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Statistical design and analysis of experiments is a cornerstone
methodology for scientific exploration and verification that is
rarely employed in reporting mathematical software testing
This approach is used to study the relative effectiveness of
three key algorithms for the reoptimization of network flow
problems- primal simplex, dual method, and out-of-kilter Care-
fully designed experimentation with state-of-the-art codes ac-
companied by a rigorous statistical analysis isolates the most
efficient method(s) for commonly encountered reoptimization
probiems, and identifies the effect on solution time of probiem
class, problem size, type of change (bounds, costs, or node
requirements), degree and number of changes in parameters,
and number of problems in the reoptimization series

When research scientists conduct experiments and subse-
quently wish to draw inferences from the resulting data,
nigorous standards of experimental protocol—including the
use of experimental designs—are typically required Unfor-
tunately this 1s not the norm 1n the mathematical program-
mung literature, whach often uses unrephcated point esti-
mates and no clear design when reporting empirical testing
of software The absence of a statistically valid, systematic
approach can result in the drawing of unsupportable con-
clusions regarding the relahve performance of alternative
algonthms’ implementations The lack of an a prior1 experi-
mental design 1s one of the main sources of such shortcom-
ngs {17 23 26]

This paper ilustrates the application of basic principles
of statistical design and analysis of experiments to compar-
ing alternative methodologies for the reoptimization of
network flow problems While reoptimization 1s a well-
known implementation techmique, the wide range of 1m-
portant applications and the lack of a defimtive comparison
of the leading approaches has prompted this work The
sections that follow detail the purposes of the study, the
experimental designs, and the analyses of data generated
by the solution of nearly 100,000 network problems

1. Netwerk Resptimization

Reoptimuzation of a mathematical programmung model
means to use the solution of one problem to expedite the
optimization of another closely related problem. This can

Subject classifications  Statistics, networks Programmung

be particularly effechve when the two solution points are
mathematically “close,” and when the reoptimizing algo-
nithm can efficiently use a previously obtained solution as a
starting point 1n 1ts search

This classic implementation strategy has apphication
within many optimuzation methodologies—for large-scale
integer, nonlinear, multi-objective, and stochastic program-
mung problems—which require the solution of a series of
closely related network subproblems Such subproblems dif-
fer from each other by one or more problem parameters but
have the same network topology, or mathematical struc-
ture By using the ophimum solution of one subproblem as
an advanced starting solution to a subsequent subproblem,
substantial reductions 1n solution time and computational
cost can be achieved 2]

The reoptimization process can be appled repeatedly to
solve the hundreds or thousands of network subproblems
generated within such “higher-level” mathematical pro-
grammung algorithms This study focuses on its use in
solving problems with a pure network structure Described
below are several promunent methodologies which require
the solution of many related pure network subproblems
and hence are amenable to the use of reoptimization (See
[6] for a detailed discussion )

® Branch-and-bound methods for the fixed charge network
problem U!! 36 31 This methodology requires the solution
of hundreds or thousands of subproblems which all
share the same network structure, but differ in the
values of arc bounds or costs

® Dantzig-Wolfe and resource-directive decomposition ap-
proaches to the multicommodity network problem @ 2428 371
In the mulhcommodity model, k different commodities
share arcs in a capacitated network The Dantzig-Wolfe
(or price-direchve decomposition) method iterates be-
tween a master problem and a senes of k pure network
subproblems, whose costs are modified between 1tera-
tions The resource-directhive approach repeatedly solves
a series of pure network subproblems, whose upper
bound vectors are modulated Reoptimuzation can accel-
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erate the solution of subproblems created by both meth-
ods

® Frank-Wolfe algorithm and piecewise linear approximation
techniques for the convex cost network flow prob-
lem 1> 27 32 3] These methods require the solution of
many pure network subproblems which have the same
network structure and differ only in the objective func-
tion coefficients

® Bender’s decomposition method apphed to multicommodity
networks with fixed charges* 2! Thus methodology also
iterates between a master problem and a sertes of net-
work subproblems with an i1dentical network topology
Since at each 1teration only the demands for individual
commodities vary, network reoptimization can be ap-
phed for computational advantage

® Multi-objective programming for the pure network
problem '22° 351 While there are many approaches to
multicniteria opttmization, one that can benefit signufi-
cantly from efficient reoptimization techruques is the
surrogate criterion method, which associates a weight with
each cnterion Once a set of weights 1s selected, a com-
posite “‘surrogate” objective function 1s formed to iden-
tfy a “solution” to the problem Not restricted to a
single choice of weights, we can eliait different solutions
and a corresponding set of alternative pohicy scenarios

® Decomposition methods for stochastic network programming
with network recourse 16 3 41 421 The method iterates be-
tween a first-stage problem and a second-stage pure
network problem with stochastic node requirements Re-
optimization can be applied to thus methodology for
solving the large number of second-stage pure network
problems, which have the same structure but different
node requirements

® Interactwe network optimization"? ) In many applica-
tions of interachve optimuzation, the user views the
solution to a given model, modifies a small portion of
the problem, and desires a rapid solution to the modi-
fied model Since the previous optimal solution 1s read-
ily available, 1t can be used 1n reoptimization to expedite
identification of the new optimal solution

2. Purpeses of the Study
To date, a computational comparison of the three best-
known pure network algonthms (primal, dual, and out-of-
kilter) in the context of reoptimization has not been per-
formed However, researchers have studied—without the
aid of statistically designed experiments—one or two of the
methods,!! 3 8 12 14 22] and duffer in their conclusions regard-
ing network reoptimizahon Some beheve that dual or
prnimal-dual approaches are superior to primal methods for
all types of network reoptimization,® 22 some believe that
the dual method 1s probably better for night-hand-side
changes,”® ' while others emphasize the attractiveness of
the prnimal approach for bounds and nght-hand-side
changes''! (see [7] for details)

Our study was designed to resolve these often-contradic-
tory conjectures and conclusions, and answer the following
questions

® Is there a best overall method for reopttmizing network
problems?

e What are the effects of type and degree of parametric
change on the performance of each reoptmuzation
method?

® What are the effects of problem class and size on the
performance of each reoptimization method?

o What are the interachion effects on the reoptimization
methods when the above factors are changed singly or in
combinations?

To fully explore the interaction between algorithms and
sahent problem characteristics, we (1) developed reopt-
muzation codes for three promunent pure network solution
methods, (2) devised a statistical experimental design to
evaluate the relative efficiencies of the reoptimization
methods, (3) created a portable network reoptimuzation
testing system to generate all necessary data points, and (4)
umplemented a ngorous statistical analysis of the perfor-
mance of the algorithms under different experimental com-
binations

8. Mathodelogies to be Compared

In this section, we define the type of network problems for
which reoptimization 1s to be studied, outline reoptimiza-
tion procedures for the primal simplex, dual, and out-of-
kilter methods, and describe the computer implementa-
tions used in the comparative study

3.1. Preblem Statoment
Consider a network G(N, E) where N 1s a finute set of m
nodes and E 1s a firute set of n arcs such that each arc (z, ;)
1s directed from node : € N to node j € N Let b, be the
requirement at node 1, for 1 =1, , m, representing supply
at a source node if b, < 0 or demand at a sink node if b, > 0
An arc directed from 1ts origm node 1 € N to 1its destination
node j € N 15 denoted by the ordered pair (1, j) € E The
flow, cost, lower bound and upper bound of arc (1,)) are
represented by x,, ¢,, I, and u,,, respectively
Mathematically, the capacitated minimum cost network flow
or transshipment problem (PN) 1s the following special-struc-
tured hinear program

PN Miumize z= 3, T 1)
(1,))€E
subject to Y x,- X x,=b,
G, p)eE (p,))EE

pEN, and (2)

l,<x,<u,, forall(z,))€E (3)

By substitution of varnables, an equvalent to PN wath all
I,, = 0 can be found The remainder of this section’s discus-
sion assumes zero lower bounds

Associated with every PN 1s a corresponding dual prob-
lem, DN, given as follows

2= Z blwt - Z ul]vl]’ (4)

1eN (1,])65

DN Maximize
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subject to w=-w-7,<C, Gi,))eE, (5
w, unrestricted n sign, 1 € N, and

(6)

v,20, forall(s,j) €E, 7

where the m-component vector w and n-component vector
v denote dual varables associated with the conservation-of-
flow (2) and the capacity constraints (3), respectively Asso-
aated with each node 1 € N 1s a dual vanable w,, called 1ts
node potential Given arc (1, ) € E, the reduced cost 1s
defined as ,, = ¢, + w, — w, We may construct the opti-
mum solution of the primal problem, PN, from the optimal
solution to the dual problem, DN, through the use of the
complementary slackness theorem which states that for
eacharc(1,j)) € E

&, >0~-x,=0, 8)
¢, =0-0<x,<u,, 9)
t,<0—->x, =u (10)

3.2. Reoptimization Procedures
Given the solution to some PN, changes may be made m
the problem parameters so as to create a “’closely related”
problem which has the same network structure but differs
from the onginal problem in terms of (1) upper bounds (u
1s changed to u’), (11) lower bounds (1 1s changed to 1), (1)
node requirements (b 1s changed to b'), or (iv) costs (¢ 1s
changed to ¢’) Each of these four cases 1s treated differ-
ently when reoptimuzing, as outlined below

In this section we brnefly describe reoptimization proce-
dures for the three algornthmic alternatives primal simplex,
dual, and out-of-kilter (Detailed presentation of these pro-
cedures can be found 1n [1, 3, 4] ) Since the primal simplex
and dual method specializations for networks are buult
around the graphical structure of network bases, we first
characterize these basic solutions

321 Basic Solutions In simplex-based algonthms for
pure networks, the arc-set, E, 1s partitioned into two sub-
sets basic and nonbasic arcs To find a basic feasible solution
for PN, the flows on the nonbasic arcs are set to the upper
or lower bounds, and the flows on the basic arcs are
uniquely assigned so that constramnts (2) and (3) are satis-
fied For every basic feasible solution, the node potentials
are evaluated such that the complementary slackness equa-
tions (8)—(10) are satisfied

Network theory indicates that each PN basis can be
represented as a spanming free of the m nodes with (m ~ 1)
arcs Given an arbitrary node as the root node, the basis 1s
called a rooted spanning tree The root node will be consid-
ered to be at the top of the basis tree with all other nodes
hanging below 1t An optimal solution 1s obtamed when (1)
15 murumized and constraints (2), (3), and (8)—(10) are si-
multaneously satisfied

In describing the reoptimization steps for extreme point
methods, 1t 1s useful to define the reduced requirement at

node p, as
9, = b, + }: ltp_ Z Im
G pek! (p.NeE'
+ Y u,~ X u,, an
G pleE" (p,DeE"

where E' and E" 1s the set of nonbasic arcs at their lower
and upper bounds, respectively This 1s the portion of the
requirements represented in the nonbasics

3.22 The Primal Simplex Method Reoptimization Proce-
dures In reoptimization cases (1) and (1) involving modi-
fied bounds, we assume that the upper bound vector u and
the lower bound vector 1 are changed to u’' > land I' € u,
respectively, where no arc has simultaneous lower and
upper bound changes These changes may destroy the
primal feasibihity of the optimal basis on hand Maintaining
primal feasibility and obtamung a new optimal solution
requires computation of the reduced requirement vector, q,
modified for those nonbasic arcs at their changing bound
From the modified q, a new set of basic flows 1s generated
which may not satisfy the bound constraints Each basic arc
with new flow exceeding 1ts upper or lower bound 1s
designated as nonbasic at 1ts violated bound and replaced
in the basis with an artificial arc (of approprate orienta-
tion) having a flow of the amount of violation If artificials
have been added, a portion of the node potentials must be
updated prior to re-applicaon of the primal simplex
method

In reoptiruzation case (1), the node requirements vector
b for a gaiven optimuzed PN 1s changed to b” As before, this
change can destroy the primal feastbility of the optimal
basis while dual feasibihity conditions remain satisied To
restore primal feasibihity efficiently, the reduced require-
ment vector q 1s computed, modified to reflect the changes
m node requirements, and used to construct a new set of
basic flows If the resultant basis contains arcs which vio-
late their bounds, approprate parts of the previous proce-
dure for cases (1) and (u) are appled to restore primal
feasibility and optimality

In case (1v), where cost changes are introduced, the node
potentals are recalculated and the simplex procedure ap-
phed to restore optimality For complete details on all
cases, see [1]

3.23 The Dual Simplex Method. Reoptimization Proce-
dures For the dual method, the steps to manage changes
m bounds and node requirements are basically the same as
those for the pnimal simplex The only difference 1s that
basic vaniable bound violations are handled directly by the
dual method

When changes are made to cost parameters, reoptimiza-
tion with the dual method 1s more complicated than with
the primal approach For each basic arc with a modified
cost (1) substitute an artificial basic arc with a zero upper
bound and cost equal to the ongmal cost, and (2) designate
the modified arc as nonbasic at its upper (lower) bound if
the new reduced cost 1s negative (non-negative) For each
cost-modified nonbasic arc at its lower (upper) bound with
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a new reduced cost less (greater) than zero switch 1t to its
opposite bound and modify the reduced requirements of
the arc’s incident nodes appropriately With dual feasibihity
reestablished, a new set of basic flows 1s then produced
from the reduced requirements vector and the dual method
1s apphed to restore primal feasibility and optimahty (For
a detailed description, see [3])

3.24 Out-of-Kilter Method Reoptimization Procedures.
Because of its primal-dual approach, the out-of-kilter algo-
nthm accommodates changes in bounds, node require-
ments, and costs directly Therefore no special procedures
are necessary to reoptimize a given pure network problem
Since the method only requires a conserving set of flows to
begin, problem reoptimization involves simply modifying
arc bounds and costs, retamming the previous flows and
duals, and applying the algorithm directly For a detailed
discussion of the theoretical and implementation of the
out-of-kilter method see [9, 18, 27]

3.3. Computer implomentations of the Algorithmic Altornatives

In this section, we present the structural and the functional
characteristics of the three primal-, dual-, and out-of-kilter-
based reoptimization codes that were tested in this study
All codes are written in FORTRAN 77 and requure problem
data to simultaneously reside i primary (or virtual) stor-
age All programs are based on codes oniginally wntten by
the same author and, although developed over a wide span
of years, contain tight coding and modern data structures

33.1. PROPT, a Pnimal-Simplex-Based Network Reopti-
mzation Code For this study, a pnmal-simplex-based
code, PROPT, was developed for solving and reoptimizing
pure network problems PROPT 1s an extension of the
NETSTAR optimizer—a state-of-the-art and improved ver-
sion of the ARC II code developed by Barr, Glover and
Klingman!'®—to which reoptimization routines were
added, based on the procedures discussed m Section 322

PROPT uses the following data structures and node
labels to represent the basis tree predecessor, thread, re-
verse thread, cardinality, last node, node potential, flow,
the node requirement, and reduced requirement For a
more detailed discussion about the optimization routine
and data structures see [10]

33.2 DROPT, a Dual-Method-Based Network Reopti-
mazation Code The second reoptimizer code 1s based on
the dual method on a graph ©* 22 3 Combimung the steps
of the dual method specialized for networks, the pivoting
routines of NETSTAR, and the procedures in Section 323,
an efficient new computer code, DROPT, was developed by
the authors for solving and reoptimizing pure network
problems Preliminary testing showed the code to be 8—-15%
fastef3 than the most efficent dual-based code reported to
date !

Our implementation uses a decreasing-length candidate
hist of primal infeasible arcs from which the outgoing arc 1s
selected using a smallest-endpoint-cardinality rule (An
endpomt node’s cardinahity 1s the number of nodes in the
basis subtree below and including the node)

In addition to the PROPT data structures, DROPT uses
the forward and the backward star structures, to expedite
identification of the incoming arc These data permut pric-
mg only a small subset of the nonbasic arcs when perform-
g the ratio test

The reoptimization procedures are built around those
discussed 1n Section 322 The same programmung style 1s
used 1n both DROPT and PROPT

333 KROPT, an Out-of-Kilter-Based Network Reopt-
muzation Code The third reoptimizer code, KROPT, 1s
based on SUPERK, an out-of-kilter algorithm code devel-
oped by Barr, Glover and Klingman ! This code forms the
optimization portion of KROPT and has been shown to be
superior to other out-of-kilter codes by a factor of 2-5 on
small- and medium-sized problems and by a factor of 4-15
on large problems Although developed n 1973, 1t 1s shll
considered to be one of the best out-of-kilter implementa-
tions to date For a detailed discussion of the out-of-kilter
formulation and implementations see [9, 18,27]

From a programming standpoint, the accommodation of
problem changes by KROPT 1s trivial The prehminary
process of obtaning primal or dual feasibility 1s unneces-
sary because the solution procedure may begin with a
solution which s both primal and dual infeasible There-
fore, for reoptimization, the arc parameter modifications
are made directly to the problem data and the out-of-kilter
algonthm 1s reapplied, using the previous problem’s flows
and duals as starting conditions

334 Construction of a Reoptimization Testing System
To simphfy and structure the generation and analysis of
the experimental data points, a portable network reopt-
muzation testing system (NRTS) was developed NRTS 1s
orgamzed into four components (1) the base problem gen-
erator whuch 1s the well-known random-network generator,
NETGENBY, (2) the subproblem-series generator, which
creates a series of subproblems based on a given base
problem and treatment combination, and uses a modified
SUPERK, (3) a user-supplied suite of codes to reoptimize
the generated subproblem series (here we utilized PROPT,
DROPT, and KROPT), and (4) the data analysis module
that collects the solution data and performs a statistical
analysis to identify the relative efficcencies of the codes
(For a comprehensive discussion on NRTS see [4,5] NRTS
1s available to the public from the authors)

In summary, for a given run (1) NRTS creates a feasible
random base network problem, (2) given a base problem
and a set of levels of the experimental factors, cumulative
changes are made to the base problem to generate a series
of closely related random subproblems, (3) the base prob-
lem and subproblems are solved by each of the reoptimizer
codes, and (4) soluton data are collected mn a convenient
form for subsequent analysis

4. The Exporiment

Thus section presents the design of an experiment for net-

work reoptimuzation The expeniment, design, implementa-
tion and analysis phases are discussed For detailed discus-
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sion on the theoretical concepts, principles, and phases of
expenimental design see [33,40] Discussions on the exper-
mental design and statishcal analysis of computational
studies can be found n [4,17,23]

In designing our experiment for network reoptimization,
the goals were (1) to study the effects of several factors on
the time required to reoptimize a series of closely related
pure network problems by each of the three reoptimization
codes, PROPT, DROPT and KROPT, and (2) to 1dentify the
relative efficiency of the three reoptimizers under different
combinations of the factors In this manner, the experiment
should provide answers to the questions posed 1n section 2

The response varwable for comparing the reoptimizers was
selected to be the central processing urut (CPU) time
requured to solve a senes of subproblems The total reopti-
mization CPU time includes the execution of the reopt-
mization procedures but excludes the input/output pro-
cessing time and solution time of the base problems

The seven factors to be studied in the present experiment
are class of pure network problem, problem size, number of
subproblems per series, type of change i problem parameters,
percentage change in problem parameters, number of changes per
subproblem, and type of reoptimuzer code used to solve each
subproblem series The experiment studied two classes of
pure network problems, transportation and transshipment
problems Problem size levels are small (400 nodes and
2,000 arcs), medium (1,000 nodes and 5,000 arcs), and large
(1,500 nodes and 8,000 arcs) The factor type of change has
three levels change in costs, bounds and RHS parameters
The percentage of change in parameter levels were chosen to
be 5% and 25% The number of changes per subproblem factor
was fixed at 20 In summary, there are seven experimental
factors with fixed levels

While the above size dimensions are not large for pure
network problems in general, they are of the size encoun-
tered in typical reoptimuization applications, such as
branch-and-bound The percentage change levels were cho-
sen to represent applications that tend to yield either few
changes from one subproblem to the next, as with depth-
first searches, or drastic changes, as with multi-objective
programming Changes per subproblem was set at a fixed
amount to avoid a geometric increase n the number of test
cases to be explored Hence our conclusions are generaliz-
able to the extent that these problem types and factor levels
match the subproblem characteristics in the application of
interest

5. Proliminary Stmiles

5.1. Number of Subprebioms i 2 Sories

Prior to conducting the study’s experimentation, it was
postulated that the performance of each reoptumizer may
be affected by the number of related subproblems that are
to be solved as a sertes The experimentation described
below determuned the smallest number of series’ subprob-
lems for which the hypothesis tesing would remain vahd,
thus mumumuzing the computational testing effort

5.1.1. The Sampling Method. A random sample of three
base problems was selected from among the twelve possi-

ble problem combmnations of classes of network problem,
problem sizes, and percentage changes The sample problems
were randomly selected as a large transportation problem
with a 25% change, a medium transshipment problem with
5% change, and a small transportation problem with 5%
change For each sample base problem and each type of
change, 500 feasible subproblems were randomly generated
by NRTS and then solved by each of the three reoptimizers
(In two cases mnvolving RHS changes, NRTS was unable to
create the full 500 subproblems before problem infeasibil-
ity)

The sample consisted of 25 series of 500, one sample of
445 and one sample of 200 reoptimization times Hence, the
statistical tests conducted in this section are based on
twenty-seven samples with 4,145 generated feasible sub-
problems and 12,435 subproblems’ reoptimization-time ob-
servations

512 Vanance Comparisons To venfy the effect of the
number of subproblems on the overall performances of
reoptimizers, two sets of two-way analysis-of-vanance
(ANOVA) procedures for each type of change over three
codes were conducted In the first and second sets of
variance analyses, the first 100 and 200 versus the last 400
and 300 CPU times in each sample were considered, re-
spectively In estimating the population varuance to which
the samples belong, the following statishcal model 1s ap-
phed

X,=p+a+B+E, (12)
where 1 is the subproblem number (: = 1, ,500), j 1s the
reoptimization code number (; = 1,2,3), X, 15 the CPU
time of reoptimizer 1 for solving the subproblem j, u 15 the
mean time for all subproblems, «a, 1s the effect of subprob-
lem 1, B, 15 the effect of algonithm j, and E, 15 the random
error effect

The model 1s utthzed as follows The first 100 CPU times
and the last 400 CPU times in each sample were considered
as two subsamples, making 27 data sets, each consisting of
two subsamples For each base problem, type of change,
three reoptimizers and two subsamples of 100 and 400
observations, a total of 18 varnance analyses were con-
ducted (using SAS GLM) on 300 and 1,200 reoptimuzation
tumes, respectively, and the estimated varances of subsam-
ples recorded Then, to test for sigmficant differences among
the reoptimizers in reopimizing samples of the first 100
versus the last 400 subproblems, the following hypotheses
were established for the variances of the two subsamples

Hy oioo =0y H, oio * 0% a3
meamung that given a base problem, type of change and a
reoptimuzer, the two normally distributed mdependent
subsamples of 100 and 400 reoptimization times do (H,) or
do not (H,) have the same vanances

To test the hypotheses, the two-tailed F-test procedure
was employed The F-value 1s computed by F = s%,/s2y,
where sy, and s, are the mean square errors (esimates
of g, and 03;) corresponding to subsamples of the first
100 and the last 400 CPU tumes, respectively The mean
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TableI Two-Sided F-Test For Comparing Variance
CPU Times of Sample Sizes 100 and 400

Type of Sample Problem
Change 1 2 3
Cost MSE,,, = 02452 MSE,;,, = 00188 MSE;, = 00039
MSE,,, = 01731 MSE 4, = 00249 MSE,,, = 00024
DF,g0 = 200 DF,g = 200 DF,q = 200
DF, = 800 DF,y, = 800 DF,o, = 800
F-Ratio = 14167 F-Ratio = 07550 F-Ratio = 16250
sD* SD SD
Bound MSE, o, = 02758 MSE, o, = 01552 MSE,y, = 00062
MSE 450 = 02963 MSE ,, = 00988 MSE ,,, = 00048
DF, 4 = 200 DF,y, = 200 DF,, = 200
DF,4, = 800 DF,y, = 800 DFyy, = 800
F-Ratio = 09308 F-Ratio = 15709 F-Ratio = 12917
NSD* SD SD
RHS MSE, o, = 07302 MSE, o, = 06431 MSE, o, = 00007
MSE, = 04416 MSE,,, = 00074 MSE,,s = 00027
DF,, = 200 DF,, = 200 DF,, = 200
DF,,, = 800 DF,,, = 800 DF,5 = 690
F-Ratio = 16535 F-Ratio = 87 497 F-Ratio = 02593
SD SD SD

“ 8D, significantly dafferent vanances
® NSD, vaniances not sigruficantly different

square errors were computed from the model described in
(12) Table I summanzes the required data to compute
F-value for testing the hypotheses mn (13) A signuficance
level of 5% was selected in advance of the analysis As
shown 1n this table, for all three sample base problems
under all three types of changes except one, the two model
estimates of corresponding populations’ variances are sig-
nificantly different, implying that the population variances
are probably not equal Hence, the null hypothesis in (13) 1s
rejected That 1s, the effects of reophmuzing a senies of the
first 100 versus the last 400 subproblems on the codes were
signuficantly different (In the case of bounds changes m
sample base problem one, insignificant differences between
variances were detected )

The same type of analysis compared the first 200 and last
300 subproblems (see [6] for details) Agam, although sig-
ruficant differences in eshmates of variances were detected,
smaller differences were present in the subsamples of the
first 200 versus the last 300 observations In all cases the
null hypotheses were rejected, that 1s, the population van-
ances are probably not equal for two subsamples But since
all of the F-ratios in this second analysis were close to 10
(equal vanances) and the sample sizes were large (400 and
600 observations), the equality hypotheses (13) may have
been rejected because of the high discrimmating power of
the F-test

From a practical standpomnt, knowing that the test of
significance mvolving large samples (like ours) will deem
small departures from the null hypothesis as statistically
significant, we may make the following conclusion about

the vanance comparisons in these cases “although statisti-
cally sigmficant, the difference between the two esimated
variances are too small to be of practical importance, and
are ignored mn the subsequent analysis "% On this ratio-
nale, 1t was decided to select series of 200 subproblems for
this experiment

513 Means Companson Analysis To venfy the previ-
ous conclusion, tests of significance among mean reoph-
mizaton times were conducted For each sample base prob-
lem, type of change and code, multiple comparisons
between the mean reoptimization times of subproblems
grouped in samples of 100 were performed to identify
sigruficant differences between them

To detect signuficant differences, each sample of 500 CPU
tumes (from a sample base problem, a type of change, and
three reoptimuzers) 1s divided nto five subsamples of first
100 through fifth 100 CPU times Next, Tukey’s significant
difference tests (within SAS GLM) were conducted to test
for equivalence of the five mean times of each algorithm
under each type of change

The results of the 27 Tukey tests are summarized n
Table II Thus table shows that 1n 14 of 27 cases there are no
significant differences between mean CPU times of the first
100 through the fifth 100 subsamples In 12 of the remain-
mng 13 cases there are no signuficant differences between the
means of second 100 and fourth 100 or fifth 100 subsamples,
whereas in six cases, the difference between the first 100
and fourth 100 or fifth 100 subsamples does not appear to
be sigruficant
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Table II. TSD Test for Five Subsamples’ Average CPU Times

Type
of Sample
Change  Problem KROPT PROPT DROPT
Cost 1 All NSD* 1,2, 3 and 4°* NSD Al NSD
1, 3,4 and 5 NSD
2 All NSD AllNSD ANl NSD
3 2,3 and 4 NSD 2,3 and 4 NSD 2,3 and 4 NSD
3,4 and 5 NSD 3,4 and 5 NSD 3 4and 5NSD
Bound All NSD ANl NSD All NSD
All NSD AIlNSD AN NSD
1,2 and 3 NSD 2,3,4and 5 NSD 1, 2 and 3 NSD
2,3 and 4 NSD
2,3,4and 5 NSD 3,4 and 5 NSD
RHS 1 All NSD All NSD All NSD
2 4 and 5 NSD 1,2, 4 and 5 NSD 2,4 and 5 NSD
1,2,3 and 4 NSD 3,4 and 5 NSD 1,2,3and 4 NSD
3 2 and 3 NSD land 2,1and 3, land 2,1 and 3,
land 4,2 and 3, 1and 4,1 and 5,
3 and 5 NSD 2and 4, 3and 4, 2and 3,2 and 4,
3 and 5 NSD 2and 5,3 and 5
4 and 5 NSD NSD

“ NSD, no significant differences among average CPU times of 5 subsamples
®1,2,3,4,and 5 “furst 100” through ““fifth 100” CPU times subsamples’ numbers

There exists only one case for which the differences
between the means of first 100 or second 100 subsamples
are shown to be significant from the fourth 100 or fifth 100
subsamples As a result, this means comparison analysis
verifies the appropnateness of 200 subproblems per base
problem

5.2. Numbor of Bass Probiems

Determunation of the number of base problems per problem
size 1s another design 1ssue The principles of experimental
design call for the munimal number of base problems m
order to satisfy two objectives (1) minimuze the total com-
puter time for the experiment, and (2) provide an approprr-
ate number of degrees of freedom to study the effects of the
whole plot factors—problem ciass and size—and their inter-
actions with base problems Having considered the exper:-
mental design corresponding to this study to satisfy the
two established goals, four base problems per problem size
were chosen, thus providing 18 degrees of freedom and
allowing the study of the effects of all factors and nterac-
tions

8. The Design
The preliminary studies determmuned that, for each of the
108 experimental conditions, a senies of 200 subproblems

would be solved for four different base problems This
required a total of 432 computer runs, solving 86,400 sub-
problems

The randomized procedure to generate observations for
the various treatment combinations 1s as follows given a
randomly generated base problem, type of change, and per-
centage change, a senies of 200 subproblems 1s randomly
generated and solved by each of the three reoptimization
codes The total reoptimuzation time for each code 1s
recorded Given a class of problem, the order of the exper-
mentation was generate a base problem, randomly deter-
mune the type of change, randomly select a fixed percentage
change, randomly generate a series of 200 subproblems and
solve by each code

The experiment’s characteristics lend themselves to a
split-plot design (often called nested since within each treat-
ment combination there are several treatment subcombina-
tions) The underlying principle of this design 1s mamn plots
—to which levels of one or more factors are applied—are
divided mto subplots or split plots to which levels of one or
more additional factors are apphed Such a scheme reduces
the number of observations required and provides more
precise information on the subplot factors than on the mamn
plot factors

In this study, the combmations of class of problem and
problem size constitute six mamn plots, within which the
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Table Il  Charactenistics of Transportation and Transshipment Problems

No No No Upper
No of of  No of % o  Bound  podom
Problem of Source Sink of Cost Total Transsh Hi Arc Range Seed
Size No Nodes Nodes Nodes Arcs Mm Max Supply SOR SIN Cost Cap Min Max No
A Transportation

Small P1 400 200 200 2,000 1 1,000 200,000 0 0 0 50 50 100 02135024
P2 400 200 200 2,000 1 1,000 200,000 0 0 0 50 50 100 46378532

P3 400 200 200 2,000 1 1,000 200,000 0 0 0 50 50 100 85319210

P4 400 200 200 2,000 1 1,000 200,000 0 0 0 50 50 100 71685392

Medium P5 1,000 500 500 5000 1 1,000 500,000 0 0 0 50 50 100 21328751
P6 1,000 500 500 5,000 1 1,000 500,000 0 0 0 50 50 100 48597281

p7 1,000 500 500 5,000 1 1,000 500,000 0 0 0 50 50 100 50832175

P8 1,000 500 500 5,000 1 1,000 500,000 0 0 0 50 50 100 78530620

Large P9 1,500 750 750 8,000 1 1,000 750,000 0 0 0 50 50 100 55202473
P10 1,500 750 750 8000 1 1,000 750,000 0 0 0 50 50 100 73455831

P11 1,500 750 750 8,000 1 1,000 750,000 0 0 0 50 50 100 37203644

P12 1,500 750 750 8,000 1 1,000 750,000 0 0 0 50 50 100 51926435

B Transshipment

Small P13 400 25 25 2,000 1 1,000 200,000 0 0 0 50 50 100 61714889
P14 400 25 25 2,000 1 1,000 200,000 0 0 0 50 50 100 21882420

P15 400 25 25 2000 1 1,000 200,000 0 0 0 50 50 100 96293372

P16 400 25 25 2,000 1 1,000 200,000 0 0 0 50 50 100 49539439

Medium P17 1,000 50 50 5000 1 1,000 500,000 0 0 0 50 50 100 51968364
P18 1,000 50 50 5,000 1 1,000 500,000 0 0 0 50 50 100 61374058

P19 1,000 50 50 5,000 1 1,000 500,000 0 0 0 50 50 100 52106343

P20 1,000 50 50 5,000 1 1,000 500,000 0 0 0 50 50 100 10924580

Large P21 1,500 75 75 8,000 1 1,000 750,000 0 0 0 50 50 100 55204734
P22 1,500 75 75 8000 1 1,000 750,000 0 0 0 50 50 100 42048303

P23 1,500 75 75 8,000 1 1,000 750,000 0 0 0 50 50 100 37203645

P24 1,500 75 75 8000 1 1,000 750,000 0 0 0 50 50 100 75215754

combinations of type of change, percentage change, and type
of reoptimizer form the subplots

7. The implomentstion

Implementation involves the generaton of data pomnts to
be analyzed withun the experimental design All observa-
tions were created with NRTS, and standard randomization
procedures were used, as follows

First, for each class and size of problem, four base prob-
lems were defined (see Table III, A and B) Next, one of the
108 treatment combinations was randomly selected and,
applying NRTS, a base problem and a senes of 200 sub-
problems were randomly generated, solved by the three
reoptimuzer codes, and the reoptimization times recorded
Thus randomuzation procedure was repeated until all of the
design’s data points were produced Rephcations within
class and size combination were achueved by using different
random number seeds

All computational testing was performed on Southern
Methodist Unuversity’s IBM 3081-D24 machine under the
VM/CMS operating system The FORTVS2 Fortran com-
piler and optimuzation level 3 were utiized Table IV shows
the average reoptimization CPU times, mn seconds, of four

series of 200 subproblems associated with each cell 1n the
spht-plot layout (Note that for a few cells, the problem
generator was unable to create—after several hundred at-
tempts—a series of 200 feasible subproblems with the
combination of factors required )

8. The Analysis
8.1. Statistical Analysis L Analysis of Variance
Answering the questions posed in Section 2 necessitated
comparnsons of codes under different treatment combina-
tions defined by the experimental layout Thus included a
comprehensive analysis of the effects of the factors, singly
and jointly, on the performance of each code In particular,
the objective was to identify the importance of factors and
therr interactions in terms of the magrutude of their effects
on the reoptimization tmes generated by the codes

The statistical model used to reflect the reoptimization
CPU times to the factors and sources of error mn this
expermment and for the spht-plot design 1s

X jiimn =1+ K, + S, + K,S, + Py + T, + G, + R,
+ Subplot factor interactions + E, yimpn, 9
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Table IV Average Reoptimization CPU Times for All Problem Types

Reoptimization Code
Problem Problem Typeof Percentage Mean CPU Time*
Class Size Change Change = KROPT PROPT DROPT

Transportation  Small Cost 5 1938 625 1254
25 4017 1077 24 45
Bound 5 2130 1024 723
25 3452 1617 1123
RHS 5 2733 1559 828

25 na na na
Medium  Cost 5 66.29 91 44 66
25 166 58 3922 105 94
Bound 5 69 84 3403 2554
25 13334 5991 4508
RHS 5 8572 57 42 2809

25 na na na
Large Cost 5 109 38 3208 8271
25 31338 7230 22295
Bound 5 11951 6021 4941
25 21325 106 64 77 68
RHS 5 14465 11711 5343
25 88778 489 82 264 86
Transshipment  Small Cost 5 798 356 689
25 17 40 539 17 29
Bound 5 1333 916 839
25 3219 1710 1897

RHS 5 na na na

25 na na na
Medium  Cost 5 2584 987 2258
25 66 13 1552 7360
Bound 5 4235 2832 2615
25 8947 4319 5272
RHS 5 13215 57 81 6401

25 n.a na na
Large Cost 5 38 80 1474 3419
25 116 42 2592 138 87
Bound 5 57 94 3759 3648
25 13583 54 54 8288
RHS 5 24263 10491 10695

25 na na na

* Average of four CPU times in each cell, na = not available (unable to generate 200 feasible

subproblems)

where

X, kimn = the reoptimization CPU time,

n = the mean CPU time,

K, = the effect of problem class, 1 = 1,2,

5, = the effect of problem size, 1 = 1,2,3,

K.S, = the interacton of problem dlass and size,

Py, = the effect of base problem per class : and size
1.k=1,23,4,

T, = the effect of type of change, I = 1,2,3,

C, = the effect of percentage change, m = 1,2,
R, = the effect of type of reoptimizer, n = 1,2, 3, and
E, \imn = the error term

This model includes 16 subplot-factor interaction terms of
two-, three-, four- and five-factor combinations, each of
which may affect the response vanable

The statistical method required for the analyses was
analysis of vanance This method provides information for
testing simultaneously the sigruficance of the difference
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between mean reoptimization times of the codes under
single or multiple treatment combinations Given the exper-
imental design, the sigruficance of the difference between
treatment-combination mean times could be tested by ana-
lyzing the vanance between the means

The analysis of vanance 1s mutiated by a translation of
the objectives of the study into statistical hypotheses The
hypotheses were categorized mnto two main groups hy-
potheses to detect significant difference between single
factor means, and hypotheses to identify significant differ-
ences between the multiple-factor interachon means All
null hypotheses can be stated as the group of population
means of reoptimuzation tmes under the effects of single or
multiple factor treatment combinations are equal The alter-
native hypotheses are at least two of the means from
among the group under the same treatment combinations
are not equal The sigruficance level selected prior to the
analysis was 5% Table V summarizes the information
provided by the ANOVA procedure All null hypotheses
were rejected even at a much smaller significance level

since the p-values are no greater than 0 0001 Thus, at least
two of the mean reoptimuzation times stated in each null
hypotheses are significantly different In terms of relative
performance, this type of analysis does not permit ranking
of the codes under different treatment combinations

8.2. Statistical Analysis I Comparisens of Moans
When comparing more than two means, an ANOVA proce-
dure indicates whether the means are sigruficantly different
from each other, but does not show which means actually
differ The significances shown by our ANOVA made 1t
desirable to conduct further analyses to determine which
pairs or groups of reoptimization average CPU times are
significantly different Such comparisons between means
are sometumes referred to as mean comparisons Rejection of
the null hypotheses in Table V necessitates means compar-
1sons to provide detailed information about the observed
differences in means

The most commonly used multiple pairwise mean com-
parison methods are Fisher’s Least Sigmficant Difference

Table V. Analysis of Vanance Table for Reoptimization CPU Times

Source DF SS MS F p-value
Whole plot
K 1 192120 87 192120 87 231001 00001
5 1 2984893 06 492446 53 5921 09 00001
KxS 2 199325 49 99662 75 1198 33 00001
P(K x S) 18 6667 35 370 41 445 00001
Split plot
T 2 360040 72 180020 36 2164 53 00001
C 1 540172 94 540172 94 6494 95 0 0001
R 2 292151 15 146075 58 1756 39 00001
KxT 2 11194 99 5597 50 67 30 00001
KxC 1 159237 71 159237 71 1914 65 00001
KX R 2 61098 80 30549 40 367 32 00001
SXT 4 181396 83 453492 21 545 27 00001
SxC 2 277062 94 138531 47 1665 68 0 0001
S xR 4 144828 32 36207 08 43535 00001
TxC 2 6008844 97 300422 49 361223 00001
TXR 4 148126 92 3703173 3703173 00001
CxR 2 108771 64 54385 82 653 93 00001
KXSxT 3 8919 02 297301 5375 00001
KxsxC 2 3909 66 1954 83 2350 00001
KxSXR 4 35780 42 894511 107 55 00001
KxTxC 1 3706 40 3706 40 4456 00001
KXTxR 4 16848 06 421202 50 64 00001
SXTXxC 2 5389 22 31946 10 3841 00001
SXTXR 8 88418 70 11052 34 13289 00001
TxXxCXR 4 263934 37 65983 59 793 38 00001
KXSXTXR 6 6079 90 1013 32 1218 00001
KXxSXCXxR 10 16815 85 1681 59 2022 00001
SXTXCXR 4 374292 93573 1125 00001
KXSXTXCXR 8 5147.22 643 40 774 00001
Error 252 20958 38 8319
Total 359 4748584 79
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procedure, Tukey’s Sigraficant Difference (TSD) test and
Duncan’s Multiple Range test These procedures can com-
pare mndividual-factor-level means or interaction means
Without going through a detailed discussion of alternative
methods here, the TSD method was chosen for this study

The TSD procedure was applied to compare and rank the
performances of reoptmizers under the effect of different
single-factor level as well as treatment combinations
Tukey’s test controls the experimentuise error rate (EER) for
multiple comparisons, defined as the probabihity of reject-

g one or more of the null hypotheses when making
stahstical tests of two or more null hypotheses In this
study, having multiple mean compansons required more
control on EER, hence the use of Tukey’s test

8.21 Example of Four-Factor Means Compansons The
TSD procedure was used to perform a series of analyses,
which differed by the number and selection of factors to
include Speaifically, two-factor through five-factor analy-
ses were conducted, and we illustrate with a four-factor

Table VI TSD Compansons for
Four-Factor-Interaction Mean CPU Times

Reoptimization Code Mean CPU

Problem Problem Typeof Sample Time*
Class Size Change Size, S KROPT PROPT DROPT
Transportaion ~ Small Cost 8 A B B
2978 851 1849
Medium 8 A C B
116 44 2919 7530
Large 8 A B A
21138 5219 15283
Small Bound 8 A B B
2791 1321 923
Medium 8 A B B
101 59 4697 3531
Large 8 A B C
166 38 8343 63 54
Small RHS 8 A B B
2733 1559 828
Medium 4 A B C
8572 57 42 2809
Large 4 A B C
51622 30347 159 14
Transshipment  Small Cost 8 A A A
1251 448 1209
Medium 8 A B A
4598 1269 4809
Large 8 A B A
77 61 2033 86 53
Small Bound 8 A A A
2276 1313 1367
Medium 8 A B B
6591 3575 39 44
Large 8 A C B
96 88 46 06 59 68
Small RHS 8 — - —
na na na
Medium 4 A B B
13215 57 81 6401
Large 4 A B B
24263 10491 106 95

* Averages based on 1,600 or 800 subproblems, those with same letter are not significantlv
different, na = not available (unable to generate 200 feasible subproblems)
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means companson (See [4,7] for detais on other compar-
1sons )

To study the effect of experimental combmnation, the
factors problem class, problem size, type of change, and reopti-
mizer code were investigated using the TSD test applied to
the joint averages of the factor levels Table VI shows the
results of the TSD compansons using sample size S (S
series of 200 subproblems) and experimental error rate of
5% In this table, the performance of each reoptimizer can
be ranked relative to the other two codes in the same row
by letters A, B, and C Within each row, letters A, B, and C
indicate the largest, next largest, and smallest average
reoptimization times, respectively, and hence are accord-
ingly associated with the worst, better, and best perfor-
mance

Also, when two codes have the same associated letter in
a given row, their mean times are not significantly differ-
ent In this case, the performance of the codes are said to be
“statishcally mdistinguishable,” and while the mean times
are indeed different, they are not significantly so In other
words, given the sample size and factors considered, the
statistical test cannot determine whether any difference in
means 1s due to the effect of the codes or to sampling error
When letters 1n the same row daffer, we indicate this by
saying that one code’s performance 1s supenor to or domi-
nates another

The four-factor means companson of Table VI indicates
that, for transportation problems (1) PROPT was superior to
the other two codes on medium and large problems when
changes were made to the costs, (2) DROPT was superior
for bounds changes, but only on large problems, and for
night-hand-side changes on medium and large problems,
and (3) for all other combmations, PROPT and DROPT are
statistically indistingwishable, and superior to KROPT On
transshipment problems (1) PROPT again domunated when
cost changes were made to medum and large problems,
but also on large problems with bound changes, (2) for
changes to costs and bounds on small problems, all three
codes were statistically indistingwishable, and (3) n all
other cases, PROPT and DROPT were top-ranked and in-
distingwishable

. Ghsorvations amd Conclusions

The conclusions to be drawn from the computational data
and statistical analysis depend on the number of factors
taken into consideration For example, when the two fac-
tors reoptimization code and type of change are mvolved, the
TSD test results summanized n Table VII support the
following conclusions

Conclusion A For the reoptimization of the pure network
problems tested, in general the dual-based DROPT code
domunated the others when changes were made to bounds
and nght-hand-side values, but the primal-based PROPT
code domunated when cost changes were involved

When viewing the three factors type of change, type of
problem, and reoptimuzation code, the results may be summa-
nized in Table VHI and the following conclusions

Table VII Two-Factor Interaction Ranking
Type of Reoptimization Code
Change KROPT PROPT DROPT
Cost ®
Bound o
RHS L

@ Top-ranked performance

Table VIII  Three-Factor Interaction Ranking
Problem Type of Reoptimization Code
Class Change KROPT PROPT DROPT
Transportation  Cost ®
Bound o
RHS ®
Transshupment  Cost ®
Bound O 0
RHS O O

@ Top-ranked performance, O Tied for top-ranked performance

Table IX Four-Factor Interaction Ranking

Problem
Class Change

Type of Problem Reoptimizers
Size KROPT PROPT DROPT

O

Transportaon Cost  Small
Medium

Large

Bound Small
Medium

Large

RHS  Small
Medium

Large

(oYl X No

O
O 00 @00

Transshipment Cost  Small O
Medium
Large
Bound Small O
Medium
Large
RHS  Small —
Medium O
Large O
@ Top-ranked performance, O tied for top-ranked performance,
— no data available

000 000
00

00|

Conclusion B For transportation problems, the dual-based
DROPT code dommnated the others when changes were
made to bounds and nght-hand-side values, but the pn-
mal-based PROPT code dominated when cost changes were
mnvolved
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Table X Five-Factor Interaction Ranking

Problem Problem Typeof Percent Reoptimuzers
Class Size Change Change KROPT PROPT DROPT
A Transportation

Small Cost 5 0] O o
25 O O
Bound 5 O O @]
25 O O
RHS 5 O O
25 — — —

Medium  Cost 5 [ J

25 o
Bound 5 O @)
25 O 0]
RHS 5 ]
25 — — —

Large Cost 5 ®

25 [ ]
Bound 5 O] O
25 ®
RHS 5 o
25 o

B Transshipment

Small Cost 5 O @) O
25 O O O
Bound 5 O O O
25 O O O
RHS 5 - - —
25 — — —
Medium  Cost 5 ©) O

25 ®
Bound 5 O O
25 0] @)
RHS 5 ®) O
25 — — —

Large Cost 5 @

25 L J
Bound 5 O O
25 O @)
RHS 5 O ©)
25 —_ p— —_

@ Top-ranked performance, O tied for top-ranked performance, — no data available
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Conclusion C For transshupment problems, DROPT and
PROPT are statistically indishinguishable for bound and
nght-hand-side changes, and PROPT dominates all others
when cost changes are made

When adding problem size as a fourth factor, the sum-
mary Table IX and the statistical analysis yield the follow-
ng

Concluston D For small problems, there are insignuficant
differences between PROPT and DROPT

Concluston E. For medium and large problems, PROPT
domunates when cost changes are made

Conclusion F For medium and large problems, DROPT
domunates on bound and nght-hand-side changes to trans-
portation problems, but 1s indistinguishable from PROPT
for such changes made to transshipment problems

Dufferent rankings and conclusions emerge when a fifth
factor, percentage change, 1s mcluded in the analysis, as
summarized mm Table X, A and B All of the statistical
results yield the following

Conclusion G The out-of-kilter-based code KROPT 1s
never domunant for any combination of factors, although 1t
15 occasionally indistinguishable from the other codes when
reoptimuzing small problems

For researchers, then, the choice of appropriate algonthm
depends on the applicaton and its charactenstics with
respect to the factors studies The results indicate that a
combined primal-simplex and dual-method approach to
reoptumuzation would be an optimum methodology to re-
optimize closely related pure network problems Since the
data structures required to implement each algonthm are
sumular, and the tree-update operation identical, an inte-
grated approach would be relatively straightforward and
would encompass the strengths of both methods

10. Swmmary
The results given above are generalizable to the extent that
the problem characteristics examuned match the reopti-
mzation problem of interest, this includes the factors and
factor level studied, as well as the use of NETGEN-gener-
ated base-problem structures We selected characteristics
that hopefully have a broad appeal and widespread apph-
cation

The reader 1s encouraged to use thus testing process as a
model for his or her own experimentation, and to employ
nigorous statistical methods in their reporting and
decision-making (See Greenberg!?®! for further discussion
and encouragement) This will not only help elevate the
norm 1n the computational mathematical programming hit-
erature to that of the natural, social, and medical sciences,
but give the user greater insight mnto factor effects and
mnteractions in the underlying process, and lend increased
confidence 1n reported results to readers and authors ahike
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