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Robust formulations for emitter location are developed for the following three  

types of emitter location systems:  1) Direction of Arrival (DOA);  2) Time Difference of 

Arrival (TDOA) and 3) Frequency Difference of Arrival (FDOA).  The robustness is 

achieved by minimizing the mean absolute value of the deviations via linear 

programming.  Update procedures for processing the data in real-time  are also described. 

The statistical characteristics of DOA,  TDOA and FDOA estimators and the 

circumstances surrounding ambiguous estimates are examined.  Ambiguous estimates 

disrupt the otherwise Gaussian error distribution of the measurements.  It is in these cases 

that the advantage of the robust approach becomes apparent. 

Furthermore the robust approach is highly useful when attempting to associate 

measurements to a single source when multiple sources are present and not easily 

distinguished.   Clustering and partitioning algorithms are discussed.  An example that 

shows the utility of the proposed approach for separating multiple emitters is given. 

Finally the linear program is incorporated into a Level 1 fusion architecture which 

utilizes all three submodels, DOA, TDOA and FDOA, to successfully associate 

measurements and locate emitters in dense environments. 
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Chapter  1 

Introduction 

The advent of automated systems has produced organizational operating 

environments rich in digital data.  On the whole automation has been extremely 

beneficial in meeting enterprise objectives.  However, the sheer amount of information 

available can be overwhelming and confusing.  For example, it has become legendary 

that when the Air Force first installed automated missile warning systems in the cockpit 

that pilots sometimes ignored or disabled them under the extreme pressure of the 

information overload they experienced in difficult combat situations.   

Data information fusion is needed to reduce the flow of information to a 

meaningful, manageable stream.  Data information fusion is one of the high leverage 

technologies necessary for the military to successfully take full advantage of the digital 

battlefield [AU96, USAF96].  Likewise, enterprise-wide coordination and information 

sharing has been the focus of commercial endeavors.  Techniques to associate, reduce 

and give meaning to the large amount of data available to the modern organization have 

included neural networks, fuzzy logic and various forms of expert systems.  A successful 

information fusion system may encompass these multiple methods at various levels so 

that they become complementary.  In this vein it is no surprise that mathematical 

programming techniques also appear.  Mathematical programming (linear and integer 
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programming) and its practitioners have historically been involved in the development of 

decision support systems for both government and industrial applications. 

One aspect of the battlefield information fusion problem consists of associating 

measurements made from various sensors in order to locate and track emitters.  Emitters 

may be either electromagnetic or acoustic.  Examples of radio emissions are Morse code 

transmissions, voice, data links, radars and beacons.  Acoustic energy is of primary 

interest to naval operations where SONAR is used to locate and track ships and 

submarines.  The primary location measurements are Direction of Arrival (DOA),  Time 

Difference of Arrival (TDOA) and  Frequency Difference of Arrival (FDOA).   

Additional signal measurements such as fine frequency and modulation format may be 

useful in associating the primary measurements with the emitter sites from which they 

originate. 

In a dense environment it can be difficult to correctly separate measured 

parameters into groups (emitter files) for location estimation because it may not be clear 

if the measurement belongs with an existing estimated location or if it should be used to 

begin a new emitter file.  In the past difficult decisions of this sort,  which involve 

associating parameter measurements to emitter sites to obtain a refined location estimate, 

has been a manual process.  However, the capability of new sensor systems to rapidly 

measure and generate voluminous amounts of parameter data (i.e. DOA, TDOA, FDOA, 

etc.) completely outpaces the analytical manpower available.  New automated methods 

are needed to reliably perform the association without human assistance. 

The unique benefit of the linear programming approach for emitter location as 

proposed in Chapter 2 is its ability to minimize the sum of absolute deviations versus the 
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more common method which minimizes the sum of squared deviations  (also termed the 

least squares approach).  The increased location accuracy of minimizing the absolute 

deviations enables quick partitioning algorithms to correctly associate the measurements 

with emitters.  A specific numerical example will be given later but the difference 

between the two approaches has been portrayed as follows. 

Envision a heat seeking missile approaching a target aircraft which has deployed 

a hot decoy countermeasure.  The missile seeker algorithm is faced with a choice.  On the 

one hand minimization of the squared deviations between the target and the decoy results 

in the missile "splitting the difference" and hitting neither the target nor the decoy but 

instead passing between the two.  In effect the least squares approach assures a miss 

when two targets are present because the route between the targets minimizes the least 

squares cost function.  On the other hand the proposed linear programming approach  

minimizes  the absolute deviations which results in a missile trajectory that  pursues 

either the aircraft or the decoy.     

The fifty-fifty chance of pursuing the right target is infinitely better than the 

guaranteed failure of the least squares approach. However, additional processing can 

significantly improve the odds.  In particular the deviations can be treated as an output of 

the linear program and combined with other available measurements such as thermal 

characteristics and scene features.  The clustering of measurements will identify an 

aircraft set and a decoy set.  Then performing separate least squares analysis of these two 

sets may now be appropriate to yield optimum (and separate) location estimates of  the 

target and the decoy.   
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As will be shown the least squares estimator is optimum only when the deviations 

are normally distributed.  While minimization of the squared deviations may be 

appropriate once the measurements have been separated into groups,  prior to separation 

the least squares approach is inadequate.  This suggests a multi-stage fusion architecture 

where the first stage is concerned with obtaining initial estimates of emitter locations, the 

second stage performs grouping of the measurements and finally the last stage operates 

on the sets of grouped data to yield precision location estimates of the multiple emitters 

in the environment.  Such an architecture is presented in Chapter 6. 

The usefulness of the mathematical programming approach is evident when 

multiple targets are present because of its tendency to make an either-or decision.  

However, it can also be useful when only a single target is in the environment because of 

the unfortunate tendency of DOA, TDOA and FDOA estimators to occasionally report 

ambiguous results.  These false reports can have the same deleterious effect as the decoy 

in the above example. 

The statistical characteristics of DOA, TDOA and FDOA estimators and the 

circumstances surrounding ambiguous estimates are examined in Chapter 2.  In Chapter 3 

a linear program is formulated for DOA, TDOA and FDOA emitter location. Update 

procedures for processing the data in real-time as it arrives are described in Chapter 4.    

Chapter 5 describes clustering  algorithms and gives an example that shows the utility of 

the proposed approach for separating multiple emitters.  Chapter 6 performs Monte Carlo 

testing and comparison of all the algorithms and also describes how the linear program 

can be incorporated into a fusion architecture to successfully associate measurements and 

locate emitters.  Finally, Chapter 7 develops an economic model that performs algorithm 
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selection and system sizing to maximize profit while simultaneously minimizing risk and 

meeting cost and performance objectives. 
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Chapter 2 

Statistics of Location Parameter Measurements 

The proposed linear programming approach for emitter location is superior when 

measurements from multiple emitters are inadvertently mixed together causing a cross 

contamination in the estimation process or when ambiguities due to the measurement 

process cause outliers in the estimated DOA, TDOA or FDOA location parameters.  

Nearby emitters cause cross contamination when the location parameter is measured to a 

first signal and then shortly after it has stopped transmitting a second nearby signal 

begins transmitting.  Because of measurement noise it is not always clear that the two 

location parameter estimates should be kept separate.  It is ironic that the cochannel 

signal problem, which is considered more difficult because two or more signals are 

simultaneously interfering with each other, is actually less difficult in the respect that if 

two different signals are simultaneously detected in the location parameter space then 

their location parameters can be unambiguously assigned to different emitter files.  For 

example, the multiplatform signal processing approach proposed by Agee and Young 

[AY90] allows sorting of cochannels signals based on their TDOA or FDOA parameters 

whereas if the signals appear separated in time then deciding if they originated from the 

same location can be difficult. 

  Ambiguities in the measurement process in either the single signal case or in 

cochannel can cause substantial degradation of accuracy unless removed or processed in 



 6 

some robust manner.  Kriel and Yarlagada [KY88, Kri88] have shown improved DOA 

estimation performance (relative to least squares) by using an Lp norm (with p<2) for 

spatial spectral processing when the array noise contained outliers.   

Ambiguities in the DOA measurement process occurs because of competing 

minima in the DOA cost function.  DOA processing consists of comparing a measured 

array response to a collection of prestored responses that are indexed by DOA.  An array 

response is a vector of sensor phases and magnitudes measured with respect to some 

reference (usually one of the sensors).   Type I ambiguities occur in the measurement of  

DOA when a single signal arriving from direction θ1 causes an array response that is  

nearly identical to an array response from a second direction θ2.  Type II ambiguities can 

exist when two signals are present [Sch79].  A strong ambiguity at θ2  means that the 

DOA measurement process is just as likely to report θ2 as θ1 even when noise levels are 

low.  On the other hand a weak ambiguity is usually not a problem when the noise level 

is low because the system has discrimination margin.  However, as noise levels increase 

so does the ambiguity rate.  The ambiguity rate is the fraction of ambiguous reports 

relative to the total. 

TDOA measurements can also suffer from ambiguities.  The two main types of 

TDOA systems are those which measure pulse events and those that perform cross 

correlation on continuous signals.  Both are susceptible to ambiguities.   For a transmitter 

emitting a series of pulses received by multiple stations the potential ambiguity arises 

when the time difference between stations exceeds the time between successive pulse 

transmissions.  Time delay between continuous signals is estimated by locating the peak 



of the cross-correlation function.  Cross correlation functions can have multiple 

competing maxima.  Narrowband signals are especially prone to exhibit peaks adjacent to 

global peak.  In the presence of noise and finite observation times the side peaks are 

occasionally picked as the dominate peak [CS81]. The probability of ambiguous peaks is 

derived in [MS84]. This effect can degrade the performance of TDOA systems.   

FDOA measurements are not immune to ambiguities.  For example, the multiple 

harmonics in a standard broadcast television signal can cause competing minima in an 

FDOA cost function.  Although FDOA correlation takes place in the frequency domain it 

otherwise has similar properties as TDOA estimators in that it is subject to the deleterious 

effects of ambiguous peaks that result when processing certain signal structures. 

When ambiguities are absent, location parameter estimates (DOA, TDOA and 

FDOA) can generally be assumed to be Gaussian.  However, when ambiguities are 

present the resulting distribution is decidedly non-Gaussian.  The process is illustrated in 

figure 1.   

N~(μ1,1)

N~(μ2,1)

Multi-Mode
Distribution
(non-normal)

 
Figure 1 Nonlinear Combination of Two Normal Processes Yields a Non-Normal.  

Suppose that the top block represents the true measurements when ambiguities are 

absent.  Give it mean μ1 and unity variance.  Let the bottom block represent the 

ambiguity.  Let the distribution of the ambiguity be normal with unity variance but with a 
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different mean μ2.  The ambiguity rate is the fraction of time the switch is in the bottom 

position.  The resulting mixed probability density function is  
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Where α is the ambiguity rate.  Equation 1 can be easily extended when multiple 

ambiguities are present with different variances.  The following equation describes the 

probability distribution function when two ambiguities are present: 
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Equation 2 is used in the robust fusion model presented in Chapter 6 to generate the 

measurement noise for DOA, TDOA and FDOA observations. 

 Ekblom and Henriksson [EH69] have shown that Lp with p<2 performs better 

than least squares (which is L2) for estimating the mean of mixed exponential and 

rectangular distributions.  Minimizing the sum of absolute deviations is L1.   Their results 

implies that L1 processing may be more appropriate than least squares anytime the data is 

"almost clean": 

By "almost clean" we mean that a certain proportion of the data comes from the 
distribution whose location parameter we intend to study, but that some of the data 
consists of "outliers."  This of course means that we have a mixed distribution with 
one part coming from a perturbing distribution [EH69]. 

 
If the difference between the mean arising from the ambiguity and the true mean is large 

enough then a prefiltering operation may be sufficient to remove the outliers.  However, 

in many cases the ambiguity is too near to the true mean to be immediately rejected.  This 
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is particularly true when the number of prior observations is low because the estimated 

variance is still high and cannot be used to discriminate nearby ambiguities. 

The advantage of the L1 approach to emitter location is that it allows the 

screening process to proceed after an initial location has been computed.  The linear 

program effectively ignores outliers and yields a good location estimate which can be 

used to initiate a grouping of measurements for subsequent ambiguity-free location 

refinement. 
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Chapter 3 

Emitter Location Algorithms 

The approach for each model, DOA, TDOA and FDOA, is to derive the linearized 

least squares solution and then use the linearized equations to formulate a linear program 

to minimize the sum of absolute deviations. 

3.1  Emitter Location From Bearing Data 

Obtaining emitter location from bearing data has been of interest for some time.  

Triangulation problems occur in geodetic surveying networks, in submarine location by 

sonar, in parallax determination in astronomy, and so forth [Taf97].  One of the first 

papers on this subject was published by d'Ocagne [d1893].  The problem he posed was to 

minimize the sum of the weighted squared distances from a point to a collection of lines.  

During World War II there was considerable interest in the problem of cross-fixing a 

target by intercepting radio transmissions and determining their directions relative to a 

distributed set of receivers [Sta47].  In the following, the problem is first described and 

then in 3.1.1 the linearized least squares solution is presented.  The linearization gives a 

basis on which a linear program can be formulated which minimizes the absolute value of 

the deviations versus their squares.  The linear program formulation is presented in 3.1.2. 

A series of north relative bearing measurements, β1, β2, ...βΝ, are made from 

various station points with the goal of intersecting the resulting Lines-of-Bearings 

(LOBs) to determine a geolocation of an emitter of interest.  The station coordinates are 



represented in a two-dimensional  plane by (x1,y1), (x2,y2), ... (xN,yN).  Transformation of 

latitude and longitude  into the x-y plane is accomplished by projecting an earth centered 

radius through each of the station's latitude, longitude and altitude coordinates into the x-

y plane.  The x-y plane  is tangent to the earth's surface at a nearby but arbitrarily selected 

stay-point.  Two-dimensional algorithms are applied to the transformed measurements to 

estimate the emitter location.  The estimated emitter location is then transformed back 

into latitude and longitude by finding the intersection of an earth centered radius with the 

earth's surface and the estimated location in the x-y plane.  

The bearing measurement error is given by, 

 ei = −
⎛
⎝
⎜−θ i

y
x

tan 1 y
x

T i

T i

−
−

⎞
⎠
⎟       i = 1,..., N  (3) 

where (xT,yT) are the true coordinates of the location we desire to estimate.  The 

north relative bearing angle is related to the angle measured counter-clockwise from the 

x-axis by θi =π/2−βi.  ND is the number of bearing measurements.  In matrix form (3) can 

be written as, 

 e = θ - f(q) (4)  

where e, θ and f(q) are N-dimensional column vectors. The operator f represents the non-

linear inverse tangent function and q is an N length column vector of arguments which 

contain the location parameters, xT and yT as parameters. 

 3.1.1 Least Squares Method - Bearing Data 

Figure 2 illustrates the non-linear problem of locating an emitter from a collection 

of  ND noisy bearing estimates.   
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βN

N
Station
Coordinates
(xi,yi)

βi

β1

xT,yT

 
Figure 2  Illustration of Bearing-Only Emitter Location 

 

The derivation of linearized least squares location estimators and their accuracy 

has been described by Torrieri [Tor84]. The error is assumed to be a multivariate random 

vector with an NDxND positive-definite covariance matrix 

 S=E{(e - E{e})(e - E{e})T}, (5) 

where E{ } denotes the expected value and the superscript T denotes the transpose.  If e 

is assumed to have a zero mean and a Gaussian distribution, then the conditional density 

function of θ given q is 

 p N( | )
( ) | |

exp{ ( / )[/ /θ q
2 S

= −
π 2 1 2 1 2 T( )] [ ( )]}θ θ

1 f q S f q− −−1

Z T( ) [ ( )] [ ( )]q f q S f q

. (6) 

The maximum likelihood estimator is that value of q which maximizes the 

conditional density function.  Thus, the maximum likelihood estimator minimizes the 

quadratic form 

−
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 = − −θ θ1 . (7) 

If f(q) is linear Z(q) can be minimized by taking derivatives with respect to the 

parameters in q and solving the resulting system of simultaneous equations.  However, 



when f(q) is non-linear, as it is in this case, an estimator can be obtained by expanding 

f(q) in a Taylor series about a reference point qo and retaining the first two terms, 
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f q G q q( ) ( ) ( ) f q ≅ + −o o , (8) 

where G is the Nx2 matrix of derivatives evaluated at xo, 
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Let φoi denote the angle from station i to the reference point as shown in Figure 3. 

xo,yo

ϕi

Doi

xo-xi

yo-yi

xi,yi

 
Figure 3  Relationship of Station Coordinates to Reference Point. 

Then   
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The derivative of the inverse tangent function with respect to x is 
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so that G for the DOA problem can be written as, 
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Combining (7) and (8) gives 
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To solve for the parameter estimates q  that minimizes Z*(q) we take the 

derivatives with respect to the parameters and set the result equal to zero and solve for , 

 . (19) G S

Thus, the solution of (19) is 

 . (20) =

Replacing θ∗ with [θ - f(qo)+Gqo] gives the linearized least squares estimator,  

  (21)  q q G S= +o

where (for the DOA problem), 

 f i oq
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o i
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( )
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=
−
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⎛
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⎜
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⎠
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3.1.2  Robust Method - Bearing Data 

Suppose the errors are independently and identically distributed as the double 

exponential distribution  (also known as the Laplace distribution), with known σ.  That 

is, 

 p( | )θ q = exp | ( )|θ1 f q− −
σ{ }. (23)  

2σ

Application of the maximum likelihood principle implies minimizing, 

   ζ = θ −∑ i if q( ) . (24) 

Techniques which minimize the sum or mean of the absolute deviations in regression 

problems are referred to as MINMAD by Arthanari and Dodge [AD81].  Book has also 

pointed out that the least-absolute-deviations fix is the maximum likelihood estimate of 

the true position if the observation errors have the Laplace distribution  [Boo82].  In 



general robust processing refers to processing which attempts to mitigate the effects of 

noise distributions that are non-normal.  This is the purpose of the MINMAD algorithms 

developed below and therefore they will be referred to as the robust algorithms to 

distinguish them from their least squares counterparts. 

Substituting the truncated Taylor expansion, 
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  θ θ− = − − • − +f q( ) f q G q q( ) ( )o o ε , (25) 

where ε includes the error from the approximation as well as from uncertainties in the 

measurements.  Rearranging the R.H.S. of  25  results in a set of equations that can be 

used as constraints, 

 .  (26) 
G qN x

DOA

DO

+ =ε

              

f q G q

G q b
o N x
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o

N x
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N x
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D D

D D

2 2

2 1

− +
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]
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⎪

⎭

⎪
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⎪
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π

π
ν

ν

1

Ν

1

Ν

ζ

The following linear program minimizes the absolute value of the deviations in (26),  

  (27) [min minc
q
e

T ⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
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0 0 1
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= b N x
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D 1

0

.(28) 

Where bDOA is given by the R.H.S. of (26).  The π slack variables represent positive 

deviations and the ν surplus variables are negative deviations so that 
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 ε π ν− . (29) =

The error is composed of the difference of two positive quantities to satisfy the non-

negativity conditions of the linear program.  The restriction that x and y also be greater 

than zero can be accommodated by performing a coordinate translation using the nearby 

linear expansion point xo,yo to put the estimated position securely into the first quadrant.  

The importance of various measurements can be chosen by changing the relative 

value of the objective function coefficients.  Thus, the robust approach has the flexibility 

to accommodate measurements with different degrees of confidence by giving 

measurements with greater confidence a greater weighting. 

The above formulation differs technically from the approach proposed by Book 

[Boo82] although the spirit of the two methods is the same in that both methods are 

attempting to minimize the sum of absolute deviations.  Both methods search over all of 

the ND(ND-1)/2 intersection points to find a pair of bearing lines that minimizes the 

absolute error.  The difference is that Book is using a cost function based on what has 
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come to be called the Stansfield algorithm [Sta47] which was originally derived from 

heuristic arguments and the assumption of small bearing measurement errors.  If the 

initialization point qo is close q then the linearized equations presented here are 

preferable to the Stansfield algorithm, which produces a larger estimator bias unless the 

bearing errors are small.  However, if the bearing errors are large, it may not be possible 

to chose qo close to q.  In this case, it is not clear which estimator is preferable.  Young 

independently developed and presented essentially the same method of robust emitter 

location from DOA data as Book (in that it was based on the Stansfield equations) in 

[You96] prior to his knowledge of Book's work in this area. 

3.2  Emitter Location From TDOA Data 

Unlike the DOA problem there is less literature available for calculating a fix, 

robust or otherwise, from TDOA data (there is even less literature on FDOA which is to 

be discussed in the next section).  This is understandable considering the history DOA 

has had in astronomy and geodesy.  TDOA on the other hand requires better 

measurement, timekeeping and communication equipment than DOA and thus does not 

enjoy the literary hundred plus year lineage of the DOA problem which only requires the 

ability to measure an angle.  However, this lack of a literary roots has not hindered 

TDOA applications in this century such as the LORAN and the Global Positioning 

System which have enjoyed enormous success.  This section then will develop the 

linearized TDOA equations which will be used to form the robust TDOA location 

estimation algorithm based on linear programming. 



3.2.1  Least Squares Method - TDOA Data 

In TDOA systems the emitter is located by measuring the difference in arrival 

times between N stations having positions specified by the column vectors s1,s2, ...sN.  

The emitter  lies somewhere on a locus of points corresponding to constant difference in 

distance between any two stations.  The two stations are the foci of a hyperbola.  Figure  

4 shows lines of constant TDOA between two receivers (represented by airplane icons 

although TDOA systems do not require receiver motion as does FDOA).  The N stations 

yield N-1 difference measurements.  The N-1 TDOA measurements are designated by NT 

in the following development. 

The TDOA measurements can be represented by 

τ ε

 19 

 = Hd / c +

−
−

−

⎤

⎦

⎥
⎥
⎥
⎥

1 1 0 0 0
0 1 1 0 0

0 0 0 1 1

 (30) 

Where d is a N x 1 column vector of distances from the measurement stations to the 

transmitter and c is the propagation velocity of the wavefront. The column vector ε 

represents the errors in the TDOA measurements.  The (N-1) x N matrix H has ones 

along the main diagonal and negative ones on the upper secondary diagonal, 

 . (31) H =

⎡

⎣

⎢
⎢
⎢
⎢
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Figure 4  Lines of Constant TDOA. 

Expanding (30) around a reference point qo, 

 τ ε= − +G q qo oN x
TDOA

T
+ 3 ( )H d c  (32) 

Where ε now also absorbs the error from the linear approximation and G for the TDOA 

problem is given by, 

 G
H d

N x
TDOA

D

d c
d x y z3 = =

)
( , , )

H
d HF

q qo o

d c
d x y z c=

( ( )
( , , )

. (33) 

The first term of F is, 

F(
) ) )

1,1) =
( (x x + (y y (z z

 x 
(x

(x x + (y

                                                                              
 

1 1 1

x=x 1 o
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∂
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2 2 2 )
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. (34) 

Where  Doi=||qo-si|| denotes the distance from station i to the reference point.  The y and z 

terms evaluate similarly so that F can be written as, 

 . (35) F

Each row of F is a unit vector pointing from one of the stations to the reference point. 

Applying (21) gives the linearized least squares solution for TDOA emitter 

location, 

 ( )q q F H S HFo
TDOA T T= + − −1 1 [ ]F H S Hdo

T Tc c−−1 τ . (36)  

Where S is the error covariance of the TDOA measurements. 

3.2.2  Robust Method - TDOA Data 

Rearranging the linearized TDOA equation  and using equation 33 for the derivative  lets 

us write a system of equations that can be viewed as constraints in a linear program, 

 
HFq Hd HFq

G q b

o o

c c
N x
TDOA

N x
TDOA

T T

+ = −
+

+ =

ε τ

ε3 1         
 (37) 

The right side is a N-1 column vector derived from the station coordinates and the 

measured TDOA data.  The error terms are treated as the difference of positive slack 

variables as before, 

ε π ν−  (38)  =

The following linear program minimizes the absolute value of the deviations,  
 21 
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  (40) 

Where bTDOA is given by the R.H.S. of (37).  The π slack variables represent 

positive deviations and the ν surplus variables are negative deviations.  The restriction 

that x and y also be greater than zero can be accommodated by performing a coordinate 

translation using the nearby linear expansion point xo,yo to put the estimated position 

securely into the first quadrant. 

The importance of various measurements can be adjusted by changing the relative 

value of the objective function coefficients.   



 

3.3  Emitter Location From FDOA Data 

Moving receivers can exploit the Doppler shift in several ways.  The measured 

frequency at a receiver fm is related to the transmitted frequency ft by 

 f fm t f v f f v ct r t t= + cos(

 23 

= + ϕ)  (41) 

where c is the signal velocity, vr is the velocity of the receiver in the direction to the 

transmitter, v is the receiver velocity, and ϕ is the bearing angle to the transmitter relative 

to the velocity vector, as shown in Figure 5.  Therefore, the bearing angle can be  

transmitter

ϕ velocity
vector

receiver
 

Figure 5  Moving receiver. 

estimated if fm is measured and ft, v and c are known.  Bearing measurements from 

several receivers can be combined to obtain a transmitter location estimate, as is done in 

Section A.  Another approach, which may be less sensitive to inaccuracies in the assumed 

value of  ft, is to measure the Doppler difference, which is defined as 

 ( )v v1 2−cos( ) cos( )ϕ ϕ1 2f f f
cm m

t
1 2− = ⎛

⎝⎜
⎞
⎠⎟  (42) 

where subscripts 1 and 2 refer to receivers 1 and 2 [Tor84].  The differential Doppler is 

defined as the integral of fm1-fm2 over time.  If ft does not change too rapidly over the 

integration interval, the differential Doppler is 



 ( ) ( ) ( )[ ]D t D t1 2 2 2 1− − −) ( ) ( )f f dt f
c D t D tm m

t

t

ta
1 2 1 2 1

1

3

− ≅ ⎛
⎝⎜

⎞
⎠⎟∫ ( ) (  (43) 

where fta is the average transmitted frequency and Di(tj), is the distance of receiver i from 

the transmitter at time j [Tor84].  The right-hand sides of  42 and 43 can be expressed in 

terms of the transmitter coordinates.  Thus, in the absence of noise, a Doppler difference 

or a differential Doppler measurement determines a surface on which the transmitter 

must lie [Tor84].  Figure 6 shows lines of constant differential Doppler for two receivers 

traveling to the right at the same velocity. 
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Figure 6.  Lines of Constant Differential Doppler. 

3.3.1  Least Squares Method - FDOA Data 

In FDOA systems the emitter is located by measuring the Doppler difference or 

the differential Doppler in between N stations having positions specified by the column 
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vectors s1,s2, ...sN.  If differential Doppler is used the N-1  measurements can be 

represented by 

[ ( ) ]δ ε= −f c t tH d d( ) ( )2 1 +

−
−

−

⎤

⎦

⎥
⎥
⎥
⎥

1 1 0 0 0
0 1 1 0 0

0 0 0 1 1

ta  (44) 

Where d is a N x 1 column vector of distances from the measurement stations to 

the transmitter at time t  and c is the propagation velocity of the wavefront. The column 

vector ε represents the errors in the differential Doppler measurement vector δ. The N 

stations yield N-1 difference measurements over the integration period.  The number of 

FDOA measurements is designated by NF in the following development.   

The NF x N matrix H has ones along the main diagonal and negative ones on the 

upper secondary diagonal, 

 . (45) H =

⎡

⎣

⎢
⎢
⎢
⎢

Expanding (30) around a nearby reference point qo, 

 ( ) [ ]δ ε− +N x
FDOA

F
G q qo) ( )3+= −f c t tta H d do o( ) (2 1  (46) 

Where ε now also absorbs the error from the linear approximation and G is given 

by, 
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The first term of F(t2)  is, 
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Where  Doi=||qo-si|| denotes the distance from station i to the reference point.  The y and z 

terms evaluate similarly so that F(t) can be written as, 

 . (49) F( )t =

⎡

⎣

⎢
⎢
⎢

Each row of F is a unit vector pointing from one of the stations at time t to the reference 

point q0. 

Applying (21) gives the linearized least squares solution for differential Doppler 

emitter location, 
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Where S is the error covariance of the FDOA measurements. 
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3.3.2  Robust Method - FDOA Data 

Rearranging the linearized differential Doppler equation  and using equation 47 for the 

derivative  lets us write a system of equations that can be viewed as constraints in a linear 

program, 
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The right side is a N-1 column vector derived from the station coordinates and the 

measured FDOA data.  The error terms are treated as the difference of positive slack 

variables as before, 

ε π ν− . (52)  =

The following linear program minimizes the absolute value of the deviations,  
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  (54) 

Where bFDOA is given by the R.H.S. of (51).  The π slack variables represent 

positive deviations and the ν surplus variables are negative deviations.  The restriction 

that x and y also be greater than zero can be accommodated by performing a coordinate 

translation using the nearby linear expansion point xo,yo,,zo to put the estimated position 

securely into the region where the coordinates are positive. 

The importance of various measurements can be adjusted by changing the relative 

value of the objective function coefficients. 
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Chapter 4 

Updating the Emitter Location Solution 

As new measurements are taken it is desired to update the current estimate of the 

emitter location.  This can be done by adding a constraint for each new measurement.  

The new constraint will be satisfied by the current solution only in the unlikely event that 

the new measurement passes directly through the current solution.  Otherwise the new 

constraint causes the current solution to be infeasible.  Feasibility is recovered by 

augmenting the new constraint with the appropriate slack and surplus variables.  Any 

basic variables in the constraint are substituted out using current non-basic variables.  

The current cost vector is appended with new coefficients corresponding to the new slack 

and surplus variables.  Finally, the "modified" constraint is appended to the current 

optimum tableau and the dual simplex algorithm is used to recover feasibility [Tah92]. 

Example:  Three bearing measurements are taken and the primal simplex solution 

computed for the estimated emitter location.  Then a fourth bearing measurement is 

incorporated into the tableau and the dual simplex is used to update the solution. 

The pertinent data is given in Table  1.  Figure 7 shows the locations from which 

the bearing measurements are taken by the aircraft icons. 



Table 1  X-Y and Bearing Data for Update Example 

 self 
x-location 
(units of 
distance) 

self  
y-
location 
(units of 
distance) 

bearing 
measurement 
(degrees) 

bearing  
error 
(degrees) 

observation 1 27.0 2.0  1.08 -0.1 
observation 2 18.0 2.5  0.46  0.1 
observation 3 10.0 3.0  0.00 -0.1  
observation 4   8.0 3.5 -0.40  0.1 

 

 
Figure 7  Illustration of  Location Estimate Update. 

 

Figure 3 depicts the orientation of the bearing measurements and the emitter.  The 

emitter is represented by a circle.  The location estimate is shown by the bolded plus 

symbol.  The upper left drawing shows the first three bearing measurements in a 

"situation view" where emitter and measurement platform locations are visible.  The 
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upper right drawing is a "close-up view" of the same data where only the region around 

the emitter can be seen.  Likewise the bottom left drawing is the situation view after the 

fourth observation and the bottom right is the corresponding close-up view. 

The construction of the initial tableau is straight forward.   The elements of the G 

matrix are shown in the columns labeled x and y.  The far right column corresponds to 

the b vector in equation 28.  Each constraint row has a positive and negative slack 

variable in order to allow the overall deviation to be positive or negative. 

Table 2  Initial Tableau with Three Observations 

x y s1 s2 s3 s4 s5 s6 Solution 
0 0 1 1 1 1 1 1 0 
-0.0004 0.0189 1   -1   0.0264 
-0.0001 0.0161  1   -1  0.0397 
 0.0000 0.0143   1   -1 0.0411 

 

Table 4 shows the optimum tableau after solving using the primal simplex 

method.  

Table 3  Solution after Primal Iterations 

x y s1 s2 s3 s4 s5 s6 Solution 
0 0 -

1.366 
0.0 -

1.646 
-
0.634 

-2.0 -0.3536  

0 1   0.0 0.0 70.0   0.0  0.0 -70.0 2.878 
0 0 -0.4 1.0  -0.6   0.4 -0.1     0.6 0.0035 
1 0 -2810 0.0 3710 2810  0.0 -3710 78.429 

 

To update the solution after the fourth bearing measurement is taken it is 

necessary to replace any basic variables in the new constraint with current non-basic 

variables.  The new constraint prior to substitution is 
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b4 4 4 G G( (4,1)x 4,2)y+ + + + + + + + + − =0 0 0 0 0 0 0 ν   (55) π

recall that b4 is derived from the bearing measurement and the linearization 

coordinates (xo,yo) via 

 b = −
−
−

⎛
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⎠
⎟−θ4 tan

( )
( )

1 4
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x
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y
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y bas

b A n
b A n

n, )] + by bas 4π ν4 4− =

(i ) - (4,2) (i )opt
x

opt
yG b

.  (56) 

But the variables x and y in (55) are basic (from the previous optimal solution) 

and must be substituted out using the current non-basic variables.  Rewriting the current 

solution for x and y in terms of non-basic variables, 

   (57) 
x =
y =

where ix represents the index of the row entry under the x column that contains a 

1.  Similarly iy is the index of the entry in the y column that contains a 1.  The vector bopt 

is the far right column vector from the previous optimum tableau.  The matrix Aopt is the 

main body of the previous optimum tableau.  The vector nbas contains the indices of the 

non-basic variables in the previous optimum solution. 

Substituting 57 into 55, 

G b A n G b A(4,1)[ (i ) - (i , )] + (4,2)[ (i ) - (iopt
x

opt
x bas

opt
y

opt . 

   (58) 

Rearranging (58) 

- (4,1) (i , ) - (4,2) (i , ) +

                                                                          b (4,1)

opt
x bas

opt
y bas

4

G A n G A n

G b

π ν4 4− =

−

    (59) 
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Equation (59) shows how to transform a new bearing measurement into a 

constraint that can be appended to the existing optimal tableau.  Table 4 shows the 

modified constraint appended to the previous optimum tableau.  The expanded tableau is 

now ready for dual simplex iterations. 

Table 4 Modified Constraint Appended to Optimum Tableau 

x y s1 s2 s3 s4 s5 s6 s7 s8 Solution 
0 0 -

1.366 
0.0 -

1.646 
-
0.634 

-2.0 -
0.3536 

-1 -
1 

 

0 1  0.0 0 70.0 0.0  0.0 -70 0 0 2.878 
0 0 -0.4 1 -0.6 0.4 -0.1     0.6 0 0 0.0035 
1 0 -2810 0 3710 2810  0.0 -3710 0 0 78.429 
0 0 -0.3 0  1.3 0.3  0.0    -1.3 1 -

1 
-0.0036 

 

Table 5 shows the optimum solution after the dual simplex. 

Table 5 Solution Tableau after Update of New Constraint via Dual Simplex 

 z x y s1 s2 s3 s4 s5 s6 s7 s8 Solution 
z  0 0 -1.293 0. -2.0  -0.707 -2.000 0  -0.734  -1.266 0 
  0 1 -14.3 0.0 0.0 -14.3 0 0 52.6 -52.6 3.0670 
  0 0 -0.5 1 0 0.5 -1.0 0 -.5  0.5 0.0018 
  1 0 -2054 0 0 2054 0 0 2790 -2790 88.4535 
  0 0 0.2 0 -1.0 -0.2 0 1.0 0.8 -0.8 0.0027 

 

The update example began with three constraints and added a fourth.  However, 

the technique of writing the new constraint in terms of the existing non-basic variables 

and then using the dual simplex to recover feasibility can be easily applied whenever a 

new measurement arrives and it is desired to update an existing optimal solution. 
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Chapter 5 

Measurement Association 

The process of associating parameter data (e.g. DOA, TDOA, FDOA, modulation, 

frequency, etc.)  to form a location estimate is one of data information fusion.   

Waveforms from various emitters are received and measured at multiple receiving 

stations.  The receiving stations communicate their measurements to each other.  The task 

of correctly assigning measurements to existing emitters (to obtain refined accuracy) or 

forming new emitter location estimates can be difficult when multiple (and perhaps 

simultaneous) emitters are present. 

The advantage of minimizing  the absolute value of the deviations versus the 

square becomes apparent when associating parameter data (DOA, TDOA, FDOA) into an 

emitter location estimate.  The least-squares approach is overly sensitive to ambiguities 

or measurements from nearby emitter sites.  On the other hand minimization of the 

absolute value of the deviations is robust to outliers and yields deviations that can be 

used to reject non-relevant measurements. 

Example:  LOB measurements are made from eight separate locations.  The 

locations could represent either fixed ground sites or from one (or more) moving 

platforms.  Six of the measurements are from an emitter with coordinates (3,100).  The 

remaining are from a nearby emitter with coordinates (4,120).  Table 2 gives the 

measurement platform(s) coordinates along with the bearing measurements.  The bearing 
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noise was drawn from a normal distribution with zero mean and standard deviation of 0.1 

degrees. 

Table 6  X-Y and Bearing Data for Two Emitter Example 

x-location 
(units of 
distance) 

y-location 
(units of 
distance) 

bearing 
(degrees) 

bearing 
error 

(degrees) 
0 0  1.7184 -0.0807 
0 1  1.1458 -0.1130 
0 2  0.5729  0.0204 
0 3  0.0000 -0.0262 
0 4 -0.5729 -0.0446 
0 5 -0.4775  0.0593 
0 6 -1.7184  0.0290 
0 7 -1.4321 -0.0664 

  

Figure 8 shows the bearing measurements and the estimated emitter location as 

computed by minimizing the absolute deviation.  The robust method effectively discounts 

the two outliers and yields an accurate result for one of the emitters.  On the other hand 

the least-squares emitter location is substantially affected by the outliers.  The emitter one 

miss distance of the robust approach is 2.7 while the least-squares miss distance of 21.8 

is over 8 times larger.  Repeated independent trials with random bearing errors have 

confirmed the improved accuracy of robust relative to the least-squares approach. 



Least-squares
location
estimate. (+)

MINMAD
location estimate.
(*)

True locations. (O)

 
Figure 8  Situation View of robust and Least-Squares Comparison 

 

Clustering algorithms calculate the distance between each point and every other 

point.  Thus, for N points the processing load is on the order of N2/2.   Quick partition 

algorithms provide much greater efficiency.   

Quick partition algorithms can be divided into two classes - Sorting and Leader.  

Sorting algorithms reorder the data by each parameter in turn and performs clustering on 

adjacent points.  This requires as many passes through the data as there are variables 

[Mar88].   Leader algorithms require only a single pass through the data.  The first point 

in the data is defined as a "leader".  The distances between subsequent points and the 

leader are calculated.  If the distance is less than the threshold the point is clustered, 

otherwise the point is defined as an additional leader.  Subsequent points are compared 

with every leader until clustered or defined as a new leader.  
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The substantial accuracy improvement of the robust estimator simplifies 

separating the measurements into two groups because the robust location estimate 

provides a point that is easy to correlate the measurements to.  Figure 9 compares the 

robust and least-squares deviations.  If a threshold of 0.1 degrees is used to reject outliers 

then the measurements around the robust location estimate can be correctly associated 

using either one of the quick partition algorithms.  However, using the same threshold 

around the least-squares location estimate results in observations 1,4,5 and 7 being 

misassociated regardless of the clustering algorithm used. 

Angular
deviations from
least squares
location estimate
deviations. (+)

Angular deviations
from MINMAD
location estimate. (*)

 
Figure 9  Comparison of robust and Least Squares Angular Deviations 

Additional measurements such as modulation format and fine frequency are easily 

incorporated into the quick partitioning  association process.  While the additional 

information may assist in correct association, and thus effectively overcome the problems 

encountered  with the least squares solution, the robust deviations will provide greater 
 37 
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cluster separation and larger noise immunity.  Furthermore, it is possible that the 

additional measurements are either missing or do not provide any discrimination 

capability.  That is it is possible that two emitters have the same modulation format and 

fine frequency so that the only remaining variable for discrimination is the deviation.  
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Chapter 6 

Level 1 Information Fusion Architecture  

A fusion model has been developed by the Department of Defense Joint Directors 

of Laboratories Data Fusion Subpanel to provide a framework and common reference for 

addressing data fusion issues and problems [WL90].  One of the models developed by the 

subpanel identifies three levels of fusion processing products: 

Level 1 - Fused position and identity estimates. 

Level 2 - Hostile or friendly military situation assessments. 

Level 3 - Hostile force threat assessments. 

Level 1  involves tracking, correlation, alignment, and association to yield  

position and identity estimates for targets or platforms in the composite filed of view.  

Level 1 processing operations are dominated by numeric procedures involving, for 

example, linear and nonlinear estimation techniques, pattern recognition processes, and 

various statistical operations. 

Level 2 processing involves situation abstraction and assessment to yield a 

contextual interpretation of the distribution of forces produced in Level 1.  Level 2 uses 

technical and doctrinal data bases to yield indications and warnings, plans of action, and 

inferences about the distribution of forces. 
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Level 3 processing is threat assessment.   Threat assessment provides information 

concerning the intent of the hostile forces and the vulnerability of one's own forces.  In 

addition it identifies threat opportunities through analysis of threat capabilities.   

Level 1 processing is primarily numeric, involving linear and non-linear 

estimation techniques, pattern recognition processes, and various statistical operations.  

At Levels 2 and 3, the operations become dominated by symbolic reasoning processes 

involving various techniques from the field of artificial intelligence to support the 

formulation of higher levels of abstraction and inference.  Clearly the robust approach to 

locating emitters falls into the Level 1 category because it is concerned solely with the 

numeric processing of the parameter data to yield identification and position estimation 

of radio emitters. 

Obtaining a fused location estimate from separate DF, TDOA or FDOA 

measurements can be obtained by simply averaging the individual measurements 

together.  However,  better accuracy is possible if the measurements are processed jointly 

to yield a single fused location estimate result.  The DF, TDOA and FDOA robust 

formulations described in Chapter 3 can be modified to accomplish a joint location 

estimator as follows.  The individual models are stacked together to form a single large 

model: 



Minimize, 
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Where the G and b terms have been defined in Chapter 3.  The last two rows of 

the fusion model are constraints added to control the proportion that each measurement 

type (DOA, TDOA and FDOA) makes to the final solution  [Bar97].  This is 

accomplished by first solving the individual robust models to obtain ζ*DOA, ζ*TDOA and 

ζ*FDOA.  For a given model solution ζ* represents the minimum sum of absolute 

deviations.   In the fused model it is unlikely that that each ζ will reach its ζ*.  Its 

proportion of the individual optima will be ζ /ζ*.  The fusion model requires that each 

sub-model's proportion of optimality be equal 

 
ζ
ζ

DOA

DOA

ζ
ζ

ζ
ζ

TDOA

TDOA

FDOA

FDOA* * *= = . 

Thus the last two rows in the fusion model correspond to 
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z z

and

z z

TDOA DO

FDOA TD

If some of the submodels are more trusted than others, the constraints can be 

modified to reflect that.  For example, if the DOA model was the most trustworthy, and 

the FDOA the least, then in place of 60 the following can be used 

  (61) 

z z

and

z z

TDOA DO

FDOA TD

Example:  A Monte Carlo simulation study was undertaken to show the 

effectiveness of the robust fused model as well as the improvement of the individual 

robust submodels relative to least squares processing when the measurements contain 

outliers.  The simulation involved four aircraft traveling at various speeds and headings. 

A stationary emitter of interest is located approximately 270 km distant to the east.  The 

initial coordinates and velocities of the aircraft and emitter are given in Table 7. 
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Table 7 Coordinates and Velocities of Aircraft and Emitter. 

 x -coordinate (m) y -coordinate (m) z-coordinate (m) velocity (kmph) 
aircraft 1 5,000 0 10,000 600@ 45.00

o
 

aircraft 2 0 25,000 12,000 600@ 90.00
o

aircraft 3 15,000 80,000 12,000 495@ 14.04
o

aircraft 4 100,000 0 20,000  134@ 63.43
o

emitter 300,000 50,000 0 0
 

An observation interval of 6 seconds was simulated.  Each aircraft took 

measurements at the beginning, middle and end of  the course it traversed during the 

observation interval.  That is each aircraft took 3 DOA measurements.  The TDOA and 

FDOA measurements are best described by examining the H matrices used for the 

simulation: 

    
AC,  
position* 

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3 

     1 0 0 -1  0  0  0  0  0  0  0  0 
     1 0 0  0  0  0  -1  0  0  0  0  0 
     0 1 0  0 -1  0  0  0  0  0  0  0 
     0 1 0  0  0  0  0 -1  0  0  0  0 
     0 0 1  0  0  -1  0  0  0  0  0  0 

HTDOA  =     0 0 1  0  0  0  0   0 -1  0  0  0 
     0 0 0  1  0  0 -1   0  0  0  0  0 
     0 0 0  0  1  0  0 -1  0  0  0  0 
     0 0 0  0  0  1  0   0 -1  0  0  0 
     1 0 0  0  0  0  0   0  0  -1  0  0 
     0 0 0  0  0  1  0   0  0   0  0  -1 
     0 0 0 0   0  0   0   1  0   0  -1  0  

                *The first number is the aircraft.  The second number is its position during its course. 
 

To interpret the HTDOA matrix recall that each element of the vector HTDOAd is the 

differential distance between two points (aircraft in this case) and the emitter.  For 
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example the first row of  HTDOA subtracts the distance of airplane two at time one from 

airplane one at time one. 

The FDOA H matrix is interpreted similarly however each row of HFDOA is a 

difference of differences.  That is the first row of the HFDOA matrix shown below 

represents the differential distance between aircraft two relative to the emitter at times 

one and two subtracted from the differential distance between aircraft one and the emitter 

at the same times.  The HFDOA matrix used in the simulation is shown below: 

AC,  
position* 

1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 4,1 4,2 4,3 

     1 -1  0 -1  1  0  0  0  0   0   0   0 
     1 -1  0  0  0  0 -1  1  0   0   0   0 
     0  1 -1  0 -1  1  0  0  0   0   0   0 
HFDOA=     0  1 -1  0  0  0  0 -1  1   0   0   0 
     1  0 -1 -1  0  1  0  0  0   0   0   0 
     1  0 -1  0  0  0 -1  0  1   0   0   0 
     1 -1  0  0  0  0  0  0  0  -1   1   0 
     0  0  0 0  1  -1  0  0  0   0  -1   1 
     0  0  0  0  0  0   1 0 -1  -1   0   1 

             *The first number is the aircraft.  The second number is its position during its course. 
 

During the simulation the DOA measurements were processed first to yield an 

initialization point for subsequent processing.  Since both the linearized least squares and 

the robust DOA formulation require an initialization point for the Taylor expansion an 

additional location method was developed that does not require an initialization point.   

The DOA initialization routine selects one line of bearing from each of the three 

aircraft and calculates the vertices of the triangle formed by their intersections.  The 

coordinates of the vertices are stored in a list in ascending order.  This is repeated until 

every bearing measurement has been used.  Each sorted list (there are three, one for each 

dimension) is then trimmed [BW84] by removing entries from both ends of the list in 
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order to limit the effect of outliers.  Each trimmed list is then averaged and the resulting 

coordinates used as qo in the subsequent DOA, TDOA and FDOA calculations. 

In the simulation 100 trials were performed for two different cases.  In the first 

case the error of all the DOA, TDOA and FDOA measurements were simulated to be 

normal zero mean with no outliers.  The second set of trials however used a mixed mode 

distribution to generate the measurement noise so that a percentage of the measurements 

contained outliers.  Equation 2 was used with the parameters in Table 8 to generate the 

measurement noise for each trial.  

Table 8  Measurement Error Parameters for Mixed Mode Distributions. 

 DOA TDOA FDOA  
(@1000 MHz) 

μo     0
 o
    0       sec    0 Hz 

μ1  0.8
 o
 1.2  e-6 sec  40 Hz 

μ2  0.8
 o
 -1.2 e-6 sec -40 Hz 

σ1 0.25
o
 150 e-9 sec     5 Hz 

σ2 0.25
o
 150 e-9 sec     5 Hz 

σ3 0.25
o
 150 e-9 sec     5 Hz 

α1  
0.0556 

 
0.0556 

 
0.0416 

α2  
0.0556 

 
0.0556 

 
0.0416 

 

Because understanding the simulation scenario from tables of coordinates and 

velocities is more difficult than simply glancing at a picture the following figures (10, 11 

and 12) are given.  The figures give a representative pictorial description of the 

magnitude of the errors used in the simulation and the shapes of the TDOA and FDOA 

curves 
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Figure 10  Simulation Scenario for DOA Measurements. 
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Figure 11  Simulation Scenario for TDOA Measurements. 
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Figure 12 Simulation Scenario for FDOA Measurements. 

To compare the various methods the distance from each location estimate to the 

true emitter location was saved for each of the 100 Monte Carlo trials.  The saved errors 

were then used to compute a standard deviation of error for each method.  The results of 

the simulation when only normally distributed noise was used (no outliers) is shown in 

Table 9.  As is expected the robust method performs slightly worse than least squares in 

the absence of outliers.  However, the robust fusion model result (800.3 meters) is 

significantly better than any of the individual least squares or robust results which shows 

the improved accuracy of the robust fusion model. 

Table 9  Comparison of Least Squares to Robust Method when Measurement 
Noise is Normal 

Normal Measurement 
Noise 
(no outliers) 

Std. Dev. of 
Error (km) 
Least Squares 

Std. Dev. 
of Error 
(km) 
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 Robust 
DOA  1.2384 1.2392 
TDOA 1.0402 1.1151 
FDOA  0.8989 1.0440 
Fusion  0.8003 

 

However, the true value of the robust methods becomes apparent when outliers 

are present in the measurement data as was simulated in the second set of Monte Carlo 

trials.  Table 10 shows this advantage.  Each of the robust estimators out performs their 

least squares counterpart.  Furthermore, the robust fusion method  performs better than 

any individual estimator and is only slightly degraded (53 meters) relative to the case 

without outliers. 

Table 10  Comparison of Least Squares to Robust Method when 
Measurement Noise Contains Outliers. 

Mixed Mode Noise 
(see Table 8 and  
equation 2 ) 

Std. Dev. of 
Error (km) 
Least Squares 

Std. Dev. 
of Error 
(km) 
Robust  

DOA    1.7728  1.5820 
TDOA   2.2100  1.2707 
FDOA    1.9778  1.3413 
Fusion   0.8537 

 
 

A Level 1 fusion architecture is proposed in figure 13 which utilizes robust, least 

squares and quick partitioning algorithms.  The parameter measurements are made from 

various sensors distributed throughout the environment.  The measurements are sent to a 

central processing point where the first step is association with existing emitter sites.  If a 

measurement successfully associates with an existing site then it is stored in the 

Correlated Parameter Storage area, otherwise it is placed in Uncorrelated Parameter 



Storage.  Measurements in Correlated Parameter Storage are submitted to the Least 

Squares Refinement processing in order to update the location of the existing emitter 

sites.  Uncorrelated measurements are processed by the robust fusion method.  The 

deviations from robust fusion processing along with modulation format and fine 

frequency are passed to the Quick Partitioning algorithm.  The resulting partitions are 

candidate emitter sites.  Qualification of a partition depends on the number of 

measurements in it and the degree of dispersion between the measurements.  If a partition 

satisfies these requirements it is upgraded to new site status and the measurements are 

placed in Correlated Parameter Storage (where they will be accessed by Least Squares 

Refinement).  
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Figure 13  Level 1 Information Fusion Architecture Utilizing robust 

Once a group of measurements have been removed from Uncorrelated Parameter 

Storage and associated with a new site the robust processing can be repeated to on the 

remaining measurements.  This process is repeated until no new sites can be created.  As 

new measurements that fail to correlate to existing sites arrive, the update equations 
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described in Chapter 4 are used to update the optimum robust fusion solution.  The new 

solution is then used by the partition algorithms to check for new site creation. 
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Chapter 7 

Economic Analysis 

Comparison of algorithms solely on the basis of their performance in areas of 

computational load, memory usage, input/output requirements and statistical and 

numerical properties without considering their impact on the overall system in a cost-

benefit sense may lead to false conclusions.  The usual assumption is  that the algorithm 

that exhibits the best statistical and numerical properties while expending the least 

computational resources is the one to be preferred.  However computational resources 

can be directly converted to a monetary value by using the current price of processing 

and memory devices and conversion of statistical performance into an economic quantity 

can be accomplished given enough knowledge of the application.  After conversion, the 

true costs and benefits of the algorithm application can be considered for proper 

algorithm selection.  In many cases performance is paramount and implementation costs 

become an issue only when they exceed available funding levels.  This has been the 

history of many military applications of the past where performance was everything.  

Recent procurement reform however has stressed cost as an independent variable 

(CAIV).  CAIV is defined as the following in [USN97]: 

"CAIV is a key acquisition reform initiative. It entails setting aggressive, realistic 
cost objectives for systems and managing risks to obtain those objectives. The cost 
objectives should balance mission needs with available and projected resources, taking 
into account the state of requisite technologies.  Bottom line: once system performance 
and objective costs are decided, through cost-performance trade-offs, cost becomes more 
of a constraint and less of a variable in meeting the mission need." 
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The emphasis is on cost-benefit analysis to determine aggressive cost targets early 

in the development cycle followed by careful management of risks to meet the cost 

objectives.   

In this chapter a method will be determined for developing cost objectives for the 

implementation of the fusion architecture presented in Chapter 6.  To develop the 

economic analysis for the fusion architecture we will first play the role of the government 

and use the concept of CAIV to establish a performance versus cost curve.  Any point on 

this curve represents a cost and performance pairing that is acceptable to the government.  

Then we will switch to the role of the contractor and show how to perform algorithm 

selection and system sizing in such a way as to maximize profit while simultaneously 

minimizing risk and meeting the governments cost and performance objectives. 

7.1  Performance as a Function of Cost 

Defining an acceptable performance as a function of cost is not easy because 

overall performance is difficult to reduce to a single number.   Moreover stating 

acceptable performance levels as a function of cost  requires making difficult decisions.  

These decisions can sometimes literally involve probabilities of life and death .  This 

unpleasant difficulty is probably why the issue has previously been ignored and the grail 

of total performance has been pursued at the expense of  cost overruns. 

However for the fusion architecture of the previous chapter a performance-versus 

cost-curve can be constructed in a straightforward manner.  The rationale hinges on the 

extra cost of wastefully expending missile munitions on targets that are poorly located.  

Assume that the targeting algorithm error is a circular normal random variable with an 



RMS value denoted by σa.  Let the missile also have a normally distributed circular error 

denoted by σm.  The error distribution of the weapon system is the  root sum of squares 

(RSS) of the targeting system error and the missile error: 

σ σ σt a
2

m
2= + . (62)  

Let the government requirement be that on average at least one or more missiles 

must strike within a radius R of the target with a probability pr.  The probability that a 

single missile will strike within the radius R is  

 ( )p

R
t

1
0

2
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σ

exp dx Rx
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−
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If M missiles are launched, the probability that none of them fall inside the radius 

R is (1-p1)M.  The probability that one or more will fall inside the radius is 

( )p pr = − −1 1 1

M
 (64)  

   Solving for M  gives the average number of missiles needed to meet the 

probability requirement of at least one missile inside the radius R 

( )
( )
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 M =
log

log

1

1 1

−

−

p

p
r

.  (65) 

Thus as the targeting error σa decreases the probability of a single missile meeting the 

requirement increases so that fewer total missiles are required. 

To establish the performance-cost curve for the targeting system  we will assume 

each missile has a cost of Cm and that the expected number of targets engaged per year is 

Nt over a useful system life of Y years.  Using interest rate i and (62), (63) and (65) we 

can calculate the net present value of the missile costs as a function of the error 
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−1 1
 (66) 

To quantify the value of a new higher accuracy targeting system assume the 

government has access to an existing targeting system capable of meeting the 

requirement with Mold missiles.  The Net Present Value of the savings derived from a 

new targeting system with lower error σt is the cost of the extra missiles over the life of 

the system.  The potential savings represents the equivalent cost C the government could 

incur for a new targeting system is: 

 ( )( )( ) ( )
C i= −

⎛

⎝

⎜
⎜
⎜
⎜
⎜

−C N 1 + Mm t
Y

old1 i
p

erf
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r

t

−
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−
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⎞
⎠
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⎟

⎞

⎠

⎟
⎟
⎟
⎟
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1

1

log

log
σ

( )( )

( )( )

. (67) 

Rearranging the above equation so that cost is an independent variable gives the targeting 

error as a function of cost, 
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 (68) 

A recurrent problem in communicating about algorithms is the fact that we want 

to talk about algorithm accuracy performance and yet we measure its error which is 

inversely related to performance.  That is, the higher performing algorithm has the lower 

error.  To avoid the semantic confusion define performance as follows 

( )P log σ . (69)  10 10 = −



Using (70) and the above definition we can express the government's required system 

performance Pg as a function of equivalent cost C: 
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7.2  Maximizing Profit with Performance and Cost Constraints 

The model developed in this section uses a contractor's performance-versus-cost 

curve, where the performance and cost is derived from size and speed of the targeting 

system over its useful life.  The contractor's curve is then compared to the government's 

curve.  The project is feasible for  all performance values on the contractor's curve that 

exceed the government's curve however the maximum profit point is found by taking into 

account risk considerations. 

In the following model, system cost and algorithm performance are related 

through the error reduction obtained by increasing the number of independent 

observations.  Specifically if the system hardware and software are modified to allow an 

increase by a factor of N independent measurements  then the resulting standard 

deviation of error of the averaged results will be decreased by N .  For example if the 

hardware is doubled (and if the system is perfectly scaleable) then number of independent 

measurements can double and the standard deviation of error σa can be decreased by .   2

Let the minimum system costs and  associated error σo be related to the actual 

cost and error via 



 C k Cs HW
RE= −

⎛

⎝
⎜

⎞

⎠
⎟

σ
σ

a

o

2

2 1 C C CHW
RE

HW
NRE

SW+ + +

CHW
RE CHW

NRE

. (72) 

Where ks  represents the scaleability of the system.  A ks value greater than one can be 

used to model the penalty associated with the extra overhead of a larger system.  Values 

of ks greater than one allow for the fact that doubling the system size may not result in a 

doubling of the computation rate because of the extra work of communicating the 

problem to and assembling the results from the additional processors.   and  

represent the recurring and non-recurring portions of the hardware development, 

respectively.  A scaleable design avoids non-recurring charges when scaling to a larger 

system.  The software development is treated as completely non-recurring although ks can 

be increased to account for the extra expense of algorithmic software that does not scale 

up easily. 

Solving (72) for the system standard deviation of error and applying the definition 

of  performance 

 P
C

o
HW
RE

c = −
⎛

⎝
⎜⎜10 10log

C C C
k C

HW
RE

SW

s HW
RE m

− − −
+

⎞

⎠
⎟⎟

2 2σ σ . (73) 

The intersection(s) of the government's performance-cost curve with the 

contractor's can be found by equating the above equation with equation (71) and solving 

for C.  Finding the solution for the intersection of the Pc and the Pg curves requires trial 

and error techniques.  However plotting the two curves over the interval of interest gives 

an easy indication of the number of roots and also provides a starting point for an 

iterative solution technique.  
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If the contract is structured so that profit is a percentage of the cost then it is in 

the contractor's interest to propose a maximum cost system.  However the maximum cost 

system may not possess the maximum performance margin over the customer's 

requirements.  Any slip in the ability of the contractor to meet the performance 

requirements may result in an unacceptable system.  The cost of an unacceptable system 

may take the several forms.  Unfunded contract overages to fix the problem may be 

required as well as customer imposed penalties.  Loss of customer goodwill and the 

potential liability of delivering an inadequate system may also be incurred.  Let these 

costs be lumped together under the term performance risk costs, Cr .  It is reasonable to 

suppose that risk costs decrease for a  system which has increasing performance Pc over 

and above the government's requirements Pg so that the expected profit is the contractor’s 

fee minus the risk cost.  The contractor's fee is a percentage  p of the system cost. 

However the contractor's profit S is the percentage fee,  pC, minus the performance risk 

costs: 
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S pC Cr= − . (74)  

  Devising a suitable model for risk cost is a complex problem, however, for the 

purpose of selecting algorithms and sizing the system the following risk cost model is 

proposed: 

 ( )
P P

k
pC Rc g

r

− ⎞
⎠
⎟

⎞

⎠
⎟ = −1 1C pCr = −

⎛
⎝
⎜

⎛

⎝
⎜  (75) 

The constant kr is adjusted to reflect the importance of performance margin.  For 

example if kr is set to be equal to the maximum performance margin then the risk cost is 



zero at the system cost point at which the maximum margin occurs.   Substituting (75) 

into (76) gives the expected profit as a function of system cost and risk: 

S pCR=  (77)  

Analytically solving for the system cost that yields maximum profit requires 

taking the derivative of equation 78  which is daunting because of the inverse error 

function in the performance equations.  However,  profit as a function of system cost can 

be easily plotted to yield a graphical estimate of the optimum system cost as is illustrated 

in the following example. 

7.3  Fusion Architecture Example 

To illustrate the above concepts consider the fusion architecture of the previous 

chapter.  We will develop the government's required performance as a function of cost 

curve by assuming values for R,  pr, Mold, Cm, i, Nt, Y and σm.  Then we will compare two 

different contractor curves, one based on a fusion architecture with the robust emitter 

location capability and the other a fusion architecture without the robust algorithms. 

To develop the government's curve assume that the current system is capable on 

average of delivering  at least one missile out of four within a 300 meter radius with a 

probability of 0.95.  Assume the current weapon accuracy is 100 meters.  Thus, R=200 

meters, pr=0.95, Mold=4 and σm=100 meters.  Assume each missile costs $80,000 and that 

100 targets per year are to be engaged over a 10-year system life.  Using a discount rate 

of 6%, (71) can be used to calculate the government's required performance as a fu

of cost as shown in Figure 14.  The curve terminates at around $88,000,000 because 

increased performance beyond this point results in less than one missile per target (i.e

nction 

.,  
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 there is a point in targeting accuracy performance beyond which it is not economically

worthwhile to pursue because the increased accuracy becomes irrelevant).   

To compare the contractor's performance curves, we must estimate the minimum 

implementation cost and performance for both architectures.  The minimum 

implementation is defined as the smallest realization of the system that can be linearly 

scaled upward.  It includes the cost of hardware and software development.  Table 11 

gives estimates of the relevant parameters for both architectures. 

Table 11  Cost Estimation Parameters for Two Architectures 
(dollars in thousands)  

Parameter Parameter value 
without robust 
processing. 

Parameter 
value with 
robust 
processing. 

Comment 

σo 2000 meters 850 meters Robust processing decreases  the base error. 
Po -33.01 -29.29 Robust processing increases the base 

performance. 
 $100 $400 Minimum robust implementation requires 

substantially more computing capacity. 
CHW

RE

 $200 $300 Hardware NRE  is slightly more for robust 
implementation. 

CHW
NRE

CSW
 $2000 $5000 Robust software is more than twice as complex. 

ks 1.1 1.1 Scaling parameter -no difference. 
kr 1.7 1.7 Risk parameter -no difference. 
p 0.10 0.10 Profit percentage is 10%  

 

Equation 73 and the parameters in the above table have been used to produce the 

two system performance curves depicted in figure 14.  The robust processing 

performance curve has better performance at all cost values above $12,500,000 than the 

system without robust processing.  
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Figure 14  Performance as a Function of Cost. 

 

The difference between the contractor's system performance and the government's 

required performance is related to the risk cost as described in 75.  The risk cost is pl

in figure 15 for both systems.  The risk cost is small in the mid region because the 

performance of the both systems exceeds the requirement to such an extent that the 

likelihood of not meeting the requirement is small.  However, as each system's 

performance curve nears the government's requirement curve the risk cost increases as 

can be seen in the figure. 
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Figure 15  Risk Cost as a Function of System Cost. 

Equation 15 along with the parameters in Table 11  give the two profit curves 

shown in figure 17.   Note that the minimum risk points as shown in Figure 14 do not 

correspond with the maximum profit points of Figure 15 (i.e. some risk must be incurred 

to achieve maximum profit).  The maximum profit of the system with robust processing 

is $4,229,900 which is $737,928 greater than the system without robust processing. 
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Figure 16  Profit as a Function of System Cost (Risk Adjusted). 

The example shows the value of the proposed economic models for evaluating the 

contribution of algorithmic performance to overall system value and profit.  The model 

has been demonstrated to have the ability to factor in the risk and scaleability of the 

system under consideration using cost as an independent variable.  By applying the 

model to a set of  sample parameters it has been possible to show how to perform 

algorithm selection and system sizing to maximize profit while simultaneously 

minimizing risk and meeting the government's cost and performance objectives. 
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Chapter 8 

 

Conclusions 

The ability of improved sensor systems to generate a veritable flood of location 

parameter data (e.g. DOA, TDOA, FDOA, etc.) demands new and automatic techniques 

for automatically associating the measurements with emitters.  Problems arise using least 

squares emitter location when the measurements do not all belong to the same emitter or 

when ambiguities cause outliers.  The minimization of the absolute error on the other 

hand can withstand contamination of this sort and still yield accurate location estimates. 

A robust linear programming formulation which minimizes the mean of absolute 

deviations has been given for DOA, TDOA and FDOA data.  Update equations have 

been derived which allow computation of the robust location estimates in real time as 

measurements are taken. 

The linear program approach is robust to outliers and is therefore highly 

appropriate in a Level 1 fusion environment for obtaining initial location estimates.  A 

Level 1 fusion architecture has been described which uses a fused robust location 

estimation formulation of all available information (DOA, TDOA and FDOA) together 

with quick partitioning algorithms to reject outliers arising from ambiguities or other 

emitters.  The robust fusion method was shown to be significantly more accurate than 

processing the same data with any of the least squares methods.   
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The absolute deviations and other measurements such as modulation format and 

fine frequency are also used in the quick partitioning algorithm to associate a subset of 

measurements with a new candidate emitter location.  Once a subset of measurements has 

passed the partitioning algorithm then least-squares estimation is used to obtain a refined 

location.   

8.1 Future Work 

The accuracy of any emitter location system is dependent on the geometry of the 

receiving stations relative to the emitter.  Estimating the accuracy contours for a given 

geometry of receiving stations requires sophisticated analysis.  This is important 

especially for military applications because certain geometries are pathologic containing 

"black holes" which prevent the location system from obtaining a fix.  Fortunately 

accuracy analysis has been performed for the linearized least squares estimators by 

Torrieri [Tor84] for normally distributed errors.  However, analytically deriving the 

performance of either the least squares or the robust approach in the presence of a mixed 

noise distribution is more difficult although Book [Boo82] has proposed (for the DOA 

problem only) an interesting method for computing the confidence that the true location 

lies within the largest polygon formed by the k direction lines nearest to the estimated 

median point.  A first step in obtaining useful performance predictions may be to verify 

Book's confidence level formulas via Monte Carlo simulation using various mixed noise 

parameters. 

A majority of location systems (and literature) are based upon some sort of 

Kalman filtering structure (e.g. extended or iterated extended).  The Kalman filtering 
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approach has proven itself in many application domains because of its ability to track 

changing parameter values which in the present application corresponds to moving 

targets, which is of course of immense interest.  However the Kalman filter structure is 

not inherently better than least squares unless the parameters are changing during the 

observation interval.  If the parameters are changing slowly then batch processing (least 

squares or robust) can track the changes block by block.   

Kalman filters may have some degree of robustness because they will eventually 

"forget" a wild measurement but in the process, it is possible that outliers can either cause 

the filter converge to an incorrect solution or worse become unstable.   It would be 

interesting to compare a Kalman emitter location/tracking filter to a robust 

location/tracking formulation in the presence of mixed mode noise.  A robust 

location/tracking formulation could be developed by simply applying a forgetting factor 

to older measurements in the robust update equations described in Chapter 4.  Spingarn 

[Spi87] has compared extended and the extended iterated Kalman filter to batch least 

squares for normally distributed errors.  Extending his work to include the just mentioned 

robust comparison would give a better understanding of existing Kalman location 

systems in the presence of outliers and may also reveal a valuable new robust approach 

for tracking moving emitters. 
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