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The extensive growth in adoption of mobile devices pushes global Internet protocol (IP)

traffic to grow and content delivery network (CDN) will carry 72 percent of total Internet

traffic by 2022, up from 56 percent in 2017 [1]. Cloud-based CDN with edge computing (EC)

provides a distribution of cloud computing capabilities to the edge network.

In this praxis, Interconnected Cache Edge (ICE) based on different public cloud infras-

tructures with multiple edge computing sites is considered to help CDN service providers

(SPs) to maximize their operational profit. The problem of resource allocation and perfor-

mance optimization is studied in order to maximize the cache hit ratio with available CDN

capacity.

The considered problem is formulated as a multi-stage stochastic linear programming

model that involves jointly optimizing the resource allocation and network performance.

The problem is challenged in reality since the multi-cloud SPs have dynamic price strategies

in different regions, tasks could be time sensitive, and busy-hour traffic model is hard to

simulate. To overcome these challenges, the praxis proposes a method to decompose the

problem into (i) a resource-allocation problem with fixed task-offloading decisions and (ii) a

performance optimization problem that optimizes the cache hit ratio, round-trip time (RTT)

and edge processing time corresponding to the resource allocation.

v



The praxis addresses the problem using optimization solvers of the General Algebraic

Modeling System (GAMS) and proposes a broker scheme (ICE: Interconnected Cache Edge)

using cloud-based CDN with edge computing architecture to maximize expected profit.

Experimental design shows that ICE performs closely to the optimal solution and that

it significantly improves the CDN profitability and network performance over traditional

approaches.
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Chapter 1

Introduction

The extensive growth in adoption of mobile devices has led to a continuous increase in

the average number of devices and connections per household and per capita. According to

a recent report from Cisco [1], the number of devices connected to Internet Protocol (IP)

networks will be more than three times the global Population by 2022 and smart phone traffic

will exceed personal computer (PC) traffic. Annual global IP traffic will reach 4.8 Zettabytes

(ZBs) per year by 2022 and global IP traffic will increase threefold over the next five years.

Busy-hour Internet traffic is growing more rapidly than average Internet traffic. These are

leading to greater investment in Content Delivery Network (CDN) and Edge Computing

(EC) technologies.

A CDN is a system of geographically distributed servers (network) that delivers pages

and other web content to a user, based on the geographic locations of the user, the origin

of the webpage, and the content-delivery servers. CDN service is effective in speeding the

delivery of the content of websites that have high traffic and a global reach. To minimize the

distance between the users and the website’s origin server, the cache servers store a cached

duplicate version of the website’s content in multiple points of presence (PoPs). The closer

the CDN cache servers are to the users geographically, the faster the content can be delivered

instead of using the origin server (Figure 1.1).
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Figure 1.1. How do CDNs work?

Current changes in mobile and video traffic topology strengthened the role of CDNs in

data and content delivery. CDNs will carry 72 percent of total Internet traffic by 2022, up

from 56 percent in 2017 (Figure 1.2). The delivery algorithms and scheduling methodologies

used by CDNs could be more important than the speeds and latencies offered by the service

providers for network performance [2].

Figure 1.2. Global CDN Internet traffic, 2017 and 2022 [1]
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Increasing utilization of network resources is one of the biggest challenges for mobile net-

work operators. Internet bandwidth demands from smart phones, users’ wearable devices,

and the Internet of Things (IoT) force network operators to enhance and upgrade capac-

ities of existing network resources continuously. With the increased computational power

and expanded storage capacity of the mobile devices, creative application scenarios become

realistic, although requiring much better infrastructure for a good user experience [3]. Edge

computing, in which computing and storage nodes are located in close proximity to mobile

devices to deliver highly responsive network services for mobile computing and content deliv-

ery, has been proposed by European Telecommunications Standards Institute [4] to reduce

network stress by shifting computational and storage efforts from the core network to the

edge network. As a consequence, devices deployed at the edge could not only act as access

points but also could resolve many user requests. Multi-Access Edge Computing (MEC)

has emerged as a solution to bring computing and content storage to the edge of a mobile

network, even to the radio-access part of it [5].

1.1 Motivation

In the traditional CDN architecture invented by Akamai [6], data and content are dy-

namically replicated to cache servers in selected geographical regions to serve users in close

proximity (Figure 1.3). Service Providers (SPs) have little flexibility on allocating underly-

ing resource (e.g., networking, computation and storage) to offer a flexible pricing scheme for

the users. As the busy-hour traffic continues to grow more rapidly than ever, the traditional

CDN architecture fails to provide scalability [7]. The peer-to-peer (P2P) CDN architecture

depends on the end-users (peer nodes) to store data and content and share among peers to

gain scalability, but this can cause problems with privacy, copyright protection, and version

control.
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Figure 1.3. Traditional CDN architecture

Cloud computing or cloud is the on-demand availability of computer system resources

(especially data storage and computing power) and is generally used to describe data cen-

ters available to many users over the Internet [8]. Cloud-based CDN is based on a cloud-

computing infrastructure that provides scalable and on-demand resource allocation to pro-

vide cost-efficient, secure content distribution. Amazon CloudFront and Google Cloud

CDN [9, 10] have suggested that a CDN could built on the infrastructure of a public cloud;

SPs or content providers (CPs) could build CDN infrastructure by renting virtual machines

(VMs) to deploy CDN services.

Cloud-based CDN leverages globally distributed edge points of presence (PoPs) on public

cloud to accelerate content delivery for websites and applications. To deliver data and content

faster to the end users while reducing serving costs, CPs tend to use cloud-based CDNs [10].

Before starting to use cloud-based CDNs, CPs need to select the regions to install cache

servers and invest the capital expenditure (CAPEX) to establish the CDN infrastructure.

With a cloud-based CDN architecture, infrastructure providers (InPs) establish virtualized

server, storage, and network on demand and cloud-based CDN service providers construct

cloud-based CDNs to serve the end users by setting up cache servers based on the virtualized

server, storage, and network.

The cloud-based CDN — in which cache servers are provided by virtualized server, stor-

age, and network on public cloud — dramatically changes traditional CDN services. For ex-

ample, Verizon Digital Media Services leverage Google Cloud Platform (Figure 1.4) to move

content between Verizon and Google directly without traversing other networks, thereby
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providing increased availability and reduced latency for important content. Verizon Digital

Media Services customers that use Google Cloud Platform can save more than 65 percent

on their cloud egress costs for an easier, more cost-effective delivery path that is optimized

to move and scale content between Google Cloud Platform and Verizon’s CDN [10]. Veri-

zon Services’ global footprint combined with Google’s powerful network infrastructure offers

users a better experience.

Figure 1.4. Verizon Digital Media Services Connects with Google Cloud Platform

Edge computing is a distributed computing paradigm that brings computer data storage

closer to the location where it is needed. To alleviate the network resource limitation of the

SPs and reduce the network latency, edge computing, which provides mobile devices in close

proximity with low-latency and low-cost data exchange, is a promising approach. Before

starting to use edge computing, cloud computing is the suggested scheme and the workload

and traffic for mobile applications are offloaded to the centralized cloud or datacenters.

In this way, the execution time of the mobile applications and the energy consumption of

the mobile devices are reduced. However, due to the cloud or datacenters deployed distantly

from the mobile devices, offloading the mobile applications to the remote cloud or datacenters

occupies substantial network bandwidth, resulting in high network latency. Edge computing
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can push datacenters or containers with allocated resources, base stations, and access points

to the edge of a multi-access network, thereby providing nearby resources for the mobile

devices [5]. In this way, edge datacenters or containers connect to mobile devices via a Local

Area Network (LAN) that supports high bandwidth and low network latency. Hence, edge

computing can reduce offloading latency and make the network more efficient.

In computing, a task is a unit of execution or a unit of work. To fully utilize the computing

resources, task scheduling aims to distribute tasks in order to make them more efficient in

the use of limited computing resources. Although average Internet traffic has maintained

a steady growth pattern, busy-hour traffic continues to grow more rapidly [1]. Therefore

more computing resources and network capacity are required for SPs to satisfy the users’

rush-hour demand than in the past. Video is the underlying reason for accelerated busy-hour

traffic growth because of its consumption patterns: higher peak-to-average ratio. Moreover,

real-time video—such as live video, ambient video, and video calling—has a higher peak-to-

average ratio than on-demand video [1]. Thus, optimized task scheduling could reduce the

processing time of the tasks, average the utilization of computing resources, and improve the

network performance [11].

1.2 Basic Structure and Economics of CDN

The basic building blocks of CDN infrastructures are PoPs (points of presence), cache

servers, and solid-state and hard-disk drives (SSD and HDD) (Figure 1.5). PoPs are regional

data centers that hold multiple servers and routers responsible for caching, connection opti-

mization, and other content-delivery features. Cache servers are responsible for the storage

and delivery of cached files to accelerate content load time and reduce bandwidth con-

sumption. Cache servers act as a repository for website content, providing local users with

accelerated access to cached files. The closer a cache server is to the end user, the shorter

the connection time needed for transmission of website data. Each cache server typically

holds multiple storage drives and high amounts of random-access memory (RAM) resources.
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Cached files are stored on SSD and HDD or in RAM. RAM is the fastest and used to store

the most frequently-accessed items.

Figure 1.5. Basic building blocks of a CDN

A CDN is typically a multi-tenant infrastructure [12]: its resources could be shared

among multiple CPs (Figure 1.6). The transit network among origin servers, cache servers,

and users allows network traffic to transit.

Figure 1.6. Prices and costs of CDN
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In describing the various CDN components, I is the set of content providers, J is the set

of PoPs or districts, and K is the set of regions, in the CDN system. In Figure 1.6, CPi,

i ∈ I, denotes the CPs that will be charged by SPs at the following unit prices:

1. P h
i,j, 000s of USDs per G (k$/G) for CPi, i ∈ I, if content delivered from PoP j, j ∈ J

to users (cache-hit);

2. Pm
i,j, 000s of USDs per G (k$/G) for CPi, i ∈ I, if content delivered from origin server

to users in district j, j ∈ J , (cache-miss).

SPs have two types of costs: tscj, j ∈ J , the total infrastructure fixed costs of PoPj and

tcpj , j ∈ J , the transit bandwidth variable costs between PoPj, and the users.

Storage costs are related to the storage capacity, aggregating hardware, and data centers’

costs. Bandwidth costs are typically priced per megabit per second per month, and the

customers are often required to commit to a minimum volume of bandwidth with a minimum

term of service, usually using a 95th percentile burstable billing scheme. Some bandwidth

agreements provide Service-level Agreements (SLAs) which purport to offer money-back

guarantees of performance.

Burstable billing is a method of measuring bandwidth based on peak use, which allows

usage to exceed a specified threshold for brief periods of time without the financial penalty

of purchasing a higher committed information rate (CIR, or commitment) from an Internet

service provider (ISP). The 95th percentile burstable billing measures/samples the bandwidth

from the switch or router and recorded in a log file. At the end of the month, the top 5%

of data is thrown away and the next highest measurement becomes the billable use for the

entire month. Based on this model, the top 36 hours (top 5% of 720 hours) of peak traffic

is not taken into account when billed for an entire month. Conversely, if peak traffic only

appears for a brief instant and no additional traffic is generated, the billing amount can be

substantially higher than average usage billing.

The key metrics to evaluate the performance of CDN services are:

1. Round-trip time (RTT) — the duration for a network request to go from a starting

point to a destination and back again to the starting point. RTT o
i , i ∈ I, is the
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round-trip time between CPi’s origin server and the users while RTT p
i , i ∈ I, is the

round-trip time between cache servers in the PoPs and the users.

2. Cache-hit ratio — the proportion of the requests serviced by cache servers.

Cache hit ratio =
Number of cache hits

Number of cache hits+Number of cachemisses

3. Edge-processing time — the time spent by the cache servers that replaces the processing

time by the origin servers.

1.3 Cloud-based CDN Organization and Economics

CDNs have played a valuable role in hosting and distributing content to users for decades

while public cloud providers own a number of globally distributed data centers that are

expanding continuously [13]. A cloud-based CDN could be designed to set up CDN cache

servers on top of several cloud operators, such as Amazon AWS service, Microsoft Azure,

Google Cloud, or OpenStack-managed cloud. Cache servers built on multiple public clouds

can be used to serve the CDN users. The costs and performance of the cache servers on

different clouds or in different regions could be very different (Figure 1.7).

Figure 1.7. Cloud-based CDN architecture

Cloud-based CDN brings the following benefits:

1. Lowered barrier to entry for SPs by eliminating the massive CAPEX required to setup

cache servers at selected geographical regions,

2. Increased bargaining power of CPs or users to use cloud-based CDN services with

usage-based fee, and
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3. Leveraged the marginal capacity of the infrastructure of public cloud to reduce the

costs of CDN services

To serve users from different regions, SPs could rent virtual machines from multiple public

cloud infrastructure providers (InPs) located in different regions for content caching and

video streaming as illustrated in Figure 1.7. Each region, which corresponds to a cloud-based

cache server, provides data and content delivery services with the lowest latency possible.

All the cloud-based cache servers would be interconnected and for end users of the regions

without cloud-based cache servers, data or content needs to be pulled from cache servers in

other regions or original servers. This will degrade the user experience and affect the CPs’

revenue streams. Therefore, it is necessary for the cloud-based CDN architecture to optimize

the resource allocation, such as the selection of geographical regions, the capacity of cache

servers built for different regions, and the bandwidth resourced in different regions. Cloud-

based CDN services could be provided by several cloud operators and CPs can use virtualized

cache servers provided at different regions. The costs and performance of cloud-based CDN

services by different operators or in different regions could be very different. It is important

to design the cloud-based CDN to maximize profit for SPs with required performance and

optimized resource costs.

Set K represents the set of public cloud administration domains or regions in the cloud-

based CDN system. CPs could be served by the cloud-based CDN as in Figure 1.8. CPi,

i ∈ I, that will be charged by SPs at the following unit prices:

1. Ch
i,k, 000s of USDs per G (k$/G) for CP i, i ∈ I, if content delivered from cloud k,

k ∈ K, to users (cache-hit);

2. Cm
i,k, 000s of USDs per G (k$/G) for CP i, i ∈ I, if content delivered from origin server

to users in region k, k ∈ K, (cache-miss).

SPs have two types of variable costs, pcck, k ∈ K, the total infrastructure costs of public

cloudk, k ∈ K, and tcck, k ∈ K, the transit bandwidth costs between cloudk, k ∈ K, and the

users.
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Figure 1.8. Prices and costs of Cloud-based CDN

RTT c
i , i ∈ I, is the round-trip time between the cache servers on the public clouds and

the users for CPi, i ∈ I. PT c
i , i ∈ I, is the processing time by the cache servers on the

clouds for CPi, i ∈ I.

1.4 Edge Computing Organization and Economics

The aim of edge computing is to deliver compute, storage, and bandwidth much closer

to data inputs and/or end users. Cloud edge computing can mitigate the effects of widely

distributed sites by minimizing the effect of latency on the applications. Edge computing

first emerged by virtualizing network services over WAN networks and the rapid growth of

mobile devices have driven the need for services at the network edge in close proximity to

the end users [4]. In the traditional cloud computing systems where remote public clouds

are utilized, the execution of mobile applications substantially increases the latency and the

burden on the back-haul networks. As traffic from wireless and mobile devices will account for

71 percent of total IP traffic by 2022 [1], the back-haul networks will need further investment

and upgrading to sustain network performance. Edge Computing has been suggested to the
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network operators to deploy edge servers directly at the local wireless Access Points (APs) or

at the cellular Base Stations (BSs) using a generic-computing platform. Thereby the mobile

applications could be executed in close proximity to users to minimize the back-haul network

usage (Figure 1.9).

Figure 1.9. Cloud-based CDN with Edge Computing

This praxis suggests virtual machines (VMs) as the core visualization mechanism used

by multi-tenant cloud-based CDN and edge computing sites to share disk space and CPU.

Cloud-based edge computing moves the focus from PoP-based data center to more lightweight

virtualized resources, distributed cloud to bring services to the users.

Task offloading from mobile devices to edge computing could generate extra overheads

in terms of latency and energy consumption due to the communication required between

the mobile devices and the edge computing servers. However, edge computing combines

the speed of Cloud-based CDN with the benefits of cloud to enable a new generation of

networking and move processing closer to the user. Edge Computing brings the following

benefits:

1. Mobile devices with limited resource offloaded tasks to enable novel applications such

as augmented reality, autonomous vehicles and image processing.

2. Edge Computing eliminated the need of routing data through the core network to

increase performance of networks and save investment on core network.

3. Edge Computing supported large differences in site size and scale, from data center

scale down to a single device.
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Set E represents the set of edge computing sites or districts in the cloud-based CDN with

edge computing system. CPs could be served by the cloud-based CDN with Edge Computing

as (Figure 1.10). CPi, i ∈ I, that will be charged by SPs at the following unit prices:

1. Ch
i,k, 000s of USDs per G (k$/G) for CP i, i ∈ I, if content delivered from cloud k,

k ∈ K, to users (cache-hit);

2. Cm
i,k, 000s of USDs per G (k$/G) for CP i, i ∈ I, if content delivered from origin server

to users in region k, k ∈ K, (cache-miss);

3. Eh
i,e, 000s of USDs per G (k$/G) for CP i, i ∈ I, if content delivered from edge

computing site e, e ∈ E, to users (cache-hit);

4. Em
i,e, 000s of USDs per G (k$/G) for CP i, i ∈ I, if content delivered from origin server

to users in district e, e ∈ E, (cache-miss).

SPs have four types of variable costs, pcck, the infrastructure costs of public cloudk,

k ∈ K, ecce, the infrastructure costs of edge computing sitee, e ∈ E, tcck, the transit

bandwidth costs between cloudk, k ∈ K, and the users, and tcee, e ∈ E, the transit bandwidth

costs between edge computing sitee, e ∈ E, and the users.
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Figure 1.10. Prices and costs of Cloud-based CDN with Edge Computing

RTT e
i , i ∈ I, is the round-trip time between the edge computing sites and the users.

PT e
i , i ∈ I, is the processing time by the edge computing sites.

1.5 Illustration of the Problem

In this praxis, we studied the profit maximization problem for cloud-based CDN with

edge computing system from a CDN service provider’s point of view and the performance

optimization problem for mobile Internet applications from a content provider’s perspective.

The massive consumption of mobile Internet drives the requirement on content delivery and

network optimization. The problem is a multi-stage resource allocation problem since at

the beginning of every month, SPs need to make decisions on capacity costs and uncertain

demand (Table 1.1).
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Table 1.1. Multi-Stage Resource Allocation Planning

Multi-Stage Resource Allocation

Stage 1 (beginning of the month) During the month Stage 2 (end of the month)

Known at

this time

-Selling price of CDN bandwidth

-Costs and capacities for origin server

-Costs and capacities for PoPs/cache servers

-Costs and capacities for cloud-based cache servers

-Costs and capacities for edge computing sites

-Costs and capacities for bandwidth

-Possible demand scenarios

-Possible distribution of users

-Processing time for each server

-Round-trip time for each route

-Performance requirement

Demand scenario

becomes known

-Actual demand of bandwidth for each CP

-Actual demand of each PoP

-Actual demand of cloud for each region

-Actual demand of edge computing sites

-Total processing time for each CP

-Total round-trip time for each CP

-Cache-hit ratio for each CP

Unknown

-Actual demand of bandwidth for each CP

-Actual demand of each PoPs/

-Actual demand of cloud for each region

-Actual demand of edge computing sites

-Total processing time for each CP

-Total round-trip time for each CP

-Cache-hit ratio for each CP

Decisions

needed

-How much bandwidth for SP to order for each district

-How much capacity for SP to build for each PoP

-How much cloud infrastructure for SP to build for each region

-How much edge computing capacity for SP to build

-How much bandwidth used for each region

-How much resource used for each CP in each PoP

-How much cloud resource used by CP for each region

-How much edge computing resource used by CP in each district

Decisions to order bandwidth and establish certain capacity were made in first stage by the SPs before the realization of the

demand of the CPs is known in second stage.

15



The problem is twofold - firstly, profit maximization with fast capacity expansion, and

secondly, performance improvement with increased customer demand.

The objectives are profit maximization:

maximize revenue−bandwidth costs−storage costs−cloud costs−edge computing costs

and performance optimization:

maximize cache hit ratio and minimize round trip time+ processing time

The praxis formulates a multi-stage stochastic linear programming model for mathemat-

ically modeling cloud-based CDN with edge computing system to allocate certain resources

in different regions and schedule different tasks to maximize profit with required perfor-

mance. It considers all the possible futures or scenarios under a probabilistic framework.

The problem is challenged in reality since the multi-cloud SPs have dynamic price strategies

in different regions, customer demand could be seasonal, and busy-hour traffic model is hard

to simulate. To overcome these challenges, this praxis proposes a method to decompose the

problem into (i) a resource-allocation problem for SPs with fixed content distribution deci-

sions and (ii) a performance improvement problem for CPs corresponding to the resource

allocation.

The praxis introduces an Interconnected Cache Edge (ICE) platform that allows dynamic

deployment of cloud-based CDN with edge computing system running across multiple ad-

ministrative cloud domains and optimizes resource allocation in different geographic regions.

Furthermore, the cloud-based CDN with edge computing system can improve the distribu-

tion performance by caching content nearby end-users and reduce the service latency by

decreasing the total processing time of content.

1.6 Literature Review

1.6.1 Resource Allocation

Um et al. [14] proposed a suggestion for cloud-based CDN to enable virtual machines to be

scaled to satisfy the dynamically changing resource demand of CDN services and evaluated
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the performance based on a simulation. Yala et al. [15] focused on how to appropriately

decide on the amount of computing resources to allocate to a CDN-as-a-service (CDNaaS)

task to satisfy Quality of Experience (QoE) and resource capacity constraints to drive a QoE-

aware virtual CPU resource allocation algorithm. Sharmin et al. [16] developed a resource

allocation algorithm to select suitable sizes of video blocks by the number of parallel streams

provisioned in a single virtual CPU (vCPU) and explored how to balance the workload

among the vCPUs.

Haghighi et al. [17] formulated a two-stage resource provisioning and cloud assignment

based on dynamic large and small-scale fluctuations of user demand rates as well as con-

sidering a constrained minimum lease time for resources. Zheng et al. [18] mathematically

formulated an Improved Heuristic Genetic Algorithm for Static Content Delivery in Cloud

Storage (IHGA-SCDCS) based on a resource management model and cost model. Hu et

al. [7] presented a community classification method and formulated a stochastic optimiza-

tion framework to reduce the monetary cost with the same latency. Yala et al. [19] provided

polynomial-time heuristics to derive an assignment of computing resources to a set of virtual

instances and formulated a multi-objective optimization problem to balance among conflict-

ing objectives.

Several works have investigated methods of resource allocating in cloud-based CDN. The

work in [20] explained the multi-objective resource provisioning problem to minimize virtual

server, storage, and network cost and maximize the network performance for the end-user.

Iturriaga et al. [20] suggested a brokering model that a single cloud-based CDN is able to

host multiple CPs applying a resource sharing strategy. Unlike [20], Benkacem et al. [13]

introduced a CDN-aaS platform that allows dynamic deployment and life-cycle management

of cloud-based CDN slices running across multiple administrative cloud domains. [13] formu-

lated the virtual network function (VNF) resource placement problem as two linear integer

problem models to minimize the cost and maximize the quality of experience (QoE) of the

virtual streaming service.
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Mobile edge computing (MEC) was proposed in several works to offload task. Mach

and Becvar [21] addressed MEC resources can be utilized by operators and third parties

with different cases and reference scenarios. Nguyen et al. [22] proposed a scheme to allocate

resources of heterogeneous capacity-limited edge nodes to multiple competing services. Chen

et al. [23] adopted a game theoretic approach to formulate the distributed computation

offloading decision-making problem among mobile device users. Samanta et al. [24] designed

an adaptive service-offloading scheme in MEC for both delay-tolerant and delay-constraint

services to optimize latency and maximize revenue.

Joint task offloading and resource allocation not only improve the network performance

but also save the energy consumption of the mobile devices. Chen and Hao [25] formulated

the task-offloading problem as a mixed integer non-linear program by leveraging software

defined network to minimize the delay while saving the battery life of mobile devices in ultra-

dense network. Tran and Pompili [26] studied joint task offloading and resource allocation

to maximize the reductions in task completion time and energy consumption. [26] mathe-

matically formulated a mixed integer nonlinear program (MINLP) to resolve the resource

allocation problem with fixed task offloading decision in MEC. Furthermore, Li et al. [27]

proposed an on-line computation rate maximization (OCRM) algorithm for multi-user by

jointly managing the radio, computational resources, allocating time for data transmission,

and energy saving.

In summary, most of the existing works did not consider a method to enable coordi-

nated and cooperative content delivery via internetworking among multiple administrative

cloud domains and edge computing sites to maximize profit by dynamic resource allocation

supported by multi-cloud with edge computing sites as considered in this praxis.

1.6.2 Task Scheduling

An efficient task-scheduling mechanism to allocate resource will improve the resource ef-

ficiency significantly. Yi et al. [28] formulated a Mixed Integer Linear Programming (MILP)

with joint resource (computing, storage and network) provision to propose a best-fit heuristic
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algorithm with different task scheduling policies. This method minimizes the expenditure

for each user to obtain enough resources for task execution while taking as many tasks as

possible. As edge computing becomes an increasingly popular alternative to cloud comput-

ing for resource allocation, Li et al. [11] purposed data-placement optimization and task

scheduling to reduce the computation delay and response time in cloud computing. In this

method, containers were deployed as the smallest resource unit for task scheduling to fully

utilize the storage in edge servers to improve the overall performance. As edge computing

can provide a low-latency and cost-effective computing capacity for task execution, Shao et

al. [29] introduced a replication management system with a specialized task scheduler for

data placement based on a mixed integer programming formulation.

As Internet applications have shifted from simple web browsing to real-time video, it

is more crucial for SPs to reduce the operational costs while increasing the performance

and responding timely. Task scheduling plays an important role for live-video streaming

distribution to maximize the performance. Many contribution focused on scheduling re-

source to be allocated to task with constraint. Melika Meskovic and Mladen Kos [30] solved

the problem by the deadline requirement of the tasks and proposed a chunk scheduling al-

gorithm for layered live-video streaming in mesh pull-based CDN-P2P network. Scoca et

al. [31] proposed a score-based edge service scheduling algorithm to evaluate network and

computational capabilities of edge nodes and match between tasks and resources.

As many CPs take public cloud as their primary infrastructure for content storage and

large-scale computations, task assignment and scheduling is one of the main problems to

be investigated in a cloud computing environment. Reddy and Kumar [32] recommended

a task scheduling method based on Modified Ant Colony Optimization (MACO) algorithm

which suggested to perform Multi Objective Task Scheduling (MOTS) process by assigning

pheromone amount relative to corresponding virtual machine efficiency in a cloud computing

environment. To reduce the response time, operational costs, and energy consumption, Naik

et al. [33] addressed a hybrid multi-objective heuristic algorithm based on Non-dominated

Sorting Genetic Algorithm-II (NSGA-II) and Gravitational Search Algorithm (GSA) called
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as NSGA-II & GSA to allocate virtual machines from different data centers for task schedul-

ing.

Designing an efficient task scheduling strategy for multi-cloud system could be very chal-

lenging since the available computing capacity and network topology could be very complex.

The work in [34] and [35] addressed the task scheduling problem for multi-cloud environ-

ment, Wang et al. [34] presented a multi-cloud supported resource allocation and scheduling

optimization strategy through the big data analysis on daily CDN operation. This method

designed a multi-cloud extension algorithm to schedule extra cloud resource to handle over-

load requests and use algorithm to shift tasks to additional cloud resource prepared. Kang

et al. [35] proposed a Dynamic Scheduling Strategy (DSS) to integrate the Divisible Load

Theory and node availability prediction techniques in a multi-cloud environment.

In summary, most of the existing works did not consider a method that determines the

task scheduling decision for both the busy-hour traffic and average Internet traffic to leverage

the resource allocation to maximize profit and optimize performance as considered in this

praxis.

1.6.3 Cloud-based CDN with Edge Computing

The basic framework to construct a cloud-based CDN based on cloud computing was

proposed in [36], [14]. [14] proposed a cloud-based CDN architecture to provide cost-efficient

and elastic CDN services by multiplexing a number of video service applications with dif-

ferent service level agreements (SLAs) into a virtual machine. Several works have investi-

gated methods of allocating the location of caching servers in the cloud-based CDN. Noriaki

Kamiyama and Yutaro Hosokawa [37] proposed a method of optimally selecting the geo-

graphical regions to use cache servers within a single public cloud to maximize profit for

SPs. Edge Computing enabled computing and storage infrastructure provisioned closely to

the end-users. Cloud-Based CDN with Edge Computing such as MEC would improve the

scalability [7] as the geographical regions selection would be more flexible.
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Cloud-based CDN is the common network function for mobile devices to enhance media

availability and distribution performance. Multi-access Edge Computing (MEC) architecture

is designed to enhance or boost media services. The work in [5], [11] and [38] addressed

performance-aware system to enhance multimedia services. Viola et al. [38] proposed a

MEC proxy to perform a local cache to minimize the traffic between the CDN and the edge

servers and shield from identified or predicted CDN malfunction. MEC proxy could reduce

the CAPEX and ensure performance for the SPs.

MEC enables mobile devices suitable for latency-sensitive applications. Combining MEC

with cloud-based CDN infrastructures enables mobile devices to take advantage of the vir-

tually unlimited resource capacity of clouds. Non-time-critical tasks can be scheduled and

offloaded to the clouds. Dreibholz et al. [39] introduced a baseline combining multiple cloud

systems and MEC into a unified MEC-multi-cloud platform to provide guidelines for design-

ing an autonomic resource provisioning solution. Unlike [39] and given MEC could be limited

in terms of the high infrastructure deployment and maintenance cost, Wang et al. [40] pro-

posed a smart, Deep Reinforcement Learning based Resource Allocation (DRLRA) scheme,

which can allocate computing and network resources adaptively, reduce the average service

time of MEC and balance the use of resources.

In summary, most of the existing works did not consider a holistic approach to maximize

profits and optimize performance by the joint deployment of cloud-based CDN and edge

computing as considered in this praxis.

1.7 Approach and Methodology

The praxis is organized as follows.

1. Chapter 1 introduces the challenges and reviews the related works.

2. Chapter 2 presents and formulates the problem.

3. Chapter 3 experimental designs the evaluation criteria and explores factors.

4. Chapter 4 analyses numerical results.
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5. Chapter 5 concludes this praxis and identifies the future research directions.

The praxis formulates a multi-stage stochastic linear programming model for mathemati-

cally modeling cloud-based CDN with edge computing system to allocate certain resources in

different regions and schedule different tasks to maximize profit with required performance.

The approach includes:

1. A process for designing a conceptual mathematical model to provide the framework

for identifying key factors (variables) relating to performance.

2. Illustrative applications of the multi-stage stochastic linear programming model with

data for resource allocation and performance optimization.

The praxis applied the following methodology and process steps.

1. Determine the purpose of the model and the level of detail

2. Define the objective and as many constraints as possible

3. Identify the decision variables

4. Mathematically formulate the problem

5. Resolve the problem with the General Algebraic Modeling System (GAMS) solver

6. Experimental setup and test prototype for Interconnected Cache Edge (ICE)

7. Scale up the data and analyze the results

8. Conclude the study

1.8 Expected Contributions

To maximize profit in cloud-based CDN with edge computing system by joint resource-

allocation and performance optimization, there are several key challenges that need to be

addressed.
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1. The cloud-based CDN resource allocation is more complex in reality than the cases

studied in [20] and [13] due to the multi-cloud providers have different price strategies

in different regions.

2. The complexity of the task scheduling decision is high as the applications could be

time sensitive and the busy-hour traffic model is changing.

3. The optimization model should also take into account the inherent heterogeneity in

terms of capabilities of cache server, availability of resources at edge, and performance

requirements in different regions.

The main contributions of this praxis are summarized as follows.

1. Formulated the problem of resource allocation and performance optimization as a

multi-stage stochastic linear programming model in a multi-supplier, multi-cloud with

edge computing environment to maximize profit.

2. Proposed a method to decompose the problem into (i) a resource-allocation problem

with fixed content distribution decisions and (ii) a performance improvement problem

for different mobile Internet applications corresponding to the resource allocation.

3. Developed a broker scheme (ICE: Interconnected Cache Edge) for cloud-based CDN

with edge computing system leveraging the multi-supplier and multi-cloud environment

to maximize profit and improve performance.
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Chapter 2

Problem Description and Formulation

There are mainly three systems on content delivery studied in this chapter: traditional

CDN, cloud-based CDN and cloud-based CDN with edge computing. The praxis assumes

the content is delivered to end-users based on their geographical locations and availability

of resources for every systems. Performance and reliability have become the major factors

that directly impact the user experience. For ease of reference, the notation for key system

elements and parameters used in the article are summarized in Table 2.1.

Table 2.1: Summary of Notation for Key System Components and Parameters

Notation Description

I Set of content providers

J Set of districts/PoPs

K Set of regions/administrative public cloud domains

E Set of edge computing sites/districts

D Set of expected demand scenarios: idle-hour, normal-hour and busy-hour

CPi Content provider, i ∈ I

Sp
d Probability of each demand scenario, d ∈ D

LDi,d Expected demand of CP i, i ∈ I, under scenario, d ∈ D

pudi,j Expected demand distribution for district j, j ∈ J , by CP i, i ∈ I

Ph
i,j 000s of USDs per G for CP i, i ∈ I, if content delivered from PoP j, j ∈ J to users (cache-hit)

Pm
i,j 000s of USDs per G for CP i, i ∈ I, if content delivered from origin server to users in district j, j ∈ J (cache-miss)

PCAj CDN capacity (G) for PoP j, j ∈ J

scpj Unit storage costs (000s of USDs per G) of PoP j, j ∈ J

tcpj Bandwidth purchase costs (000s of USDs per G) for PoP j, j ∈ J

hcpj Bandwidth holding costs (000s of USDs per G) for PoP j, j ∈ J

pcpj Bandwidth penalty costs (000s of USDs per G) for PoP j, j ∈ J
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tscj Total infrastructure costs (000s of USDs per G) of PoP j, j ∈ J

cudj,k Expected demand distribution for region k, k ∈ K, by related district j, j ∈ J

Ch
i,k 000s of USDs per G for CP i, i ∈ I, if content delivered from cloud k, k ∈ K to users (cache-hit)

Cm
i,k 000s of USDs per G for CP i, i ∈ I, if content delivered from origin server to users in region k, k ∈ K (cache-miss)

CCAk CDN capacity (G) of cloud k, k ∈ K

tcck Bandwidth purchase costs (000s of USDs per G) for cloud k, k ∈ K

hcck Bandwidth holding costs (000s of USDs per G) for cloud k, k ∈ K

pcck Bandwidth penalty costs (000s of USDs per G) for cloud k, k ∈ K

ccck Unit public cloud costs (000s of USDs per G) for cloud k, k ∈ K

pcck Total infrastructure costs (000s of USDs per G) of cloud k, k ∈ K

eure,k Expected demand distribution for edge e, e ∈ E, in region k, k ∈ K

Eh
i,e 000s of USDs per G for CP i, i ∈ I, if content delivered from edge computing sitese, e ∈ E to users (cache-hit)

Em
i,e 000s of USDs per G for CP i, i ∈ I, if content delivered from origin server to users in district e, e ∈ E (cache-miss)

CCAe CDN capacity (G) of edge computing site e, e ∈ E

tcee Bandwidth purchase costs (000s of USDs per G) for edge computing site e, e ∈ E

hcee Bandwidth holding costs (000s of USDs per G) for edge computing site e, e ∈ E

pcee Bandwidth penalty costs (000s of USDs per G) for edge computing site e, e ∈ E

ecee Unit site costs (000s of USDs per G) for edge computing site e, e ∈ E

ecce Total infrastructure costs (000s of USDs per G) of edge computing site e, e ∈ E

minhit Minimum cache-hit ratio requirement (%) for CPi

maxrtt Maximum round-trip time requirement (%) for CPi

PT o
i Processing time (ms) of origin server for CP i, i ∈ I

PT p
i Processing time (ms) of PoPs/cache servers for CP i, i ∈ I

PT c
i Processing time (ms) of public cloud cache for CP i, i ∈ I

PT e
i Processing time (ms) of edge computing site for CP i, i ∈ I

RTT o
i Round-trip time (ms) from origin server to the users (cache miss) for CP i, i ∈ I

RTT p
i Round-trip time (ms) from PoPs/cache servers to the users (cache-hit) for CP i, i ∈ I

RTT c
i Round-trip time (ms) from public cloud cache to the users (cache-hit) for CP i, i ∈ I

RTT e
i Round-trip time (ms) from edge computing site to the users (cache-hit) for CP i, i ∈ I
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2.1 Traditional CDN

2.1.1 System Model

The architecture of a traditional CDN is considered as shown in Figure 2.1.

Figure 2.1. Traditional CDN Architecture

The praxis assumes that the traditional CDN service is provided to a set of CPs, I, that

can use a set of CDN’s PoPs/cache servers, J, to deliver content to a set of districts, J.

Each district has one PoP and the district’s users can only be served by the PoP in that

district. A cache-hit is when the PoP’s cache contains the requested content and the request

is served by the cache servers in the requesting district. A cache-miss is when the PoP’s

cache does not contain the requested content and the request is passed along to the origin

server. Cache-hit ratio is a measurement of the proportion or percent of content requests a

cache is able to fill successfully of the requests it receives. For example, if a CDN has 95

cache hits and five cache misses over a given time-frame, then the cache-hit ratio is equal

to 95 divided by 100, or 95%. CPs are charged for delivering content from origin servers

to users (cache misses) or from cache servers to users (cache hits) at different unit selling

prices.

Bandwidth costs, the unit purchase costs of delivering content from cache servers to users,

depends on the districts of PoPs/cache servers reside. If the demand is less than the amount

of bandwidth the service provider bought, the extra committed capacity will still need to be
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paid at a holding cost per unit. If there is more demand than the contracted capacity, the

service provider must pay a penalty/higher cost per unit for the overage. On the other hand,

storage costs, are mainly related to the storage capacity, aggregating hardware, and data

centers’ costs for each PoP. The minimal configuration of a PoP in a district is demonstrated

as in Table 2.2.

Table 2.2. Minimal Hardware Configuration of a District PoP

Configuration Unit Price (USD) Units Subtotal (USD)

Switch 10G 3000 1 3000

LVS Server Linux Virtual Server 2000 2 4000

Storage Server 48T 3500 4 14000

RAM Server 256G 4000 2 8000

SSD Server 12T 4500 2 9000

Total Costs (USD) 38000

The main risk for the traditional CDN is that it requires upfront investment on district

PoPs to cover an unknown traffic peak level. This praxis sets up a consolidated CDN

architecture with 20 high-capacity PoPs located in major data centers. With few PoPs, the

maintenance and configuration propagations are rather effective, and the larger PoPs make

sure that cache misses are kept low.

Round-trip time (RTT) is the duration in milliseconds (ms) required for a network request

to go from a starting point to a destination and back again to the starting point. Reducing

RTT is a major goal of a CDN, achieved by increasing the cache-hit ratios for the districts.

Improvements in latency can be measured in the reduction of this round-trip time. Edge-

processing time is the time spent by the cache server, which replaces the processing time by

the origin server. The higher the cache-hit ratio, the more efficient the CDN.
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2.1.2 Assumptions Made

The following assumptions are made in this model for designing and managing a tradi-

tional CDN system.

1. A two-stage stochastic model is appropriately to capture the CDN’s uncertainties.

2. The model aims to maximize the expected profit of the CDN.

3. The decision for the SP to order bandwidth is made in first stage before the realization

of the demand is known in second stage.

4. The decision for the SP to establish certain capacity for the PoPs is based on historical

customer demand requirements.

5. The included demand scenarios and their corresponding probabilities of occurrence

appropriately represent the demand uncertainty.

2.1.3 Multi-stage Recourse Planning

Table 2.3 illustrates the decision-making process of the multi-stage resource allocation

planing for the traditional CDN system.

Table 2.3. Multi-Stage Resource Allocation Planning for Traditional CDN

Multi-Stage Resource Allocation for Traditional CDN

Stage 1 (beginning of the month) During the month Stage 2 (end of the month)

Known at

this time

-Selling price of CDN bandwidth

-Costs and capacities for origin server

-Costs and capacities for district PoPs

-Costs and capacities for bandwidth

-Possible demand scenarios

-Possible distribution of users

-Processing time for each server

-Round-trip time for each route

-Performance requirement

Demand scenario

becomes known

-Actual demand of bandwidth of each CP

-Actual capacity demand of each PoP

-Total processing time for each CP

-Total round-trip time for each CP

-Cache-hit ratio for each CP

Unknown

-Actual demand of bandwidth for each CP

-Actual capacity demand of each PoP

-Total processing time for each CP

-Total round-trip time for each CP

-Cache-hit ratio for each CP

Decisions

needed

-How much bandwidth for SP to order for each PoP

-How much CDN capacity for SP to build for each PoP

-How much bandwidth used by each CP for each district

-How much resource used for each PoP
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Decisions to order bandwidth and establish certain capacity for the PoPs were made in

first stage by the SPs before the realization of the demand of the CPs is known in second

stage.

2.1.4 Decision Variables

The decision variables used in this model is described in the following table:

XTi,d : Gs of bandwidth used for CP i, i ∈ I, under scenario d, d ∈ D

PBTj : Gs of bandwidth the CDN should purchase at PoP j by SP, j ∈ J

PCh
j,d : Gs of cache-hit at PoP j, j ∈ J , under scenario d, d ∈ D

PCm
j,d : Gs of cache-miss at PoP j, j ∈ J , under scenario d, d ∈ D

PCn
j,d : Gs of bandwidth unused at PoP j, j ∈ J , under scenario d, d ∈ D

DP h
i,j,d : Gs of cache-hit for CP i, i ∈ I, at PoP j, j ∈ J , under scenario d, d ∈ D

DPm
i,j,d : Gs of cache-miss for CP i, i ∈ I, at PoP j, j ∈ J , under scenario d, d ∈ D

2.1.5 Mathematical Formulation and Explanation

Maximize Expected CDN Profit

∑
i∈I,j∈J,d∈D

DP h
i,j,d ∗ P h

i,j ∗ S
p
d +

∑
i∈I,j∈J,d∈D

DPm
i,j,d ∗ Pm

i,j ∗ S
p
d −

∑
j∈J

PCAj ∗ scpj

−
∑
j∈J

PBTj ∗ tcpj −
∑

j∈J,d∈D
PCn

j,d ∗ hc
p
j ∗ S

p
d −

∑
j∈J,d∈D

PCm
j,d ∗ pc

p
j ∗ S

p
d

(2.1)

subject to:
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pdemand(d) :
∑
i∈I

LDi,d =
∑
j∈J

PCh
j,d +

∑
j∈J

PCm
j,d (2.2)

pudeman(i, d) : LDi,d ≥ XTi,d (2.3)

ddemand(j, d) :
∑
i∈I

LDi,d ∗ pudi,j =
∑
i∈I

DP h
i,j,d +

∑
i∈I

DPm
i,j,d (2.4)

capb(j) : PBTj ≤ PCAj (2.5)

capu(j, d) : PCAj ≥ PCh
j,d + PCm

j,d (2.6)

cinv(j, d) : PCn
j,d = PBTj − PCh

j,d (2.7)

tcph(j, d) : PCh
j,d =

∑
i∈I

DP h
i,j,d (2.8)

tcpm(j, d) : PCm
j,d =

∑
i∈I

DPm
i,j,d (2.9)

hitrp(i, d) :
∑
j∈J

DP h
i,j,d ≥ minhit ∗XTi,d (2.10)

tbght(i, d) : XTi,d =
∑
j∈J

DP h
i,j,d +

∑
j∈J

DPm
i,j,d (2.11)

Nonnegativity : XT,PBT, PCh, PCm, PCn, DP h, DPm ≥ 0 (2.12)

The objective function simply maximize the expected profit and the following constraints

should be followed:

1. total demand by all CPs under each scenario d, d ∈ D = total cache hits and misses

(2.2)

2. demand of CP i, i ∈ I under scenario d, d ∈ D ≥ amount of bandwidth used by CP i,

i ∈ I (2.3)

3. demand of district j, j ∈ J under scenario d, d ∈ D = sum of cache hits and misses by

CPs of PoP j, j ∈ J (2.4)

4. bandwidth bought of PoP j, j ∈ J ≤ capacity of PoP j, j ∈ J (2.5)

5. CDN capacity of PoP j, j ∈ J ≥ cache hits and misses of PoP j, j ∈ J (2.6)
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6. bandwidth unused of PoP j, j ∈ J = bandwidth bought − used of PoP j, j ∈ J (2.7)

7. cache hits of PoP j, j ∈ J = sum of cache hits of district j, j ∈ J (2.8)

8. cache misses of PoP j, j ∈ J = sum of cache misses of district j, j ∈ J (2.9)

9. cache-hit ratio of each CP must satisfy with the minimum cache-hit ratio requirement

(2.10)

10. amount of bandwidth used by CP i, i ∈ I = cache hits and misses by CP i, i ∈ I (2.11)

Non-negativity of all decision variables is also required.

2.2 Cloud-based CDN

2.2.1 System Model

The architecture of a cloud-based CDN is considered as shown in Figure 2.2.

Figure 2.2. Cloud-based CDN Architecture

The praxis assumes that cloud-based CDN service is provided to a set of CPs, I, that can

use a set of CDN’s cloud-based cache servers on the public clouds, K, to deliver content to a

set of regions, K. Each region has one public cloud administrative domain and the regional

users can only be served by the cloud-based cache servers on the public cloud administrative

domain in that region. A region covers several districts and a cache-hit is when the cloud

31



cache contains the requested content and the request is served by the cache servers in the

requesting region. A cache-miss is when the cloud cache does not contain the requested

content and the request is passed along to the origin server. CPs are charged for delivering

content from origin servers to users (cache miss) or from cloud-based cache servers to users

(cache-hit) at different unit selling prices.

Bandwidth costs, the unit purchase costs of delivering content from cloud-based cache

servers to users, depends on the regions of cloud-based cache servers reside. If the demand

is less than the amount of bandwidth the service provider bought, the extra committed

capacity will still need to be paid at a holding cost per unit. If there is more demand than

the contracted capacity, the service provider needs not to pay a penalty or higher cost per

unit for overage as long as the capacity of public cloud is still available. Unlike traditional

CDN, cloud-based CDN offers a simple, pay-as-you-go pricing model without upfront fees or

long-term-contract commitment since the decision to build certain cloud-based CDN capacity

could be provisioned on public cloud in minutes. A typical configuration of a virtual cache

server on public cloud is demonstrated as in Table 2.4.

Table 2.4. Typical Configuration of a Virtual Cache Server for Cloud-based CDN

CPU(vCPU) RAM (GB) System Disk (GB) ESSD (GB) Data Disk (GB) Bandwidth (Mbps) Costs (US$/Hour)

4 16 40 1000 4000 1000 35-40

Cloud-based CDN allows SPs to provision cache servers on the clouds quickly and provides

the flexibility for CDN to scale up or down based on the demand from CPs. However, cloud-

based CDN can hardly provide additional speed improvement in low-connectivity regions

since the infrastructure resource is limited. Reducing RTT and edge-processing time could

also be challenged for cloud-based CDN since both computing and connectivity resource on

the public clouds will be limited and shared by many different users.
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2.2.2 Assumptions Made

The following assumptions are made in this model for designing and managing a cloud-

based CDN system.

1. A two-stage stochastic model is appropriately to capture the CDN’s uncertainties.

2. The model aims to maximize the expected profit of the CDN.

3. The decision for the SP to order bandwidth is made in first stage before the realization

of the demand is known in second stage.

4. The decision for the SP to establish certain capacity for the regional cloud capacity is

based on historical customer demand requirement.

5. The included demand scenarios and their corresponding probabilities of occurrence

appropriately represent the demand uncertainty.

2.2.3 Multi-stage Recourse Planning

Table 2.5 illustrates the decision-making process of the multi-stage resource allocation

planing for the cloud-based CDN system.

Table 2.5. Multi-Stage Resource Allocation Planning for Cloud-base CDN

Multi-Stage Resource Allocation for Cloud-base CDN

Stage 1 (beginning of the month) During the month Stage 2 (end of the month)

Known at

this time

-Selling price of CDN bandwidth

-Costs and capacities for origin server

-Costs and capacities for cloud-based cache servers

-Costs and capacities for bandwidth

-Possible demand scenarios

-Possible distribution of users

-Processing time for each server

-Round-trip time for each route

-Performance requirement

Demand scenario

becomes known

-Actual demand of cloud-based resource

-Total processing time for each CP

-Total round-trip time for each CP

-Cache-hit ratio for each CP

Unknown

-Actual demand of bandwidth for each CP

-Total processing time for each CP

-Total round-trip time for each CP

-Cache-hit ratio for each CP

Decisions

needed
-How much resource for SP to order for each cloud

-How much bandwidth used for each CP in each region

-How much resource used for each cloud
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Decisions to order bandwidth and provision certain cloud-based cache servers were made

in first stage by the SPs before the realization of the demand of the CPs is known in second

stage.

2.2.4 Decision Variables

The decision variables used in this model is described in the following table:

XCi,d : Gs of bandwidth used for CP i, i ∈ I, under scenario d, d ∈ D

CBTk : Gs of bandwidth the cloud-based CDN should purchase on cloud k by SP, k ∈ K

CCh
k,d : Gs of cache-hit on cloud k, k ∈ K, under scenario d, d ∈ D

CCm
k,d : Gs of cache-miss on cloud k, k ∈ K, under scenario d, d ∈ D

CCn
k,d : Gs of bandwidth unused on cloud k, k ∈ K, under scenario d, d ∈ D

RCh
i,k,d : Gs of cache-hit for CP i, i ∈ I, on cloud k, k ∈ K, under scenario d, d ∈ D

RCm
i,k,d : Gs of cache-miss for CP i, i ∈ I, on cloud k, k ∈ K, under scenario d, d ∈ D

2.2.5 Mathematical Formulation and Explanation

Maximize Expected CDN Profit

∑
i∈I,k∈K,d∈D

RCh
i,k,d ∗ Ch

i,k ∗ S
p
d +

∑
i∈I,k∈K,d∈D

RCm
i,k,d ∗ Cm

i,k ∗ S
p
d −

∑
k∈K

CBTk ∗ tcck

−
∑

k∈K,d∈D
CCh

k,d ∗ ccck ∗ S
p
d −

∑
k∈K,d∈D

CCn
k,d ∗ hcck ∗ S

p
d

(2.13)

subject to:
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cdemand(d) :
∑
i∈I

LDi,d =
∑
k∈K

CCh
k,d +

∑
k∈K

CCm
k,d (2.14)

cudeman(i, d) : LDi,d ≥ XCi,d (2.15)

rdemand(k, d) :
∑
i∈I

LDi,d ∗
∑
j∈J

pudi,j ∗ cudj,k =
∑
i∈I

RCh
i,k,d +

∑
i∈I

RCm
i,k,d (2.16)

cacb(k) : CBTk ≤ CCAk (2.17)

cacu(k, d) : CCAk ≥ CCh
k,d + CCm

k,d (2.18)

cinv(k, d) : CCn
k,d = CBTk − CCh

k,d (2.19)

tcch(k, d) : CCh
k,d =

∑
i∈I

RCh
i,k,d (2.20)

tccm(k, d) : CCm
k,d =

∑
i∈I

RCm
i,k,d (2.21)

hitrc(i, d) :
∑
k∈K

RCh
i,k,d ≥ minhit ∗XCi,d (2.22)

cbght(i, d) : XCi,d =
∑
k∈K

RCh
i,k,d +

∑
k∈K

RCm
i,k,d (2.23)

Nonnegativity : XC,CBT,CCh, CCm, CCn, RCh, RCm ≥ 0 (2.24)

The objective function simply maximize the expected profit and the following constraints

should be followed:

1. total demand by all CPs under each scenario d, d ∈ D = total cache hits and misses

(2.14)

2. demand of CP i, i ∈ I under scenario d, d ∈ D ≥ amount of bandwidth used by CP i,

i ∈ I (2.15)

3. demand of region k, k ∈ K under scenario d, d ∈ D = sum of cache hits and misses by

CPs of cloud k, k ∈ K (2.16)

4. cloud-based bandwidth bought by region k, k ∈ K ≤ CDN capacity of public cloud in

region k, k ∈ K (2.17)
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5. CDN capacity of public cloud in region k, k ∈ K ≥ cloud-based cache hits and misses

of region k, k ∈ K (2.18)

6. cloud bandwidth unused of region k, k ∈ K = bandwidth bought − used of region k,

k ∈ K (2.19)

7. cache hits of public cloud in region k, k ∈ K = sum of cache hits of region k, k ∈ K

(2.20)

8. cache misses of public cloud in region k, k ∈ K = sum of cache misses of region k,

k ∈ K (2.21)

9. cache-hit ratio of each CP must satisfy with the minimum cache-hit ratio requirement

(2.22)

10. amount of bandwidth on public cloud used by CP i, i ∈ I = cloud-based cache hits

and misses by CP i, i ∈ I (2.23)

Non-negativity of all decision variables is also required.

2.3 Cloud-based CDN with Edge Computing

2.3.1 System Model

The architecture of a cloud-based CDN with edge computing is considered as shown in

Figure 2.3.
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Figure 2.3. Cloud-based CDN with Edge Computing Architecture

The praxis assumes that cloud-based CDN with edge computing service is provided to

a set of CPs, I, that can use a set of cloud-based CDN’s cache servers, K, and a set of

CDN’s cache servers at the edge computing sites, E, to deliver content to a set of districts,

E. Each region has one public cloud administrative domain to cover several districts and

each district has an edge computing site. The regional users can be served by the cloud-

based cache servers of that region or by the cache servers at edge computing sites covered

by that region. A cache-hit is when the cloud-based or related edge cache servers contains

the requested content and the request is served by the the cache servers in the requesting

region. A cache-miss is when the cache servers do not contain the requested content and

the request is passed along to the origin server. CPs are charged for delivering content from

origin servers to users (cache miss) or from cache servers to users (cache-hit) at different unit

selling prices.

Bandwidth costs, the unit purchase costs of delivering content from cloud-based cache

servers or edge computing sites to users, depends on the regions or edge computing sites

of cache servers reside. If the demand is less than the amount of bandwidth the service

provider bought, the extra committed capacity will still need to be paid at a holding cost

per unit. If there is more demand than the contracted capacity, the service provider needs
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not to pay a penalty or higher cost per unit for overage as long as the capacity of public

cloud or edge computing sites is still available. Like cloud-based CDN, cloud-based CDN

with edge computing also offers a simple, pay-as-you-go pricing model without upfront fees

or long-term-contract commitment since the decision to build certain CDN capacity could

be provisioned in minutes.

Cloud-based edge computing sites offer the advantage of not having to duplicate the

processes already running on the host system and allow for more efficient distribution of the

limited resources available on cache servers. Therefore this praxis assumes that the cloud-

based CDN with edge computing system could obtain better network performance such as

round-trip time.

2.3.2 Assumptions Made

The following assumptions are made in this model for designing and managing a cloud-

based CDN with edge computing system.

1. A two-stage stochastic model is appropriately to capture the CDN’s uncertainties.

2. The model aims to maximize the expected profit of the CDN.

3. The decision for the SP to order cloud-based and edge-based bandwidth is made in

first stage before the realization of the demand is known in second stage.

4. The decision for the SP to establish certain capacity for the edge computing sites is

based on historical customer demand requirement.

5. The included demand scenarios and their corresponding probabilities of occurrence

appropriately represent the demand uncertainty.

2.3.3 Multi-stage Recourse Planning

Table 2.6 illustrates the decision-making process of the multi-stage resource allocation

planing for the cloud-based CDN with edge computing system.
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Table 2.6. Multi-stage Resource Allocation for Cloud-based CDN with Edge Computing

Multi-Stage Resource Allocation for Cloud-base CDN with Edge Computing

Stage 1 (beginning of the month) During the month Stage 2 (end of the month)

Known at

this time

-Selling price of CDN bandwidth

-Costs and capacities for origin server

-Costs and capacities for cloud-based cache servers

-Costs and capacities for edge cache servers

-Costs and capacities for bandwidth

-Possible demand scenarios

-Possible distribution of users

-Processing time for each server

-Round-trip time for each route

-Performance requirement by each CP

Demand scenario

becomes known

-Actual demand of bandwidth

-Actual demand of cloud-based resource

-Actual demand of edge-based resource

-Total processing time for each CP

-Total round-trip time for each CP

-Cache-hit ratio for each CP

Unknown

-Actual demand of bandwidth

-Actual demand of cloud-based resource in each region

-Actual demand of edge computing resource in each district

-Total processing time for each CP

-Total round-trip time for each CP

-Cache-hit ratio for each CP

Decisions

needed

-How much resource for SP to order for each cloud

-How much resource for SP to order for each edge site

-How much bandwidth used for each region/district by each CP

-How much cloud-based resource used for each region

-How much edge computing resource used for each district

Decisions to order bandwidth and establish certain capacity on public cloud and at edge computing sites were made in first

stage by the SPs before the realization of the demand of the CPs is known in second stage.
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2.3.4 Decision Variables

The decision variables used in this model is described in the following table:

XEc
i,d : Gs of bandwidth used by cloud-based cache for CP i, i ∈ I, under scenario d, d ∈ D

XEe
i,d : Gs of bandwidth used by edge computing cache for CP i, i ∈ I, under scenario d, d ∈ D

EBCk : Gs of bandwidth the cache servers should purchase on cloud k by SP, k ∈ K

EBTe : Gs of bandwidth the cache servers should purchase at edge computing site e by SP, e ∈ E

ECh
k,d : Gs of cache-hit on cloud k, k ∈ K, under scenario d, d ∈ D

ECm
k,d : Gs of cache-miss on cloud k, k ∈ K, under scenario d, d ∈ D

ECn
k,d : Gs of bandwidth unused on cloud k, k ∈ K, under scenario d, d ∈ D

EEh
e,d : Gs of cache-hit at edge computing site e, e ∈ E, under scenario d, d ∈ D

EEm
e,d : Gs of cache-miss at edge computing site e, e ∈ E, under scenario d, d ∈ D

EEn
e,d : Gs of bandwidth unused at edge computing site e, e ∈ E, under scenario d, d ∈ D

REh
i,k,d : Gs of cache-hit for CP i, i ∈ I, on cloud k, k ∈ K, under scenario d, d ∈ D

REm
i,k,d : Gs of cache-miss for CP i, i ∈ I, on cloud k, k ∈ K, under scenario d, d ∈ D

DEh
i,e,d : Gs of cache-hit for CP i, i ∈ I, at edge computing site e, e ∈ E, under scenario d, d ∈ D

DEm
i,e,d : Gs of cache-hit for CP i, i ∈ I, at edge computing site e, e ∈ E, under scenario d, d ∈ D

2.3.5 Mathematical Formulation and Explanation

Maximize Expected CDN Profit

∑
i∈I,k∈K,d∈D

REh
i,k,d ∗ Ch

i,k ∗ S
p
d +

∑
i∈I,k∈K,d∈D

REm
i,k,d ∗ Cm

i,k ∗ S
p
d +

∑
i∈I,e∈E,d∈D

DEh
i,e,d ∗ Eh

i,e ∗ S
p
d+

∑
i∈I,e∈E,d∈D

DEm
i,e,d ∗ Em

i,e ∗ S
p
d −

∑
k∈K

EBCk ∗ tcck −
∑
e∈E

EBTe ∗ tcee −
∑

k∈K,d∈D
ECh

k,d ∗ ccck ∗ S
p
d−

∑
e∈E,d∈D

EEh
e,d ∗ ece ∗ S

p
d −

∑
k∈K,d∈D

ECn
k,d ∗ hcck ∗ S

p
d −

∑
e∈E,d∈D

EEn
e,d ∗ hcee ∗ S

p
d

(2.25)
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subject to:

etde(d) :
∑
i∈I

LDi,d =
∑
k∈K

ECh
k,d +

∑
k∈K

ECm
k,d +

∑
e∈E

EEh
e,d +

∑
k∈K

EEm
e,d (2.26)

eude(i, d) : LDi,d ≥ XEc
i,d + XEe

i,d (2.27)

erde(k, d) :
∑
i∈I

LDi,d ∗
∑
j∈J

pudi,j ∗ cudj,k =
∑
i∈I

(REh
i,k,d + REm

i,k,d +
∑
e∈E

(DEh
i,e,d + DEm

i,e,d) ∗ eure,k)

(2.28)

ebcb(k) : EBCk ≤ CCAk (2.29)

ebtb(e) : EBTe ≤ CCAe (2.30)

ebcu(k, d) : CCAk ≥ ECh
k,d + ECm

k,d (2.31)

ebtu(e, d) : CCAe ≥ EEh
e,d + EEm

e,d (2.32)

ecin(k, d) : ECn
k,d = EBCk − ECh

k,d (2.33)

eein(e, d) : EEn
e,d = EBTe − EEh

e,d (2.34)

tceh(k, d) : ECh
k,d =

∑
i∈I

REh
i,k,d (2.35)

tcem(k, d) : ECm
k,d =

∑
i∈I

REm
i,k,d (2.36)

teeh(e, d) : EEh
e,d =

∑
i∈I

DEh
i,e,d (2.37)

teem(e, d) : EEm
e,d =

∑
i∈I

DEm
i,e,d (2.38)

hitre(i, d) :
∑
k∈K

REh
i,k,d +

∑
e∈E

DEh
i,e,d ≥ minhit ∗ (XEc

i,d + XEe
i,d) (2.39)

rttre(i, d) : XEc
i,d ∗RTT c

i + XEe
i,d ∗RTT e

i ≤ maxrtt ∗ (XEc
i,d + XEe

i,d) (2.40)

ecbgt(i, d) : XEc
i,d =

∑
k∈K

REh
i,k,d +

∑
k∈K

REm
i,k,d (2.41)

eebgt(i, d) : XEe
i,d =

∑
e∈E

DEh
i,e,d +

∑
k∈K

DEm
i,e,d (2.42)

Nonnegativity : XEc, XEe, EBC,EBT,ECh, ECm, ECn, EEh, EEm, EEn, REh, REm, DEh, DEm ≥ 0

(2.43)
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The objective function simply maximize the expected profit and the following constraints

should be followed:

1. total demand by all CPs under each scenario d, d ∈ D = total cache hits and misses

(2.26)

2. demand of CP i, i ∈ I under scenario d, d ∈ D ≥ amount of bandwidth used by CP i,

i ∈ I (2.27)

3. demand of region k, k ∈ K under scenario d, d ∈ D = sum of cache hits and misses by

CPs of cloud k, k ∈ K (2.28)

4. cloud-based bandwidth bought by region k, k ∈ K ≤ CDN capacity of public cloud in

region k, k ∈ K (2.29)

5. edge computing bandwidth bought by district e, e ∈ E ≤ capacity of edge computing

site e, e ∈ E (2.30)

6. CDN capacity of public cloud in region k, k ∈ K ≥ cloud-based cache hits and misses

of region k, k ∈ K (2.31)

7. CDN capacity of edge computing site e, e ∈ E ≥ edge-based cache hits and misses of

district e, e ∈ E (2.32)

8. cloud bandwidth unused of region k, k ∈ K = bandwidth bought − used of region k,

k ∈ K (2.33)

9. bandwidth unused of edge computing site e, e ∈ E = bandwidth bought − used of

district e, e ∈ E (2.34)

10. cache hits of public cloud in region k, k ∈ K = sum of cache hits of region k, k ∈ K

(2.35)

11. cache misses of public cloud in region k, k ∈ K = sum of cache misses of region k,

k ∈ K (2.36)
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12. cache hits of edge computing site e, e ∈ E = sum of cache hits of district e, e ∈ E

(2.37)

13. cache misses of edge computing site e, e ∈ E = sum of cache misses of district e, e ∈ E

(2.38)

14. cache-hit ratio of each CP must satisfy with the minimum cache-hit ratio requirement

(2.39)

15. round-trip time of each CP must meet with the maximum round-trip time requirement

(2.40)

16. amount of bandwidth on public cloud used by CP i, i ∈ I = cloud-based cache hits

and misses by CP i, i ∈ I (2.41)

17. amount of bandwidth at edge sites used by CP i, i ∈ I = edge-based cache hits and

misses by CP i, i ∈ I (2.42)

Non-negativity of all decision variables is also required.
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Chapter 3

Experimental Design

3.1 The Experiment

The goal of the experiment is to maximize the profit for the CDN service providers

through resource allocation and meet with the network performance requirement of the

content providers who use the related CDN services.

In previous sections, the different CDN network architectures have been discussed and

related system models for maximizing the profit through resource allocation were presented.

This section continues with details of a series of statistical experiments designed to help

service providers determine which of the CDN network architectures and related system

models should be used.

Service providers usually setup CDN networks based on customers’ contractual demand

in the absence of comprehensive research that studies CDN infrastructure costs and network

latencies under various scenarios. This praxis addresses this shortcoming through a rigorous

statistical comparison of optimally engineered CDN infrastructure and resource allocation

to design the best CDN network architecture or systems under a variety of situations and

assumptions commonly found in practice.

The following problems were addressed in this praxis.

• How to maximize profit and cover all the likely customer demand for different scenarios?

• Which CDN network architecture or system should be deployed: traditional CDN,

cloud-based CDN or cloud-based CDN with edge computing? The dependent variable

is the expected profit gained from an optimally designed CDN network which is the

primary decision-making metric for resource allocation and performance optimization.
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3.1.1 Response Variables and Performance Evaluation Criteria

The experimental response, the expected profit gained by service providers would be

reported in 1,000 US dollars, rounded to the nearest 1000th. The expected profit depends

on the revenue of the CDN services from CPs and costs for the SP to provide CDN services.

The praxis assumes that the CPs are charged for delivering content from origin servers

to users (cache miss) or from cache servers to users (cache-hit) at different unit selling

prices. Bandwidth costs, the unit purchase costs of delivering content from cache servers or

edge computing sites to users, depends on where the cache servers or edge computing sites

reside. If the demand is less than the amount of bandwidth the service provider bought, the

extra committed capacity will still need to be paid at a holding cost per unit. If there is

more demand than the contracted capacity, the service provider needs not to pay a penalty

or higher cost per unit for overage as long as the CDN capacity of public cloud or edge

computing sites is still available.

3.1.2 Factors to be Explored

Many factors can affect the profit of a CDN network, including the service selling prices

to the CPs, number and capacity of PoP cache servers, number and capacity of cloud

cache servers, number and capacity of edge cache servers, network topology, capital ex-

pense (CAPEX) of the infrastructure, operational expense (OPEX) of the CDN network,

number and size of the demands to be carried, number and size of the inventories to be held,

performance requirement by the customers, the total amount of traffic on the network and

capacities of each element.

The experiment assumes an existing network to cover 20 districts (roughly the size of a

national network currently implemented by a service provider in China) carrying a total of

20 Terabits (Tb) per second of traffic, the bandwidth is dependent upon the infrastructure

CAPEX invested for every district or region, and the infrastructure CAPEX is a linear func-

tion of its associated bandwidth. Customer demands assumed to be the different size for 3

scenarios such as idle-hours, normal-hours and busy-hours. Factors of interest, uncontrol-
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lable factors and nuisance factors are studied and several key factors have been selected for

the experiment.

3.1.2.1 Factors of Interest

Most factors of interest are backed by industry research or empirical findings. The exper-

iment also considered some factors by opinions of logical conclusions. The experiment was

designed to focus on factors that are SP-controllable factors. In this experiment, the factors

to be varied are: total customer demand to be carried, number of busy-hours, CDN system,

number and capacity of cloud cache servers, number and capacity of edge cache servers, RTT

requirement by the customers and cache-hit ratio requirement. The levels for these factors

are shown in Table 3.1, and are described in detail in the sections to follow.

Table 3.1. Factors of Interest

Factors Low-level Neutral-level High-level Experimented

Total Customer Demand (G)
Idle Normal Busy Idle Normal Busy Idle Normal Busy

Yes
2500 3500 4500 3000 4000 5000 3500 4500 5500

Busy-hour Duration (%) 7.5% 10% 15% Yes

Price of cache-hit to CPs $2.5k/G $3.0k/G $3.5k/G No

Price of Cache Miss to CPs $2.5k/G $3.0k/G $3.5k/G No

Number of PoP Cache Nodes 20 20 20 No

Capacity of PoP Cache (G) 5600 6000 7000 Yes

Number of Cloud Domains 4 4 4 No

Capacity of Cloud Cache Nodes (G) 5600 6000 7000 Yes

Number of Edge Computing Nodes 20 20 20 No

Capacity of Edge Computing Cache (G) 2500 3000 3500 Yes

CAPEX for Traditional CDN $0.25k/G $0.3k/G $0.35k/G No

CAPEX for Cloud-based CDN $0.2k/G $0.25k/G $1k/G No

CAPEX for Edge Computing Site $0.07k/G $0.1k/G $0.15k/G No

OPEX for Traditional CDN $0.5k/G $0.8k/G $1.1k/G No

OPEX for Cloud-based CDN $0.5k/G $0.8k/G $1.1k/G No

OPEX for Edge Computing Site $0.2k/G $0.4k/G $0.8k/G No

Number & Size of Inventories 10% 20% 30% No

RTT Requirement by CPs 60ms 50ms 40ms No

cache-hit Ratio 90% 95% 98% Yes

• Total Customer Demand is very important to the profit gained from CDN. The

general consensus is the CDN marginal revenue increases faster than its marginal cost
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of CDN bandwidth production giving the high upfront investment. The more total

customer demand, the more profit gained.

• Busy-hours Duration is likely to affect the profit gained from CDN since burstable

billing measures CDN bandwidth usage based on peak use. SPs are allowed bandwidth

usage to exceed a specified threshold for brief periods of time without the financial

penalty of purchasing a higher committed information rate (CIR, or commitment).

The higher level of capacity required nowadays is expected to assist in better cache-hit

ratio performance which theoretically leads to worse profitability.

• Price of cache-hit to CPs is the price charged to CPs while their site’s content is

successfully served from the cache and one of the main components for CDN revenue.

It is difficult to vary by SPs since the market is competitive and transparent. Therefore

it was excluded as a factor in the experiment.

• Price of Cache Miss to CPs is the price charged to CPs while their site’s content is

not successfully served from the cache and one of the components for CDN revenue. It

is difficult to vary by SPs since the market is competitive and transparent. Therefore

it was excluded as a factor in the experiment.

• Number of PoP Cache Nodes cannot be varied easily since it has been carefully

planned and invested to cover 20 districts carrying a total of 20 Terabits per second of

traffic for the peak time. Therefore it was excluded as a factor in the experiment.

• Capacity of PoP Cache Nodes is mainly related to the upfront investment for the

traditional CDN.

• Number of Cloud Domains might not be varied easily due the management issues

to interconnect among multiple clouds.

• Capacity of Cloud Cache Nodes could be more flexible adjusted and invested

than the traditional CDN by leverage the incumbent capacity of public cloud’s infras-

tructure. The capacity of cloud cache servers are much easier to scale to satisfy the
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potential demand, particular the demand of busy-hour duration, on the cloud-based

CDN.

• Number Edge Computing Sites might not be varied easily since it has been care-

fully planned and invested to establish the base capacity on the edge.

• Capacity of Edge Computing Nodes is helpful to improve the CDN performance

for the CPs. The more edge computing nodes, the better round-trip time could be

obtained for CDN services. This could also improve the profitability for the SPs since

the cost is controllable by the SPs as a linear function of the associated bandwidth

used.

• CAPEX of Traditional CDN is the upfront CAPEX involved to build the cache

capacity for traditional CDN. However, it is difficult to vary by the SP and therefore

it was excluded as a factor in the experiment.

• CAPEX of Cloud-based CDN is a linear function of its associated bandwidth giv-

ing the requirement on bandwidth is less than the cloud capacity available. Unlike

traditional CDN, there no huge upfront CAPEX involved as the infrastructure invest-

ment is covered by the public cloud. However, it is difficult to vary by the SP and

therefore it was excluded as a factor in the experiment.

• CAPEX of Edge Computing Site is difficult to control form the SPs’ perspective

but controlled by the telecom carriers, and difficult to vary in an experiment. Therefore

it was excluded as a factor in the experiment.

• OPEX of Traditional CDN is mainly the bandwidth costs charged by the telecom

carriers to the SPs which is difficult to vary in an experiment. It is generally considered

that SPs could obtain bandwidth from the telecom carriers with wholesale price and

therefore it was excluded as a factor in the experiment.

• OPEX of Cloud-based CDN is also mainly the bandwidth costs charged by the

telecom carriers to the SPs which is difficult to vary in an experiment. Therefore it

was excluded as a factor in the experiment.
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• OPEX of Edge Computing Site is mainly the bandwidth costs charged by the

telecom carriers to the SPs which is difficult to vary in an experiment. Therefore it

was excluded as a factor in the experiment.

• RTT Requirement is very important for CDN performance and it is an important

metric in determining the health of a connection to diagnose the speed and reliability

of CDN network. Reducing RTT is a primary goal of a CDN and controllable by SPs

by investment on the edge sites. However, it is not easy change in level and therefore

it was excluded as a factor in the experiment.

• Cache-hit Ratio is a measurement of how many content requests a cache is able to

fill successfully, compared to how many requests it receives. A high-performing CDN

will have a high cache-hit ratio and this is likely the affect the profit gained from CDN

services.

3.1.2.2 Uncontrollable Factors

There are many uncontrollable factors since this experiment could not be conducted in

a laboratory environment:

• Network congestion - reduce by increasing the capacity of network nodes or links which

is carrying data in the experiment

• Seasonal peaks and troughs – reduce by using monthly or quarterly average and com-

bined traffic models of CPs

• Promotion strategies of clouds – reduce by using monthly, quarterly or annually average

data of public clouds

• Inaccuracy of district demand distribution - reduce by monthly data monitoring in

practice

• Customer expectation of network performance - reduce by industry standards and

guidelines
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3.1.2.3 Nuisance Factors

Some factors may influence the experimental response, but they might not be directly

interested in this experiment.

• Computer performance (the amount of useful work accomplished by a computer sys-

tem)

• Network jitter (the variance in time delay in milliseconds (ms) between data packets

over a network)

• High availability (ensure an agreed level of operational performance, usually uptime,

for a higher than normal period)

3.1.3 The Hypotheses to be Investigated

The study’s goal of comparing recovery techniques under combinations of experimental

factors is achieved by gathering evidence and statistically analyzing the results to determine

the truth or falsity of the following hypotheses. The hypotheses investigated are:

1. H0 #1: The profit gained is the same for all CDN network architectures.

2. H0 #2: The performance obtained is the same for all CDN network architectures.

3. H0 #3: The profit gained is the same for all network capacity.

4. H0 #4: The profit gained is the same for all total demand.

5. H0 #5: The profit gained is the same for all busy-hour duration.

6. H0 #6: The profit gained is the same for all performance requirement.

7. H0 #7: The profit gained is the same for all network capacity with same total demand.

8. H0 #8: The profit gained is the same for all network capacity with same busy-hour

duration.
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9. H0 #9: The profit gained is the same for all network capacity with same performance

requirement.

10. H0 #10: The profit gained is the same for all total demand and busy-hour duration.

11. H0 #11: The profit gained is the same for all total demand and performance require-

ment.

12. H0 #12: The profit gained is the same for all busy-hour duration and performance

requirement.

13. H0 #13: The profit gained is the same for all network capacity with same total demand

and busy-hour duration.

14. H0 #14: The profit gained is the same for all network capacity with same total demand

and performance requirement.

15. H0 #15: The profit gained is the same for all network capacity with same busy-hour

duration and performance requirement.

16. H0 #16: The profit gained is the same for all total demand with same busy-hour

duration and performance requirement.

Rigorously analyzing these postulations should uncover key factors in resource allocation.

The next section describes the evidence that is used and how it was obtained for analysis.

3.2 The Design

This section describes the experimental setup for collecting data that can be used to al-

locate resource and optimize performance for traditional CDN, cloud-based CDN and cloud-

based CDN with edge computing systems.

3.2.1 Evidence for the Analysis

The experiment would be executed in real-world conditions using the blocking aspects

of CDN systems to gain more realistic results. The praxis used a full factorial design to
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execute an experiment on traditional CDN, cloud-based CDN and cloud-based CDN with

edge computing.

The overall experiment was conceived with the expectation that some of the interesting

factors could be screened out. While some of the factors could be considered in a 2-factor

factorial design, some did not lend themselves to easy changes in level. For example, the

selection of number and capacity of cloud cache or edge computing sites could be tedious

and time-consuming.

The evidence-gathering process involves the following steps:

1. Generating CPs’ demand sets

2. Setting up traditional CDN

3. Setting up cloud-based CDN

4. Setting up cloud-based CDN with edge computing

5. Setting up performance metrics

6. Generating input files for mathematical language program and optimizer

7. Optimizing resource allocation and performance

3.2.1.1 Generating Demand

Customer demand scenarios for ten CPs in the experiment and their corresponding prob-

abilities of occurrence are demonstrated in Table 3.2.
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Table 3.2. Customer Demand Scenarios for CDN Services

Factors Low-level Neutral-level High-level

Busy-hour Duration (%) 7.5% 10% 15%

Normal-hour Duration (%) 67.5% 65% 60%

Idle-hour Duration (%) 25% 25% 25%

Total Customer Demand (G)
Idle Normal Busy Idle Normal Busy Idle Normal Busy

2500 3500 4500 3000 4000 5000 3500 4500 5500

CP1 50 150 250 100 200 300 150 250 350

CP2 50 150 250 100 200 300 150 250 350

CP3 150 250 350 200 300 400 250 350 450

CP4 150 250 350 200 300 400 250 350 450

CP5 250 350 450 300 400 500 350 450 550

CP6 250 350 450 300 400 500 350 450 550

CP7 350 450 550 400 500 600 450 550 650

CP8 350 450 550 400 500 600 450 550 650

CP9 450 550 650 500 600 700 550 650 750

CP10 450 550 650 500 600 700 550 650 750

The likely demand distribution of CPs for 20 districts is demonstrated in Table 3.3.

Table 3.3. Likely Demand of Each CP in Every District

Scenarios D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

CP1 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP2 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP3 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP4 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP5 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP6 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP7 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP8 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP9 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

CP10 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5%

3.2.1.2 Setting up Traditional CDN

Traditional CDN is set up in the experiment as demonstrated in Table 3.4.
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Table 3.4. Capacity (G) & Related Costs (k$/G) of Traditional CDN

Traditional

CDN

Capacity (G) Bandwidth Cost

(k$/G)

Penalty Cost

(k$/G)

Holding Cost

(k$/G)

Storage Cost

(k$/G)L N H

PoP1 280 300 350 0.8 0.3 0.2 0.3

PoP2 280 300 350 0.8 0.3 0.2 0.3

PoP3 280 300 350 0.8 0.3 0.2 0.3

PoP4 280 300 350 0.8 0.3 0.2 0.3

PoP5 280 300 350 0.8 0.3 0.2 0.3

PoP6 280 300 350 0.8 0.3 0.2 0.3

PoP7 280 300 350 0.8 0.3 0.2 0.3

PoP8 280 300 350 0.8 0.3 0.2 0.3

PoP9 280 300 350 0.8 0.3 0.2 0.3

PoP10 280 300 350 0.8 0.3 0.2 0.3

PoP11 280 300 350 0.8 0.3 0.2 0.3

PoP12 280 300 350 0.8 0.3 0.2 0.3

PoP13 280 300 350 0.8 0.3 0.2 0.3

PoP14 280 300 350 0.8 0.3 0.2 0.3

PoP15 280 300 350 0.8 0.3 0.2 0.3

PoP16 280 300 350 0.8 0.3 0.2 0.3

PoP17 280 300 350 0.8 0.3 0.2 0.3

PoP18 280 300 350 0.8 0.3 0.2 0.3

PoP19 280 300 350 0.8 0.3 0.2 0.3

PoP20 280 300 350 0.8 0.3 0.2 0.3

3.2.1.3 Setting up Cloud-based CDN

Cloud-based CDN is set up in the experiment as demonstrated in Table 3.5.
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Table 3.5. Capacity (G) & Related Costs (k$/G) of Cloud-based CDN

Cloud-based CDN Capacity (G) Bandwidth Cost

(k$/G)

Holding Cost

(k$/G)

Virtual Server Cost

(k$/G)L N H

Cloud1 1400 1500 1750 0.8 0.1 0.25

Cloud2 1400 1500 1750 0.8 0.1 0.25

Cloud3 1400 1500 1750 0.8 0.1 0.25

Cloud4 1400 1500 1750 0.8 0.1 0.25

3.2.1.4 Setting up Edge Computing Sites

Edge computing sites are set up in the experiment ans demonstrated in Table 3.6.

Table 3.6. Capacity (G) & Related Costs (k$/G) of Edge Computing Sites

Cloud Capacity (G)
Edge

Computing

Capacity (G) Bandwidth Cost

(k$/G)

Holding Cost

(k$/G)

Edge Site Cost

(k$/G)L N H

Cloud 1 1500

EC Site1 125 150 175 0.4 0.1 0.1

EC Site2 125 150 175 0.4 0.1 0.1

EC Site3 125 150 175 0.4 0.1 0.1

EC Site4 125 150 175 0.4 0.1 0.1

EC Site5 125 150 175 0.4 0.1 0.1

Cloud 2 1500

EC Site6 125 150 175 0.4 0.1 0.1

EC Site7 125 150 175 0.4 0.1 0.1

EC Site8 125 150 175 0.4 0.1 0.1

EC Site9 125 150 175 0.4 0.1 0.1

EC Site10 125 150 175 0.4 0.1 0.1

Cloud 3 1500

EC Site11 125 150 175 0.4 0.1 0.1

EC Site12 125 150 175 0.4 0.1 0.1

EC Site13 125 150 175 0.4 0.1 0.1

EC Site14 125 150 175 0.4 0.1 0.1

EC Site15 125 150 175 0.4 0.1 0.1

Cloud 4 1500

EC Site16 125 150 175 0.4 0.1 0.1

EC Site17 125 150 175 0.4 0.1 0.1

EC Site18 125 150 175 0.4 0.1 0.1

EC Site19 125 150 175 0.4 0.1 0.1

EC Site20 125 150 175 0.4 0.1 0.1
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3.2.1.5 Setting up Performance Metrics

Round-trip Time (RTT) from different sites to consumers is demonstrated in Table 3.7.

Table 3.7. Round-trip Time (RTT) for CPs

Round-trip Time (ms) Origin Server Cache Server/PoP Cloud Cache Edge Computing Site

CP1 200 30 60 10

CP2 200 30 60 10

CP3 200 30 60 10

CP4 200 30 60 10

CP5 200 30 60 10

CP6 200 30 60 10

CP7 200 30 60 10

CP8 200 30 60 10

CP9 200 30 60 10

CP10 200 30 60 10

Edge-processing Time (PT) for CDN services used cache on different sites is demonstrated

in Table 3.8.

Table 3.8. Edge-processing Time (PT) for CPs

Processing Time (ms) Origin Server Cache Server/PoP Cloud Cache Edge Computing Site

CP1 100 20 25 10

CP2 100 20 25 10

CP3 100 20 25 10

CP4 100 20 25 10

CP5 100 20 25 10

CP6 100 20 25 10

CP7 100 20 25 10

CP8 100 20 25 10

CP9 100 20 25 10

CP10 100 20 25 10
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3.2.2 Software and Computing Environment

• GAMS v28.2.0 is the modeling system used in this experiment for mathematical

programming and optimization. GAMS/CONOPT is the solver used to find the profit

and performance optimization solution to each problem.

• Design Expert v11.1.0.1 64-bit by Stat-Ease is used to lay out the experiment with

factors of interest to perform the statistical analysis. As a statistical software specifi-

cally dedicated to performing design of experiments (DOE), statistical significance of

the factors is established with analysis of variance (ANOVA).

• A MacBook Air equipped with a 1.6GHz dual-core Intel Core i5 (Turbo Boost up

to 3.6GHz, with 4MB L3 cache), 256GB PCIe-based SSD, and 16GB of 2133MHz

LPDDR3 on-board memory is used in this experiment as the main computing environ-

ment.

3.2.3 Number of Observations

The goal was to execute the single replicate full factorial design for three CDN systems

(blocks) and the following factors and response selected for this experiment. The following

factors and response selected for this experiment.

• Factors: A = capacity, B = total demand, C = busy-hour duration, D = cache-hit

ratio

• Aliases: A = A + BCD, B = B+ ACD, C = C+ABD, D = D+ABC, AB = AB+CD,

AC = AC+BD, AD = AD+BC

• Defining Contrast: I = ABCD

• Generators: D=ABC

• Response: Profit gained from CDN

• Signal to noise and power: default
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Three demand scenarios for ten CPs of 20 districts are tested on traditional CDN, cloud-

based CDN and cloud-based CDN with edge computing systems for different factors and level

combination. There is a total 243 test instances evaluated to reach this praxis’ conclusions.

Table 3.9 demonstrates the number of observations per factor and level combination).

Table 3.9. Number of Tests in Experiment

System Nodes Capacity(G) Total Demand (G) Busy-Hour (%) Cache-hit Ratio(%)

Traditional

CDN

20 5600 2500 3500 4500 7.5% 10% 15% 90% 95% 98%

20 6000 3000 4000 5000 7.5% 10% 15% 90% 95% 98%

20 7000 3500 4500 5500 7.5% 10% 15% 90% 95% 98%

Cloud-based

CDN

4 5600 2500 3500 4500 7.5% 10% 15% 90% 95% 98%

4 6000 3000 4000 5000 7.5% 10% 15% 90% 95% 98%

4 7000 3500 4500 5500 7.5% 10% 15% 90% 95% 98%

Cloud-based CDN

with Edge

Computing

20 2500 2500 3500 4500 7.5% 10% 15% 90% 95% 98%

20 3000 3000 4000 5000 7.5% 10% 15% 90% 95% 98%

20 3500 3500 4500 5500 7.5% 10% 15% 90% 95% 98%

3.2.4 Randomization

It is generally extremely difficult for experimenters to eliminate bias using only their

expert judgment and the use of randomization in the observation collection order is com-

mon practice. We used the Design Expert software to randomize the runs as Table 3.10 (in

standard order).
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Table 3.10. Randomization of Experiment

Factors

Run Capacity (G) Total Demand(G) Busy-Hour Duration(%) Cache-hit Ratio (%)

1 + − + +

2 − − + −
3 + + + −
4 + − − −
5 − + − −
6 + + + +

7 − + + −
8 + − + −
9 − + − +

10 − + + +

11 + + − −
12 + + − +

13 − − − +

14 − − + +

15 + − − +

16 − − − −

3.3 The Analysis

3.3.1 Data Analysis Method

In this section a set of hypotheses are stated and are rejected or not rejected. 14 hy-

potheses are tested in the experiment.

3.3.2 Test Statistics Used

The results are tested using a full-factorial experimental design. Four factors of inter-

ests: capacity, total demand, busy-hour duration and cache-hit ratio, are investigated in the

analysis.
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3.3.3 Significance Levels

For all tests the level of significance, an α of 0.05 is used as the cutoff for significance. If

the p-value is less than 0.05, we reject the null hypothesis that there’s no difference between

the means and conclude that a significant difference does exist. If the p-value is larger than

0.05, we cannot conclude that a significant difference exists.
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Chapter 4

Experiment Test Results and Analysis

4.1 Summary of the Data

Solution by GAMS for the base case as Table 4.1 is presented in Appendix A.

Table 4.1. Base Case of Traditional CDN

Total Capacity (G) Total Demand (G)
Busy-hour (%) cache-hit Ratio (%)

Traditional CDN Cloud-based CDN Edge Computing Sites Idle Normal Busy

6000 6000 3000 3000 4000 5000 10% 95%

4.1.1 Traditional CDN

The monthly expected profit is $3338.35 k USD for traditional CDN base case and the

SP should order bandwidth by every PoP at the beginning of each month as demonstrated

in Table 4.2.

Table 4.2. Optimum Results of Traditional CDN for SP

Monthly Expected Profit = $3338.35 k USD

Bandwidth Ordered by Every PoP at the Beginning of the Month

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

205G 140G 235G 250G 250G 250G 250G 250G 250G 250G

S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

190G 250G 250G 250G 250G 250G 250G 250G 250G 230G

The optimum results for ten CPs served with a traditional CDN at the end of each month

are demonstrated in Table 4.3. Cache-hit ratio, round-trip time and edge-processing time

were calculated to evaluate the performance of traditional CDN.
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Table 4.3. Optimum Results of Traditional CDN for CPs

Idle-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 100 100 95 5 95% 38.5 24

2 100 100 100 100% 30 20

3 200 200 200 100% 30 20

4 200 200 200 100% 30 20

5 300 300 285 15 95% 38.5 24

6 300 300 300 100% 30 20

7 400 400 380 20 95% 38.5 24

8 400 400 380 20 95% 38.5 24

9 500 500 475 25 95% 38.5 24

10 500 500 475 25 95% 38.5 24

Normal-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 200 200 190 10 95% 38.5 24

2 200 200 190 10 95% 38.5 24

3 300 300 300 100% 30 20

4 300 300 300 100% 30 20

5 400 400 390 10 98% 34.25 22

6 400 400 400 100% 30 20

7 500 500 475 25 95% 38.5 24

8 500 500 475 25 95% 38.5 24

9 600 600 600 100% 30 20

10 600 600 600 100% 30 20

Busy-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 300 300 285 15 95% 38.5 24

2 300 300 285 15 95% 38.5 24

3 400 400 380 20 95% 38.5 24

4 400 400 380 20 95% 38.5 24

5 500 500 475 25 95% 38.5 24

6 500 500 475 25 95% 38.5 24

7 600 600 570 30 95% 38.5 24

8 600 600 570 30 95% 38.5 24

9 700 700 665 35 95% 38.5 24

10 700 700 665 35 95% 38.5 24
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4.1.2 Cloud-based CDN

The monthly expected profit is $4897.625 k USD for cloud-based CDN base case. The SP

should order bandwidth by every cloud domain at the beginning of each month as demon-

strated in Table 4.4.

Table 4.4. Optimum Results of Cloud-based CDN for SP

Monthly Expected Profit = $4897.625 k USD

Bandwidth Ordered by Every Cloud Domain at the Beginning of the Month

Cloud 1 Cloud 2 Cloud 3 Cloud 4

1100G 1180G 1250G 1220G

The optimum results for ten CPs served with a cloud-based CDN at the end of each

month are demonstrated in Table 4.5. Cache-hit ratio, round-trip time and edge-processing

time were calculated to evaluate the performance of cloud-based CDN. Although the monthly

expected profit from cloud-based CDN is better than the traditional CDN, the performance

metrics such as round-trip time and edge process time are worse off.
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Table 4.5. Optimum Results of Cloud-based CDN for CP

Idle-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 100 100 95 5 95% 67 28.75

2 100 100 95 5 95% 67 28.75

3 200 200 190 10 95% 67 28.75

4 200 200 190 10 95% 67 28.75

5 300 300 285 15 95% 67 28.75

6 300 300 285 15 95% 67 28.75

7 400 400 380 20 95% 67 28.75

8 400 400 380 20 95% 67 28.75

9 500 500 475 25 95% 67 28.75

10 500 500 475 25 95% 67 28.75

Normal-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 200 200 190 10 95% 67 28.75

2 200 200 190 10 95% 67 28.75

3 300 300 285 15 95% 67 28.75

4 300 300 285 15 95% 67 28.75

5 400 400 380 20 95% 67 28.75

6 400 400 380 20 95% 67 28.75

7 500 500 475 25 95% 67 28.75

8 500 500 475 25 95% 67 28.75

9 600 600 570 30 95% 67 28.75

10 600 600 570 30 95% 67 28.75

Busy-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 300 300 285 15 95% 67 28.75

2 300 300 285 15 95% 67 28.75

3 400 400 380 20 95% 67 28.75

4 400 400 380 20 95% 67 28.75

5 500 500 475 25 95% 67 28.75

6 500 500 475 25 95% 67 28.75

7 600 600 570 30 95% 67 28.75

8 600 600 570 30 95% 67 28.75

9 700 700 665 35 95% 67 28.75

10 700 700 665 35 95% 67 28.75
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4.1.3 Cloud-based CDN with Edge Computing

The monthly expected profit is $6465.35 k USD for cloud-based CDN with edge com-

puting base case. The SP should order bandwidth by every cloud domain and every edge

computing site at the beginning of each month as demonstrated in Table 4.6.

Table 4.6. Optimum Results of Cloud-based CDN with Edge Computing for SP

Monthly Expected Profit = $6465.35 k USD

Bandwidth Ordered by Every Cloud Domain at the Beginning of the Month

Cloud 1 Cloud 2 Cloud 3 Cloud 4

455G 490G 480G 325G

Bandwidth Ordered by Edge Computing Sites at the Beginning of the Month

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

150G 150G 150G 150G 150G 150G 150G 150G 150G 150G

E11 E12 E13 E14 E15 E16 E17 E18 E19 E20

150G 150G 150G 150G 150G 150G 150G 150G 150G 150G

The optimum results for ten CPs served with a cloud-based CDN with edge computing at

the end of each month are demonstrated in Table 4.7. Cache-hit ratio, round-trip time and

edge-processing time were calculated to evaluate the performance of cloud-based CDN with

edge computing. The monthly expected profit from cloud-based CDN with edge computing

is greater than the traditional CDN and cloud-based CDN, the performance metrics such as

round-trip time and edge process time are also better off.
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Table 4.7. Optimum Results of Cloud-based CDN with Edge Computing for CP

Idle-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 100 100 95 5 95% 19.5 14.5

2 100 100 95 5 95% 19.5 14.5

3 200 200 190 10 95% 19.5 14.5

4 200 200 190 10 95% 19.5 14.5

5 300 300 285 15 95% 19.5 14.5

6 300 300 285 15 95% 19.5 14.5

7 400 400 380 20 95% 47 22.75

8 400 400 380 20 95% 47 22.75

9 500 500 475 25 95% 47 22.75

10 500 500 475 25 95% 47 22.75

Normal-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 200 200 190 10 95% 19.5 14.5

2 200 200 190 10 95% 19.5 14.5

3 300 300 285 15 95% 19.5 14.5

4 300 300 285 15 95% 19.5 14.5

5 400 400 380 20 95% 19.5 14.5

6 400 400 380 20 95% 19.5 14.5

7 500 500 475 25 95% 47 22.75

8 500 500 475 25 95% 47 22.75

9 600 600 570 30 95% 47 22.75

10 600 600 570 30 95% 47 22.75

Busy-hour

CP Demand (G) Bought (G) Cache Hit (G) Cache Miss (G) Cache Hit Ratio RTT(ms) PT (ms)

1 300 300 285 15 95% 19.5 14.5

2 300 300 285 15 95% 19.5 14.5

3 400 400 380 20 95% 19.5 14.5

4 400 400 380 20 95% 19.5 14.5

5 500 500 475 25 95% 19.5 14.5

6 500 500 475 25 95% 19.5 14.5

7 600 600 570 30 95% 47 22.75

8 600 600 570 30 95% 47 22.75

9 700 700 665 35 95% 47 22.75

10 700 700 665 35 95% 47 22.75
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4.1.4 Data from the Experiment

Experiments were run for traditional CDN of a full factorial two level design in four factors: capacity, total demand,

busy-hour duration and cache-hit ratio, with all 16 runs taken in random order (Table 4.8).

Table 4.8. Experiment Data of Traditional CDN

Capacity (G) Total Demand (G) Busy-hour (%) cache-hit (%)Run

No. 5600 6000 7000 2500 3500 4500 3000 4000 5000 3500 4500 5500 7.5% 10% 15% 90% 95% 98%

Expected

Profit (k$)

1 + − + + 2154.650

2 − − + − 2953.250

3 + + + − 4338.350

4 + − − − 2331.875

5 − + − − 4557.425

6 + + + + 3875.670

7 − + + − 4758.350

8 + − + − 2533.250

9 − + − + 4093.485

10 − + + + 4295.670

11 + + − − 4137.425

12 + + − + 3673.485

13 − − − + 2372.375

14 − − + + 2574.650

15 + − − + 1952.375

16 − − − − 2751.875
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Experiments were run for cloud-based CDN of a full factorial two level design in four factors: capacity, total demand,

busy-hour duration and cache-hit ratio, with all 16 runs taken in random order (Table 4.9).

Table 4.9. Experiment Data of Cloud-based CDN

Capacity (G) Total Demand (G) Busy-hour (%) cache-hit (%)Run

No. 5600 6000 7000 2500 3500 4500 3000 4000 5000 3500 4500 5500 7.5% 10% 15% 90% 95% 98%

Expected

Profit (k$)

1 + − + − 4566.000

2 + + + − 6171.000

3 − + + − 6171.000

4 − + − − 5989.875

5 + − − − 4384.875

6 − − + − 4566.000

7 − − − − 4384.875

8 + + − + 5368.975

9 − − − + 3887.975

10 + − + + 4065.200

11 + + − − 5989.875

12 + − − + 3887.975

13 + + + + 5546.200

14 − − + + 4065.200

15 − + − + 5368.975

16 − + + + 5546.200
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Experiments were run for cloud-based CDN with edge computing of a full factorial two level design in four factors: capacity,

total demand, busy-hour duration and cache-hit ratio, with all 16 runs taken in random order (Table 4.10).

Table 4.10. Experiment Data of Cloud-based CDN with Edge Computing

Edge Capacity (G) Total Demand (G) Busy-hour (%) cache-hit (%)Test

No. 2500 3000 3500 2500 3500 4500 3000 4000 5000 3500 4500 5500 7.5% 10% 15% 90% 95% 98%

Expected

Profit (k$)

1 + + − + 7248.122

2 − + + − 7541.125

3 + − + + 5720.730

4 − − + + 5343.095

5 + − − − 5972.875

6 + − + − 6162.250

7 + + − − 7839.013

8 − + − − 7367.500

9 − + − + 6764.587

10 − − + − 5821.875

11 − − − − 5632.688

12 + + + − 8030.525

13 − + + + 6932.925

14 − − − + 5156.697

15 + + + + 7437.145

16 + − − + 5531.115
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4.2 Statistical Analysis and Conclusions

4.2.1 Traditional CDN

The praxis used the Design Expert software to analyze the data recorded in Table 4.8

for traditional CDN. Based on the half-normal probability plot, factors A, B, C, D, BD are

studied as in Figure 4.1.

Figure 4.1. Half-normal Plot of the Experiment for Traditional CDN

According to the ANOVA results (Figure 4.2), the Model F-value of 22049873.36 implies

the model is significant. There is only a 0.01% chance that an F-value this large could

occur due to noise. P-values less than 0.0500 indicate model terms are significant. In this

case A, B, C, D, BD are significant model terms. Thereby the vital few from the four

factors experimented are capacity, total demand, busy-hour duration and cache-hit ratio

requirement.
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Figure 4.2. ANOVA of Selected Factorial Model for Traditional CDN

According to the analysis of residuals (Figure 4.3), there is no indication of model inad-

equacy or violation of the assumptions.
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Figure 4.3. Residuals of the Experiment for Traditional CDN

4.2.2 Cloud-based CDN

The praxis used the Design Expert software to analyze the data recorded in Table 4.9 for

cloud-based CDN. Based on the half-normal probability plot, factors A, B, C, D, AB, AC,

AD, BC, CD, ABC are studied as in Figure 4.4.

Figure 4.4. Half-normal Plot of the Experiment for Cloud-based CDN
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According to the ANOVA results (Figure 4.5), the Model F-value of 22.96 implies the

model is significant. There is only a 0.15% chance that an F-value this large could occur

due to noise. P-values less than 0.0500 indicate model terms are significant. In this case B,

D, AD, CD, ABC are significant model terms.

Figure 4.5. ANOVA of Selected Factorial Model for Cloud-based CDN

According to the analysis of residuals (Figure 4.6), there is no indication of model inad-

equacy or violation of the assumptions.
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Figure 4.6. Residuals of the Experiment for Cloud-based CDN

4.2.3 Cloud-based CDN with Edge Computing

The praxis used the Design Expert software to analyze the data recorded in Table 4.10 for

cloud-based CDN with edge computing. Based on the half-normal probability plot, factors

A, B, C, D, AB, AD, BD are studied as in Figure 4.7.
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Figure 4.7. Half-normal Plot of the Experiment for Cloud-based CDN with Edge Computing

According to the ANOVA results (Figure 4.8), the Model F-value of 41188.36 implies the

model is significant. There is only a 0.01% chance that an F-value this large could occur

due to noise. P-values less than 0.0500 indicate model terms are significant. In this case A,

B, C, D, AB, AD, BD are significant model terms.
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Figure 4.8. ANOVA of Selected Factorial Model for Cloud-based CDN with Edge Computing

According to the analysis of residuals (Figure 4.9), there is no indication of model inad-

equacy or violation of the assumptions.
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Figure 4.9. Residuals of the Experiment for Cloud-based CDN with Edge Computing

4.2.4 Factor Analysis and Hypotheses Results

H0 #1 is rejected since different CDN network architecture has different profit gained by

the SP. H0 #2 is rejected since different CDN network architecture has different round-trip

time results for CPs.
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Table 4.11. Factor Analysis & Hypotheses Results

Hypotheses Traditional CDN Cloud-based CDN
Cloud-based CDN with

Edge Computing

1-Factor

H0 #3 (A) rejected not rejected rejected

H0 #4 (B) rejected rejected rejected

H0 #5 (C) rejected not rejected rejected

H0 #6 (D) rejected rejected rejected

2-Factor

H0 #7 (AB) not rejected not rejected rejected

H0 #8 (AC) not rejected not rejected not rejected

H0 #9 (AD) not rejected rejected rejected

H0 #10 (BC) not rejected not rejected not rejected

H0 #11 (BD) rejected not rejected rejected

H0 #12 (CD) not rejected rejected not rejected

3-Factor

H0 #13 (ABC) not rejected rejected not rejected

H0 #14 (ABD) not rejected not rejected not rejected

H0 #15 (ACD) not rejected not rejected not rejected

H0 #16 (BCD) not rejected not rejected not rejected

4.3 Findings

4.3.1 Traditional CDN

According to the further analysis of factors (Figure 4.10) for traditional CDN, the ex-

pected profit of traditional CDN could be improved by reducing the upfront capacity of

PoPs, increasing the total demand, decreasing the busy-hour duration, or reducing the re-

quirement for cache-hit ratio. The total demand and cache-hit ratio requirement affect the

expected profit in the same way.
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Figure 4.10. Factors of the Experiment for Traditional CDN

4.3.2 Cloud-based CDN

According to the further analysis of factor interaction (Figure 4.11) for cloud-based CDN,

the expected profit of cloud-based CDN could be improved by increasing the total demand

or reducing the requirement for cache-hit ratio.

Figure 4.11. Factors of the Experiment for Cloud-based CDN

4.3.3 Cloud-based CDN with Edge Computing

According to the further analysis of factor interaction (Figure 4.12) for cloud-based CDN

with edge computing, the expected profit of cloud-based CDN with edge computing could be
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improved by increasing the capacity of edge computing sites, increasing the total demand,

decreasing the busy-hour duration, or reducing the requirement for cache-hit ratio. The

capacity of edge computing sites and the total demand affect the expected profit in the same

way.

Figure 4.12. Factors of the Experiment for Cloud-based CDN with Edge Computing

4.4 Recommendations for Service Providers

According to the results of the experiments, service providers can optimize their CDN

networks current in operation or in the planning stages. Recommendations regarding CDN

network architecture, Capacity, total demand, busy-hour duration, cache-hit ratio require-

ment are presented as follows.

4.4.1 CDN Network Architecture

As previously discussed, cloud-based CDN would gain more expected profit since it saves

more upfront investment than traditional CDN. Service providers that use traditional CDN

or setup new CDN network should consider migrating to cloud-based CDN network architec-

ture. Cloud-based CDN with edge computing is supposed to gain more expected profit than

cloud-based CDN with better network performance in terms of round-trip time. Thereby

service providers that use cloud-based CDN should consider adding edge computing sites to

their CDN networks.
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4.4.2 Capacity

As discussed in previous chapters, CAPEX of capacity is a linear function of its associated

bandwidth for cloud-based CDN or cloud-based CDN with edge computation. Thereby

service providers could invest little CAPEX upfront to leverage the infrastructure of public

cloud and edge computing sites to improve the expected profit.

4.4.3 Total Demand

Total demand affects the profit gained mostly. Generally speaking, the higher the demand

of CDN service, the lower of the average costs of CDN if the overall capacity is available.

Service providers need to consider CPs’ demand profiles to satisfy the need of the customers

more efficiently. Moreover, service providers should have a good promotion plan to make

sure the total demand is close to the capacity available to gain more profit.

4.4.4 Busy-hour Duration

The results from the experiments demonstrate that CP’s demand of busy-hour has neg-

ative effects on expected profit. Different CPs might have different busy-hour profiles in

practice and thereby service providers should design task scheduling strategies to reduce the

peak demand for busy-hours duration or decrease the busy-hour duration.

4.4.5 Cache-hit Ratio Requirement

The results previously presented show that cache-hit ratio requirement by CPs has an

important effect on expected profit. The higher the cache-hit ratio required, the lower the

expected profit.

Service providers uses traditional CDN could hardly guarantee cache-hit ratio for every

CP. Cloud-based CDN could satisfy with the cache-hit ratio requirement but the round-trip

time might not be good enough. Service providers should migrate to cloud-based CDN with

edge computing to get better performance and more expected profit.
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4.5 Recommendation of Interconnected Exchange Cache

The deployment approach of the traditional CDN service providers involves placing their

PoPs in numerous geographical locations worldwide. However, the requirements for providing

high quality service through global coverage might be an obstacle for new CDN service

providers, as well as affecting the commercial viability of existing ones.

The praxis introduces cloud-based CDN that CDN service providers can cooperate or

leverage the global public cloud infrastructure in delivering content to the end users in a

scalable manner. Such an open, cooperative model results in a coordinated and cooperative

content delivery via interconnection among multiple public cloud administrative domains

that could allow service providers to rapidly “scale-out” to meet anticipated increases in

demand and remove the need for a given CDN to provision resources.

CDN services are often used by large enterprise customers and customers require per-

formance commitments by signing Service Level Agreements (SLAs) with service providers.

The praxis further introduces cloud-based CDN with edge computing to optimize the round-

trip time (RTT) and edge-processing time for the end user requests. Economies of scale,

in terms of cost effectiveness and performance for both providers and end users, could be

achieved by leveraging existing underutilized infrastructure provided by public cloud and

edge computing sites.

The praxis terms the technology for interconnection and inter-operation among cloud-

based CDN nodes and edge computing sites as “Interconnected Cache Exchange” of CDNs

or simply “ICE”, which is defined as follows:

Definition of ‘Interconnected Cache Exchange’ – a peering arrangement formed by a set

of autonomous clouds cloud1, cloud2, ..., cloudk and a set of edge computing sites ec1, ec2, ...,

ece to provide facilities and infrastructure for cooperation among multiple public clouds and

edge computing sites to allocate resources in order to ensure efficient service delivery. Each

cloudk or ece is interconnected to other peers to exchange useful resources for performance

optimization. The following issues are addressed by ICE:
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• When to peer? The circumstances under which a peering arrangement could be trig-

gered.

• How to peer? The strategy formulated to form an ICE arrangement among multiple

clouds and edge computing sites.

• Who to peer with? The decision making mechanism used for choosing clouds and edge

computing sites to peer with.

• How to manage to guarantee the performance in an effective way?

ICE requires fundamental research to be undertaken to address the core problems of

satisfying total demand and performance requirement by multiple clouds and edge computing

sites on a geographically distributed scale. Moreover, to ensure sustained resource sharing

between service providers, ICE arrangements must ensure that sufficient incentive/profit

exists for service providers.

The praxis presents an approach for ICE, cloud-based CDN with edge computing, to cre-

ate an “open” CDN network architecture that scale well and can allocate resources among

multiple clouds and edge computing sites to serve end users’ requests with required perfor-

mance.
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Chapter 5

Conclusions and Future Research

5.1 Summary of Findings and Conclusions

The CDN industry is extremely competitive nowadays. New entrants aggressively chal-

lenge existing service providers while consumers continually demand more innovative and

faster CDN services. To remain competitive, CDN service providers must provide rapid

and reliable CDN network with better profitability. Although several systems introduced

in previous chapters to provide CDN network services, very little conclusive CDN network

research exists that considers relevant service provider CDN network design considerations.

Also, new technologies are available, such as public cloud and edge computing, which pro-

vide enhanced CDN network capabilities but further complicate the CDN network systems

selection process.

The praxis presents different CDN systems for solving CDN network profit maximization

and performance optimization problems. three CDN network architectures are investigated.

Mathematical model formulations to maximize expected profit for traditional CDN, cloud-

based CDN and cloud-based CDN with edge computing are presented. Also, a calculation

procedure for performance optimization in terms of round-trip time and processing time is

described. The models are formulated as an Non-Linear Programming (NLP) problems to

maximize the expected profit with performance requirement by network resource allocation.

A series of computational studies demonstrate the effectiveness of the models for deter-

mining which CDN network architecture is least costly given real-world constraints of the

capacity, total demand, busy-hour duration, and cache-hit ratio requirement. The results

found that the expected profit is substantially affected by the levels of the constraints and

the selection of the least cost CDN network is dependent on the service provider network
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architecture, resource allocation and performance requirement. Information derived from the

results of the experiments are used to determine the effects of CDN network architecture,

capacity, total demand, busy-hour duration and cache-hit ration requirement.

A summary of the experiment results are as follows:

• In general, cloud-based CDN with edge computing system is the least expensive CDN

architecture and traditional CDN system is the most expensive. However, the cost of

recovery methods can be heavily influenced by the levels of the other factors such as

capacity, total demand, busy-hour duration and cache-hit ratio requirement.

• Given that capacity established is considered a sunk cost by service providers, the

results of this praxis conclusively demonstrate that the less capacity used, the more

costly the CDN network. The capacity of bandwidth used in traditional CDN and

cloud-based CDN is 5600G, 6000G and 7000G and the capacity of bandwidth used in

edge computing is 2500G, 3000G and 3500G. The more the capacity of edge computing

sites, the greater the expected profit gained by the service providers.

• The total demand of idle-hour, normal-hour and busy-hour used by the models are

typical demand sizes supported by the service provider in practice. In general, the

more the total demand, the more the expected profit if the capacity is still available.

• The busy-hour duration is tested using 7.5%, 10% and 15% for every 24 hours. The

busy-hour duration will affect the peak demand of CDN service from CPs to service

providers. The shorter the busy-hour duration, the better the profitability of CDN for

service providers.

• The cache-hit ratio used by the models are 90%, 95% and 98% because they are typical

requirement for the service providers by the content providers. In general, the expected

profit of 90% cache-hit ratio is greater than 95%, which is greater than 98% cache-hit

ratio. The results of the models indicate that the expected profit of using 90% cache-

hit ratio in the CDN networks is the greatest for all CDN network architectures and

total demands.
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5.2 Contributions

The praxis proposed Interconnected Cache Exchange (ICE), a cloud-based CDN with

edge computing platform for virtual caching to maximize profit by resource allocation and

performance optimization. There are several key challenges that need to be addressed.

1. The cloud-based CDN resource allocation is complex in reality due to the cloud service

providers have different strategies for different regions.

2. The complexity of the performance optimization decision is high as different customers

have different requirement on round-trip time (RTT) and edge-processing time.

3. The optimization model should take into account the inherent heterogeneity in terms of

CDN network capacity, total demand of different scenarios, likely busy-hour duration

and cache-hit ratio requirement from the customers.

The main contributions of this praxis are summarized as follows.

1. Formulate the problem of resource allocation and performance optimization as a multi-

stage stochastic linear programming model in a multiple clouds with edge computing

sites environment to maximize profit.

2. Propose a method to decompose the problem into (i) a resource-allocation problem

with fixed content distribution decisions and (ii) a performance improvement problem

for different CDN network architectures corresponding to the resource allocation.

3. Develop a broker scheme (ICE: Interconnected Cache Edge) using cloud-based CDN

with edge computing system to leverage the multi-supplier and multi-cloud environ-

ment to maximize profit and meet with the performance requirement.

The results of the models are valuable to CDN network service providers:

1. Allow technical and financial evaluation of CDN network architecture options.

2. Indicate the most cost-efficient CDN caching method based on network architectures.
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3. Consider the real-world constraints of the capacity, total demand, busy-hour duration

and cache-hit ratio requirement.

4. Eliminate the need for huge upfront investment for service providers.

5. Allow the evaluation of virtual caching by cloud-base CDN with edge computing.

6. Interconnected Cache Exchange (ICE) platform was developed and experimented.

5.3 Future Research

Optimizing the many parameters for the CDN architecture is challenging. There are tens

of thousands of caching servers and each customer requires different metrics of performance

with the network traffic changes over time. In fact, network traffic changes can happen within

minutes and service providers increasingly rely on multiple cloud and edge computing sites

deployments and frequently shift network traffic among them in practice.

A possible future avenue of research would be to consider the effect of cache sharing

within minutes among multiple clouds and edge computing sites in virtualized CDN network

architectures. In future work, we will focus on some improvements to the ICE platform, to

develop a machine learning system/model that predicts the actual optimal caching decisions

to further direct and benefit the service providers.
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Appendix A

GAMS Code for Cloud-based CDN with Edge Computing

$T i t l e Praxis ICE

$ontext

Cloud based CDN with Edge Computing problem .

Random parameter D has a d i s c r e t e d i s t r i b u t i o n .

$ o f f t e x t

SETS I ’ Content Providers ’ /1∗10/

J ’PoPs or D i s t r i c t s ’ /S1∗S20/

K ’ Clouds or Regions ’ /C1∗C4/

E ’Edge Computing Site ’ /E1∗E20/

C ’ Costs f o r Transit , Penalty , Holding , Storgage ’ /CA, TC, PC, HC, SC, CC, EC/

D ’ L ike ly Demand Scenar ios ’ /IH , NH, BH/

T ’Time in ms ’ /RTTO, RTTP, RTTC, RTTE, PTO, PTP,

PTC, PTE/ ;

PARAMETER

SP(D) ’ Probab i l i t y o f L ike ly Demands ’

/ IH .25

NH .65

BH .10 / ;

TABLE LD( I ,D) ’ L ike ly Demands o f CPs ’

IH NH BH

1 100 200 300

2 100 200 300

3 200 300 400

4 200 300 400

5 300 400 500

6 300 400 500

7 400 500 600

8 400 500 600

9 500 600 700

10 500 600 700 ;

TABLE PUD( I , J ) ’ L ike ly Demand D i s t r i bu t i on per CP by PoP ’

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

S16 S17 S18 S19 S20

1 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

2 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

3 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

4 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05
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5 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

6 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

7 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

8 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

9 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

10 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05 ;

TABLE EUD( I ,E) ’ L ike ly Demand D i s t r i bu t i on per CP by PoP ’

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

E16 E17 E18 E19 E20

1 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

2 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

3 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

4 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

5 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

6 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

7 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

8 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

9 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05

10 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05

.05 .05 .05 .05 .05 ;

TABLE PH( I , J ) ’1 ,000 Do l l a r s per Unit ’

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

S16 S17 S18 S19 S20

1 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

2 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

3 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8

2 .8 2 .8 2 .8 2 .8 2 .8

4 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8

2 .8 2 .8 2 .8 2 .8 2 .8

5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

2 .5 2 .5 2 .5 2 .5 2 .5

6 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

2 .5 2 .5 2 .5 2 .5 2 .5

7 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2

2 .2 2 .2 2 .2 2 .2 2 .2

8 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2

2 .2 2 .2 2 .2 2 .2 2 .2

9 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0

2 .0 2 .0 2 .0 2 .0 2 .0
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10 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0

2 .0 2 .0 2 .0 2 .0 2 .0 ;

TABLE PM( I , J ) ’1 ,000 Do l l a r s per Unit ’

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

S16 S17 S18 S19 S20

1 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5

3 .5 3 .5 3 .5 3 .5 3 .5

2 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5

3 .5 3 .5 3 .5 3 .5 3 .5

3 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

4 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

5 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

6 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

7 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

8 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

9 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

2 .5 2 .5 2 .5 2 .5 2 .5

10 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

2 .5 2 .5 2 .5 2 .5 2 .5 ;

TABLE CH( I ,K) ’1 ,000 Do l l a r s per Unit ’

C1 C2 C3 C4

1 2 .5 2 .5 2 .5 2 .5

2 2 .5 2 .5 2 .5 2 .5

3 2 .5 2 .5 2 .5 2 .5

4 2 .5 2 .5 2 .5 2 .5

5 2 .5 2 .5 2 .5 2 .5

6 2 .5 2 .5 2 .5 2 .5

7 2 .5 2 .5 2 .5 2 .5

8 2 .5 2 .5 2 .5 2 .5

9 2 .5 2 .5 2 .5 2 .5

10 2 .5 2 .5 2 .5 2 .5 ;

TABLE CM( I ,K) ’1 ,000 Do l l a r s per Unit ’

C1 C2 C3 C4

1 3 .0 3 .0 3 .0 3 .0

2 3 .0 3 .0 3 .0 3 .0

3 3 .0 3 .0 3 .0 3 .0

4 3 .0 3 .0 3 .0 3 .0

5 3 .0 3 .0 3 .0 3 .0

6 3 .0 3 .0 3 .0 3 .0

7 3 .0 3 .0 3 .0 3 .0

8 3 .0 3 .0 3 .0 3 .0

9 3 .0 3 .0 3 .0 3 .0

10 3 .0 3 .0 3 .0 3 .0 ;

TABLE EH( I ,E) ’1 ,000 Do l l a r s per Unit ’

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

E16 E17 E18 E19 E20
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1 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

2 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

3 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8

2 .8 2 .8 2 .8 2 .8 2 .8

4 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8

2 .8 2 .8 2 .8 2 .8 2 .8

5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

2 .5 2 .5 2 .5 2 .5 2 .5

6 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

2 .5 2 .5 2 .5 2 .5 2 .5

7 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2

2 .2 2 .2 2 .2 2 .2 2 .2

8 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2

2 .2 2 .2 2 .2 2 .2 2 .2

9 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0

2 .0 2 .0 2 .0 2 .0 2 .0

10 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0 2 .0

2 .0 2 .0 2 .0 2 .0 2 .0 ;

TABLE EM( I ,E) ’1 ,000 Do l l a r s per Unit ’

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15

E16 E17 E18 E19 E20

1 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5

3 .5 3 .5 3 .5 3 .5 3 .5

2 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5 3 .5

3 .5 3 .5 3 .5 3 .5 3 .5

3 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2

3 .2 3 .2 3 .2 3 .2 3 .2

4 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2

3 .2 3 .2 3 .2 3 .2 3 .2

5 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

6 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0 3 .0

3 .0 3 .0 3 .0 3 .0 3 .0

7 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8

2 .8 2 .8 2 .8 2 .8 2 .8

8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8 2 .8

2 .8 2 .8 2 .8 2 .8 2 .8

9 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

2 .5 2 .5 2 .5 2 .5 2 .5

10 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5 2 .5

2 .5 2 .5 2 .5 2 .5 2 .5 ;

TABLE CUD(J ,K) ’Demand D i s t r i bu t i on o f D i s t r i c t s by Cloud ’

C1 C2 C3 C4

S1 1

S2 1

S3 1

S4 1

S5 1

S6 1

S7 1

S8 1

S9 1

S10 1

S11 1
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S12 1

S13 1

S14 1

S15 1

S16 1

S17 1

S18 1

S19 1

S20 1 ;

TABLE EUR(E,K) ’Demand D i s t r i bu t i on o f D i s t r i c t s by Cloud ’

C1 C2 C3 C4

E1 1

E2 1

E3 1

E4 1

E5 1

E6 1

E7 1

E8 1

E9 1

E10 1

E11 1

E12 1

E13 1

E14 1

E15 1

E16 1

E17 1

E18 1

E19 1

E20 1 ;

TABLE CATC(J ,C) ’ Capacity & Related Costs in 1 ,000 Do l l a r s per Unit ’

CA TC PC HC SC CC EC

S1 300 0 .8 0 .3 0 .2 0 .3

S2 300 0 .8 0 .3 0 .2 0 .3

S3 300 0 .8 0 .3 0 .2 0 .3

S4 300 0 .8 0 .3 0 .2 0 .3

S5 300 0 .8 0 .3 0 .2 0 .3

S6 300 0 .8 0 .3 0 .2 0 .3

S7 300 0 .8 0 .3 0 .2 0 .3

S8 300 0 .8 0 .3 0 .2 0 .3

S9 300 0 .8 0 .3 0 .2 0 .3

S10 300 0 .8 0 .3 0 .2 0 .3

S11 300 0 .8 0 .3 0 .2 0 .3

S12 300 0 .8 0 .3 0 .2 0 .3

S13 300 0 .8 0 .3 0 .2 0 .3

S14 300 0 .8 0 .3 0 .2 0 .3

S15 300 0 .8 0 .3 0 .2 0 .3

S16 300 0 .8 0 .3 0 .2 0 .3

S17 300 0 .8 0 .3 0 .2 0 .3

S18 300 0 .8 0 .3 0 .2 0 .3

S19 300 0 .8 0 .3 0 .2 0 .3

S20 300 0 .8 0 .3 0 .2 0 . 3 ;

TABLE CACC(K,C) ’ Capacity & Related Costs in 1 ,000 Dol lars ’

CA TC PC HC SC CC EC
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C1 1500 0 .8 0 .1 0 .25

C2 1500 0 .8 0 .1 0 .25

C3 1500 0 .8 0 .1 0 .25

C4 1500 0 .8 0 .1 0 .25 ;

TABLE CAEC(E,C) ’ Capacity & Related Costs in 1 ,000 Do l l a r s per Unit ’

CA TC PC HC SC CC EC

E1 150 0 .4 0 .1 0 .1

E2 150 0 .4 0 .1 0 .1

E3 150 0 .4 0 .1 0 .1

E4 150 0 .4 0 .1 0 .1

E5 150 0 .4 0 .1 0 .1

E6 150 0 .4 0 .1 0 .1

E7 150 0 .4 0 .1 0 .1

E8 150 0 .4 0 .1 0 .1

E9 150 0 .4 0 .1 0 .1

E10 150 0 .4 0 .1 0 .1

E11 150 0 .4 0 .1 0 .1

E12 150 0 .4 0 .1 0 .1

E13 150 0 .4 0 .1 0 .1

E14 150 0 .4 0 .1 0 .1

E15 150 0 .4 0 .1 0 .1

E16 150 0 .4 0 .1 0 .1

E17 150 0 .4 0 .1 0 .1

E18 150 0 .4 0 .1 0 .1

E19 150 0 .4 0 .1 0 .1

E20 150 0 .4 0 .1 0 .1 ;

TABLE TI ( I ,T) ’RTT and PT in ms ’

RTTO RTTP RTTC RTTE PTO PTP PTC PTE

1 200 30 60 10 100 20 25 10

2 180 25 60 10 90 18 25 10

3 200 30 60 10 100 20 25 10

4 180 25 60 10 90 18 25 10

5 200 30 60 10 100 20 25 10

6 180 25 60 10 90 18 25 10

7 200 30 60 10 100 20 25 10

8 180 25 60 10 90 18 25 10

9 200 30 60 10 100 20 25 10

10 180 25 60 10 90 18 25 10 ;

Sca la r MINHIT ’Minimum Cache Hit Requirement ’ / .95 / ;

Sca la r MAXRTT ’Maximum RTT Requirement ’ / 38 / ;

Var iab le ZT ’ Expected P r o f i t f o r Trad i t i ona l CDN in 1000 Dol lars ’

ZC ’ Expected P r o f i t f o r Cloud based CDN in 1000 Dol lars ’

ZE ’ Expected P r o f i t f o r Cloud based CDN with EC in 1000 Dol lars ’ ;

Po s i t i v e Var iab l e s

PBT(J ) ’ Trans i t Bought at PoP J by SP at s tage 1 ’

PCH(J ,D) ’Cache Hitted at PoP J o f L ike ly Demand ’

PCM(J ,D) ’Cache Missed at PoP J o f L ike ly Demand ’

PCN(J ,D) ’Cache Unused at PoP J o f L ike ly Demand ’

XT( I ,D) ’ Trans i t used by CP I in Total at Stage 2 ’

DPH( I , J ,D) ’Cache Hitted o f CP I at PoP J at Stage 2 ’

DPM( I , J ,D) ’Cache Missed o f CP I at PoP J at Stage 2 ’

CBT(K) ’ Trans i t Bought at Cloud K by SP at Stage 1 ’
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CCH(K,D) ’Cache Hitted at Cloud K of L ike ly Demand ’

CCM(K,D) ’Cache Missed at Cloud K of L ike ly Demand ’

CCN(K,D) ’Cache Unused at Cloud K of L ike ly Demand ’

XC( I ,D) ’ Trans i t used by CP I o f CCDN at Stage 2 ’

RCH( I ,K,D) ’Cache Hitted o f CP I at Cloud K at Stage 2 ’

RCM( I ,K,D) ’Cache Missed o f CP I at Cloud K at Stage 2 ’

EBC(K) ’ Trans i t Bought at Cloud K by SP at s tage 1 ’

EBT(E) ’ Trans i t Bought at Edge E by SP at s tage 1 ’

ECH(K,D) ’Cache Hitted at Cloud K of L ike ly Demand ’

ECM(K,D) ’Cache Missed at Cloud K of L ike ly Demand ’

ECN(K,D) ’Cache Unused at Cloud K of L ike ly Demand ’

EEH(E,D) ’Cache Hitted at Edge E o f L ike ly Demand ’

EEM(E,D) ’Cache Missed at Edge E o f L ike ly Demand ’

EEN(E,D) ’Cache Unused at Edge E o f L ike ly Demand ’

XEC( I ,D) ’ Cloud Trans i t Used by CP I o f CCDN with EC at Stage 2 ’

XEE( I ,D) ’Edge Trans i t Used by CP I o f CCDN with EC at Stage 2 ’

REH( I ,K,D) ’Cache Hitted o f CP I at Cloud K at Stage 2 ’

REM( I ,K,D) ’Cache Missed o f CP I at Cloud K at Stage 2 ’

DEH( I ,E,D) ’Cache Hitted o f CP I at Edge E at Stage 2 ’

DEM( I ,E,D) ’Cache Missed o f CP I at Edge E at Stage 2 ’ ;

Equations ETPROFIT, PDEM(D) , PUDE( I ,D) , DDEM(J ,D) , CAPB(J ) , CAPU(J ,D) , PINV(J ,D) , TCPH(J ,D) , TCPM(J ,D) ,

HITRP( I ,D) , TBGHT( I ,D) ;

ETPROFIT . . ZT =E= sum(( I , J ,D) , DPH( I , J ,D)∗PH( I , J )∗SP(D) ) + sum(( I , J ,D) , DPM( I , J ,D)∗PM( I , J )∗SP(D) )

sum(J , CATC(J , ’CA’ ) ∗CATC(J , ’ SC ’ ) )

sum(J , PBT(J )∗CATC(J , ’TC’ ) ) sum( ( J ,D) , PCN(J ,D)∗CATC(J , ’HC’ ) ∗SP(D) ) sum(( J ,D) ,

PCM(J ,D)∗CATC(J , ’PC’ ) ∗SP(D) ) ;

PDEM(D) . . sum( I ,LD( I ,D) ) =E= sum(J , PCH(J ,D) ) + sum(J , PCM(J ,D) ) ;

PUDE( I ,D) . . LD( I ,D) =G= XT( I ,D) ;

DDEM(J ,D) . . sum( I ,LD( I ,D)∗PUD( I , J ) ) =E= sum( I , DPH( I , J ,D) ) + sum( I , DPM( I , J ,D) ) ;

CAPB(J ) . . PBT(J ) =L= CATC(J , ’CA’ ) ;

CAPU(J ,D) . . CATC(J , ’CA’ ) =G= PCH(J ,D) + PCM(J ,D) ;

PINV(J ,D) . . PCN(J ,D) =E= PBT(J ) PCH(J ,D) ;

TCPH(J ,D) . . PCH(J ,D) =E= sum( I , DPH( I , J ,D) ) ;

TCPM(J ,D) . . PCM(J ,D) =E= sum( I , DPM( I , J ,D) ) ;

HITRP( I ,D) . . sum(J ,DPH( I , J ,D) ) =G= MINHIT ∗ XT( I ,D) ;

TBGHT( I ,D) . . XT( I ,D) =E= sum(J , DPH( I , J ,D) ) + sum(J , DPM( I , J ,D) ) ;

Model TCDN / ETPROFIT, PDEM, PUDE, DDEM, CAPB, CAPU, PINV, TCPH, TCPM, HITRP, TBGHT / ;

Option LIMROW=0,LIMCOL=0,SYSOUT=OFF;

Solve TCDN USING NLP MAXIMIZING ZT;

Equations ECPROFIT, CDEM(D) , CUDE( I ,D) , RDEM(K,D) , CACB(K) , CACU(K,D) , CINV(K,D) , TCCH(K,D) , TCCM(K,D) ,

HITRC( I ,D) , CBGHT( I ,D) ;

ECPROFIT . . ZC =E= sum(( I ,K,D) , RCH( I ,K,D)∗CH( I ,K)∗SP(D) ) + sum(( I ,K,D) , RCM( I ,K,D)∗CM( I ,K)∗SP(D) )

sum((K,D) , CCH(K,D)∗CACC(K, ’CC’ ) ∗SP(D) )

sum(K, CBT(K)∗CACC(K, ’TC’ ) ) sum( (K,D) , CCN(K,D)∗CACC(K, ’HC’ ) ∗SP(D) ) sum((K,D) ,

CCM(K,D)∗CACC(K, ’PC’ ) ∗SP(D) ) ;

CDEM(D) . . sum( I , LD( I ,D) ) =E= sum(K, CCH(K,D) ) + sum(K, CCM(K,D) ) ;

CUDE( I ,D) . . LD( I ,D) =G= XC( I ,D) ;

RDEM(K,D) . . sum( I ,RCH( I ,K,D) )+sum( I ,RCM( I ,K,D) ) =E= sum( I , LD( I ,D)∗sum(J ,PUD( I , J )∗CUD(J ,K) ) ) ;

CACB(K) . . CBT(K) =L= CACC(K, ’CA’ ) ;
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CACU(K,D) . . CACC(K, ’CA’ ) =G= CCH(K,D) + CCM(K,D) ;

CINV(K,D) . . CCN(K,D) =E= CBT(K) CCH(K,D) ;

TCCH(K,D) . . CCH(K,D) =E= sum( I , RCH( I ,K,D) ) ;

TCCM(K,D) . . CCM(K,D) =E= sum( I , RCM( I ,K,D) ) ;

HITRC( I ,D) . . sum(K, RCH( I ,K,D) ) =G= MINHIT ∗ XC( I ,D) ;

CBGHT( I ,D) . . XC( I ,D) =E= sum(K, RCH( I ,K,D) ) + sum(K, RCM( I ,K,D) ) ;

Model CCDN / ECPROFIT, CDEM, CUDE, RDEM, CACB, CACU, CINV, TCCH, TCCM, HITRC, CBGHT / ;

Option LIMROW=0,LIMCOL=0,SYSOUT=OFF;

Solve CCDN USING NLP MAXIMIZING ZC;

Equations EEPROFIT, ETDE(D) , EUDE( I ,D) , ERDE(K,D) , EBCB(K) , EBTB(E) , EBCU(K,D) , EBTU(E,D) , ECIN(K,D) ,

EEIN(E,D) , TCEH(K,D) , TCEM(K,D) ,

TEEH(E,D) , TEEM(E,D) , HITRE( I ,D) , RTTRE( I ,D) , EBGHT( I ,D) , EEBGT( I ,D) ;

EEPROFIT . . ZE =E= sum(( I ,K,D) , REH( I ,K,D)∗CH( I ,K)∗SP(D) ) + sum(( I ,K,D) , REM( I ,K,D)∗CM( I ,K)∗SP(D) ) +

sum(( I ,E,D) , DEH( I ,E,D)∗EH( I ,E)∗SP(D) )

+ sum(( I ,E,D) , DEM( I ,E,D)∗EM( I ,E)∗SP(D) ) sum(K, EBC(K)∗CACC(K, ’TC’ ) ) sum(E,

EBT(E)∗CAEC(E, ’TC’ ) )

sum( (K,D) , ECH(K,D)∗CACC(K, ’CC’ ) ∗SP(D) ) sum((E,D) , EEH(E,D)∗CAEC(E, ’EC’ ) ∗SP(D) )

sum((K,D) , ECN(K,D)∗CACC(K, ’HC’ ) ∗SP(D) ) sum((E,D) , EEN(E,D)∗CAEC(E, ’HC’ ) ∗SP(D) ) ;

ETDE(D) . . sum( I , LD( I ,D) ) =E= sum(K, ECH(K,D) ) + sum(K, ECM(K,D) ) + sum(E,

EEH(E,D) ) + sum(E, EEM(E,D) ) ;

EUDE( I ,D) . . LD( I ,D) =G= XEC( I ,D) + XEE( I ,D) ;

ERDE(K,D) . . sum( I , LD( I ,D)∗sum(J ,PUD( I , J )∗CUD(J ,K) ) ) =E= sum( I , (REH( I ,K,D) + REM( I ,K,D) +

sum(E, (DEH( I ,E,D)+DEM( I ,E,D) )∗EUR(E,K) ) ) ) ;

EBCB(K) . . EBC(K) =L= CACC(K, ’CA’ ) ;

EBTB(E) . . EBT(E) =L= CAEC(E, ’CA’ ) ;

EBCU(K,D) . . CACC(K, ’CA’ ) =G= ECH(K,D) + ECM(K,D) ;

EBTU(E,D) . . CAEC(E, ’CA’ ) =G= EEH(E,D) + EEM(E,D) ;

ECIN(K,D) . . ECN(K,D) =E= EBC(K) ECH(K,D) ;

EEIN(E,D) . . EEN(E,D) =E= EBT(E) EEH(E,D) ;

TCEH(K,D) . . ECH(K,D) =E= sum( I , REH( I ,K,D) ) ;

TCEM(K,D) . . ECM(K,D) =E= sum( I , REM( I ,K,D) ) ;

TEEH(E,D) . . EEH(E,D) =E= sum( I , DEH( I ,E,D) ) ;

TEEM(E,D) . . EEM(E,D) =E= sum( I , DEM( I ,E,D) ) ;

HITRE( I ,D) . . sum(K, REH( I ,K,D) ) + sum(E, DEH( I ,E,D) ) =G= MINHIT ∗ (XEC( I ,D) + XEE( I ,D) ) ;

RTTRE( I ,D) . . MAXRTT ∗ (XEC( I ,D) + XEE( I ,D) ) =G= XEC( I ,D)∗TI ( I , ’RTTC’ ) + XEE( I ,D)∗TI ( I , ’RTTE’ ) ;

EBGHT( I ,D) . . XEC( I ,D) =E= sum(K, REH( I ,K,D) ) + sum(K, REM( I ,K,D) ) ;

EEBGT( I ,D) . . XEE( I ,D) =E= sum(E, DEH( I ,E,D) ) + sum(E, DEM( I ,E,D) ) ;

Model ICE / EEPROFIT, ETDE, EUDE, ERDE, EBCB, EBTB, EBCU, EBTU, ECIN, EEIN , TCEH, TCEM, TEEH, TEEM,

HITRE, RTTRE, EBGHT, EEBGT / ;

Option LIMROW=0,LIMCOL=0,SYSOUT=OFF;

Solve ICE USING NLP MAXIMIZING ZE;

Parameter CPTCRep ’CP Summary Report f o r Traditona l CDN’ ;

Loop (D,

CPTCRep( I , ’Demand ’ ) = LD( I ,D) ;

CPTCRep( I , ’ Bought ’ ) = XT.L( I ,D) ;

CPTCRep( I , ’ Cache Hit ’ ) = sum(J , DPH.L( I , J ,D) ) ;

CPTCRep( I , ’ Cache Miss ’ )= sum(J , DPM.L( I , J ,D) ) ;

CPTCRep( I , ’ Hit Ratio ’ ) = sum(J , DPH.L( I , J ,D) ) /XT.L( I ,D) ;

CPTCRep( I , ’RTT(ms) ’ ) = sum(J , DPH.L( I , J ,D) ) /XT.L( I ,D)∗TI ( I , ’RTTP’ ) + (1 sum(J ,

DPH.L( I , J ,D) ) /XT.L( I ,D) )∗TI ( I , ’RTTO’ ) ;

CPTCRep( I , ’PT(ms) ’ ) = sum(J , DPH.L( I , J ,D) ) /XT.L( I ,D)∗TI ( I , ’PTP’ ) + (1 sum(J ,

DPH.L( I , J ,D) ) /XT.L( I ,D) )∗TI ( I , ’PTO’ ) ;
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CPTCRep( I , ’ Revenue (k ) ’ )= sum(J , DPH.L( I , J ,D)∗PH( I , J )∗SP(D) ) + sum(J , DPM.L( I , J ,D)∗PM( I , J )∗SP(D) ) ;

Display CPTCRep ; ) ;

Parameter PoPRepD ’PoP Summary Report ’ ;

Loop (D,

PoPRepD(J , ’ Capacity ’ ) = CATC(J , ’CA’ ) ;

PoPRepD(J , ’Demand ’ ) = sum( I , LD( I ,D)∗PUD( I , J ) ) ;

PoPRepD(J , ’ Bought ’ ) = PBT.L( J ) ;

PoPRepD(J , ’ Cache Hit ’ ) = PCH.L(J ,D) ;

PoPRepD(J , ’ Cache Miss ’ )= PCM.L(J ,D) ;

PoPRepD(J , ’ Unused ’ ) = PCN.L(J ,D) ;

PoPRepD(J , ’ Costs ( k ) ’ ) = (PBT.L(J )∗CATC(J , ’TC’ ) + PCN.L(J ,D)∗CATC(J , ’HC’ ) + PCM.L(J ,D)∗CATC(J , ’PC’ ) +

CATC(J , ’CA’ ) ∗CATC(J , ’ SC ’ ) )∗SP(D) ;

PoPRepD(J , ’ Hit Ratio ’ ) = (PCH.L(J ,D)+1)/(PCH.L(J ,D) + PCM.L(J ,D) + 1) ;

Display PoPRepD ; ) ;

Parameter CPCCRep ’CP Summary Report f o r Cloud based CDN’ ;

Loop (D,

CPCCRep( I , ’Demand ’ ) = LD( I ,D) ;

CPCCRep( I , ’ Bought ’ ) = XC.L( I ,D) ;

CPCCRep( I , ’ Cache Hit ’ ) = sum(K, REH.L( I ,K,D) ) + sum(E, DEH.L( I ,E,D) ) ;

CPCCRep( I , ’ Cache Miss ’ )= sum(K, REM.L( I ,K,D) ) + sum(E, DEM.L( I ,E,D) ) ;

CPCCRep( I , ’ Hit Ratio ’ ) = sum(K, RCH.L( I ,K,D) ) /XC.L( I ,D) ;

CPCCRep( I , ’RTT(ms) ’ ) = sum(K, RCH.L( I ,K,D) ) /XC.L( I ,D)∗TI ( I , ’RTTC’ ) + (1 sum(K,

RCH.L( I ,K,D) ) /XC.L( I ,D) )∗TI ( I , ’RTTO’ ) ;

CPCCRep( I , ’PT(ms) ’ ) = sum(K, RCH.L( I ,K,D) ) /XC.L( I ,D)∗TI ( I , ’PTC’ ) + (1 sum(K,

RCH.L( I ,K,D) ) /XC.L( I ,D) )∗TI ( I , ’PTO’ ) ;

CPCCRep( I , ’ Revenue (k ) ’ )= sum(K, RCH.L( I ,K,D)∗CH( I ,K)∗SP(D) ) + sum(K, RCM.L( I ,K,D)∗CM( I ,K)∗SP(D) ) ;

Display CPCCRep ; ) ;

Parameter CloudRepD ’Cloud based CDN Summary Report ’ ;

Loop (D,

CloudRepD(K, ’ Capacity ’ ) = CACC(K, ’CA’ ) ;

CloudRepD(K, ’Demand ’ ) = sum( I ,RCH.L( I ,K,D) )+sum( I ,RCM.L( I ,K,D) ) ;

CloudRepD(K, ’ Bought ’ ) = CBT.L(K) ;

CloudRepD(K, ’ Cache Hit ’ ) = CCH.L(K,D) ;

CloudRepD(K, ’ Cache Miss ’ )= CCM.L(K,D) ;

CloudRepD(K, ’ Unused ’ ) = CCN.L(K,D) ;

CloudRepD(K, ’ Costs ( k ) ’ ) = (CBT.L(K)∗CACC(K, ’TC’ ) + CCN.L(K,D)∗CACC(K, ’HC’ ) +

CCH.L(K,D)∗CACC(K, ’CC’ ) )∗SP(D) ;

CloudRepD(K, ’ Hit Ratio ’ ) = (CCH.L(K,D)+1)/(CCH.L(K,D) + CCM.L(K,D) + 1) ;

Display CloudRepD ; ) ;

Parameter CPECRep ’CP Summary Report f o r Cloud based CDN with EC’ ;

Loop (D,

CPECRep( I , ’Demand ’ ) = LD( I ,D) ;

CPECRep( I , ’ Bought ’ ) = XEC.L( I ,D) + XEE.L( I ,D) ;

CPECRep( I , ’ Cache Hit ’ ) = sum(K, REH.L( I ,K,D) ) + sum(E, DEH.L( I ,E,D) ) ;

CPECRep( I , ’ Cache Miss ’ )= sum(K, REM.L( I ,K,D) ) + sum(E, DEM.L( I ,E,D) ) ;

CPECRep( I , ’ Hit Ratio ’ ) = (sum(K, REH.L( I ,K,D) ) + sum(E, DEH.L( I ,E,D) ) ) /(XEC.L( I ,D) + XEE.L( I ,D) ) ;

CPECRep( I , ’RTT(ms) ’ ) = sum(K,REH.L( I ,K,D) ) /(XEC.L( I ,D)+XEE.L( I ,D) ) ∗ TI ( I , ’RTTC’ ) +

sum(E,DEH.L( I ,E,D) ) /(XEC.L( I ,D)+XEE.L( I ,D) ) ∗ TI ( I , ’RTTE’ ) +

( 1 ( sum(K,REH.L( I ,K,D) )+sum(E,DEH.L( I ,E,D) ) ) /(XEC.L( I ,D) + XEE.L( I ,D) ) ) ∗ TI ( I , ’RTTO’ ) ;

CPECRep( I , ’PT(ms) ’ ) = sum(K,REH.L( I ,K,D) ) /(XEC.L( I ,D)+XEE.L( I ,D) ) ∗ TI ( I , ’PTC’ ) +

sum(E,DEH.L( I ,E,D) ) /(XEC.L( I ,D)+XEE.L( I ,D) ) ∗ TI ( I , ’PTE’ ) +

( 1 ( sum(K,REH.L( I ,K,D) )+sum(E,DEH.L( I ,E,D) ) ) /(XEC.L( I ,D) + XEE.L( I ,D) ) )∗TI ( I , ’PTO’ ) ;

Display CPECRep ; ) ;
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Parameter CloudRep ’ ICE Cloud Summary Report ’ ;

Loop (D,

CloudRep (K, ’ Capacity ’ ) = CACC(K, ’CA’ ) ;

CloudRep (K, ’Demand ’ ) = sum( I ,REH.L( I ,K,D) )+sum( I ,REM.L( I ,K,D) ) ;

CloudRep (K, ’ Bought ’ ) = EBC.L(K) ;

CloudRep (K, ’ Cache Hit ’ ) = ECH.L(K,D) ;

CloudRep (K, ’ Cache Miss ’ )= ECM.L(K,D) ;

CloudRep (K, ’ Unused ’ ) = ECN.L(K,D) ;

CloudRep (K, ’ Costs ( k ) ’ ) = (EBC.L(K)∗CACC(K, ’TC’ ) + ECN.L(K,D)∗CACC(K, ’HC’ ) +

ECH.L(K,D)∗CACC(K, ’CC’ ) )∗SP(D) ;

CloudRep (K, ’ Hit Ratio ’ ) = (ECH.L(K,D)+1)/(ECH.L(K,D) + ECM.L(K,D) + 1) ;

Display CloudRep ; ) ;

Parameter EdgeRep ’ ICE Edge Computing Summary Report ’ ;

Loop (D,

EdgeRep (E, ’ Capacity ’ ) = CAEC(E, ’CA’ ) ;

EdgeRep (E, ’Demand ’ ) = sum( I , LD( I ,D)∗EUD( I ,E) ) ;

EdgeRep (E, ’ Bought ’ ) = EBT.L(E) ;

EdgeRep (E, ’ Cache Hit ’ ) = EEH.L(E,D) ;

EdgeRep (E, ’ Cache Miss ’ )= EEM.L(E,D) ;

EdgeRep (E, ’ Unused ’ ) = EEN.L(E,D) ;

EdgeRep (E, ’ Costs ( k ) ’ ) = (EBT.L(E)∗CAEC(E, ’TC’ ) + EEN.L(E,D)∗CAEC(E, ’HC’ ) +

EEH.L(E,D)∗CAEC(E, ’ SC ’ ) )∗SP(D) ;

EdgeRep (E, ’ Hit Ratio ’ ) = (EEH.L(E,D)+1)/(EEH.L(E,D) + EEM.L(E,D) + 1) ;

Display EdgeRep ; ) ;

Display ZT.L , XT.L , ZC.L , XC.L , ZE.L , XEC.L , XEE.L ;
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