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Statistical design and analysla of experiments 18 a cornerstone 
methodology for scientific exploration and verification that la 
rarely employed in reporting mathematical software tasting 
This approach Is used to study the relative effectiveness of 
three key algorithms for the reoptlmlzatlon of network flow 
problems· primal simplex, dual method, and out-of-kilter care­
fully designed experimentation with state-of-the-art codes ac­
companied by a rigorous statistical analysis Isolates the moat 
efficient method(s) for commonly encountered reoptimizatlon 
problems, and Identifies the effect on solution time of problem 
class, problem size, type of change (bounds, costs, or node 
requirements), degree and number of changes In parameters, 
and number of problems In the reoptlmizatlon series 

When research scienbsts conduct experunents and subse­
quently wish to draw inferences from the resulbng data, 
ngorous standards of expenmental protocol-mdudmg the 
use of expenmental designs-are typically reqwred Unfor­
tunately this 1S not the norm m the mathemabcal program­
ming literature, which often uses unrephcated pomt esb­
mates and no clear design when reporbng empmcal tesbng 
of software The absence of a stabshcally vahd, systemahc 
approach can result m the drawing of unsupportable con­
clusions regarding the relabve performance of altemabve 
algonthms' implementabons The lack of an a pnori expen­
mental design is one of the mam sources of such shortcom­
ings (17 23 26] 

This paper illustrates the apphcabon of basic pnnoples 
of stabsbcal design and analysis of expenments to compar­
ing alternahve methodologies for the reopbnuzabon of 
network flow problems Whtie reopbnuzahon is a well­
known rmplementabon techruque, the wide range of im­
portant apphcahons and the lack of a dehruhve companson 
of the leading approaches has prompted this work The 
secbons that follow detail the purposes of the study, the 
expenmental designs, and the analyses of data generated 
by the soluhon of nearly 100,000 network problems 

1.-ll•W',.._ 
ReoptrmlZtltton of a mathemabcal programnung model 
means to use the soluhon of one problem to expedite the 
opturuzabon of another closely related problem. This can 

Sub]ect classificatwns Statistics, networks Programming 

be parbcularly effechve when the two solubon points are 
mathemahcally "close," and when the reopbnuzmg algo­
nthm can efhoently use a preVIously obtained solubon as a 
starhng pomt m its search 

This classic implementahon strategy has apphcabon 
within many opbrruzabon methodologies-for large-scale 
integer, nonlinear, mulb-obJecbve, and stochasbc program­
ming problems-which reqwre the soluhon of a senes of 
closely related network subproblems Such subproblems dif­
fer from each other by one or more problem parameters but 
have the same network topology, or mathemahcal struc­
ture By usmg the opbmum solubon of one subproblem as 
an advanced starting solubon to a subsequent subproblem, 
substanbal reducbons m soluhon bme and computahonal 
cost can be achieved l211 

The reophm12ahon process can be applied repeatedly to 
solve the hundreds or thousands of network subproblems 
generated within such "higher-level" mathemabcal pro­
gramming algorithms This study focuses on its use m 
solving problems with a pure network structure Descnbed 
below are several promment methodologies which reqwre 
the soluhon of many related pure network subproblems 
and hence are amenable to the use of reopbnuzabon (See 
[ 6] for a detailed d1SCuss10n ) 

• Branch-and-bound methods for the fixed charge network 
problem [1 J 36 391 This methodology reqwres the solubon 
of hundreds or thousands of subproblems which all 
share the same network structure, but differ m the 
values of arc bounds or costs 

• Dantzzg-Wolfe and resource-directive decomposition ap­
proaches to the multicommodity network problem [2 24 28 37J 

In the mulbcommodity model, k different commodibes 
share arcs ma capacitated network The Dantzig-Wolfe 
(or pnce-direcbve decomposibon) method iterates be­
tween a master problem and a series of k pure network 
subproblems, whose costs are modified between itera­
bons The resource-direcbve approach repeatedly solves 
a senes of pure network subproblems, whose upper 
bound vectors are modulated Reopturuzabon can accel-
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erate the solubon of subproblems created by both meth­
ods 

• Frank-Wolfe algorithm and piecewise linear approximation 
techniques for the convex cost network flow prob­
lem [IS 27 32 381 These methods require the solution of 
many pure network subproblems whlch have the same 
network structure and differ only m the obJective func­
bon coefficients 

• Bender's decomposztzon method apphed to multicommodity 
networks wzth fixed charges P3 201 This methodology also 
iterates between a master problem and a series of net­
work subproblems with an idenbcal network topology 
Smee at each iteration only the demands for individual 
commodities vary, network reoptmuzation can be ap­
plied for computabonal advantage 

• Multi-ob;ectzve programming for the pure network 
problem P2 29 351 While there are many approaches to 
mulbcriteria opbmizabon, one that can benefit signifi­
cantly from efficient reopbmlzabon techniques is the 
surrogate criterion method, whlch associates a weight with 
each criterion Once a set of weights 1s selected, a com­
posite "surrogate" obJective function is formed to iden­
bfy a "solution" to the problem Not restricted to a 
single choice of weights, we can ehcit different solutions 
and a corresponding set of alternative pohcy scenarios 

• Decomposition methods for stochastic network programming 
wzth network recourse P6 34 41 421 The method iterates be­
tween a first-stage problem and a second-stage pure 
network problem with stochastic node requirements Re­
opbmizabon can be applied to thls methodology for 
solving the large number of second-stage pure network 
problems, whlch have the same structure but different 
node requirements 

• Interactive network optzmzzation ll 9 251 In many apphca­
bons of mteractive optimization, the user views the 
solubon to a given model, modifies a small portion of 
the problem, and desires a rapid solubon to the modi­
fied model Smee the previous optimal solubon 1s read­
ily available, it can be used m reopbmlzation to expedite 
identification of the new optimal solution 

2. ,., .... ., 1111 IIIIIJ 
To date, a computabonal companson of the three best­
known pure network algorithms (pnmal, dual, and out-of­
kllter) m the context of reopbnuzation has not been per­
formed However, researchers have studied-without the 
aid of statistically designed expenments-one or two of the 
methods,11 3 8 12 14 221 and differ in their conclusions regard­
mg network reopbnuzahon Some believe that dual or 
primal-dual approaches are supenor to primal methods for 
all types of network reopbnuzation,13 221 some beheve that 
the dual method 1S probably better for nght-hand-side 
changes,18 141 whtle others emphastZe the attrachveness of 
the pnmal approach for bounds and nght-hand-side 
changesfiJ (see [7] for details) 

Our study was designed to resolve these often-contradic­
tory conJectures and conclusions, and answer the following 
questions 

• Is there a best overall method for reophmlZmg network 
problems? 

• What are the effects of type and degree of parametric 
change on the performance of each reopbnuzahon 
method? 

• What are the effects of problem class and stZe on the 
performance of each reopbmtZation method? 

• What are the interaction effects on the reophnuzation 
methods when the above factors are changed singly or m 
combmabons? 

To fully explore the interaction between algonthms and 
salient problem characteristics, we (1) developed reopb­
nuzation codes for three prominent pure network solution 
methods, (2) devised a statistical experimental design to 
evaluate the relative efficienoes of the reophnuzation 
methods, (3) created a portable network reophnuzation 
testing system to generate all necessary data points, and (4) 
implemented a ngorous statistical analystS of the perfor­
mance of the algorithms under different expenmental com­
binations 

8. 1111111111111111 18 Ill C.. Ill 
In thls sechon, we define the type of network problems for 
whlch reopbmizahon is to be studied, outhne reophmlZa­
tion procedures for the pnmal simplex, dual, and out-of­
kllter methods, and describe the computer rmplementa­
tions used in the comparative study 

1.1. PN1111111111a-. ... ,-111r 
Consider a network G(N, E) where N 1s a finite set of m 
nodes and E is a hmte set of n arcs such that each arc (1, J) 
is directed from node z E N to node J E N Let b, be the 
requirement at node 1, for 1 = 1, , m, representing supply 
at a source node if b, < 0 or demand at a sink node if b, > 0 
An arc directed from its origin node z E N to its destination 
node; E N is denoted by the ordered pair (z, ;) E E The 
flow, cost, lower bound and upper bound of arc (z, J) are 
represented by x,

1
, c,

1
, l,

1
, and u,

1
, respectively 

Mathematically, the capac1tated minimum cost network flow 
or transshipment problem (PN) is the following special-struc­
tured hnear program 

PN Mimrruze z = L c,1x,1, 

(1, J)EE 

subJect to L x,p - L xPJ = bP, 
(1, p)EE (p,J)EE 

(1) 

p EN, and (2) 

forall(z,J)EE (3) 

By substitution of vanables, an eqwvalent to PN with all 
1,

1 
= 0 can be found The remainder of thtS sechon's d1SCus­

s1on assumes zero lower bounds 
Associated with every PN 1S a corresponding dual prob­

lem, DN, given as follows 

DN Maxuruze z = I: b,w, - I: u,1v, 1, (4) 
rEN (t,J)EE 
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subject to w
1 

- w, - v,
1

,.;; c,
1
, (1, J) EE, (5) 

w, unrestncted m sign, 1 E N, and 
(6) 

v,,;;. o, for all (1, J) EE, (7) 

where the m-component vector w and n-component vector 
v denote dual variables associated with the conservahon-of­
flow (2) and the capacity constraints (3), respechvely Asso­
aated with each node I E N 1s a dual variable w,, called its 
node potential GIVen arc (1, J) E E, the reduced cost 1s 
defined as c,

1 
= c,1 + w, - w1 We may construct the oph­

mum soluhon of the primal problem, PN, from the ophmal 
soluhon to the dual problem, DN, through the use of the 
complementary slackness theorem which states that for 
each arc (1, J) EE 

c,, > 0 -+ x,, = 0, 

c,, = 0 -+ 0 ..;; x,, ..;; u,,, 
c,, < 0 -+ x,, = u,, 

3.2. an,IIIIIZIIIII Pl'lt••• 

(8) 

(9) 

(10) 

GIVen the soluhon to some PN, changes may be made m 
the problem parameters so as to create a "closely related" 
problem which has the same network structure but differs 
from the original problem m terms of (1) upper bounds (u 
1s changed to u'), (u) lower bounds O 1s changed to I'), (m) 
node reqwrements (b 1S changed to b'), or (1v) costs (c 1s 
changed to c') Each of these four cases 1s treated differ­
ently when reoptmuzmg, as outlined below 

In thlS sechon we briefly describe reoptmuzahon proce­
dures for the three algorithmic alternahves primal simplex, 
dual, and out-of-kilter (Detailed presentahon of these pro­
cedures can be found m [ 1, 3, 4) ) Smee the primal simplex 
and dual method spea.ahzations for networks are bwlt 
around the graphical structure of network bases, we first 
characterize these basic solutions 

3 2 1 Basic Solutions In simplex-based algorithms for 
pure networks, the arc-set, E, 1s parhhoned into two sub­
sets basic and nonbasic arcs To find a basic feasible solutwn 
for PN, the flows on the nonbasic arcs are set to the upper 
or lower bounds, and the flows on the basic arcs are 
uruquely assigned so that constraints (2) and (3) are satis­
fied For every basic feasible soluhon, the node potenhals 
are evaluated such that the complementary slackness equa­
hons (8)-(10) are sahsfied 

Network theory indicates that each PN bas1S can be 
represented as a spanning tree of the m nodes with (m - 1) 
arcs Given an arbitrary node as the root node, the bas1S 1s 
called a rooted spanning tree The root node wtll be consid­
ered to be at the top of the baslS tree with all other nodes 
hangmg below 1t An optimal solution 1s obtained when (1) 
1s mmuruzed and constraints (2), (3), and (8)-(10) are si­
multaneously sahsfted 

In descnbmg the reoptmuzation steps for extreme pomt 
methods, it 1s useful to define the reduced requirement at 

node p, as 

qp "= bp + E l,p - E IP/ 

(1 p)Ef1 (p,J)EE1 

+ E u1p - E uPJ' (11) 
(1 p)E E" ( p, 1)e E" 

where E1 and Eu 1s the set of nonbasic arcs at their lower 
and upper bounds, respechvely This 1S the portion of the 
reqmrements represented m the nonbas1cs 

3.2 2 The Pnmal Simplex Method Reoptmuzabon Proce­
dures In reophm1zahon cases (1) and (n) mvolvmg modi­
fied bounds, we assume that the upper bound vector u and 
the lower bound vector l are changed to u' ;;. I and l' ~ u, 
respectively, where no arc has simultaneous lower and 
upper bound changes These changes may destroy the 
primal feas1b1hty of the optimal basis on hand Mamtammg 
primal feas1b1hty and obtammg a new optimal solution 
requires computation of the reduced reqmrement vector, q, 
modified for those nonbasic arcs at their changmg bound 
From the mod1f1ed q, a new set of basic flows 1s generated 
which may not sahsfy the bound constraints Each basic arc 
with new flow exceedmg its upper or lower bound IS 

designated as nonbasic at its violated bound and replaced 
m the basis with an arhf1C1al arc (of appropriate orienta­
tion) havmg a flow of the amount of v10lahon If arbhaals 
have been added, a porhon of the node potentials must be 
updated prior to re-apphcation of the pnmal simplex 
method 

In reoptrmization case (m), the node requirements vector 
b for a given ophm1zed PN 1S changed to b' As before, this 
change can destroy the pnmal feas1b1hty of the optimal 
basis whtle dual feas1b1hty conditions remain sahshed To 
restore primal feas1b1hty effiaently, the reduced reqwre­
ment vector q IS computed, modified to reflect the changes 
m node reqmrements, and used to construct a new set of 
basic flows If the resultant bas1S contams arcs which vio­
late their bounds, appropnate parts of the previous proce­
dure for cases (1) and (u) are apphed to restore pnmal 
feas1b1hty and ophmahty 

In case (1v ), where cost changes are introduced, the node 
potenhals are recalculated and the simplex procedure ap­
plied to restore ophmahty For complete detatls on all 
cases, see [1] 

3.2 3 The Dual Simplex Method. Reophnuzabon Proce­
dures For the dual method, the steps to manage changes 
m bounds and node requirements are basically the same as 
those for the primal simplex The only difference 1S that 
basic variable bound violations are handled directly by the 
dual method 

When changes are made to cost parameters, reoptmuza­
tlon with the dual method IS more complicated than with 
the pnmal approach For each basic arc with a modihed 
cost (1) substitute an artmoal baste arc with a zero upper 
bound and cost equal to the onginal cost, and (2) designate 
the modified arc as nonbasic at 1ts upper (lower) bound if 
the new reduced cost IS negative (non-negative) For each 
cost-modified nonbasic arc at its lower (upper) bound with 
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a new reduced cost less (greater) than zero switch 1t to its 
opposite bound and modify the reduced reqwrements of 
the arc's tnCident nodes appropnately With dual feasibility 
reestablished, a new set of basic flows 1s then produced 
from the reduced reqwrements vector and the dual method 
IS applied to restore pnmal feas1b1lity and opttmahty (For 
a detailed descnption, see (3] ) 

3.2 4 Out-of-Kdter Method Reophmtzahon Procedures. 
Because of its pnmal-dual approach, the out-of-kilter algo­
nthm accommodates changes m bounds, node requrre­
ments, and costs directly Therefore no special procedures 
are necessary to reoptimize a given pure network problem 
Smee the method only requires a conserving set of flows to 
begin, problem reoptim1zation involves simply modifying 
arc bounds and costs, retammg the previous flows and 
duals, and applying the algonthm directly For a detailed 
d1scuss1on of the theoretical and 1mplementahon of the 
out-of-kilter method see (9, 18, 27] 

U. Cl , lW h11l1■111- -If 1111 Allla 11111& lllWliillvll 
In thIS sechon, we present the structural and the funchonal 
character1Stics of the three pnmal-, dual-, and out-of-kilter­
based reophmizahon codes that were tested m thIS study 
All codes are wntten m FORTRAN 77 and reqwre problem 
data to simultaneously reside m pnmary (or virtual) stor­
age All programs are based on codes ongmally wntten by 
the same author and, although developed over a wide span 
of years, contain tight coding and modem data structures 

3 3.1. PROPT, a Pnmal-Stmplex-Based Network Reoptt­
nuzabon Code For thIS study, a pnmal-s1mplex-based 
code, PROPT, was developed for solving and reophrruzmg 
pure network problems PROPT 1s an extension of the 
NETSTAR opbmtzer-a state-of-the-art and improved ver­
sion of the ARC II code developed by Barr, Glover and 
Khngman[10l-to which reophm1zahon routines were 
added, based on the procedures dISCussed m Sechon 3 2 2 

PROPT uses the following data structures and node 
labels to represent the basis tree predecessor, thread, re­
verse thread, cardinality, last node, node potenhal, flow, 
the node reqwrement, and reduced requirement For a 
more detailed discuss10n about the optimizahon rouhne 
and data structures see [10) 

3 3.2 DROPT, a Dual-Method-Based Network Reoph­
m1zabon Code The second reopbmIZer code IS based on 
the dual method on a graph 13 14 22 311 Combmmg the steps 
of the dual method specialized for networks, the pivohng 
roubnes of NETSTAR, and the procedures m Section 3 2 3, 
an efhaent new computer code, DROPT, was developed by 
the authors for solving and reophrruzmg pure network 
problems Prehmmary teshng showed the code to be 8-15% 
faster than the most efhoent dual-based code reported to 
date 131 

Our implementabon uses a decreasing-length candidate 
list of pnmal infeasible arcs from which the outgoing arc is 
selected using a smallest-endpoint-cardmahty rule (An 
endpoint node's cardmahty is the number of nodes m the 
basis subtree below and mcludtng the node ) 

In addition to the PROPT data structures, DROPT uses 
the forward and the backward star structures, to expedite 
1denbfication of the incoming arc These data pemut pnc­
ing only a small subset of the nonbasic arcs when perform­
mg the ratio test 

The reopbmtzation procedures are bwlt around those 
discussed m Sechon 3 2 2 The same programming style 1s 
used m both DROPT and PROPT 

3 3 3 KROPT, an Out-of-Kilter-Based Network Reopb­
mtzabon Code The third reophmtzer code, KROPT, IS 

based on SUPERK, an out-of-kilter algonthm code devel­
oped by Barr, Glover and Khngman [91 Thts code forms the 
optimization porhon of KROPT and has been shown to be 
supenor to other out-of-kilter codes by a factor of 2-5 on 
small- and medtum-stzed problems and by a factor of 4-15 
on large problems Although developed m 1973, it is sbll 
considered to be one of the best out-of-kilter implementa­
tions to date For a detailed dtscuss10n of the out-of-kilter 
formulation and tmplementabons see (9, 18, 27] 

From a programming standpoint, the accommodahon of 
problem changes by KROPT is tnvtal The preltmmary 
process of obtammg pnmal or dual feasibility is unneces­
sary because the solubon procedure may begm with a 
solution which is both prtmal and dual infeasible There­
fore, for reoptimizabon, the arc parameter modifications 
are made directly to the problem data and the out-of-kilter 
algonthm 1s reapplied, using the previous problem's flows 
and duals as starting conditions 

3 3 4 Construction of a Reoptinuzation Tesbng System 
To simplify and structure the generation and analys1S of 
the expenmental data pomts, a portable network reopti­
rmzabon teshng system (NRTS) was developed NRTS is 
organtzed mto four components (1) the base problem gen­
erator which is the well-known random-network generator, 
NETGENl30l, (2) the subproblem-senes generator, which 
creates a senes of subproblems based on a given base 
problem and treatment combmabon, and uses a modified 
SUPERK, (3) a user-supplied swte of codes to reoptimize 
the generated subproblem senes (here we uhhzed PROPT, 
DROPT, and KROPT), and (4) the data analysis module 
that collects the solution data and performs a stabsbcal 
analysis to identify the relative effioencies of the codes 
(For a comprehensive discuss10n on NRTS see [ 4, 5] NRTS 
1s available to the pubhc from the authors ) 

In summary, for a given run (1) NRTS creates a feasible 
random base network problem, (2) given a base problem 
and a set of levels of the expenmental factors, cumulabve 
changes are made to the base problem to generate a senes 
of closely related random subproblems, (3) the base prob­
lem and subproblems are solved by each of the reophmtzer 
codes, and (4) solubon data are collected ma converuent 
form for subsequertt analys1S 

4. 11111 £1,11 I 111• 
This sectJ.on presents the design of an expenment for net­
work reopbmtzabon The expenment, design, tmplementa­
bon and analysis phases are dtscussed For detailed dtscus-
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s10n on the theorebcal concepts, pnnaples, and phases of 
expenmental design see [33, 40] Discussions on the expen­
mental design and stahsbcal analysis of computabonal 
studies can be found in [4, 17,23] 

In designing our expenment for network reophmizahon, 
the goals were (1) to study the effects of several factors on 
the hme reqwred to reophmIZe a senes of closely related 
pure network problems by each of the three reopbmIZation 
codes, PROPT, DROPT and KROPT, and (2) to 1denhfy the 
relabve efhc1ency of the three reophmIZers under different 
combinabons of the factors In this manner, the expenment 
should provide answers to the questions posed in secbon 2 

The response vartable for companng the reoptirmzers was 
selected to be the central processing urut (CPU) time 
reqwred to solve a senes of subproblems The total reopti­
mIZahon CPU hme includes the execution of the reopti­
mIZation procedures but excludes the input/output pro­
cessing hme and soluhon hme of the base problems 

The seven factors to be studied in the present expenment 
are class of pure network problem, problem szze, number of 
subproblems per series, type of change zn problem parameters, 
percentage change zn problem parameters, number of changes per 
subproblem, and type of reoptzmzzer code used to solve each 
subproblem senes The expenment studied two classes of 
pure network problems, transportation and transshipment 
problems Problem size levels are small ( 400 nodes and 
2,000 arcs), medium (1,000 nodes and 5,000 arcs), and large 
(1,500 nodes and 8,000 arcs) The factor type of change has 
three levels change in costs, bounds and RHS parameters 
The percentage of change zn parameter levels were chosen to 
be 5% and 25% The number of changes per subproblem factor 
was hxed at 20 In summary, there are seven expenmental 
factors with hxed levels 

Whtle the above size dimensions are not large for pure 
network problems in general, they are of the size encoun­
tered in typical reoptinuzation applications, such as 
branch-and-bound The percentage change levels were cho­
sen to represent apphcations that tend to yield either few 
changes from one subproblem to the next, as with depth­
first searches, or drastic changes, as with multi-obJective 
progranurung Changes per subproblem was set at a hxed 
amount to avoid a geometnc increase in the number of test 
cases to be explored Hence our conclusions are generaliz­
able to the extent that these problem types and factor levels 
match the subproblem charactenshcs in the apphcation of 
interest 

6. Pl ,. • rr ._ 
6.1. _.III- tltll I Ill I ...... 
Pnor to conducting the study's expenmentation, It was 
postulated that the performance of each reophffilzer may 
be affected by the number of related subproblems that are 
to be solved as a senes The expenmentabon descnbed 
below deternuned the smallest number of senes' subprob­
lems for wluch the hypotheslS testing would remain valid, 
thus nurunuzmg the computational testing effort 

5.Lt. The Sampling Method. A random sample of three 
base problems was selected from among the twelve poss1-

ble problem combinations of classes of network problem, 
problem sizes, and percentage changes The sample problems 
were randomly selected as a large transportation problem 
with a 25% change, a medium transshipment problem with 
5% change, and a small transportation problem with 5% 
change For each sample base problem and each type of 
change, 500 feasible subproblems were randomly generated 
by NRTS and then solved by each of the three reoptirruzers 
(In two cases involving RHS changes, NRTS was unable to 
create the full 500 subproblems before problem mfeas1bil-
1ty) 

The sample consisted of 25 senes of 500, one sample of 
445 and one sample of 200 reoptimIZation times Hence, the 
statistical tests conducted in this section are based on 
twenty-seven samples with 4,145 generated feasible sub­
problems and 12,435 subproblems' reophmIZation-hme ob­
servations 

512 Vanance Compansons To venfy the effect of the 
number of subproblems on the overall performances of 
reoptlmizers, two sets of two-way analys1s-of-vanance 
(ANOV A) procedures for each type of change over three 
codes were conducted In the hrst and second sets of 
variance analyses, the hrst 100 and 200 versus the last 400 
and 300 CPU hmes in each sample were considered, re­
spectively In eshmahng the population variance to which 
the samples belong, the followmg statistical model 1s ap­
plied 

(12) 

where z is the subproblem number (z = l, , 500), J is the 
reopbmIZation code number (J = 1,2,3), X,

1 
1s the CPU 

bme of reoptlrruzer I for solving the subproblem J, µ, is the 
mean time for all subproblems, a, 1s the effect of subprob­
lem 1, {3

1 
1s the effect of algonthm J, and E,

1 
lS the random 

error effect 
The model lS uhhzed as follows The hrst 100 CPU hmes 

and the last 400 CPU times in each sample were considered 
as two subsamples, making 27 data sets, each cons1Sbng of 
two subsamples For each base problem, type of change, 
three reopbmizers and two subsamples of 100 and 400 
observahons, a total of 18 vanance analyses were con­
ducted (using SAS GLM) on 300 and 1,200 reopbmIZation 
hmes, respect1vely, and the estimated vanances of subsam­
ples recorded Then, to test for s1gruhcant differences among 
the reophffilzers in reophm1Zmg samples of the hrst 100 
versus the last 400 subproblems, the following hypotheses 
were established for the variances of the two subsamples 

Ho u1k = uk HA uito * uk 03) 

meaning that given a base problem, type of change and a 
reoptinuzer, the two normally dlStnbuted mdependent 
subsamples of 100 and 400 reopbmIZahon bmes do (H0) or 
do not ( H ,,) have the same vanances 

To test the hypotheses, the two-tailed F-test procedure 
was employed The f-value lS computed by f = sf00/ski, 
where sf00 and ski are the mean square errors (estimates 
of u 1k and u.Jio) correspondmg to subsamples of the hrst 
100 and the last 400 CPU bmes, respectively The mean 
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Table I Two-Sided F-Test For Companng Variance 
CPU Times of Sample Sizes 100 and 400 

Type of 
Change 

Cost 

Bound 

RHS 

1 

MSE100 = 0 2452 
MSE400 = 0 1731 

DF100 = 200 
DF400 = 800 

f-Rabo = 1 4167 
so• 

MSE100 = 0 2758 
MSE400 = 0 2963 

DF100 = 200 
DF400 = 800 

f-Rabo = 0 9308 
NSDb 

MSE100 = 0 7302 
MSE400 = 0 4416 

DF100 = 200 
DF400 = 800 

f-Rabo = 1 6535 
SD 

• SD, s1gruticantly different vanances 
b NSD, vanances not s1gruticantly different 

square errors were computed from the model descnbed in 
(12) Table I summanzes the required data to compute 
f-value for testing the hypotheses in (13) A significance 
level of 5% was selected in advance of the analysis As 
shown in this table, for all three sample base problems 
under all three types of changes except one, the two model 
esbmates of corresponding populabons' vanances are s1g­
mf1cantly different, rmplying that the populabon vanances 
are probably not equal Hence, the null hypothesis in (13) 1s 
reJected That 1s, the effects of reoptmuzing a senes of the 
first 100 versus the last 400 subproblems on the codes were 
significantly different On the case of bounds changes in 
sample base problem one, ms1gmficant differences between 
vanances were detected ) 

The same type of analysis compared the ftrst 200 and last 
300 subproblems (see [6] for details) Again, although sig­
nificant differences in esbmates of vanances were detected, 
smaller differences were present in the subsamples of the 
first 200 versus the last 300 observabons In all cases the 
null hypotheses were re,ected, that IS, the populabon van­
ances are probably not equal for two subsamples But since 
all of the f-rabos in thIS second analysis were close to 1 0 
(equal vanances) and the sample sizes were large (400 and 
600 observabons), the equality hypotheses (13) may have 
been reiected because of the high discnnunatmg power of 
the f-test 

From a pracbcal standpmnt, knowing that the test of 
significance mvolvmg large samples (like ours) will deem 
small departures from the null hypothesIS as stabsbcally 
stgmhcant, we may make the followmg conclusion about 

Sample Problem 
2 3 

MSE100 = 0 0188 MSE100 = 0 0039 
MSE400 = 0 0249 MSE400 = 0 0024 

DF100 = 200 DF100 = 200 
DF400 = 800 DF400 = 800 

f-Rabo = 0 7550 f-Rabo = 1 6250 
SD SD 

MSE100 = 0 1552 MSE100 = 0 0062 
MSE400 = 0 0988 MSE400 = 0 0048 

DF100 = 200 DF100 = 200 
DF400 = 800 DF400 = 800 

f-Rabo = 1 5709 f-Rabo = 12917 
SD SD 

MSE100 = 0 6431 MSE100 = 0 0007 
MSE400 = 0 0074 MSE345 = 00027 

DF100 = 200 DF100 = 200 
DF400 = 800 DF345 = 690 

f-Rabo = 87 497 f-Rabo = 0 2593 
SD SD 

the vanance comparISOns m these cases "although stabsb­
cally significant, the difference between the two esbmated 
variances are too small to be of pracbcal importance, and 
are ignored in the subsequent analysIS "l4

0J On thIS rabo­
nale, 1t was decided to select senes of 200 subproblems for 
thIS expenment 

51.3 Means Comparison Analysis To verify the previ­
ous conclusion, tests of s1gn1ficance among mean reopb­
InIZabon bmes were conducted For each sample base prob­
lem, type of change and code, mulbple compansons 
between the mean reoptmuzabon bmes of subproblems 
grouped in samples of 100 were performed to idenbfy 
significant differences between them 

To detect significant differences, each sample of 500 CPU 
bmes (from a sample base problem, a type of change, and 
three reoptmuzers) 1s divided into five subsamples of first 
100 through fifth 100 CPU bmes Next, Tukey's significant 
difference tests (withm SAS GLM) were conducted to test 
for eqmvalence of the five mean bmes of each algonthm 
under each type of change 

The results of the 27 Tukey tests are summarized m 
Table II This table shows that in 14 of 27 cases there are no 
significant differences between mean CPU bmes of the first 
100 through the fifth 100 subsamples In 12 of the remam­
mg 13 cases there are no significant differences between the 
means of second 100 and fourth 100 or fifth 100 subsamples, 
whereas m SIX cases, the difference between the first 100 
and fourth 100 or fifth 100 subsamples does not appear to 
be significant 
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Table II. TSO Test for Five Subsamples' Average CPU Tunes 

Type 
of Sample 

Change Problem KROPT PROPT DROPT 

Cost 1 All NSD 0 1, 2, 3 and 4b NSD All NSD 
1, 3, 4 and 5 NSD 

2 All NSD All NSD All NSD 
3 2,3 and4NSD 2,3and4NSD 2,3and4NSD 

3, 4 and 5 NSD 3,4 and 5 NSD 3 4 and 5 NSD 

Bound 1 All NSD All NSD All NSD 

2 AllNSD AllNSD All NSD 

3 1, 2 and 3 NSD 2, 3, 4 and 5 NSD 1, 2 and3 NSD 
2, 3 and 4 NSD 

2, 3, 4 and 5 NSD 3, 4and 5 NSD 

RHS 1 AllNSD All NSD All NSD 
2 4 and 5 NSD 1, 2, 4 and 5 NSD 2, 4 and 5 NSD 

1, 2, 3 and 4 NSD 3, 4 and 5 NSD 1, 2, 3 and 4 NSD 

3 2and3NSD 1 and 2, 1 and 3, 1 and 2, 1 and 3, 

1 and4,2and3, 1 and 4, 1 and 5, 
3 and 5 NSD 2 and 4, 3 and 4, 2 and 3, 2 and 4, 

3 andS NSD 2 and 5, 3 and 5 
4and5NSD NSD 

a NSD, no s1gruftcant differences among average CPU hmes of 5 subsamples 
bl, 2, 3, 4, and 5 "first 100" through "fifth 100" CPU times subsamples' numbers 

There exists only one case for which the differences 
between the means of first 100 or second 100 subsamples 
are shown to be sigruficant from the fourth 100 or fifth 100 
subsamples As a result, this means companson analysis 
verifies the appropnateness of 200 subproblems per base 
problem 

5.2. ...... 11 BIii Pr1llll1■1 
Deternunahon of the number of base problems per problem 
size is another design issue The pnnciples of expenmental 
design call for the nurumal number of base problems in 
order to sahsfy two obJechves (1) nurunuze the total com­
puter hme for the expenment, and (2) provide an appropn­
ate number of degrees of freedom to study the effects of the 
whole plot factors-problem class and szze-and their inter­
achons with base problems Having considered the expen­
mental design corresponding to this study to sahsfy the 
two established goals, four base problems per problem size 
were chosen, thus providing 18 degrees of freedom and 
allowing the study of the effects of all factors and interac­
tions 

1.1111111111 
The prelurunary studies detenruned that, for each of the 
108 expenmental conditions, a senes of 200 subproblems 

would be solved for four different base problems ThIS 
reqmred a total of 432 computer runs, solving 86,400 sub­
problems 

The randomized procedure to generate observahons for 
the vanous treatment combinahons 1s as follows given a 
randomly generated base problem, type of change, and per­
centage change, a senes of 200 subproblems 1s randomly 
generated and solved by each of the three reophmlzahon 
codes The total reophmization time for each code 1S 

recorded GIVen a class of problem, the order of the expen­
mentation was generate a base problem, randomly deter­
mme the type of change, randomly select a fixed percentage 
change, randomly generate a senes of 200 subproblems and 
solve by each code 

The expenment's charactenshcs lend themselves to a 
splzt-plot design (often called nested smce withm each treat­
ment combination there are several treatment subcombma­
tions) The underlying pnnaple of this design 1S main plots 
-to which levels of one or more factors are apphed-are 
d1v1ded into subplots or split plots to which levels of one or 
more additional factors are apphed Such a scheme reduces 
the number of observahons reqmred and provides more 
precise information on the subplot factors than on the main 
plot factors 

In th1S study, the combmahons of class of problem and 
problem szz.e constitute six main plots, within which the 
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Table III Charadensbcs of Transportabon and Transshipment Problems 

No No No Upper 

No of of No of % Bound % Random 
Problem of Source Smk of Cost Total Transsh H1 Arc Range Seed 

Size No Nodes Nodes Nodes Arcs Mm 

A Transportahon 
Small Pl 400 200 200 2,000 1 

P2 400 200 200 2,000 1 
P3 400 200 200 2,000 1 
P4 400 200 200 2,000 1 

Medium PS 1,000 500 500 5,000 1 
P6 1,000 500 500 5,000 1 
P7 1,000 500 500 5,000 1 
PB 1,000 500 500 5,000 1 

Large P9 1,500 750 750 8,000 1 
PIO 1,500 750 750 8,000 1 
Pll 1,500 750 750 8,000 1 
P12 1,500 750 750 8,000 1 

B Transshipment 
Small P13 400 25 25 2,000 1 

P14 400 25 25 2,000 1 
P15 400 25 25 2,000 1 
P16 400 25 25 2,000 1 

Medium P17 1,000 50 50 5,000 1 
PIS 1,000 50 50 5,000 1 
P19 1,000 50 50 5,000 1 
P20 1,000 50 50 5,000 1 

Large P21 1,500 75 75 8,000 1 
P22 1,500 75 75 8,000 1 
P23 1,500 75 75 8,000 1 
P24 1,500 75 75 8,000 1 

combmahons of type of change, percentage change, and type 
of reoptzmzzer form the subplots 

7. Tia 11,11111111lldla 
Implementahon involves the generabon of data points to 
be analyzed within the expenmental design All observa­
hons were created with NRTS, and standard randomizabon 
procedures were used, as follows 

First, for each class and SIU of problem, four base prob­
lems were defined (see Table ill, A and B) Next, one of the 
108 treatment combmahons was randomly selected and, 
applying NRTS, a base problem and a senes of 200 sub­
problems were randomly generated, solved by the three 
reopturuzer codes, and the reopbmizabon bmes recorded 
nus randomizabon procedure was repeated unbl all of the 
design's data points were produced Rephcabons within 
class and SIU combmabon were achieved by using different 
random number seeds 

All computabonal tesbng was performed on Southern 
Methodist Uruvers1ty's IBM 3081-D24 machine under the 
VM/CMS operabng system The FORTVS2 Fortran com­
piler and opbmizabon level 3 were utilized Table IV shows 
the average reopbmizabon CPU bmes, in seconds, of four 

Max Supply SOR SIN Cost Cap Mm Max No 

1,000 200,000 0 0 0 50 50 100 02135024 
1,000 200,000 0 0 0 50 50 100 46378532 
1,000 200,000 0 0 0 50 50 100 85319210 
1,000 200,000 0 0 0 50 50 100 71685392 

1,000 500,000 0 0 0 50 50 100 21328751 
1,000 500,000 0 0 0 50 50 100 48597281 
1,000 500,000 0 0 0 50 50 100 50832175 
1,000 500,000 0 0 0 50 50 100 78530620 

1,000 750,000 0 0 0 50 50 100 55202473 
1,000 750,000 0 0 0 50 50 100 73455831 
1,000 750,000 0 0 0 50 50 100 37203644 
1,000 750,000 0 0 0 50 50 100 51926435 

1,000 200,000 0 0 0 50 50 100 61714889 
1,000 200,000 0 0 0 50 50 100 21882420 
1,000 200,000 0 0 0 50 50 100 96293372 
1,000 200,000 0 0 0 50 50 100 49539439 

1,000 500,000 0 0 0 50 50 100 51968364 
1,000 500,000 0 0 0 50 50 100 61374058 
1,000 500,000 0 0 0 50 50 100 52106343 
1,000 500,000 0 0 0 50 50 100 10924580 

1,000 750,000 0 0 0 50 50 100 55204734 
1,000 750,000 0 0 0 50 50 100 42048303 
1,000 750,000 0 0 0 50 50 100 37203645 
1,000 750,000 0 0 0 50 50 100 75215754 

senes of 200 subproblems associated with each cell m the 
spht-plot layout (Note that for a few cells, the problem 
generator was unable to create-after several hundred at­
tempts-a senes of 200 feasible subproblems with the 
combmabon of factors reqwred ) 

8. 1111....,. 
8.1. lllllllall ....,. t ....,. II VII lac, 
Answenng the quesbons posed in Secbon 2 necessitated 
compansons of codes under different treatment combma­
bons defined by the expenmental layout nus included a 
comprehensive analysis of the effects of the factors, singly 
and Jointly, on the performance of each code In parbcular, 
the obJecbve was to 1denbfy the importance of factors and 
their interachons in terms of the magrutude of their effects 
on the reopbmizabon hmes generated by the codes 

The stabshcal model used to reflect the reopbmizabon 
CPU bmes to the factors and sources of error in this 
experiment and for the spht-plot design IS 

x,,klmn = µ, + K, + s, + K,s, + pk(tJ) + T, + cm + Rn 

+ Sul,plot factor interactwns + E,,ttmn• (19) 
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Table IV Average Reoptmuzabon CPU Tmtes for All Problem Types 

Reopbnuzabon Code 

Problem Problem Type of Percentage Mean CPU T1me" 

Class Size Change Change KROPT PROPT DROPT 

Transportabon Small Cost 5 1938 625 1254 
25 4017 1077 2445 

Bound 5 2130 1024 723 
25 3452 1617 1123 

RHS 5 2733 15 59 828 
25 na na na 

Medium Cost 5 66.29 1911 4466 
25 16658 3922 10594 

Bound 5 6984 3403 2554 
25 13334 5991 4508 

RHS 5 8572 5742 2809 
25 na na na 

Large Cost 5 10938 3208 82 71 
25 31338 7230 22295 

Bound 5 119 51 6021 4941 
25 21325 10664 7768 

RHS 5 14465 11711 5343 
25 88778 48982 26486 

Transsh.Ipment Small Cost 5 798 356 689 
25 1740 539 1729 

Bound 5 13 33 916 839 
25 3219 1710 1897 

RHS 5 na na na 
25 na na na 

Medium Cost 5 2584 987 2258 
25 6613 1552 7360 

Bound 5 4235 2832 2615 
25 8947 4319 52 72 

RHS 5 13215 5781 6401 
25 n.a na na 

Large Cost 5 3880 1474 3419 
25 11642 2592 13887 

Bound 5 5794 3759 3648 
25 13583 5454 8288 

RHS 5 24263 10491 10695 
25 n.a na na 

• Average of four CPU hmes m each cell, n a = not available (unable to generate 200 feasible 
subproblems) 

where cm = the effect of percentage change, m == 1, 2, 

R" = the effect of type of reopbmizer, n = 1, 2, 3, and 
x,,kl,nn = the reopbnuzabon CPU bme, E,,klmn = the error term 
µ, = the mean CPU bme, 
K, = the effect of problem class, 1 = 1, 2, Tius model includes 16 subplot-factor mteracbon terms of 
S1 = the effect of problem size, J = 1, 2, 3, two-, three-, four- and five-factor combmations, each of 
K,S

1 
= the mteracbon of problem class and size, wh.Ich may affect the response vanable 

pk(IJ) = the effect of base problem per class I and size The stabsbcal method reqwred for the analyses was 
J, k = 1,2,3,4, analysis of vanance Tius method proVIdes mformabon for 

T1 = the effect of type of change, l = 1, 2, 3, tesbng s1multaneously the s1gruf:tcance of the difference 
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between mean reopbnuzabon bmes of the codes under 
single or mulbple treatment combmabons Given the exper­
imental design, the sigruhcance of the difference between 
treatment-combmabon mean bmes could be tested by ana­
lyzing the vanance between the means 

The analysis of vanance IS irubated by a translabon of 
the obJecbves of the study into stabsbcal hypotheses The 
hypotheses were categonzed into two main groups hy­
potheses to detect sigruhcant difference between single 
factor means, and hypotheses to idenbfy sigruhcant differ­
ences between the mulbple-factor interacbon means All 
null hypotheses can be stated as the group of populabon 
means of reopbnuzabon bmes under the effects of single or 
mulbple factor treatment combinabons are equal The alter­
nabve hypotheses are at least two of the means from 
among the group under the same treatment combinabons 
are not equal The sigruhcance level selected pnor to the 
analysis was 5% Table V summanzes the mformabon 
provided by the ANOV A procedure All null hypotheses 
were re1ected even at a much smaller sigruhcance level 

since the p-values are no greater than 0 0001 Thus, at least 
two of the mean reopbnuzabon bmes stated in each null 
hypotheses are sigruflcantly different In terms of relabve 
performance, this type of analysIS does not permit ranking 
of the codes under different treatment combmabons 

8.2. llllllllCII ....,. t c111,■ l1111 11 -
When companng more than two means, an ANOV A proce­
dure indicates whether the means are s1gruhcantly different 
from each other, but does not show which means actually 
differ The sigruflcances shown by our ANOV A made it 
desirable to conduct further analyses to determine which 
pairs or groups of reopbmlzabon average CPU bmes are 
sigruhcantly different Such compansons between means 
are somebmes referred to as mean comparisons Reiecbon of 
the null hypotheses in Table V necessitates means compar­
isons to provide detailed informabon about the observed 
differences in means 

The most commonly used mulbple pairwise mean com­
panson methods are FISher's Least Sigruflcant Difference 

Table V Analysis of Vanance Table for Reopbmtzabon CPU Times 

Source DF ss MS F p-value 

Whole plot 
K 1 192120 87 192120 87 231001 00001 
s 1 298489306 492446 53 592109 00001 
Kxs 2 19932549 99662 75 1198 33 00001 
P(K XS) 18 6667 35 37041 445 00001 

Split plot 
T 2 36004072 180020 36 216453 00001 
C 1 540172 94 540172 94 6494 95 00001 
R 2 29215115 146075 58 175639 00001 
KxT 2 1119499 5597 50 6730 00001 
KxC 1 15923771 15923771 1914 65 00001 
KxR 2 6109880 3054940 36732 00001 
SXT 4 18139683 45349221 54527 00001 
sxc 2 277062 94 13853147 1665 68 00001 
SXR 4 14482832 3620708 43535 00001 
TXC 2 600884497 30042249 361223 00001 
TXR 4 14812692 3703173 3703173 00001 
CxR 2 10877164 5438582 65393 00001 
KxSxT 3 891902 297301 5375 00001 
Kxsxc 2 3909 66 1954 83 2350 00001 
KxSxR 4 3578042 894511 10755 00001 
KXTXC 1 370640 370640 4456 00001 
KXTXR 4 1684806 421202 5064 00001 
SXTXC 2 5389 22 3194610 3841 00001 
SXTXR 8 88418 70 1105234 13289 00001 
TxCxR 4 26393437 65983 59 79338 00001 
KXSXTXR 6 607990 101332 1218 00001 
KXSXCXR 10 16815 85 168159 2022 00001 
SxTxCxR 4 3742 92 93573 1125 00001 
KxSxTxCxR 8 5147.22 64340 774 00001 

Error 252 2095838 8319 

Total 359 4748584 79 
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procedure, Tu.key's Sigruhcant Difference (TSO) test and mg one or more of the null hypotheses when making 
Duncan's Mulhple Range test These procedures can com- statishcal tests of two or more null hypotheses In this 
pare mdividual-factor-level means or interaction means study, havmg multiple mean compansons reqwred more 
Without gomg through a detailed discuss10n of alternative control on EER, hence the use of Tu.key's test 
methods here, the TSO method was chosen for this study 

The TSO procedure was applied to compare and rank the 8.2 1 Example of Four-Factor Means Compansons The 
performances of reophmIZel'S under the effect of different TSO procedure was used to perform a senes of analyses, 
single-factor level as well as treatment combmahons which differed by the number and selechon of factors to 
Tu.key's test controls the expenmentwise error rate (EER) for include Specifically, two-factor through five-factor analy-
multiple compansons, defined as the probability of reiect- ses were conducted, and we illustrate with a four-factor 

Table VI TSO Compansons for 
Four-Factor-Interachon Mean CPU Times 

ReophmIZation Code Mean CPU 

Problem Problem Type of Sample Timea 

Class SIZe Change SIZe, S KROPT PROPT OROPT 

Transportation Small Cost 8 A B B 
2978 851 1849 

Medium 8 A C B 
11644 2919 7530 

Large 8 A B A 
21138 5219 15283 

Small Bound 8 A B B 
2791 1321 923 

Medium 8 A B B 
10159 4697 35 31 

Large 8 A B C 
16638 8343 6354 

Small RHS 8 A B B 
2733 15 59 828 

Medium 4 A B C 
8572 5742 2809 

Large 4 A B C 
51622 30347 15914 

Transshipment Small Cost 8 A A A 
12 51 448 1209 

Medium 8 A B A 
4598 1269 4809 

Large 8 A B A 
7761 2033 8653 

Small Bound 8 A A A 
2276 1313 1367 

Medium 8 A B B 
6591 3575 3944 

Large 8 A C B 
9688 4606 5968 

Small RHS 8 
na na na 

Medium 4 A B B 
13215 5781 6401 

Large 4 A B B 
24263 10491 10695 

• Averages based on 1,600 or 800 subproblems, those with same letter are not ~•gmf1cantlv 
different, n a = not available (unable to generate 200 feasible subproblems) 
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means comparison (See [ 4, 7] for details on other compar­
isons) 

To study the effect of experimental combinabon, the 
factors problem class, problem size, type of change, and reopt1-
m1zer code were inveshgated using the TSO test applied to 
the Joint averages of the factor levels Table VI shows the 
results of the TSO comparisons using sample size S (S 
series of 200 subproblems) and experimental error rate of 
5% In this table, the performance of each reophmizer can 
be ranked relahve to the other two codes in the same row 
by letters A, B, and C W1thm each row, letters A, B, and C 
indicate the largest, next largest, and smallest average 
reophmizahon hmes, respechvely, and hence are accord­
ingly associated with the worst, better, and best perfor­
mance 

Also, when two codes have the same associated letter in 
a given row, their mean hmes are not significantly differ­
ent In this case, the performance of the codes are said to be 
"stahshcally indishnguishable," and while the mean hmes 
are indeed different, they are not sigruficantly so In other 
words, given the sample size and factors considered, the 
stahshcal test cannot determine whether any difference in 
means is due to the effect of the codes or to sampling error 
When letters in the same row differ, we indicate this by 
saying that one code's performance 1s superior to or domi­
nates another 

The four-factor means comparison of Table VI indicates 
that, for transportatwn problems (1) PROPT was superior to 
the other two codes on medmm and large problems when 
changes were made to the costs, (2) OROPT was superior 
for bounds changes, but only on large problems, and for 
right-hand-side changes on medium and large problems, 
and (3) for all other combinahons, PROPT and OROPT are 
stahshcally ind1shngwshable, and superior to KROPT On 
transshipment problems (1) PROPT again dominated when 
cost changes were made to medium and large problems, 
but also on large problems with bound changes, (2) for 
changes to costs and bounds on small problems, all three 
codes were stahshcally indishngwshable, and (3) m all 
other cases, PROPT and OROPT were top-ranked and in­
d1shngutshable 

L •11•--•r..h18111 
The conclusions to be drawn from the computahonal data 
and stahshcal analysis depend on the number of factors 
taken into considerahon For example, when the two fac­
tors reopt1m1zat10n code and type of change are involved, the 
TSO test results summarized in Table VII support the 
following conclusions 

Conclusion A For the reophIDIZahon of the pure network 
problems tested, in general the dual-based OROPT code 
dominated the others when changes were made to bounds 
and right-hand-side values, but the pnmal-based PROPT 
code dominated when cost changes were mvolved 

When viewing the three factors type of change, type of 
problem, and reopt1m1utwn code, the results may be summa­
nzed in Table VIII and the following conclusions 

Table VII Two-Factor lnterachon Ranking 

Reophmizahon Code Type of 
Change KROPT PRO PT OR OPT 

Cost 
Bound 
RHS 

• Top-ranked performance 

• • • 
Table VIII Three-Factor Interaction Ranking 

Problem Type of Reophmizahon Code 

Class Change KROPT PROPT OROPT 

Transportahon Cost • Bound • RHS • 
Transshipment Cost • Bound 0 0 

RHS 0 0 

• Top-ranked performance, 0 Tied for top-ranked performance 

Table IX Four-Factor Interaction Ranking 

Type of Problem Reophmlzers Problem 
Class Change Size KROPT PROPT OROPT 

Transportahon Cost Small 0 0 
Medmm • Large • 

Bound Small 0 0 
Medium 0 0 
Large • 

RHS Small 0 0 
Medium • Large • 

Transshipment Cost Small 0 0 0 
Medium • Large • 

Bound Small 0 0 0 
Medium 0 0 
Large • 

RHS Small 
Medium 0 0 
Large 0 0 

• Top-ranked performance, 0 hed for top-ranked performance, 
- no data available 

Conclusion B For transportahon problems, the dual-based 
OROPT code dominated the others when changes were 
made to bounds and nght-hand-s1de values, but the pn-
mal-based PROPT code dominated when cost changes were 
involved 
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TableX Five-Factor Interactton Rankmg 

Problem Problem Type of Percent Reopbm.tzers 

Class Size Change Change KROPT PROPT DROPT 

A Transportabon 
Small Cost 5 0 0 0 

25 0 0 

Bound 5 0 0 0 
25 0 0 

RHS 5 0 0 
25 

Mednun Cost 5 • 25 • 
Bound 5 0 0 

25 0 0 

RHS 5 • 25 

Large Cost 5 • 
25 • 

Bound 5 0 0 
25 • 

RHS 5 • 25 • 
B Transshipment 

Small Cost 5 0 0 0 
25 0 0 0 

Bound 5 0 0 0 
25 0 0 0 

RHS 5 
25 

Medium Cost 5 0 0 
25 • 

Bound 5 0 0 
25 0 0 

RHS 5 0 0 
25 

Large Cost 5 • 25 • 
Bound 5 0 0 

25 0 0 

RHS 5 0 0 
25 

• Top-ranked performance, 0 bed for top-ranked performance, - no data available 
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Conclusion C For transshipment problems, DROPT and 
PROPT are statistically mdISttngwshable for bound and 
nght-hand-s1de changes, and PROPT dominates all others 
when cost changes are made 

When adding problem size as a fourth factor, the sum­
mary Table IX and the statistical analysis yield the follow­
ing 

Conclusion D For small problems, there are ms1gruficant 
differences between PROPT and DROPT 

Conclusion E. For medium and large problems, PROPT 
dominates when cost changes are made 

Conclusion F For medium and large problems, DROPT 
dominates on bound and nght-hand-s1de changes to trans­
portation problems, but 1s mdisttngu15hable from PROPT 
for such changes made to transshipment problems 

Different rankings and conclusions emerge when a fifth 
factor, percentage change, IS included m the analysis, as 
summarized m Table X, A and B All of the statistical 
results yield the following 

Conclusion G The out-of-kilter-based code KROPT 1s 
never dominant for any combination of factors, although 1t 
1s occas1onally mdISttngu15hable from the other codes when 
reophmlzmg small problems 

For researchers, then, the choice of appropnate algonthm 
depends on the application and its charactenstics with 
respect to the factors studies The results indicate that a 
combined pnmal-srmplex and dual-method approach to 
reophmlzation would be an ophmum methodology to re­
ophmIZe closely related pure network problems Smee the 
data structures reqwred to implement each algonthm are 
simtlar, and the tree-update operation identical, an inte­
grated approach would be relabvely straightforward and 
would encompass the strengths of both methods 

11. I f 
The results given above are generalizable to the extent that 
the problem charactensbcs examined match the reopb­
mizabon problem of interest, thIS includes the factors and 
factor level studied, as well as the use of NETGEN-gener­
ated base-problem structures We selected charactensbcs 
that hopefully have a broad appeal and widespread appli­
cabon 

The reader 1s encouraged to use tlus testing process as a 
model for his or her own expenmentabon, and to employ 
ngorous stabstical methods m their reporbng and 
deos1on-makmg (See Greenberg1231 for further dIScussion 
and encouragement) Tlus will not only help elevate the 
norm m the computabonal mathemabcal programmmg lit­
erature to that of the natural, soaal, and medical soences, 
but give the user greater insight into factor effects and 
mteracbons m the underlying process, and lend increased 
confidence m reported results to readers and authors alike 
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