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One of the major purposes of discriminant analysis is to predict or classifY entities 

into one of several mutually exclusive groups, based on information on a set of variables 

or attributes. This problem is known as the classification problem in discriminant analysis 

and has been claimed to be the ultimate objective of discriminant analysis. 

Discriminant analysis methods have evolved largely from statistical models which 

rely on strong parametric assumptions, such as multivariate normal populations with same 

variance-covariance structure. Recently, applications of discriminant analysis have 

emerged from the fields of mathematical programming and artificial intelligence. 

Considerable research has been devoted to the development of alternate mathematical 

programming-based methods that are inherently distribution-free and offer intuitive 

solutions. 

This praxis presents a survey of the existing methods in discriminant analysis and 

reports the results of an experimental comparison of two linear programming approaches 

and Fisher's procedure for the discriminant problem. The linear programming approaches 

are based on a hybrid model formulation proposed by Freed and Glover and a newly 

introduced method of successive hierarchical improvement by Glover. The models were 

constructed, validated and analyzed using Fisher's Iris data (classic data used in many 

discriminant studies), and financial data from 188 failed and successful U.S. banks. 
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Testing has revealed that the linear programming approach based on the hybrid model 

performed better than the traditional statistical analysis, and the successive goal method 

provided an even stronger solution. 
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CHAPTER 1 

SURVEY OF DISCRIMINANT ANALYSIS :METHODS 

1. 1. Introduction 

Consider scenario 1 : You are at your friendly bank for a consumer loan. Most 

probably you will be asked to fill out a loan application form. The information supplied by 

you and additional information obtained from other sources, such as credit bureaus, will 

then be used to compute a credit score. If your credit score exceeds a predetermined 

threshold set by the bank, your application is approved for the requested loan amount; 

otherwise, the application is denied. 

Or consider scenario 2: You are at your family doctor for a full physical checkup. 

The clinical staff will probably collect samples of some body fluid, record numerous 

measurements, and then send the data to outside labs for testing. After getting the results 

from the labs, your family doctor (if you are lucky) or a clinical staff member will inform 

you of your health status by indicating the presence or absence of any disease based upon 

a set of predetermined criteria for that disease. 

These are two very different environments, but both follow a similar process in 

unraveling the data supplied by you. These are the applications of a methodology c~lled 

discriminant analysis where a decision maker (your banker or the doctor) classifies you, 

based on certain characteristics, into one of two or more groups. The problem you posed 

to your banker or the doctor is known as the classification problem in discriminant 

analysis. 

1 
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One of the major purposes of discriminant analysis then is to predict or classify 

entities into one of several mutually exclusive and collectively exhaustive groups based on 

information on a set of independent variables or attributes. The focus of discriminant 

analysis is the determination of the functional forms (discriminant functions) and the 

estimation of their coefficients including the critical values. The resulting functions are 

then used to predict group membership of new observations. This is a widely used 

classification procedure in such fields as social sciences, business, medicine, and life 

sciences. More recently, it has been gaining widespread acceptance in inductive inference 

methods in artificial intelligence (AI) approaches to machine learning. 

The methods for performing discriminant analysis have evolved largely from 

statistics, where variables used to characterize the members of the groups are assumed to 

be parametric (i.e. they follow certain well-defined distributions such as the ~ultivariate 

normal distribution). Unfortunately, the assumption of normality is violated to a 

significant extent in many practical applications. Additionally, when the sample sizes are 

small, the Central Limit Theorem does not apply well, likely contributing to poor results, 

especially when linear classification functions are applied. The issue of normality is 

particularly relevant in studies employing financial ratios where distributions are flat, 

skewed, or dominated by outliers. Thus, the violations of the normality assumptions may 

bias the estimated errors and the tests of significance. Though statisticians have proposed 

and applied some newer statistical methods that are non-parametric (distribution-free), 

their applications have often proved to be cumbersome and confusing. 

Over the last ten years, considerable research has been devoted to the development 

of mathematical programming methods for constructing discriminant functions. Mainly 

emerging from the field of operations research (OR), these methods are inherently 

distribution-free and intuitive. Not only do these methods provide insight into special 
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relationships the variables might exhibit, they lend themselves well to computer 

implementations. Furthermore, the recent advances in computer technology have enabled 

mathematical programming packages to be extremely "analyst-friendly" and can now be 

conveniently applied to solve many diverse problems. Simple and direct, these new 

approaches compete with conventional approaches derived from the principles of classical 

and Bayesian statistics. More importantly, these methods enable the decision maker to 

play an active part in the analysis of the solution. This encourages user participation in the 

selection of appropriate discriminant criteria and allows flexibility in setting relative 

penalties for misclassification. 

OR techniques are not the only alternatives to the classical statistics for 

classification problems. Recently, the pattern recognition (PR) techniques are emerging 

as important, useful, and rapidly developing alternatives with cross-disciplinary interest 

and participation. PR techniques are often an important component of intelligent systems 

in the areas of data pre-processing and decision-making that concern the description or 

classification of measurements. PR is not comprised of just one approach, but rather is a 

broad body of often loosely related knowledge and techniques. 

1.2. Praxis' Objectives 

The objectives of this praxis are: 

(I) to describe classification problems, 

(2) to present a survey of classification algorithms, 

(3) to discuss Glover's new linear programming-based discriminant approaches, 

and 

( 4) to provide an empirical comparison of selected methods. 
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In Chapter 1, we describe the classification problems by comparing and contrasting 

them with several other problems. We also present a detailed survey of popular 

classification algorithms from the fields of classical statistics, pattern recognition, neural 

networks, and mathematical programming. 

In Chapter 2, we describe in detail the various linear programming formulations 

proposed by Freed and Glover. In this chapter, we pay special attention to Glover's 

improved hybrid formulations along with a new approach to improving their LP-based 

solutions. 

In Chapter 3, we discuss the selection of methods and the experimental design, 

then summarize our findings. We complete the praxis with Chapter 4 presenting the final 

results and conclusions. 

1.3. Notation 

This section contains the notational conventions used in this study. The scalars 

and simple variables are denoted by italicized letters with the uppercase letters reserved 

for real scalar numbers for easy identification. While matrices are denoted by uppercase 

letters in boldface type, vectors are denoted by lowercase letters in boldface type. For 

easy identification and association of data across various disciplines (statistics, operations 

research, etc.), the matrices and vectors representing data for multiple groups from the 

same population are subscripted. For example, X1 and X 2 are matrices representing 

observations from two groups 1 and 2, while h1 and h2 are vectors representing some 

other data from the same two groups. This notation should not be confused with any 

particular column or a row in a matrix or with a partiCular element in a vector as 

traditionally used in most textbooks for linear algebra. 

The symbol I denotes a column vector of all ones, while the symbol 0 denotes a 

column vector of all zeros. The product of vectors and matrices is to be performed in a 
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manner that is conformable for multiplication, that is, a vector is treated as a row when it 

appears on the left of a matrix and, as a column when it appears on the right. Other 

mathematical notation employed in this report is standard. 

1.4. Background 

1. 4 .1. Classification Analysis 

The exercise of comparing and grouping is a fundamental step in the organization 

of information about one's environment. Even before the use of comouters became 

common, statisticians developed simple methods of objective classification based on 

standard probability theory. One such theory is that of classification analysis which 

addresses itself to the problem of assigning an object to one of a number of possible 

groups on the basis of observations made on the object. In classification analysis the 

existence and structure of the groups themselves are of secondary importance. It is the 

assignment of new cases that concerns the analyst. 

With the advent of computers, there has been an upsurge of interest in automated 

numerical methods of classification. As the classification problem has proved so important 

in many different fields of application, it has suffered indirectly from being re-solved many 

times. Each time a discipline has re-invented the subject of classification, it has introduced 

its own jargon, its own notation, and its own favorite methods. For example, classification 

analysis is known as discriminant analysis in statistics, pattern recognition or supervised 

learning in computer science, and part of decision theory in management science and 

operations research. The most recent and most important re-use of classification analysis 

is in the area of expert systems, which seek to capture the· reasoning of an expert using 

artificial intelligence techniques. 
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Classification analysis addresses itself to the problem of assigning an object to one 

of a number of possible groups on the basis of observations made on the object. There 

are, however, two main statistical methods with which classification analysis is often 

confused. These are cluster analysis and analysis of variance. Whereas cluster analysis 

attempts to identify any possible tendency for data to clump together to form groups, 

classification analysis is only concerned with the problem of classifying new objects into 

existing groups. And to emphasize this point, classification analysis is not concerned with 

identifying any possible groupings that might be contained within a mass of data. Analysis 

of variance (ANOVA) postulates that a particular grouping exists within some data and 

deals with the statistical proof of that supposition. This is a situation that most often is 

confused with classification analysis. The reasoning used is that if one can successfully 

classify new cases to the hypothesized groups with a reasonable accuracy then this is 

evidence enough that the groups are more than a figment of imagination. While this 

reasoning is true to a certain extent, there are more efficient and accurate statistical 

techniques for testing hypotheses about the existence of differences between groups. 

It is also relevant to distinguish between classification and dissection. In 

dissection, the data set comprises a single group of objects; the aim is to dissect this group 

into several "sectors" which have certain specified properties. For example, the houses in 

a town can be regarded as a collection of objects described by two variables specifying 

their geographical locations. It may be convenient to divide the town into compact postal 

districts which contain comparable numbers of houses. If the physical distance is regarded 

as a measure of the dissimilarity between two houses, houses in the same postal district 

should be fairly similar to one another. However, some of them could also be more similar 

to houses in other postal districts. In practice, however, this clear division of methods into 

cluster analysis, ANOV A, and classification analysis is less than clear-cut. 
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1. 4 .2. Discriminant Analysis 

Discriminant analysis is defined as a methodology for classifying or asstgrung 

elements (or objects) to predetermined groups. Whereas the problem of classification is to 

find a way of assigning a new object, discriminant analysis constructs a classification rule 

-a well-defined procedure that can be described and applied without the need for any 

additional"subjective" judgments. In other words, classification deals with the assignment 

of an object to the class to which it is "closest", whereas discrimination analysis deals with 

the construction of separation rules for distinguishing between categories into which an 

object may be classified. According to Kendall (1966), a general definition of 

discrimination is given as follows: 

We are given the information that there are k populations x ~ x 1, ••• , xk (k ~ 2) 
whose parameters are known or to be estimated based on samples drawn from 
respective populations. Suppose a new observation (vector) is presented to us. 
We know that it has come from exactly one of those k populations but we do not 
know the identity of that population. The discrimination problem is to construct a 
good procedure by which we can assign the new observation to the correct 
population with a high probability of success. 

It is usually quite easy to find rules to discriminate, or separate, the sample cases 

from each other. It is much harder to develop decision criteria that hold up on new cases. 

Even with completely "noisyu data and hundreds of sample cases, classes can usually be 

distinguished with little difficulty. However, these distinctions will usually not hold up on 

new cases. 

The problems associated with applying traditional discriminant models to business 

data have been widely discussed in the literature. The violation of parametric assumptions 

such as multivariate normal distributions deserves special attention since real-world data 

usually do not conform to these basic conditions. In addition, most empirical data include 

qualitative or dummy variables that cannot be multivariate normal. Another difficulty with 

applying discriminant models is that an observation is assumed to belong to one of the 
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given samples or groups. For instance, when bankers construct credit-scoring models to 

predict loan defaults, it is not clear whether slow-paying accounts should be classified as 

good or bad. Obviously, the slowness of a customer in repaying the loan is critical to 

group classification. 

1.4.2.1. Dichotomous Discriminant Models 

In general, discriminant analysis problems are solved with two-group models for 

reasons of better understanding. Multiple-group models generally evolve as extensions of 

two-group models. 

Consider the following scenario: A product manager at a food company involved 

in the launching of new cereals is faced with evaluating a product's likely success or 

failure of commercialization. Past research has identified certain market characteristics 

associated with the successful launch of some popular cereals. The product manager can 

evaluate the new cereal's characteristics as well as the existing market conditions and 

arrive at a subjective estimate of its success in the market place. Alternatively, the product 

manager can quantify the available information from past new cereal introductions, 

develop a formal model that successfully predicts product success/failure on historical 

data, and apply the model to the new cereal about to be launched. In this case, the model 

provides information on the new cereal's performance in the market place. Ultimately, this 

model can be part of a formal, statistical marketing decision support system to predict 

success or failure of a new cereal. 

When valid and reliable quantitative data or observations of a phenomenon are 

available, and the outcome variable is binary or dichotomous (e.g. success and failure), the 

models are called dichotomous discriminant models. Traditional methods of discriminant 

analysis may be used to solve such classification models. 
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Other well-known instances in which decision makers arrive at probabilistic 

classification decisions of success or failure include decision models of the bond-rating 

process, credit-scoring models, models of new business failures, and models for predicting 

tender offer outcomes. 

1.4.2.2. Linear Discriminants 

Linear discriminants are the most common form of classifier, and are quite simple 

in structure. The name linear discriminant simply indicates that a linear combination of the 

evidence will be used to separate or discriminate among the groups and to select the group 

assignment for a new case. For a problem involving p variables (attributes), this means, 

geometrically, that the separating surface between the samples will be a (p-1 )-dimensional 

hyperplane. With three variables, a plane will be sufficient to separate the classes, while 

with only two variables a line will suffice. It is often helpful to visualize the form of a 

classifier graphically, which can be done easily in two dimensions. Figure 1.1 depicts the 

separation of two groups, G1 and G2, with two variables x1 and x2 . 
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Classifier 

X2 

X1 

Figure 1.1. A two-group classifier. 

In most situations, groups overlap and therefore cannot be completely separated by 

a plane (or line in two dimensions). This is true for any classifier where the error rate for 

the best possible classifier is greater than zero. When we are trying to find a solution that 

minimizes errors on new cases, simple structures such as linear combinations of variables 

tend to hold up well. Moreover, more than one plane or line can be used to separate two 

groups, and any separating curve can be approximated by multiple linear segments. 

Separating surfaces made up of multiple planes or lines are called piecewise linear 

discriminants because each plane or line is used to partially separate one class from 

another. The general form for any linear classifier function is given in equation (1.1) 

where (x
1
,x

2
, ... ,xp) is the vector ofvariables,p is the number ofvariables, and w; and c 

are constants that must be estimated. 

(1.1) 
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In discriminating several groups from one another, we can define a separate linear 

discriminator for each group, and then combine them to define the separating surfaces. In 

the two-group (dichotomous or binary) discrimination problem, a single (p-1) dimensional 

hyperplane will serve to separate them. For ~everal groups we must either combine 

discriminants for each pair of classes or modify the decision problem so that it is posed as 

a sequence of dichotomous decisions of each group versus all the other groups. 

A linear discriminant simply implements a weighted sum of the values of the 

observations. Thus, intuitively, we can think of the linear discriminant as a scoring 

function that adds to or subtracts from each variable, possibly weighting some variables 

more than others and yielding a total final score. The group selected, Gk, is the one with 

the highest score. 

I. 4.3. Classification Errors 

The objective of learning classifications from sample data is to classify and predict 

successfully on new data. The most commonly used measure of success or failure is a 

classifier's error rate. Each time a classifier is presented with a case, it makes a decision 

about the appropriate group for a case. Sometimes it is right, sometimes it is wrong. We 

use two different terms true error rate and apparent error rate for quantifying 

classification errors. The true error rate is statistically defined as the error rate of the 

classifier for a very large number of new cases that converge in the limit to the actual 

population distribution. The apparent error rate of a classifier is the error rate of the 

classifier on the sample cases that were used to design or build the classifier. 

Number of errors 
Apparent error rate = 

Number of cases (1.2) 
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In general, we attempt to extrapolate performance from a finite sample of cases. 

The apparent error rate is the obvious starting point in estimating the performance of a 

classifier on new cases. Unfortunately, in the real world, we usually have relatively 

modest sample sizes with which to design a classifier and extrapolate its performance on 

new cases. For most types of classifiers, the apparent error rate is a poor estimator of 

future performance. Fortunately, effective techniques exist for providing better estimates 

of the true error rate. 

An error is simply a misclassification-the classifier is presented a case, and it 

classifies the case incorrectly. If all errors are of equal importance, an apparent error rate 

as calculated in equation ( 1.2) summarizes the overall performance of a classifier. 

However, for many applications, distinctions among different types of errors can be very 

important. In our credit-approval example, the error committed by the banker in 

approving an applicant as credit-worthy when the person indeed is not credit-worthy will 

be far more costly than the opposite type of error-of denying an applicant credit when 

the applicant is in fact credit-worthy. 

A confusion matrix can be used to lay out the different types of errors. With just 

two groups, the choices are structured to predict the occurrence or non-occurrence of a 

single event or hypothesis. In our credit-approval example, when the decision is made 

about the applicant's credit rating, we find that four possibilities exist. 

(I) The applicant is credit-worthy, and the bank determines that he is credit­

worthy~ hence, the correct decision has been made. 

(2) The applicant is credit-worthy, but the bank determines otherwise; hence, an 

error has been made. 

(3) The applicant is not credit-worthy, and the bank determines that he is not 

credit-worthy; hence, the correct decision has been made. 



13 

( 4) The applicant is not credit-worthy, but the bank determines that he is credit-

worthy; hence, an error has been made. 

In cases (1) and (3), the bank reaches the correct decision; in cases (2) and (4), it 

makes an error. In such a situation, the two possible errors are frequently called Type I 

error or Type II error. Using the language of hypothesis testing, we denote the null 

hypothesis, Ho, as: the applicant is credit-worthy. This means that there exists an 

alternative hypothesis, HJ, that the applicant is not credit-worthy. If credit is extended 

when the applicant is not credit-worthy, then we say a Type II error is committed, as in 

case ( 4), and if credit is denied to a credit-worthy person, then a Type I error is committed 

as in case (2). Table 1.1 summarizes the relationship between the actions and the groups. 

Table 1.1.--Confusion matrix- Type I & II errors 

Action Applicant is credit-worthy Applicant is not credit-
(Ho is true) worthy (H o is false) 
Group Positive Group Negative 

Accept flo Correct decision Type II error 

(Positive) 

Reject flo Type I error Correct decision 

(Negative) 

Any confusion matrix will have k2 entries, where k is the number of groups. On 

the diagonal will lie the correct classifications, with the off-diagonal entries containing the 

various cross-classification errors. An error rate can also be presented as a 

misclassification cost for better understanding, where a misclassification cost is simply a 

number that is assigned as a penalty for making a mistake. The total cost of 

misclassification, thus, is most directly computed as the sum of the costs for each error. 
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Formally, for any confusion matrix, if Eij is the number of errors entered in the confusion 

matrix and Cij is the cost for that type misclassification, the total cost of misclassification 

is given in the following equation 

k k 

Cost= LLEifCif (1.3) 
i=l j=l 

1.4.3.1. Training and Testing Sets 

In discriminant analysis, quantitatively, we are given a data set with a set of 

predictive variables and the cases with their correct classifications. This data is assumed 

to be a random sample from some large population, and the task is to classify new cases 

correctly. As we just noted, the performance of a classifier is measured by its error rate. 

If unlimited cases for training and testing are available, the apparent error rate is the true 

error rate. This raises the question of how many cases are needed for one to be confident 

that the apparent error rate is effectively the true error rate? Stated differently, given a 

random sample drawn from a population, how many cases must be in the sample to 

guarantee that the error rate on new cases will be approximately the same? 

For a real problem, one is given a sample from a single population, and the task is 

to estimate the true error rate for that population. The technique adopted in such cases is 

that instead of using all the cases to estimate the true error rate, the cases can be 

partitioned into two groups, some used for designing the classifier and some for testing 

the classifier. One group is called the training set and the other the testing set. The 

training set is used to design the classifier, and the testing set is used strictly for testing. If 

we 11 hold out" the test cases and only look at them after the classifier design is completed, 

then we can compute the error rate on new cases as described before. The error rate of 

the classifier on the test cases is called the test sample error rate. 
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1.4.3.2. Cross-Validation 

For a single application of the train-and-test method, also known as the holdout 

method, a fixed percentage of cases is used for training and the remainder for testing. 

Such a single random partition can produce misleading error rates for small or moderately­

sized samples. However, a series of train-and-test experiments can be conducted by 

randomly generating multiple train-and-test partitions which is also known as resampling. 

When resampling is performed, a new classifier is learned or constructed from each 

training sample. The estimated error rate is computed as the average of the error rates for 

classifiers derived from the random multiple resampling, otherwise known as cross­

validation. 

A special case of resampling or cross-validation is known as leaving-one-out 

where for a sample size n, a classifier is generated using (n-1) cases and tested on the 

single remaining case. This is repeated n times, each time designing a classifier by leaving­

one-out. Thus, each case in the sample is used as a test case and the error rate is the 

number of errors on the single test cases divided by n. While this is a perfect technique for 

computing an unbiased error rate, with large sample sizes the technique may be 

computationally expensive. 

As the sample size grows, the cross-validation test partitions can be constructed to 

hold more than one case while maintaining the accuracy in estimating the error rates. In k­

fold cross validation, the cases are randomly divided into k mutually exclusive test 

partitions of approximately equal size. The cases not found in each test partition are 

independently used for training, and the resulting classifier is tested on the corresponding 

test partition. The average error rates over all k partitions is the cross-validated error rate. 

Table 1.2 summarizes the techniques of error estimation for a sample ofn cases. 
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Table 1.2.--Cross-validation estimators 

Leaving-one-out k-fold 
Training cases n-1 n-(nlk) 

Testing cases I nlk 

Iterations n k 

1. 5. Types· of Linear Discriminant Analysis Methods 

Discriminant analysis methods have evolved largely from statistics with their 

beginnings in 193 5. There are many statistical methods available for inductively 

determining classification rules. Prominent among them are linear discriminant analysis 

methods. The field of statistics; however, is no longer the territorial champion of 

discriminant analysis methods. Recent research in the fields of mathematical 

programming, artificial intelligence, and machine learning has yielded a plethora of new 

and advanced approaches. 

Whatever may be the field, the basis for formulating classification rules follows a 

common approach. In two-group linear discriminant analysis, one determines a 

p-dimensional discriminant non-zero column vector w and a scalar c such that if wxS:c 

then observation x is classified as belonging to group 1. Otherwise x is classified as 

belonging to group 2. The (w,c) pair is estimated from a training set consisting of a 

sample of observations, each of whose group membership is known. The (w,c) is called a 

discriminant function such that the hyperplane wx=c .partitions the p-dimensional 

Euclidean space RP into a closed half-space wx s c and an open half space wx >c. 
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A typical application of discriminant analysis is credit scoring. A training set 

consisting of a history of credit approvals and their subsequent outcomes (payment or 

default) is used to determine a discriminant function (w,c). The information gathered on 

the new applicant is used to construct a vector of numerical attributes x. Using the known 

discriminant function (w,c), the applicant is granted credit if wx s c and denied credit if 

WX>C. 

Many _different methods have been developed to determine ( w ,c) from a training 

set. These methods are predominantly based on statistical, search, and mathematical­

programming approaches. While the statistical methods offer probabilistic statements 

about the results and depend on assumptions that are often inappropriate, the search and 

the mathematical programming-based methods are non-parametric and have yielded 

excellent results. For this study, we categorize the methods as follows: 

( 1) statistical (parametric) methods, 

(2) search methods, and 

(3) mathematical programming methods. 

I. 5 .1. Statistical Methods 

Over the last five decades, numerous methods have been proposed in the statistics 

literature for discriminant analysis. Some of the prominent and widely used methods are: 

(1) Bayes' Rule, 

(2) Fisher's Linear Discriminant Method (LDM), 

(3) Smith's Quadratic Discriminant Method (QDM), and the 

(4) Logistic Discriminant Method (LGM). 
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1.5.1.1. Bayes' Rule 

This is the simplest of all the classification rules. Based on conditional 

probabilities, Bayes' rule assigns the object to the group with the highest conditional 

probability. Let x be a vector of measured variables and Gk be the kth group, then Bayes' 

rule is to assign the object to group k where: 

(1.4) 

If by any chance there is more than one group with the largest conditional 

probability, then the tie can be broken by allocating the object at random to one of the tied 

groups. The success of Bayes' rule is in that all of the information about possible group 

membership is contained in the set of conditional probabilities. Of course, things are not 

so simple in practice, especially when it comes to finding the all-important conditional 

probabilities. Quantities such as P(Gklx) are very difficult to find by standard methods of 

estimation; however, this is not the case for quantities such as P(xiGk). Fortunately, there 

is a connection between the two quantities, popularly known as Bayes' Theorem. In 

equation form, Bayest theorem is stated as follows, where all of the items on the right­

hand side of the equation can be found by sampling. 

(1.5) 
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Putting Bayes' theorem into Bayes' rule gives: 

Assign the new case to group k if 

P(xiGk)P(Gk) 
LP(xiG1)P(G1) 

I 

or, simplifying the terms, the rule becomes: 

Assign the new case to group k if: 

which is the final practical form of Bayes' rule. 

(1.6) 

(1.7) 

The main problem with Bayes' rule is that while it solves our problem completely, 

it is almost unusable. The reason for this is the sheer volume of data that has to be 

collected to estimate P(xiGk). For example, suppose we are to make measurements on 

five variables each consisting of ten possible categories. This would require, just for one 

group, estimating fifty relative frequencies with sample sizes in excess of 500. This 

sampling would have to be repeated and tabulated for each group. 

However impractical it may be, it is not possible to ignore Bayes' rule. A large 

part of discriminant analysis is concerned with finding practical forms of Bayes' rule that 

are appropriate under special conditions or finding simple approximations that have 

acceptably low error rates. 
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1.5.1.2. Fisher's Linear Discriminant Method (LDM) 

Linear discriminant analysis as originally developed by Fisher in 1935, has 

become the foundation for modem statistical procedures for classifYing a subject based on 

certain attributes into one of two or more mutually exclusive and collectively exhaustive 

groups. While few researchers or practitioners dispute the general usefulness of this 

technique, the theoretical base of the method must be examined carefully before each 

application. The optimality of the LDM can be demonstrated when observations are 

random samples that have been drawn independently from respective multivariate normal 

populations. 

Let x be a bivariate vector of k measured variables. Let P(G1) and P(G2) be the 

prior probabilities of the groups G1 and G2. In the case of our cereal example introduced 

earlier, group G1 may consist of a set of previously introduced cereals that were 

successful product innovations and group G2 may consist of the cereals that were market 

failures. The p measured variables of the vector x may represent the information such as 

the cereal and market characteristics. 

Let fk(x) be the multivariate probability density function of x from Gk where 

k = 1, 2. Given the assumption that the misclassification costs are equal, the optimal 

misclassification rule (i.e., Bayes' rule assignment that minimizes the total probability of 

misclassification) assigns x to G1 if: 

(1.8) 

and to group G2 otherwise. 



21 

Let us assume that the two populations have mean vectors Jl1 and Jl2 and have the 

dispersion (variance-covariance) matrix S. Let us assume P(G1) =P(G2) =1/2. If Jl}, Jl2, 

and S are replaced by their corresponding maximum likelihood sample estimators 

x 1 , x2 and S, then the following rule may be used to make classificatory decisions. 

Assign x to group G 1 if 

--1 - - - - ,--I - -
x S (x1 -x2 ) ~ .X(x1 -x2 ) S (x1 -x2 ) (1.9) 

and to group G 2 otherwise. 

This rule is Fisher's well-known linear discrimination function (LDF). We note 

that the LDF minimizes the total probability of misclassification under the assumption of 

multivariate, normally distributed, measured variables with known means, and known and 

equal variance-covariance matrices. 

Many researchers have expressed concern about employing Fisher's technique with 

data that are not normal. When the assumption of multivariate normality is not satisfied, 

there are two common methods for resolving the problem: 

( 1) Improve the distributional properties of the data by various transformations 

(e.g. log, square root, arcsin), 

(2) Utilize some of the nonparametric techniques such as log-linear, rank 

discriminant, or mathematical programming. 
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1.5.1.3. Smith's Quadratic Discriminant Method (QDM) 

If the assumption of multivariate normality is satisfied, but the variance-covariance 

matrices are unequal, then a quadratic form of the LDF minimizes the total probability of 

misclassification. This rule assigns x to group G1 if 

(1.10) 

- -
and to group G2 otherwise. St and S2 are the unpooled estimates of the population 

dispersion (variance-covariance) matrices. 

1. 5. 1. 4. Logistic Discriminant Method (LGD) 

Both the LDM and QDM rules require specification of two probability density 

functions. The logistic model takes us away from an estimator of P(xiGk) in favor of an 

estimate of the likelihood ratio P(xiG1)/P(xiG2). Also called a Legit model, LGD is 

appropriate for any situation when the log of the likelihood ratio can be assumed to be 

linear. If one is interested in modeling the ratio directly, the following logistic discriminant 

rule is obtained. 

log{ft(x)}= flo +fl' x 
/2(x) 

(1.11) 

where flo and (3 are the unknown parameters of the logistic model that must be estimated 

from the data. According to ( 1.11) a case is assigned to group G1 if (30 + (3 'x > 0 and to 

group G2 otherwise. The procedure calculates the values of the (3 coefficients that 

maximize the likelihood function. One advantage of the logit model is that a unique 

maximum can always be found. 
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With this rule, given a vector of measured variables ~ one essentially relates the 

probability of a case belonging to group Gt and to the vector x itself, through the 

functional form of a logistic cumulative-density function. This approach has many 

advantages. Because there is no need to specify j, it is generally applicable even if the 

measured variables are multivariate, non-normally distributed. 

I. 5. 1. 5. Problems with Statistical Methods 

The problems encountered in statistical methods can be of several different types, 

depending on the models solved. The methods may produce unreliable results due to a 

combinations of the following factors: 

( 1) the distribution of the variables, 

(2) the group dispersions, 

(3) the interpretation of the significance of individual variables, 

( 4) the reduction of dimensionality, 

( 5) the definitions of the groups, 

(6) the choice of the appropriate a pnon probabilities and/or costs of 

misclassification, and 

(7) the estimation of classification error rates. 

Furthermore, with most of these methods there are no easy ways to measure 

solution sensitivities or to weight individual observations. These concerns can, however, 

be easily handled with recent methods using linear programming approaches which will be 

discussed in detail in Chapter 2. 
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1.5.2. Search Models in Discriminant Analysis 

Attributes or the variables that define the characteristic of an observation play a 

major role in the analysis and interpretation of the solution. Poorly defined attributes or 

non-contributing attributes can unnecessarily increase the complexity of the problem. 

Therefore, reducing the number of attributes used in the construction of discriminant 

analysis function without sacrificing classification performance is a much desired goal in 

discriminant analysis. Recently, a number of heuristic methods have been proposed which 

are non-parametric and provide better control over the attributes. These methods can 

yield good, and sometimes optimal solutions although they are incapable of proving 

optimality. Heuristic procedures are based on ideas that trace their origins equally to the 

fields of operations research and artificial intelligence. 

There are five heuristic methods that are considered to be related to the field of 

artificial intelligence and are used as frameworks for approaching difficult optimization 

problems. These methods are: 

(1) Neural networks: an associative memory process that has claimed successes 

in pattern-recognition applications, but has generally shown less than 

impressive results on optimization problems. 

(2) Genetic algorithms: another memoryless process that relates to phenomena 

in the biological sciences. These methods have been applied with some 

success to optimization problems, image registration problems, machine 

learning, and a large variety of problems in the field of operations research. 

(3) Nearest neighbor search: a completely nonparametric, direct table lookup 

procedure. This method can produce any arbitrarily complex surface to 

separate the classes based only on the configuration of the sample points and 

their metric. 
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(4) Simulated annealing: a memoryless process that draws on phenomena in the 

physical sciences (i.e. metallurgy) and has been shown to be effective for 

certain applications. 

(5) Tabu search: a high-level method, or meta-strategy, useful for solving 

optimization problems. Tabu search employs memory functions to carry out 

its strategic operations and typically out-performs simulated annealing and 

genetic algorithm approaches. 

In the following sections, we discuss the neural networks, the nearest neighbor, and the 

genetic search approaches in detail. 

1.5.2.1. Neural Network Models 

Neural networks, which attempt to replicate the learning processes of systems of 

neurons, are the focus of much of the current classification research. Given a basic 

structure, the internal parameters of such a model are determined automatically through 

training with examples from known groups. Although this training requires a great deal of 

computation, the classification of new observations is rapid and highly accurate in some 

cases, due to robustness and the model's ability to deal with 11noisy11 data. Successful 

applications include credit analysis, character and handwriting recognition, and image 

processing. 

Research tn neural network modeling attempts to provide insights into the 

processes by which intelligent beings perform recognition, memorization, and learning. A 

neural network consists of a large number of processing units communicating with each 

other in an asynchronous manner. Because of the embedded parallelism, in both its 

architecture and communication pattern, the study of a neural network model is usually 

encompassed in the larger framework of parallel distributed processing models. Used as a 

modeling tool, neural networks offer a number of distinct features. First, knowledge 
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stored in a network is distributed as a pattern of connections among its processors. Such 

a representation can tolerate individual-processor breakdown without impairing the 

performance of the entire network. Second, models for classification and recognition 

tasks can be constructed by training a neural network with examples of the target concept, 

an example-driven learning process. Most important, this learning process can be 

conducted incrementally with new examples. 

A neural network model consists of a number of processing units interconnected 

with each other in the network. Each unit is a simple computation device that receives 

input signals from other units, aggregates the signals based on an input function, and 

generates an output signal based on an input function. The output signal is then routed to 

other units as directed by the topology of the network. 

Interestingly, many neural networks tum out to be variations of (piecewise) linear 

classifiers. However, unlike the statistical classifiers, most neural network classifiers are 

nonparametric. The simplest neural network device is the single-output perceptron, which 

we will briefly examine next. More complex neural networks can be described as 

combinations of many perceptrons in a network. 

The simplest perceptron is a device that decides whether an input pattern belongs 

to one of two classes. Although the perceptron has a representation that is readily 

implemented in hardware, it is strictly the equivalent of the linear discriminant function as 

described before. 
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The weights, w, can assume real values, both positive and negative, so we can 

rewrite the above equation as : 

f(x)=wx+0 (1.12) 

where the variables are described as inputs x, and 0 is the constant. Geometrically, in two 

dimensions, the constant 0 indicates the intersection of the line with the y-axis. The 

inputs are multiplied by weights and summed with a constant. The perceptron produces 

an output indicating membership in group 1 or group 0. When the sum is greater than 0, 

the output is 1, and the group 1 is selected; otherwise, the output is 0, and the group 0 is 

selected. The output is produced according to the following equation: 

Output= 1 if (wx +0) > 0 

= 0 otherwise 
(1.13) 

Here, the constant 0 is referred to as the threshold or bias. Geometrically, the perceptron 

selects group I for points above the line wx + 0 = 0 and group 0 for points below the line 

in a two dimensional case. 

1.5.2.2. Genetic Search Model 

In general, a genetic algorithm (GA) starts with a number of initial possible 

solutions. These constitute the initial population. A second population is determined 

from the first population by survival of members and through mating and random 

mutations. Selection of surviving members is determined randomly according to member 
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fitness. In optimization problems, fitness is determined from the objective function. The 

higher the member fitness, the more likely is its selection. Successive populations are 

determined in a similar manner. 

In the formulation of GA problems, the decision variables are represented as a bit 

stream of length L. The set of allowable bit streams is given by S. A population P is an 

ordered subset of S containing K elements and P as P = { s1, ••• , st} c S. Starting with P, a 

second population is formed using a sequence of different procedures. 

A discriminant model is presented below that minimizes the number of 

misclassifications and the number of used attributes. Let nz(w) be the number of nonzero 

components ofw. Also, let m(w) be the minimal number of misclassifications for a given 

w over all possible values of c. The discriminant problem can be stated simply as: 

Minimize m(w)+ nz (w) 
(p+l) 

(1.14) 

Here, we encode each w element by a bit stream of length b. Then the vector w 

can be represented by a bit stream of length L = bp. Using the property that if w solves 

the above problem then A.w also solves the respective problem for any A.>O, we can restrict 

our search to C = { w: - 1 ::; w ::; I}. 

The genetic algorithms are computationally efficient and produce results 

comparable to other heuristics. As with other heuristics, there is no formal termination 

rule, hence the amount of computational effort expended is determined by the number of 

populations the user chooses to inspect. 
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1.5.2.3. Nearest Neighbor Classifier 

The nearest neighbor classifier is a member of a family of classifiers called k­

nearest neighbor classifier (k-NN). Instead of finding the single nearest neighbor, the k-

nearest neighbors are found, where k is some constant. The decision rule is taken to 

choose the group that appears most frequently among the k-neighbors. An odd number of 

neighbors are used so that ties will not occur. 

The method requires that the distance between a new case and every entry in the 

sample table be compared. Typically the distance is compared attribute by attribute, and 

then summed. Computationally, the nearest neighbor method involves no effort in 

learning from the samples. The trade-off is that the computation for predicting the 

classification of a new case is relatively large. The new case must be compared with every 

case in the sample. This division of computation between learning and classification is the 

reverse from what happens with all other classification methods. For other methods, 

learning can be quite expensive, but classification and prediction on a new case typically 

involve a trivial matching step. The process of finding the nearest neighbor can be 

speeded up dramatically by sorting and storing the samples in a specialized (k-d) tree 

format. It can reduce the number of samples required from n to only log n. Thus if one 

considers such presorting to be part of the learning, the nearest neighbor method can be 

seen to behave computationally like the other methods. 

1. 5.3. Mathematical Programming Models in Discriminant Analysis 

As described earlier, any two-group linear discriminant function including that of 

Fisher's can be expressed in the form of(w,c), where an object, x, is classified as belonging 

to group 1 if wx :::; c and to group 2 if wx >c. Points on the hyperplan~ wx = c are 

grouped into either group 1 or 2, as specified in advance. We can safely assume that the 
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points on the hyperplane belong to group 1. With this assumption, (w,c) can properly be 

thought of as a linear discriminant function 

As we have noted before, in all of the cases the linear discriminant classifier is 

determined from a set of observations whose group membership is known. This set of 

data is called the training set. We will use the following additional notation in our 

discussion on the mathematical programming formulations. 

p =number of attributes (variables); 

nj = number of observations in group j, j = 1, 2, where nj > 0; 

n = n 1 +n2 (the total number of observations in the training set); and 

Xj = (nj x p) matrix for group}, j = 1, 2. 

Mathematical programming approaches to linear discriminant analysis consider the 

following problem: Determine a scalar c and a non-zero vector w E RP such that the 

hyperplane wx = c partitions the p-dimensional Euclidean space RP into a closed half­

space wx ~ c and an open half space wx >c. 

Ideally the separating hyperplane wx = c should satisfy X 1 w ~ cl for group 1 

observations, and X2 w > cl for group 2 observations. Since such an hyperplane usually 

does not exist, mathematical programming (MP) techniques try to determine a hyperplane 

that optimizes a certain criterion function. Most mathematical programming formulations 

are based on a set of well-defined constraints and objective functions. In their general 

form, mathematical programming methods can be stated as follows. 



Minimize f(w,c) 

subject to: 

w:;t:O 
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(1.15) 

(1.16) 

(1.17) 

(1.18) 

Since MP algorithms require the constraint space to be closed, constraint (1.17) is 

usually replaced by 

(1.19) 

or 

(1.20) 

where & is an arbitrarily small positive number. We note that while constraint ( 1.19) is a 

relaxation of (1.17), constraint (1.20) is a restriction of (1.17). Therefore, if the value of 

& is not chosen properly, an optimal solution may be eliminated from consideration. 

Furthermore, constraint (1.20) may introduce a classification gap, while (1.19) may result 

in a point being classified as belonging to both groups. 



32 

The earliest mathematical programming approach to linear discriminant analysis is 

due to Mangasarian (1965). Since then two major areas of research have developed in 

this field. The first area focuses on extensions and improved formulations with the 

following key objectives: 

( 1) to avoid potential misspecifications of the problem, 

(2) to investigate issues such as the stability of the problem solution with respect 

to transformations and rotations, and 

(3) to analyze the occurrence of the unacceptable and trivial solutions. 

The second area investigates the classificatory performance of the various MP­

based techniques relative to parametric statistical procedures such as LCF and QCF. We 

will need the following definitions to understand the various MP formulations: 

internal deviation: the deviation from the hyperplane of a point properly 

classified; 

external deviation: the deviation from the hyperplane of a point improperly 

classified; 

~: non-negative ni-vector of internal deviations for group j, j = 1,2; 

i: minimum internal deviation; 

e_j non-negative ni-vector of external deviations for group j, j = 1,2; 

e: maximum external deviation; 

df n1-vector of deviations (internal and external) for group j, j = 1,2. 

Incorporating ~ and ej into constraints ( 1.16) and ( 1.19), these constraints are rewritten as 

(1.21) 

(1.22) 
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Over the past ten years, several MP-based models have been proposed to analyze 

discriminant analysis problems. Among these, the most commonly used models are: 

( 1) MSD: minimize the sum of distances; 

(2) :M:MD: minimize the maximum distance; 

(3) MIP: minimize the number of misclassifications using mixed integer 

programming; and 

(4) NLP: minimize a generalized non-linear distance measure. 

1.5.3.1. Minimize the Sum ofDistances Models (MSD) 

In general, these models try to find a hyperplane that minimizes the weighted sum 

of external deviations. One of the earliest MSD models was given by Hand (1981) as 

described below: 

Minimize {1.23) 

subject to: X1w+cl-e1 ::s;-b1 (1.24) 

X2w+cl+e2 ~ -b2 (1.25) 

w, c unrestricted in sign (1.26) 

e1,e2 ~ 0 (1.27) 

bl, b2 ~ 0 (1.28) 
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In this model the components of the b 1 and b2 vectors are used for strict 

separation and are usually set equal to the same value. The objective of MSD is to 

minimize the sum of external deviations. MSD is a rather stable model in that it rarely 

gives a trivial solution. The strict separation of the two groups may result in a solution 

with classification gaps. 

1.5.3.2. Minimize the Maximum Deviations Models (MMD) 

Introduced by Freed and Glover (1981a, 1981b), these models try to find a 

hyperplane that minimizes the maximum external deviation. The general model is 

formulated as: 

Minimize d (1.29) 

subject to: (1.30) 

(1.31) 

w, d unrestricted in sign (1.32) 

c is a positive constant (1.33) 

As seen from the formulation, c is a pre-chosen boundary value, and the objective 

of M1v1D is to maximize the minimum deviation of any group member's score from the 

break point c. Since dis allowed to take negative values and the objective is to maximize 

d, M1v1D can be interpreted as the minimization of the maximum external deviation. 
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An important property of :MMD is that an unbounded solution indicates perfect 

separation of the two groups. A potential problem with this model is that it can yield a 

trivial (all zero) solution. However, recent extensions present sufficient conditions to 

prevent a trivial solution as well as necessary and sufficient conditions for a bounded, 

nontrivial solution. 

1.5.3.3. Mixed-Integer Programming Models (MIP) 

In general, mixed-integer programming models try to find a separating hyperplane 

that minimizes the number of misclassifications. MIP models have usually been solved by 

a general-purpose commercial code like MPSX, which uses a branch-and-bound 

procedure. The following mixed integer programming model, which was proposed by 

Koehler and Erenguc (1990a, 1990b), seeks to minimize the number ofmisclassified cases. 

Minimize (1.34) 

subject to: X1w~cl+My1 (1.35) 

X2w~cl-My2 (1.36) 

w :;t 0 (1.37) 

w, c unrestricted in sign (1.38) 

y 1, y 2 are zero- one vectors (1.39) 

M is a large positive number (1.40) 
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The model first checks using the :MMD formulation to see if groups can be 

perfectly separated by a hyperplane. If perfect separation is not possible, then the w * 0 

constraint is replaced by: 

(1.41) 

(1.42) 

If a set of data cannot be perfectly separated, then the above constraint is 

redundant. Koehler and Erenguc (1990a) show that when one directly minimizes the 

number of classifications, the above constraint prevents the trivial solution. 

Bajgier and Hill (1982) provide a method that seeks to optimize a weighted sum of 

the following three objectives: 

( 1) minimize the number of misclassified cases, 

(2) minimize the sum of external deviations, and 

-(3) maximize the sum of internal deviations. 

The following model as formulated by them minimizes the number of misclassifications. 

Minimize (1.43) 

subject to: X1w +i1 -e1 -cl = 0 (1.44) 

X 2w -i2 +e2 -cl = 0 (1.45) 

et~My. (1.46) 

ez ~My2 (1.47) 
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(1.48) 

w unrestricted in sign (1.49) 

where c is a positive constant; ~ , ~, I; are positive weights; y 1, y 2 are zero-one vectors; 

and M is a large positive number. A closer look at this formulation will reveal that by 

systematically setting Pj to zero, different new objective functions can be developed easily. 

1.5.3.4. Nonlinear Programming (NLP) Models 

The nonlinear programming models aim at obtaining a separating hyperplane that 

minimizes a genaralized distance measure. 

Minimize (1.50) 

subject to: (1.51) 

(1.52) 

w unrestricted in sign {1.53) 

(1.54) 

where c is a non-zero constant. 

For 1 < r < oo, the objective function ofNLP is strictly convex. Therefore, ifNLP 

has an optimal solution, it will always have a unique optimal solution. As can be seen, for 

r =I, NLP yields an MSD model; and for r =oo, it yields an J\.11viD model. 
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These are just a few of the representative formulations of discriminant models 

emanating from the annals of operations research. As is obvious, the MP-based models 

are completely devoid of parametric assumptions and offer great flexibility in introducing 

heuristics. The MP-based solution approaches lend themselves well to experiments, such 

as selection (addition and deletion) of attributes and construction of different train-and­

test cross-validation data sets. 



CHAPTER2 

GLOVER'S NEW DISCRIMINANT ANALYSIS APPROACHES 

2.1. Introduction 

In a series of papers over the last ten years, several authors have presented 

increasingly sophisticated mathematical programming models to determine linear 

discriminant classifiers. However, the objectives used to determine the solution are only 

loose approximations to the objectives that are used to measure their effectiveness. 

Researchers have prepared a number of different objectives to more closely approximate 

the real objectives, thus leading to a large number of alternative models. 

One of the first LP-based linear discriminant classification models proposed was 

due to Freed and Glover (1981a, 198lb} to maximize the minimal deviation (MMD} of an 

observation's score from a critical value. In its simplest form, the MMD model is 

formulated as below: 

Maximize d (2.1} 

subject to: X1w~(c-d)l (2.2) 

(2.3) 

w, d unrestricted in sign (2.4} 

where c is a non-zero positive constant. 

39 
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This initial paper led to a series of papers that presented a progression of 

alternative LP models. Subsequently, several researchers, including Glover, reported 

many unresolved and irksome problems with these models. It is no surprise that the bulk 

of the literature associated with mathematical programming-based methods for 

determining linear discriminant functions are easily grouped into two categories: (1) those 

methods that give empirical comparisons of the performance of one or more models 

versus parametric methods; and (2) those that point out problems in earlier MP-based 

models. 

2.1.1. MP-based Discriminant Analysis--Problems and Issues 

In order to better understand the rationale behind the structure of some of the 

newer discriminant LP models formulated by Freed and Glover, and other authors, it is 

important to understand some of the common problems and issues that have received the 

most attention. They are: 

( 1) Unacceptable solutions. A system of equations of the form: 

(2.5) 

(2.6) 

has a trivial solution of ( w = 0, c = 0). This provides no discrimination, since every 

observation can be classified as belonging to both groups 1 and 2. Yet most LP 

formulations tend to favor this type of solution. 
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(2) Improper solutions. A problem closely related to unacceptable solutions 

occurs when there is a c and a non-zero w satisfying: 

(2.7) 

(2.8) 

Although (w,c) is a "separating" hyperplane, it does not properly separate the two groups 

since both the groups may lie on the hyperplane. Again, most LP formulations tend to 

favor this type of solution, if one exists. 

(3) Translation invariances. Some LP formulations provide a different w if the 

training set is translated. Since data translation is inherently arbitrary, many find this 

property disturbing. In general, one requires that if (w,c) is a solution to: 

X1w ::5:cl 

It should also be a solution to 

(X1 +tl)w 5; c'l (2.9) 

(X2 + tl)w ~ c'l (2.10) 

where c' = c + tw and t is the translation vector for each group. Some formulations, such 

as MMD, do not have this property. Similarly, if the data are transformed by a non­

singular matrix, B, then the new solution should be equal to n-1w. Some LP discriminant 

models do not have this property. 
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( 4) Unbounded solutions. When a strict separation is possible, some models-­

particularly MMD where d is unrestricted in sign-yield unbounded solutions. This is 

undesirable from a practitioner's point of view, and is easily prevented by adding 

constraints such as 

-Mls;ws;Ml (2.11) 

forM> 0, or with a normalization constraint (Glover, 1990). 

(5) Unbalanced solutions. A good solution should have a balanced number of 

misclassifications across the two groups. Many discriminant procedures perform better 

than Fisher's method, but the gain in classification is usually disproportionally distributed 

across the two groups. When most of the misclassifications will occur in one group--as 

with some mixed-integer programming models that minimize the number of 

misclassifications--it is relatively straightforward to add a balancing constraint to these 

models. 

-( 6) Number of attributes. A solution that uses fewer attributes may be preferred 

to one using more, even if the latter case produces slightly better classification results. 

Such considerations for parsimonious solutions are generally absent from LP formulations. 

In some statistical methods, variables are sequentially added (removed) one at a time to 

(from) a linear discriminant function based on some statistical measure of their 

contribution to the discrimination. 

(7) Unfaithful methods. If two groups can be strictly separated, one expects the 

discriminant analysis procedure to determine a strictly separating hyperplane. If a method 

always finds a strict separator when one exists, then we say the method is faithful. Fisher's 

method is unfaithful. Some of the linear programming methods are unfaithful as well. 
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(8) Computational effort. Real-world discriminant problems typically have a large 

number of observations and a small number of attributes (variables). As such, many of the 

linear programming formulations typically have a large number of constraints and a small 

number of variables. The dual has the opposite properties and accordingly might be the 

preferred problem to solve. When one considers mixed-integer approaches, there are at 

least n zero-one integer variables, which can be computationally challenging, hence 

heuristic solution approaches are appealing. 

Along with these problems, there are issues related to the construction of the 

objective function. Most models used to determine a linear discriminant function do so by 

optimizing some criterion that is a surrogate for minimizing the number of 

misclassifications. Such an objective is difficult to achieve, especially in the absence of 

parametric assumptions or other knowledge of the sampling population. 

2.2. Glover's :M:MD and MSID Models 

In their original papers, Freed and Glover (1982) presented several alternative 

formulations of the discriminant problem, based on two criteria for separating 

observations from a critical value. The first criterion is to maximize the minimum distance 

(:M:MD) of an observation1s score from the critical value. The second criterion separates 

the observations by minimizing a measure of external deviations and maximizing a 

measure of internal deviations (MSID) of the observations from the cutoff, or critical, 

value. In the sections that follow, we summarize the various MMD and MSID models 

that have appeared in the literature. The MMD formulation performs best when group 

overlap is minimal and the variances and covariances across groups are unequal, resulting 

in 25 to 3 0 percent lower rates of misclassification than the more commonly applied linear 

discrimination function. However, when group overlap is substantial (i.e., the groups are 

close together or intermixed), the :M:MD model does not perform as welL The results of 
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the MSID formulation are almost reversed under these conditions. The MSID model 

performs well when group overlap is maximal, and the performance is poorest when group 

overlap is minimal. The MSID model also minimizes misclassifications more effectively 

when the prior probabilities of the groups are unequal. 

2.2.1. Maximize the Minimum Distance (lviMD) Models 

In general, these models try to find a hyperplane that minimizes the maximum 

exterior deviations. There are several MMD models due to Glover et al. These models, 

defined below as MMD-1 through MMD-4, incorporate different constraint functions to 

avoid trivial or unbounded solutions. 

l\.fMD-1 (Freed and Glover, 1981a): 

Maximize d (2.12) 

subject to: X1w+dlscl (2.I3) 

(2.14) 

w, d unrestricted in sign (2.15) 

where c is a pre-chosen boundary value. The objective of MMD-I is to maximize the 

minimum deviation, d, of any group member's score from the break point c. Since dis 

allowed to take negative values and the objective is to maximize d, MMD-I can be 

interpreted as minimizing the maximum external deviation, or maximizing the minimum 

internal deviation. 
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An important property of :MMD-1 is that an unbounded solution indicates perfect 

separation of the two groups. A potential problem with this model is that it can yield a 

trivial solution. Unlike MMD-1, the :MMD-2 model is concerned only with external 

deviations, that is, with observations that lie on the wrong side of the separating 

hyperplane. The objective ofMMD-2 is to minimize the maximum external deviation. 

:rviMD-2 (Freed and Glover, 1986b): 

Minimize z=e 

subject to: 

e ~ 0 

w unrestricted in sign 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

where cis a non-zero positive constant. While the MMD-2 model will always produce a 

bounded solution, it can yield a trivial solution and it is not invariant under data 

translation. 

The :rviMD-3 model differs from :MMD-2 in that c is now a free variable rather 

than a constant, and a normalization constraint (2.24) eliminates the possibility of a trivial 

solution. Unfortunately, this constraint can potentially eliminate an optimal solution as 

well. Also, :rviMD-3 is not invariant under data translation. 

:rviMD-3 (Freed and Glover, 1986a): 

Minimize z=e (2.21) 
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subject to: 

X2w+el-cl~ 0 

wl+c=S 

e~O 

w, c unrestricted in sign 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

where S is a non-zero constant. The MMD-4 model as presented below is different from 

:M:MD-3 in that the normalization constraint (2.32) has been modified and S becomes a 

positive constant. 

:M:MD-4 (Freed and Glover, 1986a): 

Minimize z=e (2.27) 

subject to: xl w- el- cl ~ 0 (2.28) 

X2w+el-cl ~ 0 (2.29) 

w-u1 +u 2 = 0 (2.30) 

c-t1 +t2 = 0 (2.31) 

u1l+u2 l+t1 +t2 ~S (2.32) 

u1,u2 ~ 0 (2.33) 
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(2.34) 

w, c unrestricted in sign (2.35) 

where S is a positive constant. Here an upper bound has been placed on the sum of the 

absolute values ofw and c. This has been accomplished by expressing each variable as the 

difference of two non-negative variables and bounding the sum of the substitute variables. 

This model has a problem in that it always yields a trivial solution. 

:rvuv.ID-5 (Freed and Glover, 1986b ): 

Minimize z=e 

subject to: 

X2w +el-cl2: 0 

wl=S 

e2=0 

w, c unrestricted in sign 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

where S is a non-zero constant. This model is invariant under data translation and never 

yields a trivial solution, but the normalization constraint (2.39), introduced to eliminate the 

trivial solution, restricts the feasible space considerably. 
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2.2.2. Maximize Sum of Internal Deviations (MSID) Models 

Freed and Glover introduced a series of such models. In general, MSID models 

identify a hyperplane which combines the goals of (1) maximizing the sum of weighted 

deviations (internal) from the separating hyperplane, and (2) minimizing the sum of 

deviations (external) on the wrong side of the hyperplane. In each model, there are 

constants in the objectives (hJ, h2, kt, k2, H, K) that provide subjective weights 

concerning the importance of the respective deviations. These models are listed below. 

MSID-1: 

Minimize (2.42) 

subject to: X 1w+i1 -e1 -cl= 0 (2.43) 

X 2w-i2 +e2 -cl = 0 (2.44) 

.. > 0 eP e2 , 11 , 12 _ (2.45) 

w, c unrestricted in sign (2.46) 

where k1, k2 , h1, h2 are non-negative weight vectors. The objective in MSID-1 is a 

combination of maximizing the weighted sum of internal deviations and minimizing the 

weighted sum of external deviations. By aggregating the values of external deviations and 

determining e as the maximum external deviation, the MSID-1 reduces to the following 

model. 
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MSID-2: 

Minimize (2.47) 

subject to: (2.48) 

(2.49) 

(2.50) 

e ~ 0 (2.51) 

w, c unrestricted in sign (2.52) 

where H is a non-negative constant, and k 1, k 2 are non-negative weight vectors. The 

overall objective ofMSID-2 is to minimize the difference between a weighted maximum 

external deviation and a weighted sum of internal deviations. By aggregating the values of 

internal deviations and determining i as the maximum internal deviation, the MSID-1 

reduces to the following modeL 

MSID-3: 

Minimize (2.53) 

subject to: (2.54) 

(2.55) 

(2.56) 
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i ~ 0 

w, c unrestricted in sign 

(2.57) 

(2.58) 

where K is a non-negative constant, and h1 , h2 are non-negative weight vectors. The 

overall objective of MSID-3 is to minimize the difference between a weighted sum of 

external deviations and a weighted maximum internal deviation. By aggregating the 

values of internal and external deviations and determining e and i as the maximum external 

and internal deviations, the MSID-1 reduces to the following model. 

MSID-4: 

Minimize z=He-Ki (2.59) 

subject to: X 1w +il-el-cl = 0 (2.60) 

X2w-il+el-cl = 0 (2.61) 

e,i ~ 0 (2.62) 

w, c unrestricted in sign (2.63) 

where H and K are non-negative constants. The overall objective of MSID-4 is to 

minimize the difference between a weighted maximum external deviation and a weighted 

maximum internal deviation. To avoid the trivial solutions that were possible with the first 

four MSID models, Freed and Glover (1986b) suggested appending a suitable 

normalization constraint to these models. Although such a normalization constraint will 

certainly rule out the trivial solution, it can also eliminate certain other solutions and 

possibly an optimal solution as well. 
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The last MSID model) MSID-5, is proposed by Bajgier and Hill (1982). This 

model combines two objectives: (1) minimize the sum of external deviations; and (2) 

maximize the sum of internal deviations. 

MSID-5: 

Minimize (2.64) 

subject to: X1w- i1 +e1 -cl = 0 (2.65) 

X 2w-i2 +e2 -cl = 0 (2.66) 

•. > 0 ei 'ez '•t '•2 - (2.67) 

w, c unrestricted in sign (2.68) 

where H 1 and H2 are non-negative weight scalars. The overall objective of the MSID-5 is 

a weighted sum of the above two objectives. With H2 =0, MSID-5 reduces to an MSD 

model. MSID-5 is a fairly well behaved model in that it rarely yields a trivial solution. 

However, it gives an unbounded solution with H1 <1!2 • In general, care must be taken in 

choosing the objective function weights to prevent unbounded solutions. 

The straight-forward approaches of MMD and MSID formulations possess 

inherent limitations in their solutions which are not shared by classical statistical 

techniques. Researchers have focused attention on these limitations with the discovery of 

data sets in which the discrimination power of the LP formulation appears to break down. 

The difficulties identified in the solution features of LP discriminant formulations may be 

classified under the headings of degeneracy and stability. As a step toward their 

resolution, several researchers have shown that these difficulties stem from normalizations 
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implicitly used in LP models. One such proposed normalization sets the sum of the scaling 

variables equal to a constant to overcome the degeneracy and the instability problems. 

This property causes the essential form of the LP discriminant solution to be invariant 

relative to data translations. 

There remain two limitations of the LP discriminant models that have not properly 

been addressed in any of the MMD and MSID models. They are: (I) for best results, the 

LP discriminant model must be solved twice, once for a normalization constant with 

positive sign and once for a normalization constant with negative sign; (2) the stability of 

the proposed normalization is incomplete, failing to yield solutions that are invariant 

relative to rotations of the problem data. Glover (1990) proposed a new hybrid class of 

models for discrimination problems by using a normalization that is invariant to both 

translations and rotations yielding, as a consequence, the stability property previously 

unachieved for LP discriminant models. 
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2.2.3. Hybrid Models (Glover, 1990) 

To overcome the limitations of the various 1\1MD and MSID models, Glover 

( 1990) developed a hybrid model which combines the basic features of previously 

developed models and newly proposed normalizations into a single comprehensive model. 

The most notable improvement of such a model over the previous models is its ability to 

offer superior solutions by eliminating distortions. 

Two primary forms of the hybrid discriminant models as proposed by Glover are 

given below. In these models, e1, e2 , i1 , and i2 are external and internal deviation variables 

for points in groups 1 and 2. They refer to the magnitude by which the points lie outside 

or inside their targeted half spaces. The corresponding coefficients h1, h2 , k 1, and k 2 in 

the objective function discourage external deviations and encourage internal deviations. 

The h0 and k0 are constants to weight the maximum external deviation (eo) and the 

minimum internal deviation (io), respectively. [The effects of these variables can be 

segregated by introducing separate constraints of the form (X1 w- i0 + e0 ~ cl) and 

(X2 w + i0 - e0 ;:: c 1) at the expense of enlarging the model form.] 

Hybrid-1: 

Minimize (2.69) 

subject to: (2.70) 

(2.71) 

(2.72) 
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(2.73) 

(2.74) 

w, c unrestricted in sign (2.75) 

Equation (2.72) is a new normalization where n1 and n2 are the number of 

elements in groups 1 and 2, respectively . The right hand side, 2n1n2 , is an arbitrary 

scaling choice for a positive constant. This particular choice tends to yield w values closer 

to an average absolute value of 1. 

Hybrid-2: 

Minimize (2.76) 

subject to: (2.77) 

(2.78) 

(2.79) 

(2.80) 

w, c unrestricted in sign (2.81) 
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The difference between this model and the Hybrid-I model is in the normalization 

constraint. The normalization constraint (2. 79) is a simplified form and offers easy 

incorporation into an LP formulation as the coefficients of the variables do not require 

extensive calculations as in normalization constraint (2. 72). The constraint (2. 79) is 

derived by adding n2 times each equation of (2. 77) and subtracting n1 times each equation 

of(2.78). 

To achieve strict separation of points by the hyperplane, the quantity c can be 

replaced by c-& for group 1 and c+ & for group 2 where & is a positive constant. This will 

ensure that the elements of group 1 and group 2 lie strictly inside their half spaces whose 

boundary is marked by c. 

2.2.4. Improved Solutions from Hybrid Models 

The normalizations (2. 72) and (2. 79) as defined in the above models are equivalent 

to creating a meaningful separation of group 1 and group 2. They also eliminate the null 

weighting w = 0 as a feasible solution. A hyperplane creates a meaningful separation of 

group 1 and group 2 if n2 (d1 +d2 )+n1(d1 +d2 ) > 0 where d1 and d2 denote the net 

internal deviation of a point in their respective groups from the hyperplane generated by 

the discriminant model. Hence dt is positive (or zero) if group 1 lies within its targeted 

half space and negative otherwise. 

The new normalization constraints ensure a feasible dual solution, thereby 

guaranteeing that the LP discriminant formulation is bounded for optimality. Necessary 

conditions for bounded optimality are immediately evident from its dual formulation. Also 

evident are the necessary conditions for certain variables of the LP discriminant 

formulation to be nonzero at optimality. 
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The necessary and sufficient conditions for bounded optimality and non-trivial 

solutions are: 

(2.82) 

(2.83) 

(2.84) 

where ~min and ~min are the minimum elements of h1 and h2 , and k1max and k2max are 

the maximum elements of k 1 and k 2 respectively. It may be noted that 

hi > k i for j = I, 2 implies that at most one of e i and i i for j = 1, 2 will be positive, an 

outcome that also holds when hi = k i for j = 1, 2 in the case of extreme point solutions. 

2.3. Successive Goal Approach 

Researchers tend to measure the usefulness of a solution by its classification power 

on the training sample or on a validation sample. However, the objectives used in 

mathematical programming models are only loose approximations to the real objective of 

maximizing classification power. Further, many of the models are patched up models 

which exhibit undesirable properties such as yielding meaningless answers, unbounded 

solutions, and unbalanced classifications. 

Glover's Hybrid models with their new normalizations presented in the last section 

have shown a significant improvement in the determination of a stable, balanced, and 

unbounded solution. A particularly significant improvement can be had in the 

classification of observations by repeatedly solving the model while manipulating its 

objective function. Appropriately termed as the successive goal approach, Glover's new 
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method seeks to identify the points from each group as perfectly differentiated by shifting 

the separating hyperplane alternately in each direction. This is done by increasing and 

decreasing the constant value c by an amount such that all the points of the target group 

are strictly on one side of the hyperplane. Upon identifying the shift for a given group, all 

points of the alternate group which lie strictly beyond the shifted hyperplane boundary 

become perfectly differentiated. Such perfectly differentiated points can then be 

segregated from the remaining points before applying the next stage. The number of 

stages devoted to creating perfect classification before accepting the current hyperplane 

without shifting is decided by the decision maker in advance. 

2.3.1. Procedure for the Successive Goal Approach 

For the successive goal method, a classifier can be constructed as follows: 

Step 0: Set up the problem as a two-group classification problem. For the 

multiple group case, create any subset of groups as group 1 and the 

remaining subset as group 2. 

Step 1: Formulate the problem as Glover's new Hybrid model. 

Step 2: Assign objective function coefficients h1, h2, kt, and k2 values such that 

hi>kj. For a balanced differentiation at each successive stage, maintain a 

ratio of approximately 100:1 between h1, h2 and k1, k2. Set ko as 

(lk1 + lk2 ) + 1 and ho as 3*ko. Set e to zero. 

Step 3: If there are no more points to be differentiated from either group or if no 

additional iterations remain to be performed, then stop and go to Step 8. 

Otherwise, solve the model using any robust LP package. 
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Step 4: Compute the maximum shift of the hyperplane towards each group. The 

maximum hyperplane shift into group I until only group 1 points remain 

= {max (external deviation for each point in group 2)}; likewise, the 

equivalent shift into group 2 = {max (external deviation for each point in 

group 1)}. 

Step 5: Identify perfectly differentiated points in each group by comparing their 

internal deviations against that group's maximum shift. If the maximum 

shift for a group is less than the internal deviation of a point in that group 

then classify that point as perfectly differentiated. 

Step 6: Save the classifier ( w, c), the points differentiated on each side, and the 

maximum shift in each direction. 

Step 7: Re-assign new values to the objective function coefficients h1, h~ k1, 

and k2 for all the current and the previously differentiated points by 

reducing them by a factor of 10 at each stage. Reset ho and ko 

accordingly. Go to Step 3. 

Step 8: If there are still some points that remain to be differentiated then solve 

the model one more time. Use the new hyperplane to differentiate the 

remaining points without shifting. 

Step 9: List the number of points differentiated in each group. Stop. 



CHAPTER3 

AN EI\1PIRICAL COI\fil ARISON OF METHODS 

3 .1. Introduction 

This chapter investigates and compares the performance of one parametric and 

two non-parametric discriminant analyses which are based on a statistical discriminant 

analysis method and two relatively new mathematical programming-based methods. In 

Section 3.2 of this chapter, we review the criteria for selecting classification techniques 

for discriminant analysis. In Section 3.3, we list the methods selected for our experiment 

and briefly describe their formulation. In Section 3.4, we discuss the design of our 

experiment, review the criteria for selecting the data variables, and discuss the 

classification efficiency and costs of misclassification. We also lay out a step-wise 

procedure for each method. Finally, Section 3.5 presents the results of our 

experimentation. 

3 .2. Selection of a Discrimination Method 

In the previous two chapters, we have examined a number of methods that can 

learn from data and make predictions on new cases. They are the most widely used 

discrimination methods for various problems of data classification in real-world 

applications. These methods, regardless of their origin, possess some form of curve­

fitting properties where each method makes a certain assumption about an underlying 

model, and attempts to train itself (or learn) within that framework. For any given model, 

a good discrimination method must be capable of finding not one but several "good" fits 

within that model. As is often the case with the real-world discrimination problems, there 
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is never enough data to cany out a true training of a modeL Therefore, due to these 

typical shortages of data, it becomes imperative that a method use data efficiently. 

The key question is: How do we select the best method? In our literature survey 

of discrimination methods employed in various disciplines, we noticed a certain tendency 

among researchers to adhere to just one or two familiar methods of discrimination. 

While familiarity is comforting, it, nonetheless, deprives the researcher of the 

technological and qualitative advances offered by newer methods. To select the most 

appropriate method for a given sample, one should use the method that yields the best 

empirical performance. The standard to be used for deciding which method is best might 

well be the best accuracy in terms of lowest estimated true error rates. But this criterion 

undoubtedly requires a large amount of data. If one has lots of time and computational 

resources, this is a reasonable approach. While several such secondary factors may play a 

role in deciding which methods to apply, accuracy of performance should always remain 

the primary criterion in selecting a discrimination method. 

As we noted in Chapter I, small sample sizes do not accurately estimate true error 

rates. Many real-world sample sizes are in the hundreds, not in the thousands as required 

for unbiased estimation. Thus, we need to find or develop a procedure that will estimate 

the true error rate properly. It has been determined that a train-and-test model with a 

suitable cross-validation can yield reliable error rates. In general, a 1 0-fold cross 

validation is adequate and sufficient for obtaining reliable error rate estimators. When the 

sample size is small (less than I 00), and particularly when it is less than 50, then leaving­

one-out cross-validation should be used. 
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3.3. Methods Selected 

In our study, we have selected three methods to compare-two non-parametric 

and one parametric. While the main purpose of the study is to compare Glover's new 

successive goal approach to a single-linear programming method (both non-parametric 

methods), we have included Smith's quadratic discriminant method (QDM) for 

comparison. In the foiiowing sub-sections, we describe the exact formulation for each 

method selected. 

3.3.1. Smith's Quadratic Discriminant Analysis Method (QDM) 

This is a parametric method which is well suited for data with multivariate 

normality and unequal variance-covariance matrices. Smith's quadratic discriminant 

method as discussed in Section 1.5.1.3 minimizes the total probability ofmisclassification. 

In a two group problem, this classification rule assigns a point x to group G1 if: 

--~ - --1 - - -
(x- X 1 )'Sz- (x- X 2 )- (x- X 1 )'St- (x- X

1
) ~ lniSd- lniSzl 

and to group G2 otherwise, where x1 and x
2 

are the group mean vectors and 
- -
S 1, and Sz are estimates of the population dispersion (variance-covariance) matrices for 

groups 1 and 2, respectively. 

3.3.2. Glover's Mathematical Programming-Based Hybrid Model 

A relatively new member of the LP-based family of models, we have chosen 

Gloverts Hybrid model for its stability and optimality. As discussed before, with a new 

normalization constraint and a careful selection of the objective function coefficients, the 
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model guarantees a bounded nontrivial optimal solution. This is a significant 

improvement for LP formulations that have suffered in the past from trivial and 

unbounded solutions. The Hybrid-1 model, shown here, was used for the single-LP 

approach. 

Minimize (3.1) 

subject to: X1w+i0 l+i1 -e0 1-e1 -cl=O (3.2) 

X2w-i01- i2 +e0 1 +e2 -cl = 0 (3.3) 

-n21X1 w + n11X2 w = 2n1n2 (3.4) 

.. > 0 el, ez' II' 12 - (3.5) 

eo, i0 ~0 (3.6) 

w, c unrestricted in sign (3.7) 

3.3.3. Glover's Successive Goal Approach 

An extension of the above hybrid model, this approach relies on segregating 

perfectly differentiated points in each group and attenuating their influence in the 

objective function. Segregation of points is accomplished by shifting the hyperplane (by 

increasing and decreasing c) in the direction of each group until some points become 

perfectly differentiated. The influence of these segregated points is reduced by 

successively assigning very low weights to their objective function coefficients at each 

iteration. 
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3.4. Experimental Design 

While Smith's LDM method and Glover's Hybrid LP model are widely discussed 

in the literature, there is no published information yet on the implementation and 

performance of Glover's successive goal method. In order to investigate the quality of 

the solution produced by the successive goal method, we designed our study to include 

the following two experiments: 

( 1) Verify and validate the quality of the successive goal method on a well­

known data set drawn from the discriminant analysis literature, and 

(2) Perform the discriminant analysis on a new data set. 

3. 4 .1. Data and Variable Selection 

To fulfill our first experiment, we chose Fisher's Iris data, a classic data set, which 

is a set of measurements that relate to three species of iris. Measurements of length and 

width for sepal and petal were made on fifty plants from each of iris setosa, iris versicolor 

and iris virginica for the purpose of constructing a classification rule. It was this data that 

originally motivated Fisher to derive the linear discriminant function, so it was 

appropriate that we also select the same for our experiment as well. While, for simplicity 

and ease of comparison, we included all four variables of Iris data, we restricted our 

study to only two of the three groups. We performed a 1 0-fold cross-validation where 

the first 45 observations from each of the two groups (setosa and versicolor) were used 

as the training data and the remaining 5 observations constituted test or holdout data. 

The test was replicated 10 times with random subsampling. 

For our second experiment, we selected a data set consisting of financial 

information on 188 U.S. banks, grouped as failed (88 banks) and successful (100 banks). 

These values were a randomly selected subset of the 1984-1989 data used in Barr, 

Sieford, and Siems (1992). The independent variables chosen for this study include eight 
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variables based on a set of ratios commonly utilized for analysis and research in the 

banking industry. To make sure that all major areas of traditional bank performance 

analysis were represented, a management-quality variable, DEA, was added for 

completeness (see Barr, Sieford, and Siems, 1992). Table 3.1 and Table 3.2 list the 

selected variables and their statistics employed in the study. We performed a 10-fold 

cross-validation on this data where the first 79 observations from group 1 (failed banks) 

and 90 observations from group 2 (successful banks) were used as the training data and 

the remaining 9 observations from group 1 and 10 observations from group 2 constituted 

test or holdout data. The test was replicated 10 times with random subsampling. 

Table 3 .1. --Variable definitions 

Variable 

EC-TL 

NL-TA 

TL-TA 

OR-TA 

NI-TA 

NE-T A 

LA-TA 

BD-TA 

Definition 

Ratio of Equity Capital to Total Loans 

Ratio of Nonperforming Loans to Total 
Assets 

Ratio ofTotal Loans to Total Assets 

Ratio of Other Real Estate Owned to 
Total Assets 

Ratio ofNet Income to Total Assets 

Ratio of Noninterest Expense to Total 
Assets 

Ratio of (Liquid Assets minus Volatile 
Liabilities) to Total Assets 

Ratio of Bid Time Deposits to Total 
Assets 

DEA Data Envelopment Analysis Score 
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Table 3.2.--Sample variable statistics 

Mean Median Std. Dev Minimum Maximum 
Variable Group 1 Group 1 Group 1 Group 1 Group 1 

Group2 Group 2 Group 2 Group 2 Group 2 
EC-TL 39911 20215 82926 882 509836 

31557 17677 37746 2092 229674 
NL-TA 62669 62669 62669 62669 62669 

49981 28549 58567 3614 329978 
TL-TA 6462 3875 10373 282 62936 

5572 3165 6300 442 37428 
OR-TA 2158 1267 3568 182 20766 

2704 1442 4946 128 42546 
NI-TA 43 24 70 2 417 

35 24 73 4 230 
NE-T A 28862 18023 41114 484 280365 

33342 18932 40201 1090 203179 
LA-TA 4590 4261 2662 954 13978 

3026 2453 2251 1152 13978 
BD-TA 2209 2052 915 1292 5435 

2310 2052 743 1441 6435 
DEA 3659 3654 261 3054 4344 

3662 3654 106 3376 4124 

3 .4.2. Classification Efficiency and Costs ofMisclassification 

As discussed in Chapter 1, we used the average apparent error rate as the 

measure for classification efficiency. When discussing the classification efficiency of 

various models, it is important to distinguish between Type I and Type II errors. In our 

study of the bank data, the null hypothesis, H o, was set such that we recorded a Type I 

error whenever the classifier classified a failed bank as successful, and a Type II error if 

the classifier classified a successful bank as failed. Of the two errors, the Type I error, in 

this case, usually is the more serious since investors, depositors, or the Federal Deposit 

Insurance Corporation could lose a substantial amount of money to one of these 
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enterprises. Assuming an equal cost of misclassification for committing each type of 

error, the goal of any objective function here should be to minimize the total cost of 

misclassification. 

3.4. 3. Testing of Methods 

In this section, we describe a step-wise procedure for carrying out the experiment 

for each method. The procedures include assumptions, special parameters, and 

appropriate stopping criteria. 

3.4.3.I. Smith's Quadratic Discriminant Method 

The following procedure for Smith's QDM method is based on the bank data. 

However, except for certain parameters and the data differences, the procedure for the 

Iris data remains the same. 

Step 0: Set up the problem as a two-group (failed banks as group I, successful 

banks as group 2) classification problem with nine variables as shown in 

Table 3.1. Assign a prior probability of 0.47 to the failed group and a 

prior probability 0.53 to the successful group based on their sample sizes 

of 88 and I 00, respectively. 

Step I: For a 10-fold cross-validation, construct a set of IO random subsamples 

of training and test data, each consisting of 79 and 9 observations for 

group 1 and 90 and I 0 observations for group 2. 

Step 2: For each sample of training data, compute the quadratic discriminant 

function for each group. We used a PC-based BASIC program from 

James (I985). 

Step 3: Classify the observation from each test data group using its respective 

classifier. Record misclassifications as error Type I or Type II. 

Step 4: Compute the average misclassification from all the 10 tests. Stop. 
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3.4.3.2. Gloverts Hybrid Single LP Model 

The following procedure for Glover's LP fonnulation is based on the bank data. 

However, except for certain parameters and the data differences, the procedure for the 

Iris data remains the same. 

Step 0: Set up the problem as (3.1) - (3.7) with failed banks as group 1, 

successful banks as group 2, and the nine variables shown in Table 3 .1. 

Step 1: For a 1 0-fold cross-validation, construct a set of 10 random subsamples 

of training and test data, each consisting of 79 and 9 observations for 

group 1, and 90 and 10 observations for group 2. 

Step 2: For each sample of training data, solve the LP model using an 

appropriate LP package. Note the classifier (w,c) values for each 

training sample. (We used a PC-based LP package from ffiM called 

OSL running under GAMS). 

Step 3: Classify the observation from each test data using its respective (w,c) 

classifier. Record misclassifications as error Type I or Type II. 

Step 4: Compute the average misclassification from all the 1 0 tests. Stop. 
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3.4.3.3. Glover's Successive Goal Approach 

The following procedure for Glover's successive goal approach is based on the 

bank data. However, except for certain parameters and the data differences, the 

procedure for the Iris data remains the same. 

Step 0: Set up the problem as (3.1) - (3.7) with failed banks as group 1, 

successful banks as group 2, and the nine variables shown in Table 3 .1. 

Initialize the objective function coefficients and parameters as necessary. 

A listing of the model with the bank data is shown in Appendix A. Set 

the iteration counter k = 0. 

Step 1 : For a 1 0-fold cross-validation, construct a set of 10 random sub samples 

of training and test data, each consisting of 79 and 9 observations for 

group 1, and 90 and 10 observations for group 2. Designate all 19 of 

the test data (group I and group 2) observations as yet-to-be-classified 

(YTBC). 

Step 2: Increment the iteration counter k by 1. If the number of iterations 

exceeds the specified limit, go to Step 6. 

Step 3: For each sample of training data, solve the LP model as described in 

Chapter 2 using an appropriate LP package. Record the classifier 

function (w,c) and its maximum shift in the direction of each group. 

(We used a PC-based LP package from IBM called OSL running under 

GAMS). 

Step 4: Compute ( w k, c!) and ( w k, c~) as the shifted classifiers for 

groups 1 and 2. 

Step 5: ClassifY each YTBC observation from groups 1 and 2 test data by 

evaluating it on ( w k, c!). If a YTBC from group 1 test data classifies as 
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group 1, record the observation as correctly classified. However, if a 

YTBC from group 1 test data classifies as group 2 data, record that 

observation as misclassified generating a Type I error. If neither 

happens, leave the observation as YTBC. Next, repeat the evaluation 

on { w k, c:) for all remaining YTBC observations. The misclassification 

here will generate a Type II error. Go to Step 2. 

Step 6: Solve the LP problem again for ( w k+I ,ck+J. Without any shifting, apply 

this classifier ( w k+I, ck+1) on each YTBC. Record any new Type I and 

Type II errors. 

Step 7: Repeat Step 2 through Step 6 for each sample data set. 

Step 8 : Compute the average misclassification from all the 10 tests. Stop. 

3. 5. Experimental Results and Analysis 

Table 3.3 shows the results of the 1 0-fold cross-validation testing on the Iris 

dataset, which were identical on all methodologies, as summarized in Table 3.4. In all ten 

instances, all methods were able to perfectly differentiate the I 0 test observations, based 

on a discriminant model developed from the 90 training observations. The data followed 

the parametric requirements of the quadratic method, and the testing not only verified the 

appropriateness of the approach in that context, but effectiveness of the LP-based 

methods as well. 
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Table 3.3.--10-fold cross-validation (Iris data): all models 

Train=45 Train=45 Correct Correct Type I Type II 
Test=5 Test=5 Group 1 Group 2 Error Error 

Test Group 1 Group 2 Group 1 Group 2 Group Group Total 
No. as as 1 as 2 as Error 

Group 1 Group 2 Group Group 
2 I 

1 45 45 5 5 0 0 0 
2 45 45 5 5 0 0 0 
3 45 45 5 5 0 0 0 
4 45 45 5 5 0 0 0 
5 45 45 5 5 0 0 0 
6 45 45 5 5 0 0 0 
7 45 45 5 5 0 0 0 
8 45 45 5 5 0 0 0 
9 45 45 5 5 0 0 0 
10 45 45 5 5 0 0 0 

Avg 45 45 5 5 0 0 0% 

Table 3.4.--Experimental results for 10-fold cross validation (Iris data) 

Method Type I Type II Misclassification Accuracy 

Error Error Error(%) (%) 

Quadratic Method 0 0 0% 100% 

Hybrid Model 0 0 0% 100% 

Successive Approach 0 0 0% 100% 

Tables 3 .5 through 3. 7 summarize the experimental results on the bank data. The 

quadratic method classified all of the test points in all ten holdouts as being in group 2; 

hence all 88 group 1 observations were misclassified. Table 3.5 gives the 10-fold cross­

validation results for the single-LP Hybrid model, which had an accuracy of 82.5% with 

17.5% rnisclassifications. In this testing, all hj=200 and all lcj= 1, which seemed to give 

the best discrimination based on preliminary testing, and ho and ko were computed as 

described previously to ensure bounded and nontrivial solutions. 
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Table 3.5.--10-fold cross-validation (bank data): single stage hybrid model 

Train=79 Train=90 Correct Correct Type I Type II 
Test=9 Test=IO Group I Group 2 Error Error 

Test Group 1 Group 2 Group 1 Group2 Group Group Total 
No. (Failed) (Success) as as 1 as 2 as Error 

Group 1 Group 2 Group Group 
2 1 

I 69 68 7 7 2 3 5 
2 70 64 7 8 2 2 4 
3 68 67 8 8 1 2 3 
4 71 66 7 8 2 2 4 
5 70 67 7 8 2 2 4 
6 69 64 8 8 1 2 3 
7 68 62 9 0 0 0 0 
8 66 78 7 8 2 2 4 
9 69 66 9 7 0 3 3 
10 69 68 7 7 0 3 3 

Avg 68.9 67 7.6 7.9 1.2 2.1 17.5% 

Table 3.6.--10-fold cross-validation (bank data): successive goal method 

Train=79 Train=90 Correct Correct Type I Type II 
Test=9 Test=10 Group 1 Group 2 Error Error 

Test Group 1 Group 2 Group 1 Group 2 Group Group Total 
No. (Failed) (Success) as as 1 as 2 as Error 

Group 1 Group 2 Group Group 
2 1 

1 75 86 6 8 3 2 5 
2 76 87 7 7 2 3 4 
3 76 85 6 8 3 2 3 
4 75 87 6 8 3 2 4 
5 74 78 7 7 2 3 4 
6 75 85 9 10 0 0 3 
7 74 85 9 9 0 1 0 
8 73 84 7 10 2 0 4 
9 69 72 8 7 1 3 3 
10 75 84 6 10 1 0 3 

Avg 74.2 83.3 7.1 8.4 1.7 1.6 17.5% 



72 

Table 3.7.--Experimental results for 10-fold cross validation (bank data) 

Method Type I Type II Misclassification Accuracy 

Error Error Error(%) (%) 

Quadratic Method 88 0 46.5% 53.5% 

Hybrid Model 12 21 17.5% 82.5% 

Successive Approach 17 16 17.5% 82.5% 

Table 3.6 presents the same results for the successive goal method, where six 

iterations, or hierarchies, were used. Surprisingly, the accuracy rate was identical to the 

Hybrid model, although the proportions of Type I and Type II errors were different. 

The two experiments employing the above three methods encountered their share 

of idiosyncrasies. Most of the issues appeared to be data related. Here are some 

noteworthy observations. 

(1) The two groups chosen from the Iris data (setosa and versicolor) are well 

differentiated and hence didn't produce any misclassification. We used a 

linear discriminant classifier as well and the results were identical. 

(2) The statistics on the bank data revealed existence of no parametric 

distribution. This rendered the quadratic discriminant classifier useless on 

such a data. This fact was obvious from a high degree of misclassification 

returned by the statistical classifier. 

(3) As expected, the outliers in the sample data appeared to have a significant 

influence on the performance of each method. 
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Analysis of the results shows that successive goal approach performed better than 

the Hybrid model, which in tum performed much better than the classical quadratic 

discriminant procedure. While the Hybrid model performed better than the previous LP 

models, the successive goal approach has emerged as the strongest alternative to any of 

the previous methods. Let us discuss these conclusions in greater detail. 

(1) The quadratic discriminant approach did not provide a good classification as 

the data set did not possess adequate distribution properties. Lack of 

knowledge about the groups' prior probabilities forced us to base them on 

the sample sizes. 

(2) The Hybrid formulation appeared very stable under numerous settings of 

objective function coefficients. It held up well against unboundedness. 

(3) The successive goal method differentiated most points during the first two 

shifts after which it tapered off. The incremental gain at succeeding stages 

was marginal. However, the solution was found to be intuitive and 

provided information about the structure of the data. 

( 4) It is noteworthy that outliers appeared to be an important factor in the 

application of the successive goal approach. That is, the shifting 

methodology appears to be adversely affected by extreme points from each 

group which reach most deeply into the territory of the other. Removing 

these extreme points suspected to be unrepresentative of the original group 

appeared to improve the solution significantly. 

( 5) The successive goal method clearly improved the classification at each stage 

of iteration. Figure 3.1 and Figure 3.2 show the incremental improvement 

over the Hybrid modeL 
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CHAPTER4 

Sill.1MARY AND CONCLUSIONS 

This praxis contributes to the development and implementation of Glover's new 

LP-based successive goal approach for solving discriminant analysis problems. A GAMS­

based LP package from IBM (OSL) was used on a PC to validate the robustness of the 

two normalization constraints proposed by Glover in his new Hybrid model. 

We began with a general description of the classification problems in Chapter 1, 

where we also reviewed discriminant analysis vis-a-vis classification, ANOV A and cluster 

analysis. We included in the chapter a detailed survey of discriminant analysis methods 

and their application in various fields of interest. An in-depth review of discriminant 

analysis methods based on a mathematical programming approach was presented in 

Chapter 2 with an emphasis on Freed and Glover's new Hybrid model and a successive 

goal approach based on the Hybrid model. 

In Chapter 3, we presented two non-parametric and one parametric method for use 

in the design of the experiment, construction of the models, and their solution. The 

methods selected were Smith's quadratic discriminant method, Glover's Hybrid model, and 

Glover's new successive goal method. For data, we used Fisher's classic Iris data, and 

financial data from a study of 188 failed and successful U.S. banks. 

75 
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The computational results show that the Glover's new normalization constraints 

improve the quality of the LP solution, especially in the area of non-trivial and unbounded 

solutions. His newly proposed successive goal approach was equally accurate in 

classifying new observations; employing the decision-tree technique, this method is 

intuitive and lends itself well to discrimination problems. The performance of the LP­

based approaches to the discriminant problem is poised to quiet the skeptics and critics of 

their viability. 



APPENDIX A 

$TITLE LP DISCRIMINANT ANALYSIS MODEL -- Bank Data from R. Barr 
$0FFUPPER 
*Glover's 1989 Discriminant Models 
*Output options (see p. 103, 194, 281 in GAMS Reference manual) 

OPTION ITERLIM=9000, LIMROW=O, LIMCOL=O, DECIMALS=?, SOLPRINT=OFF; 
OPTION RESLIM=2000, OPTCA=O.O, BRATI0=0.25; 
SETS 

G1 Group 1 training data /G1R1*G1R79/ 
G2 Group 2 training data /G2R1*G2R90/ 
T1 Group 1 test data /T1R1*T1R9/ 
T2 Group 2 test data /T2R1*T2Rl0/ 
J Attributes /EC-TL, NL-TA, TL-TA, OR-TA, NI-TA, NE-TA, LA-TA, BD-TA, DEA/; 

PARAMETER HO Weight for external deviation constant; 
PARAMETER KO Weight for maximum internal deviation; 
PARAMETER H1(Gl} Weights for external deviations in Group 1; 
PARAMETER H2(G2} Weights for external deviations in Group 2; 
PARAMETER Kl(G1} Weights for internal deviations in Group 1; 
PARAMETER K2(G2) Weights for internal deviations in Group 2; 
PARAMETER N1 Observations in Group 1; 
PARAMETER N2 Observations in Group 2; 
PARAMETER SEP Epsilon for separation amount; 
PARAMETER WH H weights; 
PARAMETER WK K weights; 
PARAMETER RS2 Weight reduction stage 2; 
PARAMETER RS3 Weight reduction stage 3; 
PARAMETER RS4 Weight reduction stage 4; 
PARAMETER RS5 Weight reduction stage 5; 
PARAMETER RS6 Weight reduction stage 6; 
PARAMETER RAT Weight ratio for each stage; 

WH = 200.0; WK = 1.0; RAT= 0.3; 
RS2 = 0.10; RS3 = RAT*RS2; RS4 = RAT*RS3; RS5 RAT*RS4; RS6 
H1(G1) WH; H2(G2) = WH; 
K1(G1) WK; K2(G2} = WK; 
KO SUM(G1,Kl(Gl})+ SUM(G2,K2(G2)) +1 ; 
HO 3*KO; 
SEP 0.0; N1 = CARD(Gl}; N2 = CARD(G2); 

PARAMETER G1MAX Max external for Group 1; 
PARAMETER G2MAX Max external for Group 2; 
PARAMETER GRlSHl(G1) (BETA1.L- G2Max} Group 
PARAMETER GR2SHl(G2} (BETA2.L - GlMax) Group 
PARAMETER GR1SH2{G1) {BETAl.L - G2Max} Group 
PARAMETER GR2SH2(G2) (BETA2.L - G1Max) Group 
PARAMETER GR1SH3(G1} (BETAl.L - G2Max) Group 
PARAMETER GR2SH3{G2) (BETA2.L - G1Max} Group 
PARAMETER GR1SH4(G1) (BETAl.L - G2Max} Group 
PARAMETER GR2SH4(G2) (BETA2.L - G1Max) Group 
PARAMETER GR1SH5(Gl) {BETAl.L - G2Max) Group 
PARAMETER GR2SH5(G2) (BETA2.L - G1Max} Group 
PARAMETER GR1SH6(G1) {BETAl.L - G2Max) Group 
PARAMETER GR2SH6(G2) (BETA2.L - GlMax) Group 

PARAMETER KOUNTG1 G1 points differentiated; 
PARAMETER KOUNTG2 G2 points differentiated; 

1 & Stage 
2 & Stage 
1 & Stage 
2 & Stage 
1 & Stage 
2 & Stage 
1 & Stage 
2 & Stage 
1 & Stage 
2 & Stage 
1 & Stage 
2 & Stage 

PARAMETER CUMULGl Cumulative Gl points differentiated; 
PARAMETER CUMULG2 Cumulative G2 points differentiated; 
PARAMETER FLAGT1(T1) (lSN: S=stage N=lor2); 
PARAMETER FLAGT2(T2) (2SN: S=stage N=lor2); 
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1; 
1; 
2; 
2; 
3; 
3; 
4; 
4; 
5; 
5; 
6; 
6; 

RAT*RS5; 
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PARAMETER A1XB(T1) Computed (AX-B) for Test Group 1 (Yes if < 0 ) ; PARAMETER A2XB{T2} Computed (AX-B) for Test Group 2 (Yes if > 0 ) ; PARAMETER SUXEST11 Positive {G1 data in Gl}; 
PARAMETER SUXEST21 Negative (G2 data in G1); 
PARAMETER SUXEST12 Negative {G1 data in G2); 
PARAMETER SUXEST22 Positive {G2 data in G2); 
PARAMETER TOTALT11 Total Positive (G1 data in Gl} PARAMETER TOTALT21 Total Negative (G2 data in G1) 
PARAMETER TOTALT12 Total Negative {G1 data in G2) 
PARAMETER TOTALT22 Total Positive (G2 data in G2} 

KOUNTG1 = 0; KOUNTG2 = 0; CUMULG1 = 0; CUMULG2 = 0; A1XB(T1) = 0; A2XB (T2 J = 0; 
GR1SH1(G1) 0; GR2SH1(G2} 0; GR1SH2{G1) 0; GR2SH2(G2) 0 GR1SH3(Gl) = 0; GR2SH3{G2) = 0; GR1SH4(Gl) 0; GR2SH4(G2) 0 GR1SH5(G1) = 0; GR2SH5(G2) = 0; GR1SH6(G1} 0; GR2SH6(G2) 0 FLAGT1{Tl} = 0; FLAGT2(T2) = 0; 
SUXEST11 0; SUXEST21 = 0; SUXEST12 = 0; SUXEST22 0; 
TOTALT11 = 0; TOTALT21 = 0; TOTALT12 = 0; TOTALT22 0; 

TABLE Al(G1,J) Observations for Group 1 
EC-TL NL-TA TL-TA OR-TA NI-TA NE-TA LA-TA BD-TA DEA GIRl 30511 45703 4712 1434 34 22589 4965 2362 3932 G1R2 22806 41844 5642 2516 34 16067 2453 2052 3654 G1R3 22337 39231 3814 1604 21 22424 2453 2052 3654 GlR4 35549 71685 6648 1538 28 31881 3977 2310 3932 G1R5 29425 47056 4606 1360 35 28490 5948 1858 3199 G1R6 15744 32179 3258 914 18 17961 3096 1631 3336 GlR7 96407 137262 15378 6780 150 52166 8152 2015 3870 G1R8 35274 82076 7620 1610 37 41223 4575 1983 3417 G1R9 39467 65989 6284 2078 51 31792 4921 1784 3798 G1R10 12336 25885 2532 692 14 16262 954 1518 3560 G1R11 19903 43445 4518 1438 28 17879 4630 1292 3398 G1R12 67973 93141 8942 2808 77 27263 3977 2310 3932 G1R13 17327 32235 3222 714 16 16662 2285 1329 3561 G1R14 37240 58934 6416 3226 34 16332 8190 2107 4344 G1R15 16882 29276 2814 740 16 15947 1152 1677 3543 G1R16 4202 6590 806 428 9 4083 1500 2335 3783 G1Rl7 22_291 86824 8008 1728 22 45529 2285 1329 3561 G1R18 432641 535792 55600 20766 345 191727 6305 2924 3839 GlR19 7301 9755 1066 352 6 5328 5273 2003 3472 G1R20 3068 7046 742 182 2 3634 5273 2003 3472 G1R21 16365 21382 2176 822 21 12396 5273 2003 3472 G1R22 38277 48737 4896 1098 18 37355 3980 1708 3779 G1R23 6812 15242 1414 550 10 8086 3980 1708 3779 G1R24 50939 64787 7960 2578 60 37427 8190 2107 4344 G1R25 20692 33655 3124 794 16 20935 4284 1694 3532 G1R26 34852 45676 4808 1358 32 28424 7617 1891 3054 G1R27 18082 35290 3604 1328 15 17448 6305 2924 3839 G1R28 26212 90423 7654 2100 65 50875 3046 1789 3421 G1R29 10687 21842 2142 672 15 9841 7391 2179 3476 G1R30 5618 12721 1592 1010 8 4146 7391 2179 3476 G1R31 53681 73302 7642 2110 28 29119 5273 2003 3472 G1R32 40577 69478 7342 2524 27 35148 2285 1329 3561 G1R33 5402 11178 1138 454 11 6020 2285 1329 3561 G1R34 6598 9135 1016 636 8 1876 4261 4391 3750 G1R35 15226 23652 2390 792 21 10128 954 1518 3560 G1R36 33762 40577 4480 2206 49 12163 12797 3438 3851 G1R37 32530 44458 4752 1600 30 19679 2453 2052 3654 G1R38 34211 47411 4618 1540 41 27207 4921 1784 3798 G1R39 7865 17068 2050 1492 24 7329 2453 2052 3654 G1R40 3586 12060 1016 254 6 4681 3977 2310 3932 G1R41 69172 88715 9318 2514 59 45457 3046 1789 3421 G1R42 15125 23975 2530 790 17 11329 3977 2310 3932 G1R43 11446 43139 3652 890 18 8600 2453 2052 3654 G1R44 19177 45936 3876 822 18 21864 4630 1292 3398 G1R45 9699 16698 1678 384 7 9445 7391 2179 3476 G1R46 38343 53766 5766 1920 44 28576 4965 2362 3932 GlR47 42572 95302 9614 3700 83 40943 1500 2335 3783 G1R48 13492 30735 2882 502 14 13289 5273 2003 3472 
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G1R49 15011 38962 4246 1762 42 14111 4898 1611 3413 
G1R50 21278 34342 3320 1044 25 20688 10877 2863 3755 
G1R51 50493 87732 8532 2770 57 39151 4921 1784 3798 
G1R52 9670 20814 1778 638 9 13995 7391 2179 3416 
G1R53 5827 21348 2058 362 9 10476 2285 1329 3561 
G1R54 54418 93586 8834 2558 58 51170 2482 1413 3349 
G1R55 43882 75038 7292 2060 50 35365 4284 1694 3532 
G1R56 454243 479846 55816 18462 417 209116 8686 3593 3276 
G1R57 7858 23369 2138 488 12 10927 3977 2310 3932 
GlR58 94541 122249 12766 3490 57 50132 6305 2924 3839 
G1R59 47339 87515 9180 3370 93 47673 2319 1462 3249 
G1R60 34828 47677 5214 1626 39 22895 4630 1292 3398 
G1R61 18438 30411 3562 1852 28 11080 4261 4391 3750 
G1R62 3763 8102 864 338 8 5205 3980 1708 3779 
G1R63 17163 23761 3040 1078 17 19087 4261 4391 3750 
G1R64 5437 10265 1082 262 5 5561 3977 2310 3932 
G1R65 5280 29849 2674 526 14 17620 1500 2335 3783 
G1R66 36420 215777 18322 5858 131 87408 13978 6435 4010 
G1R67 882 2547 282 208 8 484 2453 2052 3654 
G1R68 20527 41821 4026 1604 33 22508 5273 2003 3472 
G1R69 62856 124105 10656 3466 55 3~949 7046 3756 4344 
GlR70 14093 18408 2264 430 11 12924 3977 2310 3932 
G1R71 6111 11091 1068 276 7 5476 3977 2310 3932 
G1R72 16658 41595 3874 836 20 23769 2285 1329 3561 
G1R73 11530 20088 2006 718 13 8965 3977 2310 3932 
G1R74 10813 34378 3206 836 16 18085 3307 1628 3491 
G1R75 29327 60695 6352 1750 29 34236 1500 2335 3783 
G1R76 4787 9245 1060 472 11 4031 2482 1413 3349 
G1R77 12754 20624 2240 958 17 12264 1546 1673 3317 
G1R78 41980 60299 7270 2876 79 14960 4546 2479 3495 
G1R79 29397 45452 5318 2432 49 20870 8190 2107 4344; 

TABLE A2(G2,J) Observations for Group 2 
EC-TL NL-TA TL-TA OR-TA NI-TA NE-TA LA-TA BD-TA DEA 

G2R1 6615 16056 2110 1364 21 7333 2453 2052 3654 
G2R2 23998 31276 3106 934 11 23317 10558 3422 3703 
G2R3 5759 8960 1398 842 12 3353 2453 2052 3654 
G2R4 54304 62654 7900 2908 63 42176 2453 2052 3654 
G2R5 166243 238004 28808 23904 207 195780 2453 2052 3654 
G2R6 11605 15798 1986 1062 29 8787 2453 2052 3654 
G2R7 31159 109281 10420 4508 70 68535 2453 2052 3654 
G2R8 15624 25033 2702 988 16 15071 1500 2335 3783 
G2R9 20723 39960 4126 1892 30 21008 2453 2052 3654 
G2R10 18201 45339 4658 1606 18 32340 2453 2052 3654 
G2R11 59726 130751 11758 2938 52 96799 2453 2052 3654 
G2R12 52617 92225 9110 2684 49 54263 2453 2052 3654 
G2R13 32107 43940 4890 1992 46 37509 1530 2284 3556 
G2R14 40179 75329 7582 2888 52 56124 2453 2052 3654 
G2R15 97876 140222 16078 6884 92 94377 10558 3422 3703 
G2R16 9353 34059 3104 1444 15 28928 2453 2052 3654 
G2R17 13107 20127 2562 1394 20 18867 2453 2052 3654 
G2R18 14434 21106 2482 986 17 11784 2453 2052 3654 
G2R19 8398 13858 1572 862 15 10478 1530 2284 3556 
G2R20 6210 9543 1266 676 11 7476 13978 6435 4010 
G2R21 59152 123864 11398 3400 51 81983 2453 2052 3654 
G2R22 103561 220605 21436 6770 112 148553 2453 2052 3654 
G2R23 8001 14485 1626 616 15 9667 1530 2284 3556 
G2R24 17674 25360 2712 950 19 18426 2453 2052 3654 
G2R25 6971 9815 1236 850 14 6777 1500 2335 3783 
G2R26 57715 74695 9918 5378 81 34144 2453 . 2052 3654 
G2R27 20284 46825 4456 2590 22 29724 2453 2052 3654 
G2R28 3620 4512 578 524 5 3646 5273 2003 3412 
G2R29 11588 15808 2492 1670 26 9134 10877 2863 3755 
G2R30 15086 35297 7942 2754 60 18460 2453 2052 3654 
G2R31 8875 14131 1452 592 12 7716 7391 2179 3476 
G2R32 13457 25143 3000 1370 34 19189 1530 2284 3556 
G2R33 18642 26671 2822 1264 14 18768 1530 2284 3556 
G2R34 14079 35043 3622 1218 20 27950 2453 2052 3654 
G2R35 1037 55 178264 17848 3662 63 108102 2453 2052 3654 
G2R36 16602 22685 2990 1432 23 13392 2453 2052 3654 
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G2R37 2451 3614 616 426 6 1090 4261 4391 3750 
G2R38 16664 25400 2994 1662 17 20709 1500 2335 3783 
G2R39 4790 7051 1000 550 8 3843 4261 4391 3750 
G2R40 10866 15168 1526 742 13 8900 2453 2052 3654 
G2R41 14676 40282 3746 1204 14 28529 2453 2052 3654 
G2R42 8558 13811 1676 938 13 8841 2453 2052 3654 
G2R43 20608 27728 3802 1300 17 43225 2453 2052 3654 
G2R44 17994 34273 4136 1702 35 16354 1530 2284 3556 
G2R45 11491 14453 1808 554 12 8824 2453 2052 3654 
G2R46 23585 33288 3972 1824 28 21354 2453 2052 3654 
G2R47 17274 27764 3522 2052 28 19979 2453 2052 3654 
G2R48 29210 35483 4336 2020 33 21303 2453 2052 3654 
G2R49 29928 36749 4136 2364 32 23225 2453 2052 3654 
G2R50 131400 168544 18842 12532 121 126518 2453 2052 3654 
G2R51 86001 14 3188 14510 4396 63 84256 2453 2052 3654 
G2R52 53555 67289 8136 4588 53 40005 2453 2052 3654 
G2R53 17207 22789 2742 1496 22 14357 2453 2052 3654 
G2R54 26790 50915 5504 2624 30 37556 2453 2052 3654 
G2R55 32767 57654 5668 1526 28 38267 2453 2052 3654 
G2R56 27860 31998 4496 1972 27 22810 2453 2052 3654 
G2R57 7548 9496 1218 846 14 6692 2453 2052 3654 
G2R58 46297 54372 7996 2874 32 53848 3109 4261 4124 
G2R59 39073 53559 6370 2616 48 33908 10558 3422 3703 
G2R60 29563 36867 3798 1422 16 28893 2453 2052 3654 
G2R61 5307 8096 1082 686 14 4069 2453 2052 3654 
G2R62 13907 18536 2500 1734 25 15556 2453 2052 3654 
G2R63 27471 29333 3968 2590 31 17202 2453 2052 3654 
G2R64 10318 15956 2088 1372 16 6860 2453 2052 3654 
G2R65 46337 74262 8404 3118 30 55949 2453 2052 3654 
G2R66 19917 32589 3064 2036 30 16419 2453 2052 3654 
G2R67 46618 54257 6358 2326 47 27437 1530 2284 3556 
G2R68 229674 329978 37428 42546 230 203179 2453 2052 3654 
G2R69 25389 30698 4594 2488 44 14014 4261 4391 3750 
G2R70 16047 20063 2270 828 18 12357 2924 1441 3376 
G2R71 6669 9431 1112 602 10 5153 2453 2052 3654 
G2R72 6842 9462 1362 830 14 5834 2453 2052 3654 
G2R73 118419 201431 22712 7858 150 119483 1500 2335 3783 
G2R74 2092 4594 442 128 4 2912 3980 1708 3779 
G2R75 22035 30859 3662 1360 22 9580 4261 4391 3750 
G2R76 33610 66234 6760 2168 25 48655 2453 2052 3654 
G2R77 21725 24030 3122 1384 21 15489 2453 2052 3654 
G2R78 20073 40164 3756 2526 19 29042 2453 2052 3654 
G2R79 9815 17844 2186 1004 12 13234 1500 2335 3783 
G2R80 23511 29913 3536 1360 26 18996 2453 2052 3654 
G2R81 17680 23001 2446 754 12 19352 2453 2052 3654 
G2R82 7889 12374 1774 1006 22 10264 1530 2284 3556 
G2R83 17915 21590 2640 1258 16 10103 10558 3422 3703 
G2R84 16926 24590 2874 768 12 15660 2453 2052 3654 
G2R85 80924 204129 19168 3560 54 148425 2453 2052 3654 
G2R86 11705 20860 2514 2588 41 18664 2453 2052 3654 
G2R87 9296 13546 1636 1018 17 7819 2453 2052 3654 
G2R88 6180 7438 994 570 9 3591 2453 2052 3654 
G2R89 15551 23622 2760 1680 25 16747 3109 4261 4124 
G2R90 9451 14909 1500 528 10 11093 2924 1441 3376; 

TABLE: TESTl(T1,J} Test data for Group 1 
EC-TL NL-TA TL-TA OR-TA NI-TA NE-TA LA-TA BD-TA DEA 

T1R1 2082 10092 982 304 6 6299 2453 2052 3654 
T1R2 25093 47523 4900 1426 24 27666 2453 2052 3654 
T1R3 28368 60999 5302 1206 29 33596 5273 2003 3472 
T1R4 44964 153383 15366 7738 139 62842 1500 2335 3783 
T1R5 11091 26258 2448 668 13 12609 5273 2003 3472 
T1R6 509837 561216 62936 19760 375 280365 13978 6435 4010 
T1R7 18398 30780 3370 1198 25 14615 5948 1858 3199 
T1R8 5912 12515 1262 734 14 7225 1500 2335 3783 
TlR9 29190 42846 4030 1078 24 24807 5273 2003 3472; 
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TABLE TEST2(T2,J) Test data for Group 2 

EC-TL NL-TA TL-TA OR-TA NI-TA NE-TA LA-TA T2Rl 16731 25758 3208 1372 26 12994 T2R2 48179 69099 8036 4070 84 30395 T2R3 2612 4631 626 244 5 3335 T2R4 16292 32458 3208 1440 28 21100 
T2R5 13091 27596 2938 1388 18 21200 T2R6 54634 75809 7476 2668 45 57780 
T2R7 152015 176896 19464 7750 83 132101 T2R8 3265 4474 566 254 6 2638 T2R9 65092 93531 10956 5108 85 37880 
T2R10 11015 15494 2308 1362 24 8440 

FREE VARIABLES 
z Objective function value 
X(JJ Computed Attributes 
B Computed RHS (Ax=B); 

POSITIVE VARIABLES 
ALPHAO Maximum external deviation 
ALPHAl(Gl) External deviations for Group 1 observations 
ALPHA2(G2) External deviations for Group 2 observations 

Minimum internal deviation 

1500 
1530 
3980 
1152 
1530 
2453 
2453 
3307 
2453 
2453 

BE TAO 
BETAl {Gl) 
BETA2(G2) 

Internal deviations for Group 1 observations 
Internal deviations for Group 2 observations; 

Weighted sum of deviations 

BD-TA 
2335 
2284 
1708 
1677 
2284 
2052 
2052 
1628 
2052 
2052 

EQUATIONS 
OBJECTIVE 
GROUPl(Gl) 
GROUP2(G2) 
NORMLN 
NORMLNS 

Goal programming constraints for Group 1 observations 
Goal programming constraints for Group 2 observations 
N Normalization constraint 

OBJECTIVE .. 

N* Normalizaiton constraint; 

Z =E= HO*ALPHAO + SUM{Gl, ALPHAl(Gl}*Hl(Gl)} 
+ SUM(G2, ALPHA2{G2)*H2(G2)) 

-KO*BETAO - SUM(Gl, BETAl(Gl) *Kl(G1)} 

DEA 
3783 
3556 
3779 
3543 
3556 
3654 
3654 
3491 
3654 
3654; 

GROUPl (Gl) .. 
- SUM(G2, BETA2(G2) *K2(G2)); 

SUM(J, Al(Gl,J)*X(J)) - ALPHAO- ALPHAl(G1) + BETAO + BETAl(G1) 
=E= B - SEP; 

GROUP2 (G2} •. 

NORMLN .. 

NORMLNS .. 

MODEL UNNORM 
MODEL NORMVl 
MODEL NORMV2 

SUM(J, A2(G2,J)*X(J)) + ALPHAO + ALPHA2(G2) - BETAO- BETA2(G2) 
=E= B + SEP; 

-N2*SUM{(Gl,J), Al(Gl,J)*X(J)) + Nl*SUM((G2,J), A2(G2,J)*X(J}) 
=E= 2*Nl*N2; 

2*Nl*N2*(BETAO- ALPHAO) 
+ N2 * SUM(Gl, BETAl{Gl) - ALPHAl(Gl)) 
+ Nl * SUM(G2, BETA2(G2} - ALPHA2(G2)) =E= 2*N1*N2; 
/OBJECTIVE, GROUPl, GROUP2/; 
/OBJECTIVE, GROUPl, GROUP2, NORMLN/; 
/OBJECTIVE, GROUPl, GROUP2, NORMLNS/; 

DISPLAY '' =========================== 1st Stage ==========================="; 
SOLVE NORMV2 USING LP MINIMIZING Z; 
G1MAX = SEP + ALPHAO.L- BETAO.L + SMAX(Gl, ALPHA1.L(Gl}); 
G2MAX = SEP + ALPHAO.L- BETAO.L + SMAX(G2, ALPHA2.L(G2)}; 
GR1SH1(Gl) $ ((BETAl.L(Gl) GE G2MAX)) = 101; 
GR2SH1(G2) $ ( (BETA2.L(G2} GE GlMAX)) = 201; 
KOUNTGl SUM(Gl, 1 $ (GR1SH1{G1) EQ 101)}; 
KOUNTG2 SUM{G2, 1 $ (GR2SH1(G2) EQ 201}); 
CUMULGl CUMULG1 + KOUNTGl; 
CUMULG2 CUMULG2 + KOUNTG2; 

DISPLAY X.L, Z.L, B.L, G1MAX,G2MAX,KOUNTGl,KOUNTG2,CUMULGl,CUMULG2,Nl,N2; 
*DISPLAY ALPHAO.L, BETAO.L, ALPHA1.L, BETAl.L, ALPHA2.L, BETA2.L; 
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AlXB(Tl) = (SUM(J, TEST1(T1,J)*X.L{J}) - B.L); 
A2XB(T2) = (SUM(J, TEST2(T2,J)*X.L(J}) - B.L); 
FLAGT1{Tl} $ ((A1XB(T1) LE 0) AND (ABS(A1XB(T1)) GE G2MAX)) 111 
FLAGT1(Tl} $ ((A1XB(T1} GT 0) AND (A1XB(T1) GT G1MAX)) 112 
FLAGT2{T2) $ ((A2XB(T2} LE 0) AND (ABS(A2XB(T2)) GE G2MAX)) 211 
FLAGT2(T2} $ ((A2XB(T2} GT 0} AND (A2XB(T2) GT G1MAX)) 212 
SUXEST11 SUM(Tl, 1 $ (FLAGTl(T1) EQ 111)); 
SUXEST12 SUM(Tl, 1 $ (FLAGTl(T1) EQ 112)); 
SUXEST21 SUM(T2, 1 $ (FLAGT2(T2) EQ 211)); 
SUXEST22 SUM(T2, 1 $ (FLAGT2(T2) EQ 212}); 
TOTALT11 TOTALT11 + SUXEST11; 
TOTALT12 TOTALT12 + SUXEST12; 
TOTALT21 TOTALT21 + SUXEST21; 
TOTALT22 TOTALT22 + SUXEST22; 
DISPLAY SUXEST11, SUXEST12, SUXEST21, SUXEST22; 
DISPLAY TOTALT11,TOTALT12, TOTALT21, TOTALT22, FLAGTl, FLAGT2; 

DISPLAY " =========================== 2nd Stage ==========================="; 
H1(G1) $ ((GR1SH1(G1) EQ 101)) = WH*RS2; 
H2(G2) $ ((GR2SH1(G2) EQ 201)) = WH*RS2; 
K1(G1) $ ((GR1SH1(G1) EQ 101)) = WK*RS2; 
K2{G2) $ ((GR2SHl(G2} EQ 201)} = WK*RS2; 
KO SUM(Gl,K1(G1)}+ SUM(G2,K2(G2))+1; 
HO 3*KO; 

*DISPLAY HO, KO, Hl, K1, H2, K2; 

SOLVE NORMV2 USING LP MINIMIZING Z; 
ALPHA1.L(G1) $ {(GR1SH1{G1} EQ 101)) = 0.0; 
ALPHA2.L(G2) $ ((GR2SH1{G2) EQ 201)) = 0.0; 
G1MAX = SEP + ALPHAO.L- BETAO.L + SMAX(G1, ALPHA1.L(G1)}; 
G2MAX = SEP + ALPHAO.L- BETAO.L + SMAX(G2, ALPHA2.L(G2}); 
GR1SH2(G1) $ ((BETAl.L(Gl) GE G2MAX} AND (GR1SHl(G1) NE 101)) 102; 
GR2SH2(G2) $ ((BETA2.L(G2) GE GlMAX} AND (GR2SHl(G2) NE 201)) 202; 
KOUNTGl SUM(Gl, 1 $ (GR1SH2(Gl} EQ 102)}; 
KOUNTG2 = SUM(G2, 1 $ {GR2SH2(G2) EQ 202)); 
CUMULGl = CUMULG1 + KOUNTG1; 
CUMULG2 =·CUMULG2 + KOUNTG2; 
DISPLAY X.L, Z.L, B.L, G1MAX,G2MAX,KOUNTGl,KOUNTG2,CUMULGl,CUMULG2,N1,N2; 

*DISPLAY ALPHAO.L, BETAO.L, ALPHAl.L, BETAl.L, ALPHA2.L, BETA2.L; 

AlXB(T1) = (SUM(J, TESTl(Tl,J)*X.L(J}) - B.L); 
A2XB(T2) = {SUM(J, TEST2(T2,J)*X.L(J}) - B.L}; 
FLAGT1(T1) $ ( (AlXB(Tl) LE 0) AND {ABS{A1XB(T1)) GE G2MAX) AND (FLAGTl(T1) EQ 0)) 121 
FLAGTl(T1) $ ({AlXB{Tl) GT 0} AND (AlXB(T1) GT G1MAX) AND (FLAGTl(T1) EQ 0)) 122 
FLAGT2(T2) $ ((A2XB(T2) LE 0) AND {ABS(A2XB{T2)) GE G2MAX) AND (FLAGT2(T2) EQ 0)) 221 
FLAGT2(T2} $ ({A2XB{T2) GT 0) AND (A2XB(T2) GT G1MAX} AND (FLAGT2(T2) EQ 0)) 222 
SUXEST11 SUM(T1, 1 $ (FLAGTl(Tl) EQ 121)}; 
SUXEST12 SUM(T1, 1 $ (FLAGT1(Tl) EQ 122}); 
SUXEST21 SUM(T2, 1 $ (FLAGT2(T2} EQ 221)}; 
SUXEST22 SUM(T2, 1 $ (FLAGT2(T2) EQ 222)}; 
TOTALTll TOTALT11 + SUXEST11; 
TOTALT12 TOTALT12 + SUXEST12; 
TOTALT21 TOTALT21 + SUXEST21; 
TOTALT22 TOTALT22 + SUXEST22; 
DISPLAY SUXEST11, SUXEST12, SUXEST21, SUXEST22; 
DISPLAY TOTALT11,TOTALT12, TOTALT21, TOTALT22, FLAGTl, FLAGT2; 

DISPLAY " =========================== 3rd Stage ==========================="; 
H1(G1) $ {(GR1SH1(G1} EQ 101)) = WH*RS3 
H2(G2) $ ((GR2SH1{G2) EQ 201)} = WH*RS3 
Kl(G1) $ ((GR1SH1{G1) EQ 101)} = WK*RS3 
K2(G2) $ ((GR2SH1(G2) EQ 201)) = WK*RS3 

H1(Gl) $ ((GRlSH2(G1) EQ 102)) = WH*RS2 
H2(G2) $ ((GR2SH2(G2} EQ 202}) = WH*RS2 
K1(Gl) $ ((GR1SH2(Gl) EQ 102)) = WK*RS2 
K2{G2) $ ((GR2SH2(G2) EQ 202}) = WK*RS2 
KO SUM(Gl,K1(G1))+ SUM(G2,K2{G2)) +1 
HO 3*KO; 

*DISPLAY HO, KO, Hl, K1, H2, K2; 



83 

SOLVE NORMV2 USING LP MINIMIZING Z; 
ALPHA1.L(G1) $ ((GR1SH2(G1) EQ 102} OR (GR1SH1(G1) EQ 101)) 0.0; 
ALPHA2.L{G2) $ ((GR2SH2(G2) EQ 202) OR (GR2SH1(G2) EQ 201)) 0.0; 
GlMAX = SEP + ALPHAO.L- BETAO.L + SMAX(G1, ALPHA1.L(G1)); 
G2MAX = SEP + ALPHAO.L- BETAO.L + SMAX(G2, ALPHA2.L(G2)}; 
GR1SH3(G1) $((BETA1.L(G1) GE G2MAX} AND ((GR1SH2(Gl)+GR1SH1(G1)) EQ 0))=103; 
GR2SH3(G2) ${(BETA2.L(G2) GE G1MAX) AND ((GR2SH2(G2)+GR2SHl{G2}) EQ 0})=203; 
KOUNTG1 SUM(G1, 1 $ {GR1SH3(Gl} EQ 103}); 
KOUNTG2 = SUM(G2, 1 $ (GR2SH3{G2) EQ 203)); 
CUMULG1 = CUMULG1 + KOUNTG1; 
CUMULG2 = CUMULG2 + KOUNTG2; 
DISPLAY X.L, Z.L, B.L, G1MAX,G2MAX,KOUNTG1,KOUNTG2,CUMULG1,CUMULG2,N1,N2; 

*DISPLAY ALPHAO.L, BETAO.L, ALPHA1.L, BETA1.L, ALPHA2.L, BETA2.L; 

A1XB(Tl) = (SUM(J, TEST1{Tl,J)*X.L(J)) - B.L); 
A2XB(T2) = (SUM(J, TEST2(T2,J}*X.L(J)) - B.L}; 
FLAGTl(Tl) $ ((A1XB(T1) LE 0) AND (ABS(A1XB(Tl)) GE G2MAX) AND (FLAGT1{T1) EQ 0)) 131 
FLAGT1(T1} $ ((A1XB(T1) GT 0) AND (A1XB(T1) GT GlMAX) AND (FLAGT1(T1) EQ 0)) 132 
FLAGT2(T2) $ {(A2XB(T2} LE 0) AND (ABS{A2XB(T2)) GE G2MAX) AND (FLAGT2(T2) EQ 0)) 231 
FLAGT2(T2) $ ({A2XB(T2} GT 0) AND {A2XB(T2) GT G1MAX) AND (FLAGT2(T2) EQ 0)) 232 
SUXEST11 SUM(T1, 1 $ (FLAGT1(Tl) EQ 131}); 
SUXEST12 SUM(T1, 1 $ {FLAGTl(Tl) EQ 132)}; 
SUXEST21 SUM(T2, 1 $ (FLAGT2(T2) EQ 231)); 
SUXEST22 SUM(T2, 1 $ (FLAGT2(T2) EQ 232)); 
TOTALT11 TOTALT11 + SUXEST11; 
TOTALT12 TOTALT12 + SUXEST12; 
TOTALT21 TOTALT21 + SUXEST21; 
TOTALT22 TOTALT22 + SUXEST22; 
DISPLAY SUXEST11, SUXEST12, SUXEST21, SUXEST22; 
DISPLAY TOTALT11,TOTALT12, TOTALT21, TOTALT22, FLAGT1, FLAGT2; 

DISPLAY " =========================== 4th Stage ==========================="; 
Hl(G1) $ ( (GR1SHl(Gl) EQ 101}) = WH*RS4; 
H2(G2) $ ((GR2SH1{G2) EQ 201)} WH*RS4; 
K1(Gl} $ ((GR1SH1(G1) EQ 101)) WK*RS4; 
K2(G2) $ ((GR2SH1(G2) EQ 201)) WK*RS4; 

Hl(G1) $ ((GR1SH2(Gl} EQ 102)) WH*RS3; 
H2(G2) $ ({GR2SH2(G2) EQ 202)) WH*RS3; 
K1(G1) $ ((GR1SH2(G1) EQ 102)) = WK*RS3; 
K2{G2) $ ((GR2SH2(G2} EQ 202}) = WK*RS3; 

H1(G1) $ ( (GR1SH2{Gl) EQ 103)) WH*RS2; 
H2(G2) $ ((GR2SH2(G2) EQ 203)) = WH*RS2; 
K1(Gl) $ ((GR1SH2(G1) EQ 103)) = WK*RS2; 
K2(G2) $ {(GR2SH2(G2) EQ 203)} = WK*RS2; 

KO SUM(G1,Kl(Gl))+ SUM(G2,K2(G2)} +1 
HO 3*KO; 

*DISPLAY HO, KO, H1, K1, H2, K2; 

SOLVE NORMV2 USING LP MINIMIZING Z; 
ALPHA1.L(G1) $ ( (GR1SH3(G1) EQ 103) OR (GR1SH2(G1) EQ 102) 

OR (GR1SH1{Gl) EQ 101)) = 0.0; 
ALPHA2.L(G2) $ ((GR2SH3(G2) EQ 203) OR (GR2SH2(G2) EQ 202) 

OR {GR2SH1(G2) EQ 201}) = 0.0; 
GlMAX = SEP + ALPHAO.L- BETAO.L + SMAX(Gl, ALPHA1.L(G1)); 
G2MAX = SEP + ALPHAO.L- BETAO.L + SMAX(G2, ALPHA2.L(G2)); 
GR1SH4(G1) $((BETA1.L(G1} GE G2MAX} AND ((GR1SH3(G1)+GRlSH2(Gl)+GR1SHl(G1)) EQ 0))=104; 
GR2SH4(G2) ${(BETA2.L(G2) GE G1MAX} AND {(GR2SH3(G2)+GR2SH2(G2)+~R2SH1(G2)) EQ 0))=204; 
KOUNTG1 SUM(Gl, 1 $ (GR1SH4{Gl) EQ 104)); 
KOUNTG2 = SUM{G2, 1 $ (GR2SH4(G2) EQ 204)); 
CUMULG1 = CUMULGl + KOUNTGl; 
CUMULG2 = CUMULG2 + KOUNTG2; 
DISPLAY X.L, Z.L, B.L, GlMAX,G2MAX,KOUNTG1,KOUNTG2,CUMULGl,CUMULG2,Nl,N2; 

*DISPLAY ALPHAO.L, BETAO.L, ALPHAl.L, BETA1.L, ALPHA2.L, BETA2.L; 
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A1XB(Tl) = (SUM(J, TESTl{Tl,J)*X.L(J)) - B.L); 
A2XB(T2) = (SUM(J, TEST2{T2,J)*X.L(J)) - B.L); 
FLAGT1(T1) $ ( (A1XB(Tl) LE 0) AND (ABS(AlXB{Tl)} GE G2MAX) AND {FLAGTl(Tl) EQ 0)) 141 
FLAGT1(Tl) $ ({A1XB{T1) GT 0) AND (A1XB(T1} GT G1MAX) AND (FLAGTl{T1) EQ 0)) 142 
FLAGT2(T2) $ ( (A2XB(T2) LE 0) AND (ABS(A2XB(T2)) GE G2MAX) AND {FLAGT2(T2) EQ 0)) 241 
FLAGT2(T2) $ ( (A2XB(T2) GT 0) AND (A2XB(T2) GT G1MAX) AND {FLAGT2(T2) EQ 0)) 242 
SUXEST11 SUM(T1, 1 $ (FLAGTl(Tl} EQ 141)); 
SUXEST12 SUM(T1, 1 $ (FLAGTl(Tl} EQ 142)); 
SUXEST21 SUM(T2, 1 $ (FLAGT2(T2) EQ 241)); 
SUXEST22 SUM(T2, 1 $ (FLAGT2{T2} EQ 242)); 
TOTALT11 TOTALT11 + SUXEST11; 
TOTALT12 TOTALT12 + SUXEST12; 
TOTALT21 TOTALT21 + SUXEST21; 
TOTALT22 TOTALT22 + SUXEST22; 
DISPLAY SUXEST11, SUXEST12, SUXEST21, SUXEST22; 
DISPLAY TOTALT11,TOTALT12, TOTALT21, TOTALT22, FLAGTl, FLAGT2; 
DISPLAY " =========================== 5th Stage ==========================="; 
H1(Gl) $ ((GR1SH1(G1) EQ 101)) WH*RS5; 
H2(G2) $ ((GR2SH1(G2) EQ 201)) = WH*RS5; 
K1{Gl) $ {(GR1SH1(G1) EQ 101)) = WK*RS5; 
K2{G2) $ ((GR2SH1(G2) EQ 201)) = WK*RS5; 

H1(G1) $ ( (GR1SH2(G1) EQ 102)) WH*RS4; 
H2(G2) $ ( (GR2SH2(G2) EQ 202}) WH*RS4; 
K1(G1) $ ( (GR1SH2(G1) EQ 102)) WK*RS4; 
K2(G2) $ ( (GR2SH2 (G2) EQ 202)) WK*RS4; 

H1 (Gl) $ { (GR1SH2 (G1) EQ 103)) WH*RS3; 
H2(G2) $ {(GR2SH2(G2} EQ 203)) WH*RS3; 
K1(G1) $ { (GR1SH2(G1) EQ 103)) WK*RS3; 
K2(G2) $ ( (GR2SH2(G2) EQ 203)) WK*RS3; 

H1(G1) $ { (GR1SH2 (G1) EQ 104)} WH*RS2; 
H2(G2) $ { (GR2SH2 (G2) EQ 204)) WH*RS2; 
K1 (Gl) $ ( (GR1SH2(G1) EQ 104)) WK*RS2; 
K2(G2) $ ( (GR2SH2 (G2) EQ 204)) WK*RS2; 

KO SUM(G1,K1(G1))+ SUM{G2,K2(G2)) 
HO 3_*KO; 

*DISPLAY HO, KO, Hl, K1, H2, K2; 

SOLVE NORMV2 USING LP MINIMIZING Z; 

+1 

ALPHA1.L(Gl) $ {(GR1SH4(Gl} EQ 104) OR (GR1SH3(G1) EQ 103) 
OR {GR1SH2(G1} EQ 102) OR (GRlSHl(G1) EQ 101)) 0.0; 

ALPHA2.L(G2} $ ((GR2SH4(G2) EQ 204) OR (GR2SH3(G2) EQ 203) 
OR (GR2SH2(G2) EQ 202) OR (GR2SH1(G2) EQ 201)) 0.0; 

G1MAX = SEP + ALPHAO.L- BETAO.L + SMAX(Gl, ALPHAl.L(G1}); 
G2MAX = SEP + ALPHAO.L- BETAO.L + SMAX(G2, ALPHA2.L(G2)); 
GR1SH5(Gl) $((BETA1.L(G1) GE G2MAX) AND 

((GR1SH4(G1)+GR1SH3(G1)+GR1SH2(G1)+GR1SH1(G1)) EQ 0))=105; 
GR2SH5{G2) $((BETA2.L(G2} GE G1MAX) AND 

({GR2SH4(G2)+GR2SH3(G2)+GR2SH2(G2)+GR2SH1(G2)) EQ 0))=205; 
KOUNTGl= SUM(Gl, 1 $ (GR1SH5(G1) EQ 105}); 
KOUNTG2= SUM(G2, 1 $ (GR2SH5(G2) EQ 205}); 
CUMULGl = CUMULG1 + KOUNTG1; 
CUMULG2 = CUMULG2 + KOUNTG2; 
DISPLAY X.L, Z.L, B.L, GlMAX,G2MAX,KOUNTG1,KOUNTG2,CUMULGl,CUMULG2,Nl,N2; 

*DISPLAY ALPHAO.L, BETAO.L, ALPHA1.L, BETAl.L, ALPHA2.L, BETA2.L; 

AlXB(Tl) = 
A2XB(T2) = 
FLAGT1{T1) 
F-LAGT1 (Tl) 
FLAGT2{T2) 
FLAGT2(T2) 
SUXEST11 
SUXEST12 
SUXEST21 
SUXEST22 
TOTALT11 

(SUM(J, TESTl(T1,J}*X.L(J)) - B.L); 
(SUM{J, TEST2{T2,J)*X.L{J)) - B.L); 
$ ( (A1XB(T1) LE 0) AND {ABS(AlXB(T1}) 
$ ((A1XB(T1) GT 0) AND (A1XB{T1) 
$ ( (A2XB(T2) LE 0) AND lABS {A2XB(T2}) 
$ ( (A2XB(T2) GT 0) AND (A2XB(T2) 
SUM(T1, 1 $ (FLAGT1(T1) EQ 151)) 
SUM(T1, 1 $ (FLAGT1(T1) EQ 152)) 
SUM(T2, 1 $ (FLAGT2(T2) EQ 251)) 
SUM(T2, 1 $ (FLAGT2(T2) EQ 252)) 
TOTALT11 + SUXEST11; 

GE G2MAX} AND {FLAGT1(T1) EQ 0)) 
GT G1MAX} AND (FLAGT1(Tl) EQ 0)) 
GE G2MAX} AND (FLAGT2(T2) EQ 0)) 
GT GlMAX) AND (FLAGT2(T2) EQ 0)) 

151 
152 
251 
252 



TOTALT12 = TOTALT12 + SUXEST12; 
TOTALT21 = TOTALT21 + SUXEST21; 
TOTALT22 = TOTALT22 + SUXEST22; 
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DISPLAY SUXEST11, SUXEST12, SUXEST21, SUXEST22; 
DISPLAY TOTALT11,TOTALT12, TOTALT21, TOTALT22, FLAGT1, FLAGT2; 

DISPLAY tt =========================== 6th 
H1(G1) $ ((GR1SH1(G1) EQ 101)) = WH*RS6; 
H2(G2) $ ( (GR2SH1 (G2) EQ 201)} = WH*RS6; 
K1(Gl) $ ( (GR1SH1{G1) EQ 101)} = WK*RS6; 
K2{G2) $ ( (GR2SH1 (G2) EQ 201)) = WK*RS6; 

Hl(G1) $ ( (GR1SH2 (Gl} EQ102}) WH*RS5; 
H2(G2) $ ( (GR2SH2 {G2) EQ 202)} WH*RS5; 
Kl{Gl} $ ( (GR1SH2 (G1) EQ 102)) WK*RS5; 
K2(G2} $ {(GR2SH2(G2) EQ 202)) WK*RS5; 

H1(G1) $ ( (GR1SH2 {G1) EQ 103)} = WH*RS4; 
H2(G2) $ ( {GR2SH2{G2} EQ 203)) = WH*RS4; 
K1(G1) $ ( (GR1SH2 (G1) EQ 103)) = WK*RS4; 
K2(G2) $ ( (GR2SH2 (G2) EQ 203)) = WK*RS4; 

H1(G1) $ ( (GR1SH2 {G1) EQ 104)) = WH*RS3; 
H2(G2) $ ( {GR2SH2(G2) EQ 204)) = WH*RS3; 
K1 (G1) $ ( (GR1SH2 (G1) EQ 104)) = WK*RS3; 
K2(G2) $ ( (GR2SH2 (G2) E:Q 204)) = WK*RS3; 

H1(G1) $ ( (GR1SH2 (G1) EQ 105)} = WH*RS2; 
H2(G2) $ ( (GR2SH2(G2) EQ 205)) = WH*RS2; 
Kl (G1) $ ( (GR1SH2 {G1) E:Q 105)) = WK*RS2; 
K2(G2) $ ( {GR2SH2{G2) EQ 205}) = WK*RS2; 

KO SUM(G1,K1{G1))+ SUM(G2,K2(G2)) +1 
HO 3*KO; 

*DISPLAY HO, KO, H1, K1, H2, K2; 
SOLVE NORMV2 USING LP MINIMIZING Z; 

Stage ==========================="; 

ALPHA1.L(G1) $ ((GR1SH5{G1) EQ 105) OR (GR1SH4{G1) EQ 104) OR (GR1SH3(Gl) EQ 103) 
OR (GR1SH2(G1) EQ 102) OR (GR1SH1(G1) EQ 101)) = 0.0; 

ALPHA2.L(G2) $ ((GR2SH5(G2} EQ 205) OR {GR2SH4(G2) EQ 204) OR (GR2SH3(G2) EQ 203) 
OR (GR2SH2(G2) EQ 202) OR (GR2SH1(G2) EQ 201)) = 0.0; 

G1MAX = SEP + ALPHAO.L- BETAO.L + SMAX(G1, ALPHA1.L(G1)); 
G2MAX = SEP + ALPHAO.L- BETAO.L + SMAX(G2, ALPHA2.L(G2}); 
GR1SH6(G1} $((BETA1.L(G1) GE G2MAX) AND 

((GR1SH5(Gl}+GR1SH4{G1)+GR1SH3(G1)+GRlSH2(G1)+GRlSHl(Gl)) EQ 0))=106; 
GR2SH6{G2) $([BETA2.L(G2) GE GlMAX) AND 

({GR2SH5(G2)+GR2SH4(G2)+GR2SH3(G2)+GR2SH2(G2)+GR2SH1(G2)) EQ 0))=206; 
KOUNTG1= SUM(Gl, 1 $ (GR1SH6(G1) EQ 106)}; 
KOUNTG2= SUM(G2, 1 $ (GR2SH6(G2) EQ 206)); 
CUMULGl = CUMULG1 + KOUNTG1; 
CUMULG2 = CUMULG2 + KOUNTG2; 
DISPLAY X.L, Z.L, B.L, GlMAX,G2MAX,KOUNTG1,KOUNTG2,CUMULG1,CUMULG2,N1,N2; 

*DISPLAY ALPHAO.L, BETAO.L, ALPHA1.L, BETA1.L, ALPHA2.L, BETA2.L; 

AlXB(Tl) = (SUM(J, TESTl(Tl,J)*X.L(J)) - B.L); 
A2XB(T2) = (SUM(J, TEST2{T2,J)*X.L{J)) - B.L}; 
FLAGTl(T1) $ ((A1XB(T1) LE 0} AND {ABS(A1XB{T1}) GE G2MAX) AND (FLAGT1(Tl) EQ 0)) 161 
FLAGT1(T1) $ ((AlXB(Tl} GT 0) AND (A1XB(Tl) GT GlMAX) AND (FLAGT1(T1) EQ 0)) 162 
FLAGT2{T2} $ ((A2XB(T2} LE 0) AND (ABS(A2XB(T2)) GE G2MAX) AND (FLAGT2(T2) EQ 0)) 261 
FLAGT2{T2} $ ((A2XB(T2} GT 0) AND (A2XB(T2) GT G1MAX) AND (FLAGT2(T2) EQ 0)) 262 
SUXEST11 SUM(T1, 1 $ (FLAGT1(T1) EQ 161)); 
SUXEST12 SUM(T1, 1 $ (FLAGT1(T1) EQ 162)); 
SUXEST21 SUM{T2, 1 $ (FLAGT2(T2) EQ 261)}; 
SUXEST22 SUM(T2, 1 $ (FLAGT2{T2) EQ 262)); 
TOTALT11 TOTALT11 + SUXEST11; 
TOTALT12 TOTALT12 + SUXEST12; 
TOTALT21 TOTALT21 + SUXEST21; 
TOTALT22 TOTALT22 + SUXEST22; 
DISPLAY SUXEST11, SUXEST12, SUXEST21, SUXEST22; 
DISPLAY TOTALTll,TOTALT12, TOTALT21, TOTALT22, FLAGT1, FLAGT2; 
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DISPLAY '' =========================== Final processsing =================== .. ; 
FLAGTl(Tl) $ ( (AlXB(Tl) LE 0) AND {FLAGTl(T1} EQ 0)) 171; 
FLAGT1(T1) $ ({AlXB(Tl) GT 0) AND (FLAGTl(T1} EQ 0)) 172; 
FLAGT2(T2) $ ((A2XB(T2) LE 0) AND {FLAGT2(T2) EQ 0)) 271; 
FLAGT2(T2) $ {(A2XB(T2) GT 0) AND (FLAGT2{T2) EQ 0)) 272; 
SUXEST11 SUM(T1, 1 $ (FLAGT1(T1) EQ 171)); 
SUXEST12 SUM{T1, 1 $ (FLAGT1(Tl) EQ 172)}; 
SUXEST21 SUM(T2, 1 $ (FLAGT2(T2) EQ 271)); 
SUXEST22 SUM(T2, 1 $ (FLAGT2(T2) EQ 272)); 
TOTALT11 TOTALT11 + SUXEST11; 
TOTALT12 TOTALT12 + SUXEST12; 
TOTALT21 TOTALT21 + SUXEST21; 
TOTALT22 TOTALT22 + SUXEST22; 
DISPLAY CUMULG1, CUMULG2, N1, N2; 
DISPLAY SUXEST11, SUXEST12, SUXEST21, SUXEST22; 
DISPLAY TOTALT11,TOTALT12, TOTALT21, TOTALT22, FLAGT1, FLAGT2; 
DISPLAY CUMULGl, CUMULG2, Nl, N2; 

*End of model ---------------------------------------------------------------
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