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Estimating upper bounds of the spectrum of large Hermitian

matrices has long been a problem with both theoretical and prac-

tical significance. Algorithms that can compute tight upper bounds

with minimum computational cost will have applications in a

variety of areas. We present a practical algorithm that exploits k-

step Lanczos iteration with a safeguard step. The k is generally very

small, say 5–8, regardless of the large dimension of the matrices.

Thismakes theLanczos iterationeconomical. Thesafeguardstepcan

be realized with marginal cost by utilizing the theoretical bounds

developed in this paper. The bounds establish the theoretical valid-

ity of a previous bound estimator that has been successfully used

in various applications. Moreover, we improve the bound estima-

tor which can now provide tighter upper bounds with negligible

additional cost.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Various researchers have studied cost-effective ways to approximate the largest eigenvalue of Her-

mitian matrices. O’Leary et al. [11] used Rayleigh-quotient iteration; Parlett et al. [12], and Kuczyński

andWoźniakowski [10] employed Lanczos iterationwith random initial vectors. The focus in [11,12,10]

is to make rather accurate estimate of the largest eigenvalue of Hermitian positive definite matrices.

Because the estimation is expected to have high accuracy, the iteration steps often cannot be very

small.

In contrast, in several applicationswe cannot afford to estimate the largest eigenvalue to high accu-

racy because it can be too costly, especially when the estimation procedure has to be done repeatedly
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in a single simulation. Instead, we focus on obtaining practical upper bounds of the spectrumwith low

cost. Our upper bound estimator is also based on the Lanczos iteration [13,16]. One major application

of our estimator is for the Chebyshev-filtered subspace iteration method [18,19] in real-space Density

Functional Theory (DFT) calculations,where anestimator for the largest eigenvalues of someHermitian

matrices has to be repeatedly called. The Hermitian matrices arise from real-space DFT calculations

[2] are indefinite, sparse, and usually of very large scale.

The upper bound plays a crucial role for the efficiency of the Chebyshev filters. It is understood

that the tighter the upper bound the better. But there is a tradeoff between tightness of a bound

and the computational cost for it. The large dimension implies that it is not cost-effective to let the

Lanczos iteration run until a Ritz value converges to the largest eigenvalue. Instead we wish to obtain

an upper bound within just a few Lanczos steps, say less than 8 steps, regardless of the dimension of

the matrices. To achieve this goal we need to look deeper into the bounds from Lanczos iteration and

provide necessary safeguard steps.

An inexpensive upper bound estimator was proposed in [18]. The estimator plays a critical role

in the nonlinear Chebyshev filtered subspace iteration method that is now the default solver in the

real-space DFT package called PARSEC [2,3]. It has been successfully used for a wide range of DFT

calculations, including highly challenging problems with dimension over several millions, where

several thousand eigenpairs need to be computed [3,17,19]. The application of the estimator is not

limited to DFT calculations, e.g., it plays a part in the Chebyshev–Davidson algorithm [20] for solving

Hermitian eigenvalue problems of large dimensions.

However, the upper bound estimator in [18] lacks a rigorous proof. In this paper we will analyze

the bound in more details, provide certain conditions under which we can rigorously prove that the

estimator provides an upper bound. We also develop tighter upper bounds based on our analysis.

Moreover, we will construct practical heuristics to guarantee that the estimator will provide an upper

bound even if the conditions do not hold. This is important to ensure robustness of the upper bound

estimator.

The rest of this article is organized as follows. Section 2 provides a theoretical analysis for practical

bounds. Numerical examples, including those from DFT calculations and two artificial ones purposely

constructed to test our bounds, are presented in Section 3 to illustrate the effectiveness of the pro-

posed bounds in the previous section. We conclude this article by a few remarks along with possible

applications other than DFT calculations in Section 4

2. Theoretical study of upper bounds

As explained in [18], the Chebyshev-filtered subspace iteration method requires an upper bound β
that satisfies β � λmax(A), where A denotes the size n × n Hermitian matrix and λmax(A) its largest

eigenvalue. Theoretically, any consistent norm‖A‖, in particular the �1- or �∞-operator normprovides

an upper bound on λmax(A). Onemay also use Gerschgorin’s disk theorem to find other upper bounds.

Nevertheless, as pointed out in [18, Section 4.3], upper bounds obtained as such are often too crude to

be effective for the nonlinear filtered subspace iteration algorithm that calls for the bound estimates.

Another obstacle associated with these methods occurs when A is not stored as a matrix but instead

accessed via a matrix-vector product subroutine. This is usually the case in DFT calculations, either in

a real-space or in a plane-wave setting.

The upper bound estimator proposed in [18] performs the following: Run k-step Lanczos [13,16] on

Awith a random starting vector to get

AQk = QkTk + fke
T
k , (2.1)

whereQk is n × k andhas orthonormal columns, Tk is k × k and tri-diagonal,Q∗
k fk = 0, the superscript

∗ denotes conjugate transpose (it becomes just transpose in the real case), and ek is the kth column

of the k × k identity matrix. Then take λmax(Tk) + ‖fk‖2 as an upper bound on λmax(A). While no

analysis was presented in [18] to theoretically guarantee that λmax(Tk) + ‖fk‖2 was indeed an upper

bound, we observed that a very small k, say 4� k � 10, was often enough to provide an upper bound.

It is not hard to see that the method can fail if the starting vector is unfortunately taken from

an invariant subspace that is orthogonal to A’s eigenspace corresponding to λmax(A). But the initial
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vector is randomly generated, nowadays any random number generator (see [9]) used would make

this scenario a probability zero incidence. Hence in practice we can safely assume that the random

initial vector is not orthogonal to the eigenspace corresponding to λmax(A).
Nowweshall present conditions that guaranteeλmax(Tk) + ‖fk‖2 tobeanupperboundonλmax(A).

Then we proceed to develop some refined bounds.

Denote the eigenvalues of A and Tk by

λ1 � λ2 � · · · � λn and μ1 � μ2 � · · · � μk,

respectively.

In exact arithmetic,Qk in (2.1) has orthonormal columns, i.e.,Q∗
k Qk = Ik . Numerically when round-

off errors are taken into consideration, Qk ’s columns are nearly orthonormal for k not too big, and (2.1)

should be replaced by [13, p. 295]

AQk = QkTk + fke
T
k + Fk, (2.1a)

where Fk = O(ε) records all the roundoff errors and ε is machine unit roundoff. It is well-known that

the orthogonality among Qk ’s columns begins to deteriorate as Tk ’s eigenvalues start to converge to

A’s [13, Section 13.3]. But as pointed out in [18], for the purpose of bounding λmax(A), only very few

steps, i.e., small k, suffices. Because of that, the Lanczos process would usually stop far before λmax(Tk)
approximates one of A’s eigenvalues so accurately and, as a consequence,

‖fk‖2 � ‖Fk‖2 = O(ε), ‖fkeTk + Fk‖2 ≈ ‖fk‖2.

Moreover, the randomly selected initial vector most likely ensure that λmax(Tk) would be closer to

λmax(A) than to other eigenvalues of A. Therefore it is reasonable to assume that after a few Lanczos

steps,

|λn − λmax(Tk)| = min
i

|λi − λmax(Tk)|. (2.2)

It is also reasonable to assume that for k not too big, Qk ’s columns are nearly orthonormal.

Lemma 1 (Kahan [7], Cao et al. [1]). There exist k eigenvalues of A : λi1 � λi2 � · · · � λik such that

|λij − μj| �
‖fkeTk + Fk‖2

σmin(Qk)
≈ ‖fk‖2

σmin(Qk)

for 1� j � k, where σmin(Qk) is the smallest singular value of Qk.

This lemma holds regardless of the assumption (2.2) and orthogonality among Qk ’s columns. It

also suggests the negligible effect of Fk , comparing to that of σmin(Qk), on the accuracy of μj as

approximations to some of the λi. But if Qk ’s columns are nearly orthonormal, then σmin(Qk) ≈ 1.

Theorem 1. If (2.2) holds, then

λmax(A) � λmax(Tk) + ‖fkeTk + Fk‖2

σmin(Qk)
≈ λmax(Tk) + ‖fk‖2

σmin(Qk)
. (2.3)

Proof. With (2.2), one can take ik = n in Lemma 1. Then

λmax(A) = λn � μk + ‖fkeTk + Fk‖2

σmin(Qk)
≈ λmax(Tk) + ‖fk‖2

σmin(Qk)
,

as expected. �

A sharper bound than (2.3) is given in the next theorem.
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Theorem 2. Suppose (2.2) holds. Let Tkz = μkz and ‖z‖2 = 1. Then

λmax(A) � λmax(Tk) + ‖fkeTk z + Fkz‖2

‖Qkz‖2

≈ λmax(Tk) + |eTk z| ‖fk‖2

‖Qkz‖2

. (2.4)

Proof. Multiply Eq. (2.1) by z from the right yields

AQkz − μkQkz = fke
T
k z + Fkz.

With (2.2), we have [13, p. 73]

λmax(A) = λn � μk + ‖fkeTk z + Fkz‖2

‖Qkz‖2

≈ λmax(Tk) + |eTk z| ‖fk‖2

‖Qkz‖2

,

as expected. �

Wemake the following remarks:

1. Since |eTk z| � 1 and ‖Qkz‖2 � σmin(Qk), (2.3) is a consequence of (2.4).

2. We argue that for a small k, Qk ’s columns are usually nearly orthonormal, which ensures both

σmin(Qk) and ‖Qkz‖2 are 1 or almost 1. Therefore the right-hand sides of (2.3) and of (2.4) are

essentially

λmax(Tk) + ‖fk‖2, (2.5)

λmax(Tk) + |eTk z| ‖fk‖2, (2.6)

respectively, for the practical purpose. This, in a way, justifies the validity of using λmax(Tk) +
‖fk‖2 as an upper bound on λmax(A) in [18].

3. There is no assumption made in Theorems 1 and 2 for λmax(A) to be a simple eigenvalue. It can

be a multiple eigenvalue.

4. Although our goal is to have upper bound estimates for λmax(A), one readily has λmax(A)
� λmax(Tk) [13,15], giving a lower bound for λmax(A).

5. Similar statements hold for λmin(A) = λ1. By applying the results above to −A, we can have

economical ways to bound λmin(A), both from below and from above. In fact, with (2.1a) if

|λ1 − λmin(Tk)| = min
i

|λi − λmin(Tk)|,
then after safely ignoring the effect of roundoff error Fk , we have, similarly to Theorems 1 and 2,

λmin(Tk) − ‖fk‖2

σmin(Qk)
� λmin(A)�λmin(Tk),

λmin(Tk) − |eTk z| ‖fk‖2

‖Qkz‖2

� λmin(A)�λmin(Tk),

where z is the unit eigenvector of Tk associated with λmin(Tk).

It is impractical to verify Assumption (2.2) in actual computations because A’s eigenvalues λi are

unknown. But the existing convergence theory (in exact arithmetic) [8,13,14] does suggest that if the

initial random vector has nontrivial component in the direction of A’s eigenvector associated with

λmax(A), then λmax(Tk) usually converges to λmax(A) faster than to any other eigenvalues of A. In

floating point arithmetics, the theory is also supported by years of extensive numerical practices.

Recall that the goal is to obtain a true upper bound. The bound (2.5) λmax(Tk) + ‖fk‖2 has reliably

produced an upper bound on λmax(A) in all our tests from DFT. The numerical performance of bound

(2.5) appeared not dependent on hypothesis (2.2). In fact we tried matrices from fields other than
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DFT, we also constructed examples difficult for the Lanczos to achieve convergence for the largest

eigenvalue, including matrices whose eigenvalues are highly clustered near the largest eigenvalue

while smallest eigenvalues dominate in magnitude, but bound (2.5) always provides an upper bound

in just a few Lanczos steps.

However, in cases when hypothesis (2.2) fails, occasionally the bound (2.6) λmax(Tk) + |eTk z| ‖fk‖2

derived from Theorem 2 may underestimate λmax(A). When it does not underestimate, it gives the

sharpest upper bound among all. For the task of robustly providing an upper bound, we propose the

followingmodification to (2.6), which utilizes not just the eigenvector associated withμk , but instead

all the eigenvectors of Tk . We arrive at the following bound

λmax(A) � λmax(Tk) + max
z

|eTk z| ‖fk‖2, (2.7)

where z is any unit eigenvector of Tk . Bound (2.7) works surprisingly well in our tests. One explanation

is that the right-hand side of (2.7) is always no smaller than that of (2.6), whichmeans (2.2) in Theorem

2may be relaxed. Another explanation is that, the scaling factor for ‖fk‖2 in Theorem 2 is
|eTk z|‖Qkz‖2

, hence

using a scaling factor no less than |eTk z| may provide enhanced safeguard for the rare cases in floating

point arithmetic that 1
‖Qkz‖2

may be close to 1 but smaller than 1. But we feel that a more satisfactory

understanding on the choice of maxz |eTk z| may require further study.

Intuitively, among all the eigenvectors of Tk , those associated with Ritz values close to λmax(Tk)
(i.e.,μk−2,μk−1,μk) can bemore important than those associated with smaller Ritz values. Therefore

we can sharpen (2.7) as

λmax(A) � λmax(Tk) + max
z∈{zk−2 ,zk−1 ,zk}

|eTk z| ‖fk‖2, (2.8)

where zk−2, zk−1, zk are the unit Ritz vectors associated with μk−2,μk−1,μk , respectively.

We avoid computing any term that contains the Lanczos vectors Qk in all of the bounds (2.5)–(2.8).

This ismainly for saving computational cost. SinceQk is of sizenbykwheren is usuallyhuge, estimating

either σmin(Qk) or ‖Qkz‖2 involves non-negligible cost. Moreover, Qk does not need to be stored in the

Lanczos bound estimator. As discussed above, when k is small and convergence just starts to happen

to a couple of digits at most, we can practically use σmin(Qk) ≈ ‖Qkz‖2 ≈ 1.

Clearly, if hypothesis (2.2) holds, the bound (2.6) from Theorem 2 is the sharpest, followed by (2.8),

then (2.7), and then (2.5). The latter three provide increasingly stronger safeguard to (2.6) in case (2.2)

does not hold.

We note that computing eigenvectors of a k × k Hermitian tri-diagonal matrix Tk for small k

constitutes only negligible cost, therefore the cost for bounds (2.6), (2.8), and (2.7) are essentially

the same as that of (2.5).

3. Numerical study of the bounds

In this section we provide numerical study of the bounds (2.5)–(2.8). We will see that the bound

(2.6) works nicely most of the time, especially for problems from real applications. This is mainly due

to the efficiency of the Lanczos method that can quickly approximate the exterior eigenvalues, which

makes (2.2) valid most of the time, even for a small k.

The presented results, Figs. 3.1–3.5, are selected from a large number of tests using matrices3 from

small scale real-space DFT calculations. The dimension of each matrix is noted on the title of each

figure. The bounds as functions of the Lanczos step k shown in the figures are representative behaviors

of each bound.

In the legend of each figure, bnd1, bnd2, bnd3, and bnd4 refer to (2.5), (2.6), (2.7), and (2.8), respec-

tively. The maxeig refers to λmax(A). The bound (2.6) is often so sharp that we opt not to use a special

symbol for bnd2 so that it does not severely block the line for maxeig.
Five dotted vertical lines are drawn for k = 4, 5, 6, 7, 8, as references to show that the safeguarded

bounds quickly become upper bounds of λmax(A) even after only 4 or 5 Lanczos iterations.

3 The matrices are available at the University of Florida Sparse Matrix Collection [4] under the group name “PARSEC”.
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Fig. 3.1. Behavior of bounds on a hydrogen passivated germanium clusters Ge99H100 and a water molecule.
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Fig. 3.2. Behavior of bounds on SiNa and Na5.
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Fig. 3.3. Behavior of bounds on a carbon monoxide CO molecule and the Benzene C6H6 molecule.
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Fig. 3.4. Behavior of bounds on two hydrogen passivated gallium arsenide clusters Ga19As19H42 and Ga41As41H72. These two

examples have a distinct feature: three largest eigenvalues dominate in magnitude and are clustered. As seen from this plot,

the safeguards used for bnd1 and bnd3 are conservative andmay give too large upper bound at some steps. Clearly for these two

bounds more Lanczos steps do not translate into sharper bounds. While bnd2 and bnd4 very much collapse onto maxeig after

k = 4, which also shows that more Lanczos steps are not necessary if an appropriate safeguard is applied.
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Fig. 3.5. Behavior of bounds on silicon dioxide SiO2 and hydrogen passivated silicon cluster Si87H76.
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Fig. 3.6. Top: Spectrum clustered at both ends. Bottom: Smallest eigenvalues dominate inmagnitude. From the figure at bottom,

weagainobserve that the safeguards forbnd1andbnd3 canbe tooconservativeat certain steps. This again isdue to theunbalanced

dominance of one end of the spectrum. While bnd2 provides tight upper bounds consistently with k increasing.
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other conditions held the same.
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The plots are for k from 1 to 30. This is for illustration purpose. In real computations, one seldom

needs to go over 15 Lanczos steps.With safeguards, normally 7–9 steps are good enough for an effective

upper bound.Moreover, from theplotswe see that performingmore Lanczos steps does not necessarily

improve the bound much. The more cost-effective approach is to perform less than 10 Lanczos steps

and apply appropriate safeguards. Another pointworthmentioning is that, for k < 4, λmax(Tk) has not
become a reasonable approximation to λmax(A), hence (2.2) can be completely wrong. In this case the

safeguards are not strong enough to provide an upper bound. It is necessary to perform a few more

Lanczos steps so that (2.2) becomes reasonable, whichmeans the bound (2.6) becomes right or almost

right, then the safeguards in (2.8) or (2.7) will provide a safe upper bound that is sharper than (2.5).

We use a nontrivial example to show that our bounds can handle difficult problems. Fig. 3.6 shows

the behavior of bounds for two 107 × 107 diagonal matrices. (Unitary similarity transformation of a

diagonal matrix into a nondiagonal matrix does not affect the behavior of Lanczos, so using diagonal

matrices does not lose generality.)

The eigenvalues of the matrix for the left plot of Fig. 3.6 are the Chebyshev zeros on [−1, 1], i.e.,
λn−k+1 = cos

((
k − 1

2

)
π

n

)
, k = 1, 2, . . . , n; n = 107. (3.1)

It is known that the eigenvalues are clustered at both ends of the interval [−1, 1]. But our bounds

quickly found upper bounds close to 1 within 4 Lanczos steps, with bnd2 being really sharp even with

a small k such as k = 7.

The bottom plot of Fig. 3.6 uses a modified matrix: we multiply the smallest 100 eigenvalues from

(3.1) by 100 and keep the rest unchanged. Now the eigenvalues are in [−100, 1], with the smallest

eigenvalues dominating in magnitude and having favorable gaps. Lanczos method should have hard

time approximating the largest eigenvalue λn ≈ 1, relative to converging the smallest ones. But even

for this problem, our bounds still found sharp upper bounds in about 5 steps.

We also implemented the new bounds in the Chebyshev–Davidson algorithm [20]. As expected, a

sharper upper bound improves the overall performance of this algorithm. Fig. 3.7 contains two typical

examples that show the advantage of sharper upper bounds. But we warn that if a bound underes-

timates the largest eigenvalue, it will result in ineffective Chebyshev filters. In this case unwanted

part of spectrum will be magnified instead of dampened, which can lead to very slow convergence or

even non-convergence. Appropriate safeguards to ensure upper bounds are essential for constructing

effective filters.

4. A practical estimator and concluding remarks

The focus of this note is on cost-effective estimates of an upper bound for the spectrum of large

Hermitian matrices. We proposed using very few steps Lanczos iteration with a safeguard step. Four

closely related bounds are discussed. The safeguards used in the bounds (2.6), (2.8), (2.7), and (2.5)

are of increasing strength. A natural question now is: which bound to use in practice? We provide the

following answer: If one is interested in a safe upper bound that can be obtainedwithin as few Lanczos

steps as possible, then (2.5) is the choice. Since the cost for computing all these bounds are similar to

computing (2.5), another viable and potentially better choice is to combine some of the bounds. E.g.,

one can compute (2.6) and (2.7) for a small k and return the average value of the twoas anupper bound;

or, one can run a small k step Lanczos and compute (2.8) at each step, then return the largest one as

an upper bound. Notice that hypothesis (2.2) has been the main theoretical concern, if in a situation

that a vector close to the eigenvector related to λmax(A) is available, then one can start the Lanczos

iteration using this vector instead of a random vector. This will make (2.2) valid in very few Lanczos

steps, then (2.6) is the best choice. Such situation exists, for example, when the bound estimator is

called within a loop and the previous iteration provides an approximate eigenvector corresponding to

the largest eigenvalue.

The above discussion shows that there are a few practical combinations of the bounds (2.5)–(2.8)

for constructing an upper bound estimator. We list one of them in Algorithm 1. The tol in Algorithm 1

is a user specified tolerance. Clearly, if one prefers a more conservative upper bound, then (2.5) can be

return on line (c) in Algorithm 1.
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Algorithm 1. Estimating an upper bound of a Hermitian matrix A.

If a vector close to the eigenvector associated with λmax(A) is available,
Run 5 steps Lanczos with this vector as initial and return bound (2.6).

Else, pick an integer K with 4 < K � 8,

(a) Run 4 steps Lanczos with a random initial vector

(b) For k = 5 to K Do
Compute the k-th step Lanczos decomposition; Compute |eTk z|‖fk‖;
If (|eTk z|‖fk‖ < tol), return bound (2.8), stop.

(c) Return the average of bounds (2.6) and (2.7).

The bound estimators proposed here can be extended to situations where one needs to estimate

extreme singular values through Lanczos bidiagonalization [5, p. 495]. One possible application is the

computation of (nearly) optimal scaling parameters for calculating the polar factor of a matrix by the

scaled Newton iteration [6, p. 205].
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