 20% of its maximum value in all the cases. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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gives very well converged values of the electronic band struc-
ture of the crystal. For example, the band gap energy calculated
for the 216-atom supercell (the Brillouin zone of the standard
cell is sampled over a mesh of 3 × 3 × 3 points) agrees to better
than 4 meV with the converged value. For the 512-atom super-
cell, such agreement is better than 1 meV (the sampling of the
Brillouin zone is performed over 4×4×4 points). We have also
investigated the influence of the choice of exchange and correla-
tion functional on the results. We have repeated the calculations
for some of the systems studied including gradient corrections
in the density functional representation of the potential. In par-
ticular, considering the Perdew–Burke–Ernzerhof form of the
generalized gradient approximation for the exchange an corre-
lation potential [35] we obtain binding energies of the impurity
state that agree to better than 1 meV with those reported here.

4. Summary and conclusions

This paper presents a method for self-consistent DFT-
calculations for the electronic structure of periodic systems.
The method employs pseudopotentials to construct the electron-
ion potential, and solves the Kohn–Sham equations on a uni-
form real-space grid. The only FFT performed is used to set up
the local ionic potential on the real-space grid following its ob-
tention in reciprocal space. Calculation of accurate forces on
ions has also been implemented, which allows for the com-
putation of ground state geometries and molecular dynamic
simulations at finite temperature within DFT.

The Kohn–Sham equations are solved by subspace filtering
using Chebyshev polynomials. This technique avoids direct di-
agonalization of the hamiltonian in each of the iterations of
the self-consistent loop (but for the first one), which explains
the significant speed-up of the code relative to diagonalization-
based methods. Subspace filtering in combination with the
method’s inherent parallelism, makes it a tool capable of ad-
dressing challenging problems involving thousands of atoms
from first-principles.
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