Production and Operations Management

Richard S. Barr

Outline
- Production and Operations
- Systems Approach to P/OM
- Modeling Production Systems
- Course Topics

P/OM
- Production management
 - Historically associated with manufacturing
- Operations management
 - Emphasis on services applications
- P/OM
 - The fields have merged
 - Common approaches to managing the creation of products & services

Objective of P/OM
- The efficient creation of quality goods and services
- Is accomplished by designing and optimizing production facilities and processes

Production Manager's Job
- Planning
 - Capacity
 - Location
 - Products and services
 - Make or buy
 - Layout
 - Projects
 - Scheduling
- Controlling
 - Inventory
 - Quality
- Organizing
 - Degree of centralization
 - Subcontracting
- Staffing
 - Hiring/laying off
 - Use of overtime
- Directing
 - Incentive plans
 - Issuance of work orders
 - Job assignments
Systems Approach to P/OM

What is a System?
- A collection of related parts forming an integrated whole
- Examples:
 - Information system
 - Transportation system
 - Educational system
 - Marketing system
 - Production system

Elements of a System
- The parts or elements of a system should be designed to work together to achieve the overall system goal
 - Systems have objectives
 - Better systems achieve those objectives efficiently
 - The best systems optimize the elements and their interactions

Example: A Car
- A car is a transportation system with:
 - Power-transmission system: for movement
 - Braking system: to retard movement
 - Steering system: for guidance
- All subsystems work together to achieve the car’s objectives

Businesses as Systems
A business is a system with a set of goals

Business Subsystems
- Component subsystems include:
 - Production system — to create goods and services
 - Marketing system — to sell goods and services produced
 - Financial system — to manage funding
Optimizing Systems

- Optimizing the individual components
 - Production system:
 - Create only one product/service
 - Specialize process for optimal production
 - Marketing system:
 - Sell many products and services
 - Satisfy all customer demands to maximize revenues generated

For the best overall system solution
- Make several products/services
- Neither subsystem is optimized in isolation
- The overall organization benefits
- Optimize globally, not locally

Six Elements of Systems

- Objectives
- Constraints
- Inputs
- Outputs
- Processing
- Control

1. Objectives

- Goals of a business?
- Other tempering objectives:
- For measuring and evaluating a system
- May be undefined or unstated

2. Constraints

- Limits on possible actions
- Some come from other entities in the operating environment, such as:
Example Constraints

- Legal
- Financial
- Labor
- Technology

System as Transformer

- A system can be viewed as a transformer
- Processing "inputs" into "outputs"
- Inputs are resources used to create the performance/quality outputs

3. Inputs

- Those resources used to create system outputs
- Business examples:

4. Outputs

- That which is to be produced
- Usually contribute to achieving objectives

5. Processing

- Manipulation of the inputs to achieve the outputs
- How work is accomplished
- How value is added

Food Manufacturing System

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Processing</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Vegetables</td>
<td>Cleaning</td>
<td>Canned vegetables</td>
</tr>
<tr>
<td>Metal Sheets</td>
<td>Making cans</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>Cutting</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>Cooking</td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>Packing</td>
<td></td>
</tr>
<tr>
<td>Building</td>
<td>Labeling</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hospital Service System

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Processing</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctors, nurses</td>
<td>Examination</td>
<td>Healthy patients</td>
</tr>
<tr>
<td>Hospital</td>
<td>Surgery</td>
<td></td>
</tr>
<tr>
<td>Medical Supplies</td>
<td>Monitoring</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>Medication</td>
<td></td>
</tr>
<tr>
<td>Laboratories</td>
<td>Therapy</td>
<td></td>
</tr>
</tbody>
</table>

Types of Processing

- Three basic processing arrangements:
 - Project: one-time piece of work
 - Construction, political convention
 - Flow-shop: highly repetitive, continuous process
 - Auto & paper production, directory assistance
 - Job-shop: small batches of large variety
 - Machine shop, hospital, restaurant
- Each covered in detail later in course

6. Monitoring and Control

- Control: the ability to regulate the operation of the system
- Purposes:
 - Insure accuracy by detecting errors
 - Prevent system misuse or destruction
 - Direct the system toward its objectives

Example System Controls

- Information and computer systems:

- Air transportation systems:

- Production systems:

Value Added

\[
\text{Value added} = \text{the difference between the cost of inputs and the value or price of outputs.}
\]

Modeling Production & Operations Systems
Models

- Simplified representations of reality
 - Useful model: accurate enough
- Many types of system models:
 - Physical: wind-tunnel
 - Schematic: blueprints, road maps
 - Mathematical: spreadsheets, simulation, optimization (variables, equations, program)

Production/Operations Models

- Systems Planning
 - Forecasting
 - Decision analysis
 - Linear programming
 - Network flow
 - Facility location
 - Facility layout
- Projects
 - CPM, Pert
 - Resource constraints
- Job Shop
 - Aggregate scheduling
 - Sequencing and scheduling

Production/Operations Models

- Flow-shop:
 - Line balancing
 - Queuing
 - Simulation
- Process Improvement
 - Total quality management
 - Cycle-time reduction
- Control
 - Quality control
 - Inventory control
 - MRP
 - Just-in-time