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Abstract
Origin-destination integer multicommodity flow problems differ from classic mul-

ticommodity models in that each commodity has one source and one sink, and

each commodity must be routed along a single path. A new invisible-hand heuris-

tic that mimics economic markets’ behavior is presented and tested on large-scale

telecommunications networks, with solution times two orders of magnitude faster

than CPLEX’s LP relaxation, more dramatic MIP ratios, and small solution value

differences.
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1 INTRODUCTION

The general problem for origin-destination integer multicommodity network flows (ODIMCF) consists of a network with limited

capacity on one or more arcs and several distinct, non-interchangeable commodities sharing this limited network capacity to

satisfy their respective demands and supplies. Hence, all commodities have separate, structurally identical networks with upper

bounds on the sum of flows across corresponding arcs. While this description is consistent with the classic minimum-cost MCF

problem [2, 5, 7, 17, 33], ODIMCF has two differentiating aspects:

1. Each commodity has a single source (supply node) and a single sink (demand node).

2. The entire flow of each commodity must follow a single path from its source (origin) to its sink (destination).

This last requirement makes ODIMCF an integer programming problem. As the number of commodities increases, the size

of an ODIMCF instance grows rapidly. This combination of large instances and integrality requirements increases the difficulty

of solving these problems.

This research is motivated by the presence of large instances of ODIMCF models in practice, with hundreds of thousands of

constraints and millions of binary variables, which may require quick or repeated solution. Even modest problem instances can

challenge the effectiveness of current optimization methodologies. The combination of these issues serves as a strong motivator

for the development of more efficient solution techniques in terms of speed and solution quality.

This paper develops a new heuristic approach for the solution of ODIMCF problems. The algorithm has polynomial asymp-

totic bounds for both space and time. The minimal space requirement enables the solution of large problem instances for which

testing demonstrates extremely small running times and near-optimal solutions.

2 APPLICATIONS AND LITERATURE REVIEW

Large instances of ODIMCF occur in communications, package distribution, computer, transportation, supply-chain distribu-

tion, and traffic networks [1, 6, 7]. In a transportation example, Huntley et al. [16] describe a problem from the railroad industry:
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TABLE 1 Mapping of applications to ODIMCF

Application MPLS Grain-car movement

Commodities LSPs Blocks

Demand LSP bandwidth Block length

Nodes Switches and routers Train arrival or departure at a station

Arcs Network links Remaining at a station or movement by train

Arc capacities Link bandwidth Maximum train length and station capacity

the movement of loaded grain cars that are grouped into blocks and moved from their origins to their destinations. The grain

trains connecting stations have load limits on total weight and length and multiple blocks can share a train’s capacity. The com-

bination of a station and train arrival/departure times forms network nodes and blocks traverse across arcs representing track

usage or waiting at a station. These nodes, arcs, and blocks form an ODIMCF instance, with each block of freight cars treated

as a separate commodity.

Traffic routing in multi-protocol label-switching (MPLS) and similar network technologies, such as segment routing [22],

is an instance of ODIMCF in the telecommunications industry [15, 20, 28, 30]. A label-switched path (LSP) is established for

groupings of traffic having the same origin and destination in an MPLS network. All traffic assigned to an LSP will follow the

same path across the network, yet the LSPs share the limited network bandwidth, expressed as capacities on the arcs. Girish

et al. [15] provide a formulation for MPLS traffic routing consistent with ODIMCF having LSPs serve as the commodities,

along with additional formulations for specializations of this problem. The number of LSPs in even a small MPLS network can

be large since at least one LSP may be required to connect each node to every other network node. For example, in a small

30-node network, 800 or 900 LSPs (commodities) are typical in practice.

Table 1 summarizes the mapping of application components to ODIMCF elements for both MPLS and grain-car move-

ment applications. Other ODIMCF applications similar to that of MPLS routing include: wavelength-division multiplexing in

optical networks without bifurcated flow [26], the virtual network embedding problem of mapping virtual communications

networks with heterogeneous topologies onto physical networks [23], provisioning long-term private virtual circuits between

customer endpoints on a large backbone network [28], and satellite payload configuration to optimize power usage while

ensuring sufficient signal amplification for retransmission on the downlink [18].

While these ODIMCF problems can be formulated as generic integer programming models [10, 24, 34], realistic instances

are challenging to solve with current software and specialized approaches are warranted. Specialized exact algorithms have

been developed by Barnhart et al. [6], Park et al. [25], and Moura et al. [23] that use column-generation and branch-and-bound

techniques to solve small instances of ODIMCF. These approaches use price-directive decomposition to solve the linear pro-

gramming relaxations at the nodes in a branch-and-bound tree. Cutting planes are used at the nodes to improve the solutions

found at each node.

But heuristic techniques have also been developed for these problems to enable the solution of larger problem instances.

Early work by Huntley et al. [16] utilizes simulated annealing [14] to approximately solve an ODIMCF problem. Details

of the procedure are incomplete, but good results are claimed. Laguna and Glover [19] use Tabu search for the related

bandwidth-packing problem. Resende and Ribeiro [28] applied the GRASP metaheuristic [27] to route private virtual circuits

through a backbone telecommunications network. Amiri et al. [3, 4], Rolland et al. [29], and recently Fortz et al. [12] present

Lagrangian-relaxation-based heuristics for ODIMCF. And Brun et al. [9] develop an approximation heuristic inspired by game

theory’s Nash equilibrium.

The following sections present a mathematical statement of the problem and develop a new heuristic based on classic

economic principles. Computational testing on large problem sets demonstrates the effectiveness of this approach.

3 MATHEMATICAL FORMULATION

In formulating an ODIMCF problem, the network topology, arc capacities, and commodity information are assumed to be

deterministic and given. Let B = {0, 1} be the set of binary numbers, R be the set of real numbers, R+ be the set of positive

real numbers, and Z0+ be the set of non-negative integers.

Define K, N, and A to be the sets of commodities, nodes, and directed arcs, respectively. For directed arc a∈A, let ca ∈ R0+
be the non-negative cost per unit of flow, ua ∈ R+ be the capacity limit, and ia ∈N (ja ∈N) be the tail (head) of the arc. The

characteristics ca, ua, ia, and ja are universally associated with each a∈A.

Within the network, a route, P⊂A, is a set of arcs with the following characteristics:

1. If P≠ ∅, then P has an origin (destination) node s∈N (t∈N) at which P originates (terminates).
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TABLE 2 ODIMCF problem components

Component Type Definition

T(n)⊂A Constant Set of arcs terminating at n∈N

E(n)⊂A Constant Set of arcs emanating from n∈N

ua ∈ R+ Constant Capacity limit on total flow for a∈A

ca ∈ R0+ Constant Cost per unit of flow for a∈A

ia ∈N Constant Node from which a∈A emanates

ja ∈N Constant Node at which a∈A terminates

sk ∈N Constant Origin or source node for k∈K

tk ∈N Constant Destination or sink node for k∈K

𝑑k ∈ R+ Constant Demand (supply) for commodity k∈K at tk (sk)

bk
n ∈ B Constant 1⇒ n= tk ,− 1⇒ n= sk , 0 otherwise. k∈K, n∈N

Xa,k ∈ B Variable 1(0)⇒ commodity k∈K uses (does not use) arc a∈A

2. ∀a∈P, ja ≠ t⇒∃b∈P s.t. ja = ib.

3. ∀a∈P, ia ≠ s⇒∃b∈P s.t. jb = ia.

4. P≠ ∅⇒∃a∈P s.t. ia = s (ja = t).
5. ∀a∈P, there does not exist b∈P s.t. ia = ib (ja = jb).

6. If P≠ ∅, then the directed network formed by the directed arcs of P and their heads and tails is a tree.

Each commodity k∈K has an origin sk ∈N, destination tk ∈N, and required flow from sk to tk of 𝑑k ∈ R+. This demand

for commodity k is represented by dk units of supply at sk and dk units of demand at tk indicated in the demand vector bk with

a 1 (−1) entry corresponding to tk (sk) and 0 for all other nodes. The characteristics sk, tk, dk, and bk are universally associated

with each k∈K.

Let X be a matrix of binary flow variables for all commodities. If Xa, k is 1 (0) then commodity k uses (does not use) arc

a∈A. For node n∈N, let E(n) be the set of directed arcs emanating from n and T(n) be the set of directed arcs terminating at

n. Table 2 contains a summary of the components of an ODIMCF problem.

The node-arc formulation for ODIMCF is given by (1)–(4).1 The objective function, (1), seeks to minimize total routing

cost for all commodities. The node-balance equations, (2), ensure that the flow of each commodity satisfies the conservation of

flow at the nodes and supply and demand requirements. The limit on arc capacities is enforced across all commodities in (3).

The integrality requirements, (4), require that the flows for each commodity follow a single path through the network.[
ODIMCF

]
Minimize:

∑
k∈K

∑
a∈A

𝑑kcaXa,k (1)

subject to:
∑

a∈T(n)
Xa,k −

∑
a∈E(n)

Xa,k = bk
n ∀n ∈ N, ∀k ∈ K, (2)∑

k∈K
𝑑kXa,k ≤ ua ∀a ∈ A, (3)

Xa,k ∈ B ∀k ∈ K, ∀a ∈ A. (4)

4 INVISIBLE-HAND HEURISTIC FOR ODIMCF

The solution of large instances of ODIMCF have proven to be challenging for standard optimization techniques [6]. With this

as motivation, a new heuristic is developed that quickly determines near-optimal solutions for large-scale problems with many

commodities.

Many successful metaheuristics are inspired by systems that evolved naturally. Corne et al. [11] and Gendreau and Potvin

[14] present many examples of such approaches, which include genetic algorithms, immune-system methods, ant-colony opti-

mization, and particle swarm. Garlick and Barr [13] use ant-colony optimization for the routing and wavelength assignment

problem, which has many characteristics in common with ODIMCF.

1For a path-based formulation, see [6,16].
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The new heuristic presented below is inspired by Adam Smith’s insights into market-based economic systems. In 1776,

Adam Smith wrote the following [31]:

Every individual necessarily labours to render the annual revenue of the society as great as he can. He generally

neither intends to promote the public interest, nor knows how much he is promoting it … He intends only his own

gain, and he is in this, as in many other cases, led by an invisible hand to promote an end which was no part of his

intention. Nor is it always the worse for society that it was no part of his intention. By pursuing his own interest

he frequently promotes that of the society more effectually than when he really intends to promote it. I have never

known much good done by those who affected to trade for the public good.

Based on Smith’s observation, the invisible-hand heuristic (IHH) is designed to emulate and exploit the forces at work in

a competitive marketplace. A specific application of this approach is developed for ODIMCF, wherein each commodity must

choose a path over which to be routed. Just as the price mechanism is the control mechanism of a true market system [8, 21, 32],

IHH uses resource prices as its control mechanism, where the resources are the arc capacities. IHH’s pricing mechanism consists

of two components, the original arc costs and a heuristic scarcity cost unique to each arc. The market cost of an arc is the sum of

scarcity cost and the original arc cost. The original arc costs are infinitely elastic, not varying with quantity of an arc’s capacity

consumed by commodities. The scarcity cost function is designed to become increasingly inelastic as the quantity of an arc’s

capacity is consumed—for each additional unit of capacity consumed the slope of the marginal cost function increases. The

increasing resource price works with the commodity demand curves’ rationing function to help limit consumption of the scarce

resources in the network—arc capacity. In this way, each arc is an independent monopolistic supplier of a unique resource and

adjusts the price of it based solely on the current demand it sees for its capacity.

The commodities in the ODIMCF problem are the consumers of the resources with each trying to acquire a set of comple-

mentary goods—capacity on specific arcs—to form a path from its origin to its destination that minimizes the total market cost

of the path. For a commodity, the arcs along a possible path from origin to destination are complementary goods so that the

price of capacity on one arc affects the commodity’s demand for capacity on other arcs in the path. As the price for an arc’s

capacity goes down (up), the commodity’s demand for capacity on complementary arcs will go up (down). As each commodity

has multiple paths to choose from in the network, arc capacity for arcs in alternate paths are substitute goods. As the price for

capacity on an arc goes down (up), the commodity’s demand for capacity on substitute arcs will go down (up). As each com-

modity may have a different origin-destination pair with different possible paths, the set of complementary and substitute goods

will vary by commodity.

IHH does not attempt to determine the demand curve for each arc’s capacity. Nor does IHH have a central planner coordinat-

ing individual arc prices or allocating arc capacity to specific commodities. Instead, each commodity continuously attempts to

minimize the market cost of its route as the costs change. This process of continuous reevaluation proceeds until an equilibrium

is reached and all commodities are satisfied with their routes. The commodities never consider the effect of routing decisions

on other commodities (the entire society); each commodity considers only its own self-interest. The only interaction between

commodities and between arcs and commodities occurs through the price mechanism.

4.1 Residual capacity and market costs
ODIMCF problems have hard limits on the availability of each resource—arc’s capacity—and is a short-run problem where

no additional capacity can be added. To satisfy the arc-capacity limits, the marginal market cost curve is designed to reach

an equilibrium point where the total capacity utilized by the commodities is at most the available supply. As ODIMCF is also

trying to minimize total routing cost and not merely satisfy the capacity constraints, the marginal market cost curve must also

reflect the original arc costs.

The scarcity cost component of the marginal market cost is focused on achieving equilibrium and follows the law of dimin-

ishing returns with marginal cost rising as utilized capacity for an arc approaches the arc’s capacity limit, ua. The scarcity cost

of an arc varies by commodity and is a function of the residual capacity of the arc and the dk for the commodity k. As defined in

Table 3, let r(a, k,X) ∈ R (5) be the residual capacity available for commodity k∈K on arc a∈A, with no requirement that it

be non-negative. The scarcity cost function sc(a, k,X) ∈ R (6) reflects an increase in cost or price for commodity k as residual

capacity on arc a approaches zero. The associated parameters 𝛽, 𝜇, and 𝜋 are positive real-valued scalars, each having the same

value for all arcs and commodities. The values of these parameters are set a priori and are discussed further in Section 4.2.

The marginal market cost of commodity k on arc a is determined by the function mc(a, k,X) ∈ R0+ (7) and is a marginal

cost in that it represents the cost of the last unit of flow if commodity k were to use arc a. Function rc(P, k,A,X) ∈ R0+ (8)

defines the marginal market cost of route P⊂A.
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TABLE 3 Market and scarcity cost definitions

r(a, k,X) = ua −
∑

g∈K∖{k}𝑑gXa,g (5)

sc(a, k,X) = 𝜇

(
max

(
0,

𝛽+𝑑k−r(a,k,X)
𝛽

))𝜋

(6)

mc(a, k, X)= sc(a, k, X)+ ca (7)

rc(P, k,A,X) =
∑

a∈Pmc(a, k,X) (8)
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FIGURE 1 Marginal market cost curve [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Marginal market cost curve with alternative 𝜋 values [Color figure can be viewed at wileyonlinelibrary.com]

Since r(a, k, X) changes based on the current route selection of the other commodities, K \ {k}, the marginal market cost of

an arc is not fixed and varies as the flows of other commodities change. As sc(a, k, X) is dependent upon commodity k’s demand,

dk, market costs vary by commodity. Figure 1 shows a graphical representation of mc(a, k, X) as it relates to r(a, k, X) and dk. In

the diagram, the current utilization corresponds to ua − r(a, k, X), the arc capacity utilized by other commodities. The market

cost is determined as the intersection of the resulting arc capacity utilization if commodity k uses arc a, ua − r(a, k, X)+ dk, and

the marginal market cost curve.

4.2 Scarcity cost parameters and the market cost curve
The parameters 𝛽, 𝜇, and 𝜋 control the shape of the marginal market cost curve and determine at what arc capacity utilization

the market cost is no longer infinitely elastic and the rate at which the market cost becomes increasingly inelastic. These effects

are visible in the market cost curve, the plot of market cost for arc a∈A against currently allocated arc capacity with respect to

commodity k∈K, ua − r(a, k, X). Increasing 𝜋 affects the rate of change in the slope of the curve—how fast the price becomes

inelastic. Increasing 𝜋 results in a decrease in marginal market cost for the region dk < r(a, k, X) and an increase for the region

dk > r(a, k, X). The region dk ≤ r(a, k, X) corresponds to a set of flows for which commodity k can be routed on arc a without

violating the capacity constraint for a, ua. Decreasing 𝜋 has the opposite effect. Figure 2 shows the marginal market cost curve

with three different values of 𝜋 with all other parameters held constant.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 Marginal market cost curve with alternative 𝛽 values [Color figure can be viewed at wileyonlinelibrary.com]

The parameter 𝛽 determines the point at which the scarcity cost component of the market cost becomes nonzero and the

marginal market cost is not infinitely elastic as sc(a, k, X) becomes nonzero when r(a, k,X) < 𝛽 + 𝑑k. A secondary effect is that

𝛽 affects the slope of the curve as the scarcity cost rises from 0 to 𝜇 over a change of 𝛽 in (ua − r(a, k, X)). Figure 3 illustrates

three alternative values of 𝛽.

Finally, parameter 𝜇 controls the magnitude of sc(a, k, X) in a linear manner. Allocated capacity values below zero are not

shown for any cost curve as r(a, k, X)≤ ua ⇒ (ua − r(a, k, X))≥ 0. The parameters 𝛽, 𝜇, and 𝜋 may be used to manipulate the

shape of the market cost curve to adjust for different applications. Section 5.2 describes one method for adjusting the parameters

for a specific application.

4.3 IHH algorithmic steps
The IHHO() heuristic for ODIMCF is given in Algorithm 1, where  = (N,A,K,X, 𝛽, 𝜇, 𝜋) represents an ODIMCF problem,

the current values for the decision variables, and the values of the scarcity-cost parameters.

Algorithm 1. IHHO() algorithm

Input: 

Output: X
1: X ←SPSolve() // Routecommodities on minimum original arc cost paths.

2: if Feasible(A,K,X) = TRUE then // Is trivial SPSolve() solution feasible?

3: Stop

4: end if
5: more ← TRUE // Boolean variablecontrolling termination of main loop.

6: 𝜆k ← 0, ∀k ∈ K // Setrouting change counts to 0.

7: while more = TRUE do // Main loop.

8: more ← FALSE

9: Randomize order of K
10: for all k ∈ K do // All commodities reexamine routing decision in randomorder.

11: if Route(k, 𝜆k,) = TRUE then // Does k’s routing decision change?

12: 𝜆k ← 𝜆k + 1 // Incrementrouting change counter.

13: more ← TRUE // Market costs maybe altered for g ∈ K ⧵ {k}.

14: end if
15: end for
16: end while
17: X ←ResidualCapacityClearance() // Reduce arc costs to original if excess capacity exists

18: Return X

http://wileyonlinelibrary.com


BARR AND MCLOUD 7

The IHHO() algorithm starts with an initial solution found by the SPSolve() procedure, which routes each commodity,

k, on the shortest path from sk to tk based on the original arc costs without regard to arc capacities (Algorithm 2). This is done

with the SP(k, N, A) algorithm for the shortest-path problem defined in (9)–(11), where x is a vector of flow variables for the

shortest path found. SP(k, N, A) returns the set of sk → tk path arcs or ∅ if no path is found.[
SP(k)

]
Minimize:

∑
a∈A

caxa (9)

subject to:
∑

a∈T(n)
xa −

∑
a∈E(n)

xa = bk
n ∀n ∈ N, ∀k ∈ K, (10)

xa ∈ B ∀a ∈ A. (11)

Algorithm 2. SPSolve() procedure

Input: 

Output: X
1: for all k ∈ K do
2: NewPath ← SP(k,N,A) // Find a shortestpath from sk to tk using original arc costs.

3: if NewPath ≠ ∅ then // Does a path from sk to tk exist?

4: Xa,k ← 1, ∀a ∈ NewPath
5: Xa,k ← 0, ∀a ∈ A ⧵ NewPath
6: end if
7: end for
8: Return X

This initial solution from SPSolve() is checked for feasibility with respect to the arc-capacity constraints by procedure

Feasible(A, K, X) (not shown). The solution is expected to be infeasible; if this trivial solution is feasible, IHHO() returns it

as the optimal solution and exits.

After the initial solution is found in IHHO(), the variables more and 𝜆k are initialized. The Boolean variable more controls

the termination of the main loop. The variable 𝜆k ∈ Z0+ is the count of routing changes for commodity k and is used to make a

routing decision in the Route(k, 𝜆k,) procedure, described in the next section. IHHO() then iteratively reevaluates the routing

of each commodity until an equilibrium is reached and all commodities are satisfied with their current routing decisions based

upon current marginal market costs. This state is indicated when more is FALSE.

During every iteration, each commodity reexamines its routing based upon current market costs, mc(a, k, X), using the

Route(k, 𝜆k,) procedure. The order in which commodities reevaluate their routing decisions is random. Each commodity

examines its decision once per iteration. This ordering of commodities is implemented to avoid giving bias or preferential

treatment toward any single commodity or group of commodities. (If a preference for some commodities is desirable, the

ordering can be altered to reflect that bias.)

A change in routing for commodity k∈K is indicated by the results of the Route(k, 𝜆k,) procedure: FALSE (TRUE)

indicates no change (a change). If no change occurred, the total flow and market costs for all arcs for all commodities are

also unchanged. If a reroute of k is indicated, then the market costs for two or more arcs may have also changed for all other

commodities. Commodities having already evaluated their routing decisions before k during the current iteration of the main

loop will require the opportunity to reevaluate their decisions based on the new market costs. This requirement is indicated by

setting more to TRUE and satisfied by executing a subsequent iteration.

The final step in IHHO() is the use of the ResidualCapacityClearance() procedure, detailed in Section 4.3.2 to search

for lower-cost routes based on the original arc costs. This process only reassigns commodities to feasible routes: routes with

sufficient residual capacity.

4.3.1 Routing decision
Algorithm 3 shows the Route(k, 𝜆k,) procedure for reexamining the routing decision of commodity k∈K and adjusting the

associated decision variables. Let CP(k)= {a∈A : Xa, k = 1} be the set of directed arcs currently used by commodity k∈K.

Commodity k makes a routing decision by considering the marginal market cost, the combination of scarcity cost and original
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FIGURE 4 Hurdle multiplier curve for 𝜆1 and 𝜆0 [Color figure can be viewed at wileyonlinelibrary.com]

arc cost, in finding a route from its origin, sk, to its destination, tk. Route(k, 𝜆k,) determines a new route, NewPath⊂A, based

on market costs, which is then compared with CP(k), the incumbent best route for commodity k, to determine if it is a new best

route.

Algorithm 3. Route(k, 𝜆k,) procedure

Input: k ∈ K, 𝜆k ∈ Z0+, 

Output: TRUE if k ∈ K has changed routing, else FALSE

1: NewPath ← SPS(k,)// Find the shortest sk − tk path based on market costs.

2: if NewPath ≠ ∅ then
3: if rc(NewPath, k,A,X)<hm(𝜆k)rc(CP(k), k,A,X) then // Has an improved new route beenfound?

4: // Update decision variables.

5: Xa,k ← 0, ∀a ∈ CP(k)
6: Xa,k ← 1, ∀a ∈ NewPath
7: Return TRUE // Routing decision has changed.

8: end if
9: end if

10: Return FALSE // Routing decision remains the same.

NewPath is found using SPS(k,), which finds the minimum cost path from sk to tk based on the current market cost

for commodity k∈K, mc(a, k, X). SPS(k,) solves the problem in (12)–(14), where x is a vector of binary flow variables

determining NewPath. SPS(k,) returns the set of arcs in the shortest path discovered or ∅ if no path is found.[
SPS(k)

]
Minimize:

∑
a∈A

mc(a, k,X)xa (12)

subject to:
∑

a∈T(n)
xa −

∑
a∈E(n)

xa = bk
n ∀n ∈ N (13)

xa ∈ B ∀a ∈ A (14)

The value of the variable 𝜆k passed to Route(k, 𝜆k,) by IHHO() is the number of times commodity k∈K has changed

routing. Let the cost hurdle multiplier, hm(𝜆k) ∈ R, be a (user-defined) monotonically decreasing function in the range [0,1]

such that 𝜆k ∈ Z0+ and ∃𝜆0 < ∞ s.t. hm(𝜆0) = 0. The new route, NewPath, replaces the incumbent route, CP(k), only if

rc(NewPath, k,A,X) < hm(𝜆k)rc(CP(k), k,A,X). NewPath must provide a certain level of improvement over the incumbent with

respect to current market costs for a replacement to occur. As commodity k changes routes more regularly, 𝜆k will increase and

hm(𝜆k) will decrease, as shown in Figure 4. The gradual decrease in the cost hurdle multiplier requires subsequent NewPaths

to provide an increasingly substantial improvement over CP(k). To allow IHHO() to achieve an equilibrium without being

artificially forced into the equilibrium, hm(𝜆k) is designed to have a value of 1 until 𝜆k ≥ 𝜆1. With hm(𝜆k) = 1, routes NewPath
and CP(k) are compared based solely on their marginal market costs.

With other commodities changing routes, rc(CP(k), k, A, X) may change between iterations even if CP(k) is the same. If

this path’s residual capacity decreases significantly and the current CP(k) becomes untenable, hm(𝜆k)rc(CP(k), k,A,X) will

increase, possibly enabling a previously rejected route to replace the incumbent.

http://wileyonlinelibrary.com


BARR AND MCLOUD 9

FIGURE 5 Main loop supply curve vs. ResidualCapacityClearance() supply curve [Color figure can be viewed at wileyonlinelibrary.com]

Creating hm(𝜆k) such that hm(𝜆0) = 0 for some 𝜆0 < ∞ ensures each commodity can change routes at most 𝜆0 times, as

no NewPath can have a cost less than 0. If IHHO() is unable to reach an equilibrium, this limit on the number of changes per

commodity ensures the termination of IHHO().

4.3.2 ResidualCapacityClearance() Procedure
The scarcity cost component of the marginal market cost reflects arcs charging what the market will bear for high-demand,

limited resources. However, an arc’s actual marginal cost for arc capacity is the original arc cost, ca. At the equilibrium reached

at the end of the main loop of the IHHO() algorithm, some arcs will be left with excess capacity because no commodities (i.e.,

consumers) were willing to pay the marginal market cost for the unused capacity. During the ResidualCapacityClearance()

procedure each arc will attempt to sell its unused capacity at the marginal cost to induce consumers to switch from substitute

goods (alternate paths). An arc will not offer a commodity capacity above the arc’s upper limit, ua, unless the commodity had

paid the marginal market cost and was routed over the arc at the end of the main loop. The new supply curve will be infinitely

elastic up to full arc-capacity utilization and infinitely inelastic once the arc’s capacity is fully utilized (per Figure 5).

The ResidualCapacityClearance() procedure, Algorithm 4, examines the commodities to find routes incurring lower

original-arc cost while not violating arc capacity constraints. If an improved route is found, CP(k) is switched to the new path.

If an improved route is not found, CP(k) is left as is. If CP(k) is not altered by ResidualCapacityClearance(), CP(k) may con-

tain arcs whose capacity constraints are violated. ResidualCapacityClearance() enforces capacity constraints only for altered

routes. ResidualCapacityClearance() does not un-route routed commodities; CP(k)=∅ after ResidualCapacityClearance()

only if CP(k)=∅ at the start of ResidualCapacityClearance().

Algorithm 4. ResidualCapacityClearance() procedure

Input: 

Output: X
1: 𝜆k ← 0,∀k ∈ K
2: more ← TRUE

3: while more = TRUE do
4: more ← FALSE

5: Randomize order of K
6: for all k ∈ K do
7: NewPath ← SPM(k,)

8: if omrc(NewPath, k,KX)<min(M, hm(𝜆k)omrc(CP(k), k,X))
then

9: 𝜆k ← 𝜆k + 1

10: Xa,k ← 0, ∀a ∈ CP(k)
11: Xa,k ← 1, ∀a ∈ NewPath
12: more ← TRUE

13: end if
14: end for
15: end while
16: Return X

http://wileyonlinelibrary.com
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The original marginal cost, omc(a, k,K,X) ∈ R0+ (15), is given as the original arc cost, ca, if arc a has at least dk resid-

ual capacity, otherwise infinity. These are used to determine the original marginal route cost of route P for commodity k,

omrc(P, k,X) ∈ R0+ (16).

omc(a, k,K,X) =

{
ca if r(a, k,X) − 𝑑k ≥ 0,

M otherwise.
(15)

omrc(P, k,X) =
∑
a∈P

omc(a, k,K,X) (16)

where scalar M≥max(c) |N |.[
SPM(k)

]
Minimize:

∑
a∈A

omc(a, k,K,X)xa (17)

subject to:
∑

a∈T(n)
xa −

∑
a∈E(n)

xa = bk
n ∀n ∈ N (18)

xa ∈ B ∀a ∈ A (19)

ResidualCapacityClearance() solves SPM(k,) for each commodity k∈K having its routing reexamined. The formulation

for the problem solved is shown in Equations (17)–(19). SPM(k,) returns the set of arcs in the shortest path based on feasible

arc costs from sk to tk. If omrc(NewPath, k, X)<M, then this is the shortest path with respect to the original arc costs on which

sufficient residual arc capacity exists to route commodity k. If omrc(NewPath, k, X)≥M, then there does not exist a path from

sk to tk with at least dk residual capacity on each arc and no feasible path exists.

4.4 Interpretation of IHH’s final solution
The final solution found by IHHO() provides a single route for each commodity through the network and will always meet the

ODIMCF node-balance and integrality constraints (2) and (4). If the final solution is feasible with respect to the arc capacity

constraints (3), then an integer feasible solution is at hand. Unlike some integer programming techniques, IHHO() does not

provide a bound on the optimality gap, the difference between the objective function values of the optimal solution and the

IHHO() solution. Other techniques often rely on the linear programming relaxation as a source of gap information. While this

relaxation of ODIMCF can be solved to provide such gap information, testing indicates the time required to solve the relaxation

will be greater than the time required by IHHO() to find an integer feasible solution.

If the solution found by IHHO() violates one or more arc capacities, the solution will be infeasible, meaning no feasible

solution to that particular ODIMCF problem exists or the heuristic could not identify such a solution. This situation was not

encountered in the computational testing.

4.5 Asymptotic bounds
IHHO() has polynomial asymptotic bounds with respect to both time and space. The asymptotic bound on space requirements

is O(|A|+ |N ||K|). The |A| term represents the space needed to store arc information. The |N ||K| term represents the space required

to store route information. As the assumption is made that arc costs are always non-negative, a route will contain at most |N |−1

arcs with no cycles. One route is stored for each commodity. The O(|N |) space required for storage of node information is

dominated by the |N ||K| term. Similarly, a |K| term representing commodity information is omitted.

The asymptotic bound on running time for IHHO() is O(𝜆0|K|2(|A|+ |N| log |N|)). SP(k, N, A), SPM(k,), and SPS(k,)

use a shortest-path algorithm with a time bound of O(|A| + |N| log |N|), under the assumption of non-negative arc costs [2].

Route(k, 𝜆k,) uses SPS(k,) once and requires O(|N |) additional time to update and compare routes for a time bound of

O(|A| + |N| log |N|). SPSolve() uses SP(k, N, A) and records a route once for each commodity for a total of O(|K|(|A| +|N| log |N|)) time. Each commodity can change routes at most 𝜆0 times before the cost-hurdle makes further change impos-

sible. In the worst case, at most one commodity will change routes during each iteration of the main loop of IHHO(). This

worst case results in 𝜆0|K| executions of the main loop requiring O(𝜆0|K|2(|A| + |N| log |N|)) time. The main loop within

ResidualCapacityClearance() is similar to the main loop of IHHO() resulting in a O(𝜆0|K|2(|A| + |N| log |N|)) time bound

for ResidualCapacityClearance().
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TABLE 4 IHHO() parameters

Parameter Value

𝛽 max

(√
2

2
gm

(
ua), gm(𝑑k)

)
𝜇 gm(ca)

√
e

𝜋 ee

𝜆0 43

𝜆1 10

hm(𝜆k) 1, if 𝜆k < 𝜆1; else 1 −
(

𝜆k−𝜆1

𝜆0−𝜆1−1

)e

gm(yz) is the geometric mean of values for yz
∀z∈ Z.

5 COMPUTATIONAL TESTING

Computational testing is designed to determine the performance characteristics of an IHHO() implementation and compare

them to those of commercial-grade software. Test problems are generated to measure the responses of running time and solution

quality to changes in network and commodity characteristics.

The reported running times do not include time to read the problem or record the solutions. Solution quality is compared

with values for the LP relaxation (LPR) and the best-available integer programming (MIP) solution.

5.1 Test environment
All benchmark testing is performed on a Dell R720 with dual Six Core Intel Xeon 3.5 GHz processors and 252 GB RAM at

Southern Methodist University’s Lyle School of Engineering. The IHHO() algorithm is implemented in C++ and compiled

with g++ at the default optimization level. Reported running times (CPU execution times) are exclusive of input and output

processing.

LPR and MIP solutions are generated using IBM ILOG CPLEX Interactive Optimizer 12.6.0.0 (CPLEX12). CPLEX12 is

run with default settings, with three exceptions: the MIP time limit is set to 7200 s, the optimality tolerance increased to 0.25%,

and single-thread mode is used.2

5.2 Parameter selection
Performance of IHHO() is affected by the parameters 𝛽, 𝜇, and 𝜋. To avoid manually varying these values to find a set of

parameters with good performance over a range of problems, the metaheuristic differential evolution (DE) [11] was used to

select their values, as follows. Three problems were generated for four groups with different problem dimensions. DE is an

evolutionary algorithm with a population. For this application, a member of the population was defined by 3-tuple of values for

𝛽, 𝜇, and 𝜋. DE evaluated each member of the population by running the problems through IHHO() with the member’s 𝛽, 𝜇,

and 𝜋 values and taking the mean of the routing cost normalized to known solution values. Members evaluated with lower cost

were preferred during the creation of the next generation. A population size of 30 was used. Following 100 DE generations,

the benchmark testing values for 𝛽, 𝜇, and 𝜋 were determined from the group results and are shown in Table 4. The parameters

were tuned on a completely different set of problems from those used in the testing reported herein. In addition, the two sets of

problems were generated using different problem generators for both the networks and commodities.

While DE used IHHO() as a subroutine to automatically determine a set of parameters, IHHO() has no dependency on

DE. Other methods for tuning the parameters 𝛽, 𝜇, and 𝜋 could have been used. If IHHO() is to be used for a new application

and similar benchmark problems are available, re-tuning the parameters is recommended. The use of an automated tuning

method such as DE would facilitate periodic reevaluation of these parameters, and new problems could be added to the set of

benchmark problems to optimize against.

Table 4 contains the expression used for the hurdle multiplier hm(𝜆k) and its parameters 𝜆0 and 𝜆1. While the hurdle multi-

plier is used to guarantee termination of IHHO(), the algorithm converged to an equilibrium state before the hurdle multiplier

had any effect for almost all problems as described in Section 5.5. Therefore, no effort was made to tune 𝜆0 and 𝜆1 and the

initially selected values were used for all testing.

2This time limit is set to ensure a timely termination of testing. The optimality tolerance is increased as initial testing revealed CPLEX12 would expend a large

amount of effort closing the optimality gap after finding a good, even optimal, solution. Since our implementation has not been designed for multiple threads,

the single-thread mode for CPLEX12 is used for comparability.
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5.3 Problem generator
To explore the effects of underlying network topology and other problem characteristics, an ODIMCF problem generator,

ODGEN,3 was developed. ODGEN accepts as input parameters the number of commodities, number of nodes, number of

directed arcs, arc cost range (given as a minimum and 90th percentile value), and commodity demand range (given as a minimum

and maximum value).

ODGEN initially assigns a random position to each node in a two-dimensional space before determining the set of arcs. Arcs

are generated to form a mesh network topology by having the probability of an arc connecting i∈N to j∈N \ {i} be inversely

proportional to the distance in the two-dimensional space from i to j raised to a certain power. Once set A is generated, the arc

costs are set to the arc distance in the two-dimensional space scaled so that the minimum and 90th percentile arc costs match

the user input. All networks are connected graphs in that a path exists from every node to every other node.4 For every arc a∈A
there does not exist a path from ia to ja with a cost less than ca. The networks do not contain parallel arcs.

For each commodity k∈K, sk is randomly chosen from N with each node having the same probability of being chosen and

tk is similarly selected from N \ {sk}. The demand dk is chosen randomly from the specified commodity-demand range using a

uniform distribution.

To ensure problem feasibility, each commodity k is routed on the shortest path from sk to tk based on randomly assigned arc

costs that differ by commodity. The generated arc capacities are then set to the sum of the capacities required by the commodities

as routed on these random-cost shortest paths.

To enable experimentation of nonuniform distribution of origins and destination, the generator allows for the specification

of a percentage of vertices to be designated as hubs. A specified percentage of commodities must be routed between an origin

hub and a destination hub so that the bulk of the flow will be between hubs possibly passing through other vertices in the mesh

network. The remaining commodities are generated as described previously still allowing for the hub vertices to be paired with

non-hub vertices. The arc capacities are determined as previously described to ensure a feasible solution exists.

5.4 Test problem characteristics
Three test sets A, H, and L are created to evaluate the effects of |N |, |A|, and |K| on IHHO()’s performance and to explore the

method’s ability to solve much larger instances than previously published. Sets A and H have the same network topologies with

set A having commodity origins and destinations uniformly distributed as with a mesh network structure; set H having certain

vertices acting as hubs, as found in logistics and distribution networks with higher interactions between the hub nodes. Test set

L is similar to set A with uniform origin and destination distribution for commodities, but with significantly larger values for

|N |, |A|, and |K| to analyze IHHO()’s runtime performance for increasingly large problem sets. All problems are known to have

feasible solutions with respect to arc capacity constraints.

The characteristics of all three test problem sets are shown in Table 5. Within sets A and H eight groups of different problems

with similar characteristics (number of nodes, arcs, commodities, average commodity demand, mean arc capacity, and average

node degree) are created. Within each group, five different test problems are randomly generated with identical values for |N |, |A|,

and |K|, but with different random-number seeds. Arc costs are set with a minimum value of 10 and a value of 2000 for the

90th percentile. Commodity demands range from 5 to 25. Arc capacities are determined by ODGEN to ensure feasibility. For

set H, 10 percent of vertices are hubs and 80 percent of commodities must have hub vertices as both origin and destination. The

large problem set L contains six groups, also shown in Table 5. Within each group, five different test problems are randomly

generated with identical values for |N |, |A|, and |K| but with different random-number seeds.

5.5 Test set results
Table 6 shows the test problem run times and final solution costs for the IHH code and CPLEX’s LP relaxation and integer

programming solvers for test set A. Solution times are in CPU seconds and the IHH problem times are an average of 10 runs with

different random number seeds. Since IHHO() randomizes the commodity consideration order, 10 random-number-generator

seeds are used to solve each problem instance. Each reported group’s results represent 50 combinations of problem and seed.

Table 6 provides computational results for the test set A. IHHO() found feasible solutions to all problems and CPLEX did

not find a feasible MIP solution for 11 problems and 1 LPR (linear programming relaxation) problem within the time limit. The

table also provides the ratios in objective function values between IHH and the LPR and the MIP (mixed integer programming)

solution values provided by CPLEX12. IHH costs averaged 3.5% higher (median 2.4%) than the noninteger LPR solutions and

3Source code is available from the authors upon request.
4For industry problems with multiple subgraphs that are not connected to each other, a solution algorithm should be applied to each such subgraph separately.
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TABLE 5 Test problem sets: group characteristics

Group |N| |A| |K| 0/1 variables Constraints ca 𝒅k
a ua

b
𝒅egree

(∑
k∈K𝒅k∑
a∈Aua

)
c

(
𝒅k
ua

)
d

A1 30 90 112 10 196 3454 2331 15.18 122.5 6 0.15 0.12

A2 30 90 281 25 575 8524 2331 15.13 248.4 6 0.19 0.06

A3 30 360 1728 623 812 52 204 2372 15.09 161.6 24 0.45 0.09

A4 30 360 4320 1 559 524 129 964 2372 15.03 384.5 24 0.47 0.04

A5 120 360 257 92 781 31 204 1968 15.50 149.7 6 0.07 0.10

A6 120 360 642 231 766 77 404 1968 15.15 312.2 6 0.09 0.05

A7 120 1440 4937 7 114 221 593 884 1331 14.96 195.1? 24 0.26 0.08

A8 120 1440 12 342 17 784 826 1 482 484 1331 14.98 447.5 24 0.29 0.03

H1 30 90 112 10 196 3454 2331 15.18 149.7 6 0.64 0.10

H2 30 90 281 25 575 8524 2331 15.13 283.4 6 0.74 0.05

H3 30 360 1728 623 812 52 204 2372 15.09 207.2 24 0.63 0.07

H4 30 360 4320 1 559 524 129 964 2372 15.03 388.7 24 0.74 0.04

H5 120 360 257 92 781 31 204 1968 15.50 152.9 6 0.61 0.10

H6 120 360 642 231 766 77 404 1968 15.15 281.9 6 0.75 0.05

H7 120 1440 4937 7 114 221 593 884 1331 14.96 199.3 24 0.71 0.08

H8 120 1440 12 342 17 784 826 1 482 484 1331 14.98 448.3 24 0.75 0.03

L1 480 5760 15 360 88 473 600 7 378 560 1883.5 15.0 371.9 24 0.11 0.04

L2 480 5760 38 400 221 184 000 18 437 760 1883.5 15.0 913.5 24 0.11 0.02

L3 960 11 520 25 134 289 543 680 24 140 160 2159.5 15.0 366.1 24 0.09 0.04

L4 960 11 520 62 836 723 870 720 60 334 080 2159.5 15.0 895.7 24 0.09 0.02

L5 1920 23 040 42 535 980 006 400 81 690 240 3383.2 15.0 367.5 24 0.08 0.04

L6 1920 23 040 106 338 2 450 027 520 204 192 000 3383.2 15.0 902.4 24 0.08 0.02

aAverage demand per commodity.
bMean arc capacity.
cAverage ratio of total routed demand to combined capacity of all network arcs.
dAverage ratio of mean destination demand to mean arc capacity.

a mean of 3.1% (median 2.0%) above MIP solution values. But these high-quality IHH solutions were identified in a fraction of

the time required by CPLEX12, as shown later.

Table 7 provides computational results for the hub-network test set H. Again, IHHO() found feasible solutions to all

problems and CPLEX did not find a feasible MIP solution for ten problems within the 2-h time limit. IHH costs averaged 2.7%

higher (median 1.9%) than the noninteger LPR solutions and a mean of 2.3% (median 1.4%) above MIP solution values. But

these high-quality IHH solutions were quickly identified.

The solution times for test sets A and H are summarized in Table 8, where the IHH code’s best, mean, and worst running

times by problem group are shown in columns 3–5. The average ratios of IHHO()’s running time to LPR and MIP running

times are shown in the last two columns (where feasible LPR or MIP solutions exist). For set A, the ratios indicate that the

average IHH solution time is 172 times faster than the CPLEX LPR solver and 565 times faster than the CPLEX MIP code,

which could not find an integer solution for 20% of the problems. The longest IHH solve time for any combination of problem

and seed is 52.58 s for a problem with 17 772 480 binary decision variables, 12 342 commodities, and 1440 arcs.

The hub test set H gave similar results, with IHH solving these problems 129 times faster than LPR and 506 times quicker

than the MIP solvers. Although the problem dimensions are the same as those for test set A, these seem to be easier problems

for IHH, hence smaller solve times.

5.6 Statistical analyses
Statistical analysis of results is performed using SAS Version 9.4 to test whether IHHO()’s performance with respect to time

and solution quality is significantly different for the various problem groups. As solutions are not available from LPR and

MIP for all problems, the least-squares GLM procedure is used to analyze such unbalanced data. The analysis reveals whether

the differences between the observed means of populations, the groups, are statistically significant. Using Tukey’s significant

difference test, each population is given a letter representing its ranking. Populations with the same letter do not have statistically

significant differences between their means. More than one letter indicates a population’s mean is not significantly different

than the means of more than one distinct set of populations. Members labeled “A” have the best values, lower objective function

or running times. Values become progressively worse in alphabetical order.
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TABLE 6 Test set A problems’ solution times and costs

Solution times (s) Solution cost IHH ratiob to:

Grp Prob IHHa LPR MIP IHHa LPR MIP LPR MIP

A1 A1 0 0.09 1.27 25 888 055 25 219 739 25 380 948 1.026 1.020

A2 0 0.04 0.45 13 767 055 13 619 834 13 683 181 1.011 1.006

A3 0 0.06 0.36 15 409 031 14 307 332 14 433 630 1.077 1.068

A4 0.1 0.11 5.47 17 565 724 16 979 419 17 091 778 1.035 1.028

A5 0 0.06 1.41 5 999 320 5 829 935 5 851 626 1.029 1.025

A2 A11 0.01 0.27 4.12 65 433 671 64 183 982 64 382 083 1.019 1.016

A12 0.01 30.68 0.81 32 559 908 32 134 593 32 210 139 1.013 1.011

A13 0.01 0.14 0.88 35 452 909 34 619 069 34 723 468 1.024 1.021

A14 0.02 0.1 0.93 45 972 645 45 424 869 45 498 683 1.012 1.010

A15 0.02 0.09 3.34 14 470 213 14 211 330 14 238 794 1.018 1.016

A3 A21 0.9 29.8 931.37 139 968 253 131 959 935 132 849 007 1.061 1.054

A22 0.68 12.65 839.59 64 932 431 61 226 836 61 846 681 1.061 1.050

A23 0.71 4.97 329.55 78 437 815 74 377 380 74 804 983 1.055 1.049

A24 0.75 10.6 854.71 95 362 616 90 247 267 90 659 190 1.057 1.052

A25 0.66 17.34 2144.00 107 652 301 100 924 979 101 866 634 1.067 1.057

A4 A31 2.01 153.18 1110.44 328 010 021 320 334 827 c 1.024 c

A32 1.81 91.07 1110.44 154 170 274 150 964 798 151 805 158 1.021 1.016

A33 1.73 86.92 885.83 186 592 310 183 373 456 184 218 518 1.018 1.013

A34 1.71 53.79 6578.58 228 166 279 223 715 157 225 323 285 1.020 1.013

A35 2.21 162.12 1493.71 250 631 458 245 005 840 246 759 411 1.023 1.016

A5 A41 0.07 2.4 11.37 75 910 921 70 833 506 71 216 145 1.072 1.066

A42 0.06 0.78 4.04 75 772 046 72 847 682 73 275 906 1.040 1.034

A43 0.05 0.44 5.48 52 370 346 49 806 807 50 229 531 1.051 1.043

A44 0.06 1.01 5.34 73 467 522 68 774 329 69 031 890 1.068 1.064

A45 0.06 0.95 79.36 58 605 039 53 891 427 54 589 672 1.087 1.074

A6 A51 0.17 15.73 68.43 174 513 790 170 467 198 171 025 999 1.024 1.020

A52 0.19 4.18 41.6 179 542 511 177 252 846 177 679 960 1.013 1.010

A53 0.16 2.66 10.04 119 258 159 118 218 052 118 436 013 1.009 1.007

A54 0.18 7.34 36.53 171 600 499 168 819 235 169 346 548 1.016 1.013

A55 0.21 4.76 72.07 130 883 159 128 197 322 128 819 852 1.021 1.016

A7 A61 10.25 4073.79 7201.14 163 207 827 156 309 412 c 1.044 c

A62 10.71 1894.73 7200.50 300 256 560 290 068 077 c 1.035 c

A63 9.8 1881.49 7200.91 338 067 201 323 369 229 c 1.045 c

A64 11.58 2211.85 7201.62 197 008 935 187 343 861 c 1.052 c

A65 12.96 4731.51 7471.79 255 714 681 241 009 345 c 1.061 c

A8 A71 32.01 c c 391 461 947 c c c c

A72 31.09 12 008.82 7201.61 716 857 110 707 549 277 c 1.013 c

A73 34.43 11 991.83 7201.44 810 760 974 797 302 300 c 1.017 c

A74 32.31 22 433.22 7202.14 474 663 944 466 662 957 c 1.017 c

A75 34.41 19 625.22 7205.37 617 667 994 604 037 347 c 1.023 c

aMean of 10 IHH runs with different random number seeds.
bRatio of mean IHH minimum cost to LPR and MIP solution values.
cNo feasible solution found by CPLEX within 2-h time limit.

Table 8’s column 5 gives the ranking of problem groups within each test set based on solution time. The most difficult set

A problem groups were A7 and A8, denoted by their C and D rankings. Similarly, for set H, groups H7 and H8 had the longest

solution times, however the times for groups H1–H6 were not significantly different.

Table 9 shows the ratio of the IHHO() and LPR and MIP objective function values. These ratios indicate the percentage

difference between the IHH solution value and the corresponding value of the linear programming relaxation solution or the

MIP results. For example, a ratio of 1.036 shows that the IHH solution cost averaged 3.6% larger than that of CPLEX12’s linear

programming relaxation or its mixed integer programming solution value. For test set A, IHHO()’s costs averaged 3.5% higher

than the LPR solution value but, as noted above, this was found 172 times faster. Similarly, the IHH costs averaged 3.1% higher
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TABLE 7 Test set H problems’ solution times and costs

Solution times (s) Solution cost IHH ratiob to:

Grp Prob IHHa LPR MIP IHHa LPR MIP LPR MIP

H1 H1 0 0.18 29.42 29 955 889 28 539 832 28 618 951 1.050 1.047

H2 0 0.12 2.42 18 732 629 17 964 677 18 024 340 1.043 1.039

H3 0 0.04 0.57 22 622 073 22 422 453 22 447 019 1.009 1.008

H4 0 0.05 4.3 22 378 956 21 344 286 21 378 337 1.048 1.047

H5 0 0.11 2.32 6 558 798 5 935 733 5 960 416 1.105 1.100

H2 H11 0.01 0.19 5.58 70 538 736 68 777 857 68 980 048 1.026 1.023

H12 0.01 0.14 2.15 44 655 527 44 492 326 44 504 599 1.004 1.003

H13 0.01 0.15 0.68 54 413 060 54 189 697 54 260 908 1.004 1.003

H14 0.01 0.15 0.82 50 389 822 50 067 234 50 157 382 1.006 1.005

H15 0.01 0.11 2.41 13 944 509 13 726 647 13 764 490 1.016 1.013

H3 H21 0.36 9.43 159.31 144 381 818 142 649 463 143 598 565 1.012 1.005

H22 0.3 9.85 145.67 65 016 267 64 098 126 64 593 555 1.014 1.007

H23 0.21 3.54 57.74 80 029 905 79 211 507 79 348 400 1.010 1.009

H24 0.32 8.65 632.74 102 986 334 102 197 640 102 316 526 1.008 1.007

H25 0.39 9.79 148.4 104 165 646 102 197 678 102 722 378 1.019 1.014

H4 H31 0.85 30.96 922.14 327 687 154 325 837 074 326 010 526 1.006 1.005

H32 0.86 51.32 310.74 133 735 869 132 775 058 133 324 942 1.007 1.003

H33 0.79 12.2 47.12 191 168 482 190 474 085 190 602 451 1.004 1.003

H34 0.65 17.5 62.38 238 725 874 237 934 570 238 072 969 1.003 1.003

H35 0.57 21.39 72.11 233 146 966 232 279 190 232 412 534 1.004 1.003

H5 H41 0.05 1.87 15.51 69 673 389 65 287 854 65 742 141 1.067 1.060

H42 0.04 1.8 23.81 76 545 065 73 030 726 73 457 452 1.048 1.042

H43 0.05 1.61 37.88 60 697 045 57 730 345 58 155 068 1.051 1.044

H44 0.05 2.29 36.22 80 271 608 75 536 053 75 863 431 1.063 1.058

H45 0.04 2.53 39.21 62 502 443 59 563 649 59 901 249 1.049 1.043

H6 H51 0.17 10.55 183.8 156 275 156 150 945 216 151 690 295 1.035 1.030

H52 0.16 6.06 48.15 172 882 442 169 114 550 170 014 917 1.022 1.017

H53 0.2 6.13 72.72 141 093 921 137 522 791 138 217 544 1.026 1.021

H54 0.17 6.15 41.71 190 909 105 187 478 359 188 135 845 1.018 1.015

H55 0.16 9.08 44.59 153 301 857 149 465 335 150 208 616 1.026 1.021

H7 H61 8.95 1202.56 7201.74 161 927 789 153 606 071 c 1.054 c

H62 7.66 978.74 7489.69 315 966 130 308 178 610 c 1.025 c

H63 7.94 1249.44 7201.77 355 177 320 343 644 420 c 1.034 c

H64 9.42 1766.00 7200.75 208 215 692 198 542 839 c 1.049 c

H65 8.24 2285.61 7200.69 275 247 104 264 016 690 c 1.043 c

H8 H71 26.36 9806.65 7202.07 391 242 593 383 969 884 c 1.019 c

H72 23.22 10 432.18 7202.02 794 124 185 783 184 975 c 1.014 c

H73 24.48 13 263.41 7202.30 881 780 074 868 298 779 c 1.016 c

H74 28.2 19 977.42 7202.61 521 002 962 511 999 669 c 1.018 c

H75 24.76 18 301.86 7202.07 691 022 207 678 169 628 c 1.019 c

aMean of ten IHH runs with different random number seeds.
bRatio of mean IHH minimum cost to LPR and MIP solution values.
cNo feasible solution found by CPLEX within 2-h time limit.

than the MIP values, but were found 565 times quicker, per Table 8. The Tukey rankings in column 5 do not reveal an obvious

pattern as to what might make some problems more difficult.

To further explore the problem characteristics that affect IHHO() solution times, a regression analysis was performed

based on data from test sets A and H. The observed solution time was the dependent variable and the explanatory variables were

those from Table 5: |N |, |A|, |K|, number of binary variables and constraints, average cost, average demand, average arc capacity,

and the network topology (hub or non-hub). The regression has an r2 = 0.9795. Only three of the nine explanatory variables

are not statistically significant: capacity, cost, and degree. Of the six significant predictors, solution time increased with |A| and

the number of problem constraints, but decreased if a hub topology was used, or if |N |, |K|, or the number of binary variables

increased.
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TABLE 8 Problem group solution time: IHH mean, LPR and MIP ratios

IHH running time (s) LPR:IHH MIP:IHH

Group Mean Best Worst Rank* time ratioa time ratiob

A1 0.02 0.00 1.00 A 3.4 85.3

A2 0.01 0.00 0.03 A 466.9 150.5

A3 0.74 0.46 1.57 A,B 20.4 1377.4

A4 1.89 1.25 3.08 B 60.2 1171.3

A5 0.06 0.04 0.11 A 19.0 360.4

A6 0.18 0.11 0.37 A 37.7 248.8

A7 11.06 6.66 20.76 C 267.5 c

A8 32.85 22.24 52.58 D 502.7 c

Average 172.2 565.6

H1 0.00 0.00 0.01 A ∞ ∞

H2 0.01 0.00 0.03 A 14.8 232.8

H3 0.32 0.17 0.77 A 25.8 715.0

H4 0.74 0.48 1.97 A 36.0 382.3

H5 0.05 0.03 0.07 A 40.4 610.5

H6 0.17 0.12 0.26 A 44.7 460.0

H7 8.44 6.37 13.61 B 177.3 860.1

H8 25.40 18.77 38.58 C 565.2 283.6

Average 129.2 506.3

a(Mean LPR solution time)/(mean IHH solution time).
b(Mean MIP solution time)/(mean IHH solution time).
cNo feasible solution found by CPLEX12 within 7200 s.

*Tukey’s significant difference test ranking.

TABLE 9 IHH solution value ratio to LPR, MIP

IHH:LPR cost ratioa IHH:MIP cost ratiob

Group Mean Best Worst Rank Mean Best Worst

A1 1.036 1.027 1.048 A,B 1.029 1.021 1.041

A2 1.017 1.012 1.024 A,B 1.015 1.010 1.021

A3 1.060 1.055 1.067 B 1.052 1.047 1.059

A4 1.021 1.020 1.023 A,B c c c

A5 1.064 1.047 1.080 B 1.056 1.040 1.072

A6 1.017 1.013 1.020 A 1.013 1.010 1.017

A7 1.047 1.046 1.050 A,B c c c

A8 1.017 1.017 1.018 A,B c c c

Average 1.035 1.030 1.042 1.031 1.024 1.038

H1 1.051 1.039 1.064 C,B 1.048 1.036 1.061

H2 1.011 1.009 1.014 A 1.009 1.007 1.012

H3 1.013 1.011 1.015 A 1.008 1.006 1.010

H4 1.005 1.004 1.005 A 1.003 1.003 1.004

H5 1.056 1.044 1.066 C 1.049 1.037 1.060

H6 1.026 1.019 1.034 B,A 1.021 1.014 1.029

H7 1.041 1.039 1.044 c c c

H8 1.017 1.016 1.018 c c c

Average 1.027 1.022 1.033 1.023 1.017 1.029

a(IHH objective function value)/(LPR Objective function value).
b(IHH objective function value)/(MIP objective function value).
cNo feasible solution found by CPLEX12 within 7200 s.
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TABLE 10 Large problem set L: solution time, cost, coefficient of variation

Group Problem IHH time IHH cost CV cost

L1 L51 77.78 1 426 590 347 0.00018

L52 81.73 1 254 903 691 0.00013

L53 73.63 1 703 192 064 0.00014

L54 81.48 1 955 056 175 0.00017

L55 72.03 1 434 497 785 0.00013

Average: 77.33 0.00015

L2 L56 226.81 3 562 506 827 0.00002

L57 213.14 3 123 060 684 0.00005

L58 218.98 4 236 881 946 0.00004

L59 205.03 4 861 652 396 0.00004

L60 208.00 3 552 577 022 0.00004

Average: 214.39 0.00004

L3 L71 286.58 3 660 398 107 0.00012

L72 294.18 3 793 204 910 0.00011

L73 287.23 2 713 212 910 0.00013

L74 275.33 4 116 477 552 0.00008

L75 284.63 3 766 807 718 0.00010

Average: 285.59 0.00011

L4 L76 820.17 9 119 420 821 0.00003

L77 764.44 9 397 310 591 0.00002

L78 813.81 6 720 114 699 0.00002

L79 820.91 10 235 141 998 0.00004

L80 783.75 9 318 572 755 0.00003

Average: 800.62 0.00003

L5 L91 1114.24 6 497 960 761 0.00008

L92 1222.81 20 287 326 224 0.00007

L93 1132.24 8 091 918 047 0.00007

L94 1141.31 15 842 224 803 0.00009

L95 1156.20 8 657 046 549 0.00006

Average: 1153.36 0.00007

L6 L96 3118.31 16 154 800 326 0.00003

L97 3210.38 50 496 932 124 0.00003

L98 3306.78 20 132 144 074 0.00002

L99 3141.18 39 421 362 436 0.00002

L100 3181.98 21 458 101 592 0.00003

Average: 3191.72 0.00002

Additional analysis was performed on results of test set A to determine the impact of the hm(𝜆k) function on overall perfor-

mance. As noted in Sections 4.3.1 and 4.5, hm(𝜆k) is designed to force IHHO() to converge to an equilibrium if the market

forces are insufficient. The code was modified to count the number of times the hurdle multiplier prevented a commodity from

switching to a new route so when rc(CP(k), k,A,X) ≥ hm(𝜆k)rc(CP(k), k,A,X) while rc(NewPath, k, A, X)< rc(CP(k), k, A, X).

For the 400 runs of IHHO() performed, the hurdle multiplier had an effect during five calls to Route(k, 𝜆k,). These five

instances occurred for one seed of one problem in Group A8. These results indicate that for most problems and commodities

IHH’s price mechanism alone is sufficient to reach an equilibrium.

Analysis was also performed to determine the impact of the ResidualCapacityClearance() procedure on overall perfor-

mance. As noted in Section 4.3.2, the marginal market cost curve is not an exact match to the original ODIMCF problem

and ResidualCapacityClearance() attempts to close the gap by finding lower original cost paths to fully utilize arc capaci-

ties and by rerouting commodities that paid a large marginal market cost to exceed an arc’s capacity constraint. For all runs

of problem set A, 69.25% of solutions after IHHO()’s main loop are feasible with respect to arc capacity constraints. For

the infeasible solutions, the mean and median percentage of arc capacity constraints violated are 0.75% and 0.56% respec-

tively with ResidualCapacityClearance() able to resolve all violations. For the feasible solutions, the mean and median

percentage of ODIMCF objective function improvement after ResidualCapacityClearance() are 0.66% and 0.70% respectively.
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For all runs, the mean and median number of reroutes per commodity during ResidualCapacityClearance(P) are 0.090 and

0.089 respectively indicating most commodities do not change routes during ResidualCapacityClearance(). These results

indicate that the main loop of the IHHO() algorithm based on the invisible-hand analogy is doing most of the work with

ResidualCapacityClearance() closing the small remaining gap.

5.7 Large problems: test set L
Test set L contains the largest ODIMCF problems solved to explore the capabilities of the IHH algorithm. Because these

problems are beyond the solvability of CPLEX, they are only run using IHHO(). The problems dimensions are given in Table 5

with Table 10 providing solution times, costs, and coefficients of variation from the computer experiments. These contain the

largest ODIMCF problem instances published to date, with group L6 networks containing 1920 nodes, 23 040 arcs, and 106 338

commodities, as can be found in industrial problems [35].

The results show that the IHH can even solve problems with over 2 billion binary variables and 200 million constraints in

3200 s. If the results from test sets A and H continue to hold, the solution values could be within a few percentage points of the

exact solution values.

To assess the impact of the inherent randomness in IHH, each problem was solved 10 times with different random number

seed values and the average time and cost reported. An evaluation of the computational results of multiple runs per problem

shows that the mean coefficient of variation CV (standard deviation normalized by the mean) for test sets A and H of IHH

solution values is 0.35% (median is 0.00201), reflecting small variation in the resulting solution values; for the largest set L, the

even smaller average CV= 0.00007, shown in Table 10. This lack of variation indicates that the IHH provides robust results for

these problems.

6 CONCLUSIONS

Origin-destination integer multicommodity flow problems occur in a variety of application areas—including logistics and

telecommunications—and are often of large dimensions, in terms of nodes, arcs, commodities, binary variables, and constraints.

This heuristic, inspired by Adam Smith’s invisible hand description of the efficient economic processes underlying a market

economy, provides a new method for solving large-scale instances of such problems. Computational testing demonstrates it has

the capability to achieve integer feasible solutions with excellent solution quality relative to objective function value.

The current implementation’s time performance appears competitive over a wide range of problem characteristics. Linear

space requirements combined with fast running times enables IHH to solve realistic problems with millions of constraints and

hundreds of millions of binary variables that are beyond the reach of other methods. The methodology is shown to identify

high-quality integer solutions quickly, as verified in comparisons with state-of-the-art commercial software.

Further research into this approach could take advantage of parallel computing implementations whereby a host of com-

peting system processes could emulate the distributed decision-making of a marketplace. By replacing randomized choices

with algorithmic race conditions, the method might converge faster while still uncovering high-quality solutions and enable the

solution of even larger problem instances. Further research could examine procedures to dynamically alter the marginal market

cost curves for each arc during algorithm execution reacting to actual demand and fully exploiting the rationing function of the

demand curve.

Additional research directions could evaluate application of this approach to variations of the ODIMCF problem itself.

One variation would involve problems where the underlying network does not have sufficient capacity to accommodate all

commodities and a decision on which commodities to service must be made. Such work could include reporting on the state of

the problem to inform decisions on future changes to the network. Other versions to study would include problems where there

is a limit on the total route length for commodities and those with an imposed commodity demand schedule so that demand

may vary over time, possibly with commodities completely deactivating during certain periods.
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