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Abstract

The power of density functional theory is often limited by the high computational demand in solving an eigenvalue prob-
lem at each self-consistent-field (SCF) iteration. The method presented in this paper replaces the explicit eigenvalue calcula-
tions by an approximation of the wanted invariant subspace, obtained with the help of well-selected Chebyshev polynomial
filters. In this approach, only the initial SCF iteration requires solving an eigenvalue problem, in order to provide a good
initial subspace. In the remaining SCF iterations, no iterative eigensolvers are involved. Instead, Chebyshev polynomials
are used to refine the subspace. The subspace iteration at each step is easily five to ten times faster than solving a correspond-
ing eigenproblem by the most efficient eigen-algorithms. Moreover, the subspace iteration reaches self-consistency within
roughly the same number of steps as an eigensolver-based approach. This results in a significantly faster SCF iteration.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Since its formulation, density functional theory (DFT) [18,21] has been recognized as a major achievement in
the development of quantum many-body theories. Its basis lies in describing the ground state of a many-electron
system solely in terms of the charge density function. As a result, the task of solving the Schrödinger equation for
a many-electron system is replaced by the immensely simpler one of solving a nonlinear, self-consistent eigen-
value problem: the Kohn–Sham equations. During the last several decades, DFT has been successfully applied to
a range of problems in condensed matter physics, material sciences, chemistry and biology [29,13]. In typical
numerical implementations of DFT, the most time-consuming part is spent in computing the self-consistent
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solution of the Kohn–Sham equations. Because of the high computational demand of matrix diagonalizations
when the number of wanted eigenvalues as well as the matrix dimension are large, applying DFT to very large
system (e.g., molecules containing thousands of atoms) still remains a highly challenging problem.

It has long been realized that full diagonalization is too expensive for large problems. Many researchers have
considered avoiding matrix diagonalization or reducing its cost. Typical approaches that have been explored
include the use of the conjugate gradient (CG) method which directly minimizes the total energy (or Rayleigh-
quotient) [30], the Car-Parrinello molecular dynamics method [7] and the DIIS variants [31,32,42,22] which
minimize the residual vectors instead of Rayleigh-quotients.

Iterative eigensolvers which only compute the wanted eigenpairs have also been utilized to reduce the cost
of diagonalization. In the early days of the development of DFT codes, the linear subspace iteration algorithm
was used. For example, the 1991 paper [27], see also [26], uses a linear subspace iteration algorithm similar to
Ritzit [33], but the Chebyshev acceleration in Ritzit was replaced by a modified Jacobi preconditioner. In con-
trast with [27], the classical Ritzit code (with Chebyshev acceleration) was found to be an excellent partial
diagonalization tool in the solution of self-consistent Schrödinger equations which arise in the simulation
of electrons in quantum wires [20]. The main difference with our approach is that we do not use subspace
iteration for computing eigenvalues and eigenvectors. Instead, our approach can be viewed as a nonlinear sub-
space iteration in that after each subspace filtering the Hamiltonian is updated.

More recent examples of the use of iterative diagonalization include the multigrid approaches
[5,6,11,14,17,24] and preconditioned Davidson method [35,39]. We note that the complexity of the minimiza-
tion-based methods is similar to that of the iterative eigensolver-based methods. The computational cost of an
eigensolver approach is usually dominated by the cost of the matrix–vector products and that of maintaining
orthogonality of the basis vectors. In [4], partial reorthogonalized Lanczos without restart is used in order to
reduce the orthogonalization cost, at the expense of a higher memory requirement.

In this paper we present a method which avoids solving large eigenvalue problems explicitly. The method
utilizes Chebyshev polynomial filtered subspace iteration. In this approach only the initial SCF iteration
requires solving an eigenvalue problem, by means of any available efficient eigensolver. This step is used to
provide a good initial subspace. Because the subspace dimension is slightly larger than the number of wanted
eigenvalues (denoted by kwant), the method does not require as much memory as standard restarted eigensolv-
ers such as ARPACK (see [38,25]) and TRLan (Thick-Restart Lanczos) [43,44]. Moreover, the cost of orthog-
onalization is much reduced. This is because the new approach only requires a subspace of dimension around
kwant, and the orthogonalization is done only once per SCF iteration. In contrast, standard eigensolvers using
restart usually require a subspace of dimension 2kwant in order to compute kwant eigenpairs efficiently, the
orthogonalization cost approximately amounts to orthogonalizing 2 kwantkrestart number of vectors, where
krestart is the number of restarts needed in order to converge the eigenvectors.

Chebyshev polynomial filtering has been utilized in electronic structure calculations (see e.g. [36,40,16,2,19]),
where the focus is on approximating the Fermi-Dirac operator, i.e., Chebyshev polynomials only over interval
[�1,1] is considered. The approach we take here is different from the existing Chebyshev methods in electronic
structure calculations. The fundamental difference is that we exploit the exponential growth property of Cheby-
shev polynomial outside the [�1,1] interval, hence the polynomial degree required is much lower. In our
approach, we never map the full spectrum of the Hamiltonian into [�1,1]; instead, we adaptively decide on
the unwanted part of the spectrum and map only this part into [�1,1] for damping it. Our Chebyshev filtering
is based on [45]. Note that the focus in [45] is on eigenvalue computations while here we only use Chebyshev
polynomial to filter subspaces. More details are presented in Section 4.

The current approach has been implemented in PARSEC, our real-space DFT code based on [10,9], and it
has been observed to be significantly faster than iterative eigensolver-based approaches. As an example, it took
less than 2 hours for the sequential implementation of the new method to reach self-consistency for the Silicon
cluster Si525H276 on a single SGI 1.3 GHz Madison processor. In contrast, a parallel calculation done with the
preceding version of PARSEC around the year 1997, on the CRAY T3E, took a total of 20 hours [39] using 48

processors. Back in 1997 the problem could not be solved in fewer than 48 processors due to memory require-
ments. The remarkable gains do not come only from a reduced cost of diagonalization but also from exploit-
ing symmetry [41] and from gains made in other parts of the code. Section 5 presents comparisons with
methods based on two of the most efficient eigensolvers currently available (ARPACK and TRLan). All three
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methods utilize the same symmetry operations, therefore the reported speedup is from the Chebyshev filtering
approach.

2. Basics of self-consistent-field calculation

In this section we briefly review the self-consistent-field calculation. Here we focus discussion on SCF in
DFT calculations, but we note that SCF is also used in Hartree-Fock and other approximations. As mentioned
in the introduction, the most time-consuming part of an SCF calculation is in matrix diagonalization, which
consists of computing the self-consistent solutions of the following Kohn–Sham equation (in atomic units):
�r
2

2
þ V totalðqðrÞ; rÞ

� �
WiðrÞ ¼ EiWiðrÞ; ð2:1Þ
where Wi(r) is a wave function, Ei is a Kohn–Sham eigenvalue. The total potential
V totalðqðrÞ; rÞ ¼ V ionðrÞ þ V HðqðrÞ; rÞ þ V XCðqðrÞ; rÞ ð2:2Þ

includes the ionic potential Vion, the Hartree potential VH and the exchange–correlation potential VXC. In
DFT the total potential depends only on q(r)—the charge density. The charge density is given by
qðrÞ ¼ 2
Xnocc

i¼1

jWiðrÞj2; ð2:3Þ
where nocc is the number of occupied states (half the number of valence electrons in the system) and the factor of
two comes from spin multiplicity. Eq. (2.3) can be easily extended to situations where the highest occupied states
have fractional occupancy or when there is an imbalance in the number of electrons for each spin component.

Because the potential (2.2) depends on the charge density (2.3), which in turn depends on eigenfunctions of
the Hamiltonian in Eq. (2.1), the eigenvalue problem (2.1) is in fact nonlinear. Self-consistent iterations for solv-
ing this problem consist of starting with an initial guess of the charge density q0(r), then obtaining a guess for
Vtotal and solving (2.1) for Wi(r)’s to update q(r) and Vtotal. Then (2.1) is solved again for the new Wi(r)’s and the
process is carried on until the difference between two consecutive Vtotal’s is below a certain tolerance (equiva-
lently, the wave functions are close to stationary). Algorithm 2.1 contains a pseudo code for this SCF loop.

We note that, since the charge density does not depend on eigenstates beyond nocc, the number of eigenvec-
tors needed in Step 2 of Algorithm 2.1 is limited. Nevertheless, the eigenvalue problem is still very challenging
in complex systems (i.e., systems with a very large number of electrons), when the Hamiltonian has large
dimension and nocc is also large.

Our computational code uses a real-space implementation of the above SCF method [10,35,39]. In this
implementation, wave functions are expressed directly as functions of position, and they are required to vanish
outside a specified boundary that encloses the physical system (alternatively, periodic boundary conditions can
be imposed [1]). The region inside this boundary is discretized by using a regular grid with adjustable spacing
between neighbouring points. We use pseudopotentials to describe the interaction between valence electrons
and ionic cores (core electrons + nuclei) and solve the SCF problem for valence electrons only. In addition, we
make use of symmetry operations in the arrangement of atoms and reduce the sampled region to a smaller
one: the ‘‘irreducible wedge’’. Appropriate boundary conditions and the existing symmetry operations are
used to expand wave functions from the irreducible wedge to the full volume. For highly symmetric systems,
such as the atom clusters analyzed in Section 5, reducing the volume of interest to an irreducible wedge can
easily lead to a 10-fold reduction in the computational load [41] than without exploiting symmetry.

Algorithm 2.1 (Self-Consistent Iteration)

1. Initial guess for q(r), get Vtotal(q(r), r).

2. Solve �r2

2
þ V totalðqðrÞ; rÞ

h i
WiðrÞ ¼ EiWiðrÞ for Wi(r), i = 1,2, . . .

3. Compute new charge density qðrÞ ¼ 2
Pnocc

i¼1 jWiðrÞj2.
4. Solve for new Hartree potential VH from $2VH(r) = �4pq(r).
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5. Update VXC and Vion; get new ~V totalðq; rÞ ¼ V ionðrÞ þ V Hðq; rÞ þ V XCðq; rÞ
(often followed by a potential-mixing step).

6. If k~V total � V totalk < tol, stop; Else, V total  ~V total, goto 2.
3. Self-consistent-field calculation without explicit eigenvectors

While the charge density q(r) depends explicitly on the wave functions Wi(r), see (2.3), it has been observed
that any basis for the subspace spanned by these eigenvectors can be used. After discretization each Wi(r)
becomes an eigenvector (denoted as wi) of the discretized Hamiltonian. The charge density is then simply
the diagonal of the density matrix
P ¼ UUT; ð3:1Þ

in which U is the matrix with column vectors the {wi}’s. Entry (j, j) of this projector P is equal to the charge den-
sity at the mesh-point rj. Notice that for any orthonormal matrix Q of a suitable dimension, P = (UQ)(UQ)T.
Explicit eigenvectors are therefore not needed to calculate the charge density in Algorithm 2.1. Any orthonormal
basis of the eigensubspace corresponding to occupied states will give the correct charge density.

Techniques based on this observation have appeared in, e.g. [40,37,19,4,3]. In particular, the recent article
[4] stresses the importance of de-emphasizing eigenvectors in favor of the underlying eigenspace. This obser-
vation has also been exploited in the linear scaling approaches to DFT, see e.g. [15] for a survey.

In our approach we progressively refine a subspace by rather low degree Chebyshev polynomials. After self-
consistency is reached, this subspace includes the eigensubspace corresponding to occupied states. Explicit
eigenvectors can be easily obtained by a Rayleigh–Ritz refinement step [28] (called a subspace rotation in mate-
rials science terminology).

4. Chebyshev-filtered subspace iteration for SCF calculations

The main idea of the proposed approach is to start with a good initial eigen-basis V corresponding to occupied
states of the initial Hamiltonian H0, and then to adaptively improve the subspace by polynomial filtering. That is,
at a given self-consistent step, a degree-m polynomial filter pm(t) is constructed for the current Hamiltonian H.
Note that the polynomial will be different at each SCF step since H will change. The goal of the filter is to make
the subspace spanned by pm(H)V approximate the eigensubspace corresponding to the occupied states of H.
There is no need to make pm(H)V approximate the wanted eigensubspace of H to high accuracy at the interme-
diate steps. Instead, the filtering is designed so that the new subspace obtained at each self-consistent iteration
step will progressively approximate the wanted eigensubspace of the final Hamiltonian when self-consistency
is reached. This can be efficiently achieved by exploiting the Chebyshev polynomials, specifically the fast growth
property outside the [�1,1] interval. All that is required to obtain a good filter at a given SCF step, is to provide a
lower bound and an upper bound of an interval of the spectrum of the current Hamiltonian H in which we want
pm(t) to be small. Moreover, the lower bound can be readily obtained from the Ritz values computed from the
previous step, and the upper bound can be inexpensively obtained by a very small number of (say, 4 or 5) Lanczos
steps [23]. Hence the main cost of the filtering at each iteration is in computing pm(H)V. This computation is
accomplished by exploiting the convenient three-term recurrence property of Chebyshev polynomials.

4.1. The main algorithms

The Chebyshev-filtered subspace iteration algorithm for SCF calculations mainly depends on the following
Chebyshev-filtered subspace method presented in Algorithm 4.1.

Algorithm 4.1 (Chebyshev-filtered subspace method)

1. Get the lower bound blow from previous Ritz values (use the largest one).
2. Compute the upper bound bup of the spectrum of the current discretized Hamiltonian H (call Algorithm 4.4).
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3. Perform Chebyshev filtering (call Algorithm 4.3) on the previous basis U, where U contains the discretized
wavefunctions of Wi(r), i = 1, . . . , s: U = Chebyshev_filter(U,m,blow,bup).

4. Ortho-normalize the basis U.
5. Perform the Rayleigh–Ritz step:

(a) Compute Ĥ ¼ UTHU.
(b) Compute the eigen-decomposition of Ĥ : ĤQ ¼ QD, where Q contains eigenvectors of the Ĥ , D con-

tains non-increasingly ordered Ritz values of H.
(c) ‘Rotate’ the basis: U := UQ.

The purpose of Algorithm 4.1 is to replace, except at the first SCF iteration, the eigenvalue problem at Step
2 in Algorithm 2.1 by a single Chebyshev filtering step. At the first SCF loop, Step 2 in Algorithm 2.1 is carried
out by an iterative eigensolver like ARPACK or TRLan to provide an initial orthonormal basis U =
[w1, . . . ,ws]. In order not to miss occupied eigenstates, a standard practice is to compute s eigenstates, where
s is an integer with s > nocc. Here we follow this practice by fixing an integer nstate which is slightly larger than
nocc, then set s = nstate + nadd (typically nadd 6 10).

Note that Algorithm 4.1 does not iterate over the subspace spanned by U apart from the single filtering step
applied on U, using a degree-m Chebyshev polynomial. This is in contrast with the standard Chebyshev sub-
space iteration for computing eigenvalues, where another loop is applied to iterate on the subspace until accu-
rate eigenvectors are extracted.

The estimated cost of Algorithm 4.1 with respect to the number of discretization points denoted by N, and
the number of computed states, denoted by s previously, is as follows:

� The Chebyshev filtering in Step 3 costs O(s * N) flops. The discretized Hamiltonian is sparse and each
matrix–vector product costs O(N) flops. Step 3 requires s * m matrix–vector products, at a total cost of
O(s * m * N) where the degree-m of the polynomial is small (typically between 8 and 20).
� The ortho-normalization in Step 4 costs O(N * s2) flops. Note that N is usually much larger than s but that

N depends on s. In particular, note that N, the number of grid-points, must be increased proportionally to
the number of atoms.
� The eigen-decomposition at Step 5 costs O(s3) flops.
� The final basis refinement step U = UQ costs O(N * s2), which is identical with the cost of ortho-

normalization.

Standard iterative diagonalization methods also require the ortho-normalization of a (typically larger)
basis, the eigen-decomposition of the projected Rayleigh-quotient matrix, and the basis refinement. There-
fore, Algorithm 4.1 scales in a similar way to standard eigenvalue-based methods. Specifically it is of the
order of the cube of the number of atoms, since N scales like s, which is proportional to the number of
atoms. However, eigenvalue-based methods need to perform these same operations several times during
the diagonalization process. In contrast, these operations need to be performed only once in Algorithm
4.2.

The complete Chebyshev-filtered subspace iteration (CheFSI) for SCF calculations is summarized in Algo-
rithm 4.2. We note that the subspace iterations in Algorithm 4.2 correspond to the SCF iterations. Since the
Hamiltonian changes with each iteration, we essentially perform a nonlinear subspace iteration over the basis
of the initial subspace.

In other words, one can view Algorithm 4.2 as a simplification of standard SCF iterations, in which one
loop has been omitted. A standard SCF method would have an outer SCF loop (the usual nonlinear SCF
loop) and a diagonalization loop (iterate until eigenvectors are computed accurately). In a sense Algorithm
4.2 merges these 2 loops into a single one. When convergence takes place in the end, the basis U will indeed
become an eigenvector basis. However, in the intermediate steps U will just be an evolving basis of some con-
verging subspace. Algorithm 4.2 can thus be considered as a nonlinear form of the subspace iteration algorithm.
In summary, although Algorithm 4.2 bears the same overall scaling behavior as standard methods, the scaling
constant is likely to be much smaller.
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Algorithm 4.2 (SCF loop with CheFSI)

1. Initial guess for q(r), get Vtotal(q(r), r).

2. Solve �r2

2
þ V totalðqðrÞ; rÞ

h i
WiðrÞ ¼ EiWiðrÞ for Wi(r), i = 1,2, . . . , s.

3. Compute new charge density qðrÞ ¼ 2
Pnocc

i¼1 jWiðrÞj2.
4. Solve for new Hartree potential VH from $2VH(r) = �4pq(r).
5. Update VXC and Vion; get new ~V totalðq; rÞ ¼ V ionðrÞ þ V Hðq; rÞ þ V XCðq; rÞ (often followed by a potential-

mixing step).
6. If k~V total � V totalk < tol, stop; Else, V total  ~V total (update H implicitly), call Algorithm 4.1 to get s approx-

imate wavefunctions; goto 3.

We now discuss some additional details of Algorithm 4.1. For the ortho-normalization step in Algorithm
4.1 (Step 4) we use the DGKS method [12] which uses iterated classical Gram-Schmidt.

Algorithm 4.1 does not compute an eigen-basis of the current Hamiltonian H. Instead, it computes an
eigen-decomposition of the projected Rayleigh-quotient matrix Ĥ of size s. Even though s is normally much
smaller than the size of H, the Rayleigh–Ritz refinement (Step 5) may still be expensive when s becomes very
large (e.g., large complex systems without physical symmetry), since the eigen-decomposition step is of com-
plexity O(s3).

An important feature of the Chebyshev-filtered subspace method is that Step 5 in Algorithm 4.1 can be
omitted for huge systems where s is very large. The reason for this is that UQ spans the same subspace as
U. In this case we can construct another suitable filter so that the components of U corresponding to unoccu-
pied states will be filtered out. Rayleigh–Ritz refinement is performed when s is moderate because it is not
expensive, and this refinement makes columns in UQ approximate the eigenvectors of H better than U does.
That is, the first nocc columns in UQ that correspond to the nocc smallest Ritz values can be readily returned to
the main program for the calculation of q(r) to continue the SCF loop. Results in the literature (e.g. [22,11])
for different approaches also show that subspace rotation improves stability and convergence rate. In our
approach, the Rayleigh–Ritz step is also helpful because it provides a convenient lower bound for the next
Chebyshev filtering.

If the Rayleigh–Ritz step is not performed, the wanted lower bound can still be estimated from the largest
Rayleigh-quotient among wT

j Hwj, where wj (j = 1, . . . , s) is the column vector of U. Thanks to the Courant-
Fisher min–max theorem [28, p.206] this will still be a good approximation for the filtering to work well.

The next section will show useful properties of Chebyshev polynomials and discuss how to adaptively
change these filters.
4.2. Controlling the Chebyshev polynomial filters

The well-known Chebyshev polynomials of the first kind are defined by ([28, p. 371], [34, p. 142])
CkðtÞ ¼
cosðk cos�1ðtÞÞ; �1 6 t 6 1;

coshðk cosh�1ðtÞÞ; jtj > 1:

�

Note that C0(t) = 1,C1(t) = t. The following important 3-term recurrence is easy to derive from properties of
cos(t) and cosh(t),
Ckþ1ðtÞ ¼ 2tCkðtÞ � Ck�1ðtÞ; t 2 R. ð4:1Þ

The rapid growth property of the Chebyshev polynomial outside [�1,1] is discussed in [28]. Fig. 4.1 illus-

trates this property. Here we only plot the [�2,1] interval, but note that the farther away from �1 or 1, the
larger the magnitude of the real part of the Chebyshev polynomials.

Assume that the full spectrum of H (denoted as r(H)) is contained in [a0,b]. As is well known [33,28,34,45],
in order to approximate the eigensubspace associated with the lower end of the spectrum, say [a0,a] with
a0 < a < b, essentially one only needs to map [a,b] into [�1,1]. This can be easily realized by a linear mapping
defined as
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Fig. 4.1. Rapid increase outside [�1,1] of the mth degree Chebyshev polynomial.
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lðtÞ :¼ t � c
e

; c ¼ aþ b
2

; e ¼ b� a
2

;

where c denotes the center and e the half-width.
The Chebyshev iteration, which utilizes the three-term recurrence (4.1) with the goal to dampen values on a

given [a,b] is presented in Algorithm 4.3. Here the formula derived in [34, p. 223] for the complex Chebyshev
iteration is adapted to the real case. The iteration of the algorithm is equivalent to computing
Y ¼ pmðHÞX ; where pmðtÞ ¼ Cm
t � c

e

h i
. ð4:2Þ
Although Algorithm 4.3 only explicitly filters the [a,b] interval, we note that by the property of the Cheby-
shev polynomial, the filter values on the interval to the left of [a,b] will be magnified—which is what is needed
to approximate the eigensubspace associated with the lower end of r(H).

Algorithm 4.3 ([Y] = Chebyshev_filter(X,m,a,b))

Purpose: Filter vectors in X by an m degree Chebyshev polynomial that dampens on the interval [a,b], and
output the filtered vectors in Y.

1. e = (b � a)/2; c = (b + a)/2;
2. r = e/(a � c);
3. r1 = r;
4. Y = (HX � cX)r1/e;
5. For i = 2:m
6. r2 = 1/(2/r1 � r);
7. Ynew = 2(HY � cY)r2/e � rr2X;
8. X = Y;
9. Y = Ynew;

10. r = r2;
11. End For
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As seen from Algorithm 4.3, a desired filter can be easily controlled by providing two endpoints of the
higher end of r(H). The higher endpoint can be estimated by a few steps of standard Lanczos (which is pre-
sented in Algorithm 4.4). A lower bound of the full r(H) is not needed. Instead, the wanted lower bound is any
value which is larger than the Fermi-level but smaller than the higher endpoint. As presented in Algorithm 4.1,
this lower bound is readily available as the largest Rayleigh-quotient of the previous iteration.

Hence there is negligible extra work associated with computing bounds for the Chebyshev filtering, the
major cost being in the three-term recurrences in Algorithm 4.3 which involve matrix–vector products. The
polynomial degree-m is left as a free parameter. Our experience indicates that an m between 8 and 20 is good
enough to achieve overall fast convergence in the SCF loop.

4.3. Estimating an upper bound of the spectrum

Now we present an inexpensive way to estimate an upper bound of r(H). As pointed out in [45], the upper
bound has to bound the full spectrum of H. This is because the Chebyshev polynomial also grows fast on the
right of [�1,1]. So if [a,b] with b < rmax(H) is mapped into [�1,1], then the [b,rmax(H)] portion of the spec-
trum will also be magnified, which will cause the whole procedure to fail. We need b to be larger than rmax(H)
but it cannot be too large as this will affect convergence. There are several ways to estimate this type of upper
bound, for example, by using the one-norm of H, or by applying Gerschgorin’s Circle Theorem if possible.
Bounds obtained this way can, however, overestimate rmax(H).

We found that a few steps of the standard Lanczos procedure are sufficient to provide an effective upper
bound. For example, a k-step Lanczos leads to a Lanczos-decomposition
HV k ¼ V kT k þ fkeT
k ;
where Vk contains the k Lanczos basis, Tk is a size-k tridiagonal matrix, fk is a residual vector and ek is a length
k unit vector with only the first element nonzero.

Notice that Lanczos iteration often quickly approximate the outermost eigenvalues, and that
kHV kk2 ¼ kV kT k þ fkeT
k k2 6 kT kk2 þ kfkk2.
We can start with a random unit vector, carry out k steps of the Lanczos procedure, and use iTki2 + ifki2 as an
upper bound for r(H). This is presented in Algorithm 4.4. For simplicity we skip the safeguards for b = 0, as
this does not happen for small values of k in general.

In practice, we found that k = 4 or k = 5 is sufficient to yield a proper upper bound of r(H). In fact we
found that it is often counter-productive to take the bounds obtained from larger values of k (say, k > 10).

Algorithm 4.4 (Estimating an upper bound of r(H) by k-step Lanczos)

1. Generate a random vector v, set v v/ivi2.
2. Compute f = Hv; a = fTv; f f � av; T(1,1) = a.
3. Do j = 2 to min(k, 10)
4. b = ifi2;
5. v0 v; v f/b;
6. f = Hv; f f � bv0;
7. a = fTv; f f � av;
8. T(j, j � 1) = b; T(j � 1, j) = b; T(j, j) = a;
9. End Do

10. Return iTi2 + ifi2 as the upper bound.
5. Numerical results

The numerical experiments are performed using our own DFT package called PARSEC which is written
in Fortran 95. PARSEC is based on the real-space pseudopotential method [9,10], where higher order finite
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differences are used for the discretization of the Kohn–Sham equation on a uniform grid, as discussed in Sec-
tion 2. We use a 12th order centered finite difference scheme. At each point (x,y,z) the local stencil involves 37-
points. Fig. 5.1 illustrates this stencil.

We compare three different methods in PARSEC, two of which are based on solving eigenvalue problems
(2.1) at each SCF iteration. The solvers used are ARPACK [25] and TRLan [43,44] which represent two of the
most efficient publicly available eigenvalue packages. The third method is our Chebyshev filtered subspace
iteration, with the initial SCF step solved using TRLan. Note that each method is applied in the same package
to the same problems, that is, each method can exploit the same physical symmetry operations if they exist,
hence the performance difference is due solely to the three different methods.

Note that we only use the solver for standard symmetric eigenproblems in ARPACK. We mention that
ARPACK is currently one of the most efficient general purpose eigensolvers, especially for nonsymmetric
eigenproblems. It is by far the best known package for general eigenvalue calculations.

TRLan is a Fortran 90 package for standard symmetric eigenproblems. It uses reduced full orthogonaliza-
tion and several thick restart strategies [43,44], hence it can be more efficient than the symmetric eigensolver in
ARPACK. We call TRLan for the first step SCF iteration for our Chebyshev-filtered subspace iteration Che-

FSI method.
The test problems are a Silicon clusters Si525H276, a Silicon Germanium cluster Si65Ge65H98, a Gallium

Arsenide cluster Ga41As41H72 and two iron clusters Fe27 and Fe51. These problems constitute four typical
materials in electronic structure calculations. We note that metallic systems are difficult for SCF calculation
because of the charge sloshing effect [22].

Fig. 5.2 shows the atomic structure of Si525H276. Table 5.1 contains some numerical parameters related to
these test problems. The number of symmetry operations used to construct the irreducible wedge is denoted
nsymm, and ‘‘reduced H size’’ is the number of grid-points in the wedge (equal to the dimension of the discret-
ized reduced Hamiltonian). At each SCF iteration, ARPACK and TRLan compute approximately nstate eigen-
pairs from nsymm reduced Hamiltonians at Step 2 of Algorithm 2.1, while CheFSI, as presented in Algorithm
4.2, essentially replaces Step 2 of Algorithm 2.1 by Algorithm 4.1 and returns the same number of wave vec-
tors as ARPACK or TRLan does from Step 2 to Step 3 in Algorithm 2.1. The number of states of Fe27 and
Fe51 is doubled because these clusters are magnetized and spin degeneracy in eigenvalues is absent, i.e., for
each spin channel at least 520 eigenpairs are computed.

In each table, the total_eV/atom counts the total energy per atom, given in electron-volts. This is a con-
trol parameter used to assess the accuracy of the final result. The # SCF steps is the iteration steps used to
reach self-consistency; the # MV products counts the number of matrix–vector products. Clearly this is not
the only factor that determines CPU time, the reduced orthogonalization can also have a crucial effect in CPU
time.
X

Z

Y

h

Fig. 5.1. 37-Stencil of a 12th order centered finite difference.



Fig. 5.2. Atomic structure of the quantum dot Si525H276. The red and white balls represent Si and H atoms respectively . The quantum dot
contains 25 shells of Si atoms ad is 27.2 Å in diameter [8] (For interpretation of the references to the color in this figure legend, the reader is
referred to the web version of this article).

Table 5.1
Relevant data of the test problems

Model Size of H nstate nsymm Reduced H size

Si525H276 292,584 1194 4 73,146
Si65Ge65H98 185,368 313 2 92,684
Ga41As41H72 268,096 210 1 268,096
Fe27 697,504 520 · 2 8 87,188
Fe51 874,976 520 · 2 8 109,372
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All the numerical runs are performed on the SGI Altix 3700 cluster of the Minnesota Supercomputing Insti-
tute. The CPU type is a 1.3 GHz Intel Madison processor. The Operating System is a 64bit Linux with kernel
version 2.4.21. The compiler used is the Intel Fortran compiler ifort, with optimization flag -O3 for all
codes.

As seen from Tables 5.2–5.6, the CheFSI method is usually five to ten times faster than the eigenvector-
based methods represented by two of the best available iterative sparse eigensolvers ARPACK and TRLan.
Although eigenspaces are not explicitly and accurately computed at each SCF step, CheFSI only requires a
few more SCF steps to reach self-consistency. However, each SCF step using CheFSI is much cheaper than
an SCF step based on eigenvectors. About ten other tests on smaller systems (Hamiltonian sizes around
100–160 K) not reported here showed similar results. We also mention that there are cases where the Cheby-
shev filtering may become less effective. We observed these in Gallium Arsenide clusters, as seen from Table
5.4. The cases of reduced efficiency correspond to situations where the full spectrum of a given Hamiltonian
spreads over a very large interval. In such situations, high degree Chebyshev polynomials must be used. How-
ever, we see that even in these unfavorable cases, CheFSI is still reasonably faster than eigenvector-based
methods.

Finally, we should mention that CheFSI is as robust as eigenvector-based methods. In fact, it has been used
successfully for unreported periodic systems, with performance gains similar to the ones obtained in clusters.
On the other hand, an eigenvector-based method using a preconditioned Davidson method failed to converge
for the same periodic systems.



Table 5.2
Si525H276, polynomial degree used is 8

Method # MV products # SCF steps Total_eV/atom CPU (s)

CheFSI 124,761 11 �77.316873 5946.69
ARPACK 142,047 10 �77.316873 62026.37
TRLan 145,909 10 �77.316873 26852.84

Table 5.3
Si65Ge65H98, polynomial degree used is 8

Method # MV products # SCF steps Total_eV/atom CPU (s)

CheFSI 42,919 13 �140.076118 2344.06
ARPACK 51,752 9 �140.076118 12770.81
TRLan 53,892 9 �140.076118 6056.11

Table 5.4
Ga41As41H72, polynomial degree used is 16

Method # MV products # SCF steps Total_eV/atom CPU (s)

CheFSI 138,672 37 �89.634940 12923.27
ARPACK 58,506 10 �89.634940 44305.97
TRLan 58,794 10 �89.634940 16733.68

The spectrum of each reduced Hamiltonian spans a large interval, making the Chebyshev filtering not as effective as other examples.

Table 5.5
Fe27, polynomial degree used is 9

Method # MV products # SCF steps Total_eV/atom CPU (s)

CheFSI 363,728 30 �776.575290 15408.16
ARPACK 750,883 21 �776.586420 118693.64
TRLan 807,652 21 �776.586422 83726.20

Table 5.6
Fe51, polynomial degree used is 9

Method # MV products # SCF steps Total_eV/atom CPU (s)

CheFSI 474,773 37 �777.019294 37701.54
ARPACK 1,272,441 34 �777.038081 235662.96
TRLan 1,241,744 32 �777.038086 184580.33
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6. Conclusions

An algorithm based on Chebyshev-filtered subspace iteration has been developed for performing SCF calcu-
lations in density functional theory, which has the advantage of not explicitly relying on eigenvectors, except at
the first SCF step. This leads to significant gains in computational time relative to traditional eigenvector-based
methods which are inevitably constrained by the high computational cost of diagonalization at each SCF step.
Numerical results show that the new method is five to ten times faster than eigenvector-based methods using two
of the best iterative eigensolvers. Even though implemented sequentially at present, the CheFSI method can
solve realistic systems of moderate size within a reasonable time frame. Parallel implementation of the CheFSI
method will be reported in a forthcoming paper, where we study larger and more complex material systems.
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