
Received: 21 May 2020 Revised: 22 December 2020 Accepted: 23 December 2020

DOI: 10.1002/net.22020

S P E C I A L I S S U E A R T I C L E

An extreme-point tabu-search algorithm for fixed-charge
network problems

Richard S. Barr1 Fred Glover2 Toby Huskinson3 Gary Kochenberger4

1Department of Engineering Management,

Information and Systems, Lyle School of

Engineering, Southern Methodist University,

Dallas, Texas, USA
2ECEE, College of Engineering and Applied

Science, University of Colorado - Boulder,

Boulder, Colorado, USA
3Computer Science Department, Lyle School of

Engineering, Southern Methodist University,

Dallas, Texas, USA
4Business School, University of Colorado at

Denver, Denver, Colorado, USA

Correspondence
Richard S. Barr, Department of Engineering

Management, Information and Systems, Lyle

School of Engineering, Southern Methodist

University, Dallas, TX, USA.

Email: barr@smu.edu

Abstract
We propose a new algorithm for fixed-charge network flow problems based on ghost

image (GI) processes as proposed in Glover (1994) and adapted to fixed-charge trans-

portation problems in Glover et al. (2005). Our GI algorithm iteratively modifies

an idealized representation of the problem embodied in a parametric GI, enabling

all steps to be performed with a primal network flow algorithm operating on the

parametric GI. Computational testing is carried out on well-known problems from

the literature plus a new set of large-scale fixed-charge transportation and trans-

shipment network instances. We also provide comparisons against CPLEX 12.8 and

demonstrate that the new GI algorithm with tabu search (TS) is effective on large

problem instances, finding solutions with statistically equivalent objective values

at least 700 times faster. The attractive outcomes produced by the current GI/TS

implementation provide a significant advance in our ability to solve fixed-cost net-

work problems efficiently and invites its use for larger instances from a variety of

application domains.

KEYWORDS

combinatorial optimization, discrete optimization, fixed-charge networks, heuristics,

mixed-integer optimization, network optimization, nonconvex optimization, tabu

search

1 PROBLEM DEFINITION AND BACKGROUND

We define the network fixed-charge problem as

NetFC: Minimize xo[FC] = cx + F(x)
subject to: Ax = b

U ≥ x ≥ 0,

where x is the vector given by x =
(
xj ∶ j ∈ N = {1, … , n}

)
and the matrix A is a node-arc incidence matrix, so that the

equation Ax= b constitutes a classical network representation of the flow equations defining a pure network problem. The

variables xj correspond to integer flows on the network arcs with simple upper bounds Uj and the real vector c is the cost per unit

of flow. The fixed-charge function is given by F(x) =
∑
(Fjyj ∶ j ∈ N), where each fixed-charge coefficient Fj is nonnegative

and the yj variables take on binary values that satisfy yj = 1 if xj > 0 and yj = 0 otherwise. F(x) may be equivalently written as

F(x) =
∑(

Fjyj ∶ j ∈ N(FC)
)
, where N(FC)= {j∈N : Fj > 0} and we call N(FC) the set of (effective) fixed-charge coefficients.

Applications of the problem NetFCarise in many areas, including facility location, network design, logistics and supply

chain, and specific problems, such as lot-sizing, course scheduling, and others. Location problems include the uncapacitated

Networks. 2021;1–19. wileyonlinelibrary.com/journal/net © 2021 Wiley Periodicals LLC 1

https://orcid.org/0000-0002-1925-6642
https://orcid.org/0000-0001-6945-0438
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.22020&domain=pdf&date_stamp=2021-01-19


2 BARR ET AL.

and capacitated facility or plant location problems as described in Fernández and Landete [13] and Eiselt et al. [12]. Daskin

[11] provides in-depth coverage of the area and an extensive list of application papers is available in Eiselt et al. [12]. Network

design applications arise in telecommunications [14, 27], including related location problems [15], regional wastewater system

design [21], and electrical smartgrid data network design, including equipment placement, described in Barr et al. [9].

NetFC problems also have useful applications in supply chain optimization [2], logistics [3], vanpool assignment [22], and

distribution networks [24]. In addition, they emerge in multilevel lot-sizing within an MRP [28] and scheduling training courses

[18]. See other applications enumerated in Nicholson and Zhang [26].

In the following, we make extensive reference to concepts for primal simplex algorithms for pure networks, including basis

structure, basis equivalent paths, and pricing and pivoting operations. (For useful background information, see, for example,

Ahuja et al. [1], Bazaraa et al. [10], and Murty [25].)

The remainder of this article is organized as follows. Section 4 introduces our ghost image (GI) approach for the network

fixed-charge problem, NetFC, and gives a pseudocode for its main algorithm and associated routines, followed by an explana-

tion of the procedure. The design for testing our algorithm and the computational results, together with a comparison involving

outcomes obtained by applying the CPLEX MIP code [15], are presented in Section 7. As shown, the outcomes demonstrate sig-

nificant advantages for our algorithm both in solution time and solution quality in solving large and challenging NetFCproblems.

Finally, Section 7 concludes the article, highlighting the implications of the computational results and identifying directions for

future research.

2 THE GI APPROACH

The general form of the GI approach derives from a collection of problem-solving principles detailed in Glover [16]. The GI

terminology refers to idealized representations that may be viewed as a generalization of certain relaxation/restriction procedures

of mathematical optimization and that incorporate aspects of penalty-based neural models.

Our focus on applying the GI framework to fixed-charge network problems builds on the work of Glover et al. [17] that

studies an earlier version of the approach applied to the special case of fixed-charge transportation networks. We have extended

the underlying adaptive memory framework and integrated it with a more general network optimization approach that solves

problems beyond the transportation setting.

Within the pure network setting of NetFC, our method exploits the problem structure by introducing a nonnegative penalty

vector p= (pj : j∈N) and an associated penalized cost vector given by c(p)= (cj + pj : j∈N). The penalty vector p is determined

by a self-adjusting parameterization to give the following parametric network linear programming relaxation of the fixed-charge

problem

LP(p) ∶ Minimize xo(p) = c(p)x
subject to: Ax = b

U ≥ x ≥ 0.

The parameterization defining pj occurs by setting pj =Fj/vj, where vj denotes a quantity that is systematically updated

throughout the algorithm. Hence pj allocates the fraction 1/vj of the fixed cost Fj to the total cost of xj. We apply the convention

that a denominator vj close to 0 (smaller than a chosen 𝜀 value) translates into setting pj =M provided Fj > 0, where M is a

large positive number, and similarly a denominator vj that exceeds M translates into setting pj = 0. However, we will in several

instances identify the pj values directly without bothering to make reference to vj. (Note, if Fj = 0 then automatically pj = 0,

regardless of the value of vj, since Fj = 0 expresses the fact that xj is not a fixed-charge variable. We also interpret the value of

xj to be 0 if this value is less than 𝜀.)

In the case p= 0 (where all pj = 0), we have c(p)= c, and obtain the simple linear programming relaxation

LP ∶ Minimize xo = cx
subject to: Ax = b

U ≥ x ≥ 0.

The method sketched in Glover [16] begins by solving LP, and then solves a succession of problems LP(p) produced by

progressively modifying and updating pj in alternation with applying an improvement method for enhancing the solution to

LP(p), utilizing adaptive memory strategies from tabu search (TS) [19].

An outline of this approach can be described as follows. Each solution obtained throughout these steps is evaluated as a

candidate for the best solution x* currently found.



BARR ET AL. 3

Step 0: Solve LP, yielding an optimal linear programming solution as a first candidate for x*, and set v=U, to

yield pj =Fj/vj for j∈N.

Step 1: Solve LP(p), yielding a solution x = x′.
Step 2: Starting from x′, use restriction to obtain a refined solution and apply the TS improvement method to

obtain a further refined solution x = x′′.
Step 3: Update v as a function of its current value and x′′. If a maximum allowed iteration is not reached, return

to Step 2. Otherwise, terminate the algorithm with the best solution x* at hand.

In our adaptation of the GI method to the present context, for simplicity we use the convention of identifying the value of

the (nonlinear) fixed-charge objective function xo[FC] for a given trial solution vector x (e.g., x = x′, x′′, and so forth) as xo
(hence, x′o = xo[FC:x′], x′′o = xo[FC:x′′], and so forth). It is important to keep in mind that in such cases xo includes reference

to the fixed-charge component of the objective function, with the sole exception of explicitly referring to the problem LP.

The values Uo and Uo
j defined below are used as proxy bounds for xj that will be introduced to replace the original bound

Uj in certain calculations of the algorithm. Apart from trial solution vectors, we maintain a locally optimal solution vector x*

and an overall (“global”) best solution vector xG, that is, xG
o (= xo[FC:xG]) is the minimum of the x∗o (= xo[FCx*]) values.

We first give a pseudocode for the main routines of our GI/TS method embodied in our FixNetGI code and then describe

the rationale that explains the key steps.

2.1 GI/TS algorithm
The algorithm requires setting the following user input parameters:

Search limits:
1. MaxIter: maximum inside loop iterations per invocation

2. MaxPass: number of diversification invocations required to terminate algorithm

3. MaxInsideImprove: number of consecutive nonimproving inside loop iterations that will trigger an exit

from the inside loop

4. BadLuck: number of consecutive x*-improvement failures that will trigger a diversification

5. OutOfLuck: number of consecutive nonimproving outside loop iterations that will trigger an exit from the

outside loop

Updating v:
6. Alpha(i), i= 1 to 3: weighting factors, summing to 1, for updating vj values. Weights: Alpha(1) for current

x∗j , Alpha(2) for current vj value, and Alpha(3) for the historical meanj plus Uo
j as adjusted by Beta

7. Beta: weight for historical average associated with Alpha(3) and vj update

8. MaxSol: when updating vj, the maximum number of previous x∗j values used to calculate meanj for the

Alpha(3) term

Tabu control:
9. TabuTenure: pivots required before a leaving arc can reenter the network tree (LP basis)

Duplicate solutions:
10. LimMatch: limits the number of times a solution duplication occurs before triggering diversification

11. sLim: number of solutions saved for duplicate-solution checking

12. ZeroRefresh: number of diversifications performed that will trigger refreshing the duplicate-check solution

list with all counts equal 0

The GI/TS algorithm, as defined in Algorithms 1 and 2, is supported by several subsidiary procedures to update v, control

the descent and tabu phases, perform moves/pivots, check for duplicate solutions, and diversify the search.1 These components

are defined and discussed separately.

2.2 Discussion of the GI/TS main routine
In the initialization step, Step 0, the original linear programming relaxation LP is solved, and its solution is saved as the first

locally optimal solution x*. In addition, to initiate alternative formulas for updating the parameter vector v, the constant Uo is

initialized to be the largest xj value obtained in solving LP. In addition, the solution value for each variable xj is recorded in Uo
j .

1The algorithms use the notation “++” to denote incrementing the associated variable by 1. For example, ++x is equivalent to x= x+ 1; when used in a test,

such as ++x> y, variable x is incremented prior to making the comparison with y.



4 BARR ET AL.

Algorithm 1. Procedure GI/TS Main Routine: Steps 0 and 1 (of 4)

1: —Step 0: Solve LP and create initial v, p, and locally best solution x∗
2: Initialize parameters: JIter= 0, viter = MaxIter/4, Pass = 0, LastInsideImprove = 0, Zero(s) = (0, … , 0) for s = 1,… , sLim

(i.e., Zero(s, j) = 0 for j = 1,… , n), nMatch = 0, Recover = 0, DoTabu = True, NumSol = 0, NoLuck = 0, BigM = large

positive number, AscentTenure = DescentTenure = TabuTenure

3: Solve LP, save the solution as the first locally best solution x∗ and identify the fixed-charge objective function value x∗o =
xo[FC ∶ x∗]

4: Save the scalar Uo as the largest flow value xj, j ∈ N(FC) in the solution to LP
5: Save individual values Uo

j (≤ Uj) = xj as the maximum flow (so far) for each arc j ∈ N(FC)
6: Set vj = Uj so that initially pj = Fj∕Uj, meanj = Uj for all j ∈ N(FC)
7: —Step 1: Create and solve LP(p) to get first test solution x′
8: Solve LP(p) by reoptimization to get x′ and identify the fixed-charge objective function value x′o = xo[FC ∶ x′]. NumSol = 1

9: Update Uo
j = max{Uo

j , x′j}, for each j ∈ N(FC)
10: if x′o<x∗o then
11: x∗o = x′o, x∗ = x′, set Descent = True and perform V_UPDATE

12: end if
13: Create the n-vector ZeroØ, where ZeroØ(j) = 1 if x′j = 0 and Fj>0 (j ∈ N(FC)), else ZeroØ(j) = 0

14: Set First = 1, Zero(1) = SumZeroØ= ZeroØ, and OutsideOK = True

15: Perform STEPS23 / / Remainder of the algorithm, Steps 2 and 3
16: STOP

In Step 1, the problem LP(p) is solved for the first time by reoptimizing the solution obtained in Step 0 for the modified

objective function of LP(p), to obtain a LP optimum solution, x′. The fixed-charge objective function value x′o = xo[FC:x′]
for x′ is calculated and x′ replaces the locally best solution x* if x′o < x∗o(= xo[FC:x*]). We continue to update the values Uo

j
designated to maintain the maximum value attained by xj for the first viter iterations.

2.3 Discussion of the supporting procedures
The method contains several supporting procedures. The first is V_UPDATE (Algorithm 3), which updates the vj values as a

foundation for subsequently determining the pj values that define the problem LP(p) and, if appropriate, the Uo
j values and the

identity of the best solution found so far. This procedure is accessed by Algorithms 1 and 2 of the Main Routine and also by

other supporting routines.

The DESCEND routine (Algorithm 4) is the first supporting procedure invoked by the main routine, to implement the

choice of xj* as the incoming pivot variable and the associated xk* as the leaving variable. If the algorithm is in a descent phase

(Descent = True and TabuTenure = DescentTenure), and if the value xoj* continues the descent (xoj* < 0), then the routine

simply performs the PIVOTJSTAR (Algorithm 5) procedure which pivots in xj* and removes xk* from the basis tree, to produce

the updated solution x′′ and its fixed-charge objective x′′o , and updates Uo
j for variables along the basis exchange path. Once

the descent ends, Descent is set to False, TabuTenure is set to AscentTenure, and a check is performed to see if the solution x′′
(before updating by the basis exchange of xj* and xk*) improves on x* (x′′o < xo∗). In this case, x* is updated as customary and

the routine performs V_UPDATE (Algorithm 3), which updates the vj values as a foundation for subsequently determining the

pj values that define the problem LP(P) and likewise performs PIVOTJSTAR.

On the other hand, when the DESCEND routine is invoked in the situation where Descent = False, the PIVOTJSTAR

routine is immediately performed and if x′′o < xo∗, then x* is updated as before. (The value xoj* can be improving after the initial

descent has concluded. Instead of bouncing in and out of successive descent and ascent phases, once the initial descent has

concluded, all subsequent steps are treated as an “ascent tabu phase.” However, TabuTenure is set to DescentTenure whenever

an improving step occurs, and to AssetTenure otherwise.) Finally, Tabu(k*) = InsideIter + TabuTenure for the variable xk* that

leaves the basis tree and becomes nonbasic. These background observations lay a foundation for understanding the thrust of the

main routines and will be supplemented by additional comments below explaining the DUPCHECK and DIVERSIFY routines.

In the preceding steps of the Main Routines, to investigate the potential for further improvement to the current solution x′,
the objective function coefficients of the variables with nonzero and zero values are set to their variable costs cj and cj+ BigM,

respectively, in Step 2-Phase I (as a result of setting pj = 0 and pj = BigM in these two cases). This results in the specified form

of LP(p), which is then solved by postoptimization, yielding x′′. The main purpose of setting the cost of variables with the zero

values in the trial solution to BigM is to maintain their values at zero during the current postoptimization process, and these

variables alternatively could simply be handled by temporarily setting their upper bounds to 0 during this step.



BARR ET AL. 5

Algorithm 2. Procedure STEPS23

1: — Main Routine continued, Steps 2 and 3
2: Set OutsideOK = True

3: while OutsideOK do
4: —(Execute the outside loop)
5: —Step 2: Improve the current solution x′, move to local optimum x′′, and then to TS improvement
6: —Phase I: Refine x′ by LP Restriction
7: Set p: pj = BigM if ZeroØ(j) = 1, else pj = 0

8: Solve LP(p) by reoptimization to get x′′ (and x′′o )

9: If x′′o <x∗o , then set Descent = True (Recording of x∗ = x′′ will be handled later)
10: If JIter <viter, update Uo

j = max{Uo
j , x

′′
j }, for each j ∈ N(FC)

11: —Phase II:
12: Initialize parameters: Set InsideIter = TSImprove = DescentImprove = LastInsideImprove = 0, Descent = True, Improve = False, TabuTenure = DescentTenure

13: Set Tabu(j) = 0 for each j ∈ N
14: Set Aspire = min{x′′o , x∗o}. InsideOK = True

15: while InsideIter < MaxIter and InsideOK do
16: —(Execute inside loop)
17: ++InsideIter, j∗ = k ∗= 0

18: for all NB arcs j ∈ N do
19: Compute xoj, the change in the objective function x′′o (= xo[FC ∶ x′′]) if xj is pivoted into the basis (and one or more variables xk are driven to their lower or

upper bounds to become candidates to leave the basis). Restrict consideration to j ∈ N satisfying Tabu(j) < InsideIter or satisfying the aspiration criterion

of xoj< Aspire−x′′o
20: Save the best arc j∗ = arg min(xoj: for j subject to the restriction above), and identify a leaving arc k∗. (k∗ = j∗ if there is a “bound flip” where x∗j leaves the

basis at its opposite bound)

21: end for
22: Perform DESCEND to carry out the pivot and associated update for the choice of j∗ and k∗
23: if (InsideIter − LastInsideImprove > MaxInsideImprove) then
24: InsideOK = False (Exit the Inside Loop)
25: end if
26: end while/ / for the inside loop
27: if ++JIter > MaxIter then
28: OutsideOK = False (Exit the Outside Loop)
29: end if
30: if Improve then
31: NoLuck = 0

32: else
33: if ++NoLuck = OutOfLuck then
34: OutsideOK = False, BREAK (Exit the Outside Loop)
35: else if NoLuck = BadLuck then
36: vj = max{Uo − vj, 1} for each j ∈ N(FC) (mini-diversification)
37: If x∗o<xo

G then update xo
G = x∗o and xG = x∗

38: x∗o = BigM (to assure LP(p) starts over to make a new local optimum x∗)
39: end if
40: end if
41: —Create and solve LP(p) to get new test solution x′ and check for duplications
42: Set pj = Fj∕vj for each j ∈ N(FC)
43: Solve LP(p) by postoptimization to get x′ and x′o
44: Update Uo = max{Uo, x′ j} for each j ∈ N(FC)
45: if x′o<x∗o then
46: Update x∗o = x′o and x∗ = x′
47: Perform V_UPDATE

48: end if
49: Create the n-vector ZeroØ, where ZeroØ(j) = 1 if Fj>0 and x′ j = 0, else ZeroØ(j) = 0

50: Perform DUPCHECK / / which may include DIVERSIFY
51: end while/ / for the outside loop
52: —Step 3: Conclusion after exit Outside Loop
53: if x∗o<xo

G then
54: xo

G = x∗o and xG = x∗ and set BestPass = Pass

55: end if

56: STOP

Remaining variables that were positive in the solution to the previous LP(p) problem receive their original costs cj so that the

solution will be evaluated relative to the original variable costs. Following the calculation of the fixed-charge objective function

value for the resulting solution x′′, the current locally best solution x* is replaced by x′′ if this new solution turns out to be better.

In addition, in Phase I the value Uj, identifying the maximum value for each xj throughout the first viter iterations, is updated.

Next, the Inside Loop is initiated within Phase II that executes a tentative pivot exploration process, where each nonbasic

variable xj, j∈N, is considered as a potential entering variable, and the candidates for the leaving variable, xk, are identified, to

determine the change xoj in the fixed-charge objective function that would result if xj were selected to enter the basis tree. The

process is guided by a simple TS approach, where attention is restricted to j∈N satisfying Tabu(j) < InsideIter or satisfying the

aspiration criterion xoj < Aspire − x′′o , conditions that are irrelevant initially but that become relevant based on updates in the

DESCEND routine.



6 BARR ET AL.

Algorithm 3. Procedure V_UPDATE

Input: x∗, x∗o, xG
o ,Uo, v, Beta, JIter, MaxSol, Meanj, NumSol

Output: v, xG
, xG

o , Meanj, NumSol

1: — Update v
2: ++NumSol

3: Y = min{NumSol, MaxSol}, X = 1∕Y
4: for all arcs j ∈ N(FC) do
5: Meanj = (X)x∗j + (1 − X)Meanj
6: UMean = Beta(Meanj) + (1 − Beta)Uo
7: vj = Alpha(1)⋅x∗j + Alpha(2)⋅vj+ Alpha(3)⋅UMean

8: end for
9: if x∗o<xG

o then
10: xG

o = x∗o, xG = x∗
11: end if
12: RETURN

At the completion of the tentative pivot explorations within the main algorithm, the variable x∗j that yields the greatest

reduction in the fixed-charge objective function is selected for pivoting to bring it into the basis. To further improve the current

solution, the process returns to the tentative pivot exploration phase, using the current basis representation.

The Inside Loop ends once the current iteration, InsideIter, exceeds the maximum allowed number of iterations, MaxInsid-

eImprove, beyond the last improvement of the locally best solution x*. At the conclusion of the Inside Loop the Outside Loop

continues by setting the counter NoLuck to 0 if the Inside Loop had succeeded in improving the locally best solution x*. Other-

wise NoLuck is incremented and if NoLuck = OutOfLuck the Outside Loop terminates to record the final global best solution

xG at Step 3. Barring this, if NoLuck = BadLuck, a “mini-diversification” step is initiated. Phase II proceeds to generate the

current p vector based on the vector v, and then solves LP(p) by postoptimization to obtain x′. If the fixed-charge objective func-

tion value x′o = xo[FC:x′] improves on x∗o then x* is updated and the V_UPDATE routine is executed. Finally, the DUPCHECK

routine is executed, as elaborated in the following section, which may involve executing the DIVERSIFY procedure, to lay the

foundation for the next iteration of the Outside Loop.

2.4 Supporting procedures
We first give the pseudocode for the supporting procedures (shown as Algorithms 4–7) used within the main routine, in the

order in which they first appear in the main routine and in other supporting procedures.

Having discussed V_UPDATE and PIVOTJSTAR in the explanation of DESCEND earlier, it remains to discuss the sup-

porting procedure DUPCHECK (Algorithm 6) and the DIVERSIFY procedure (Algorithm 7) that is invoked within it. The

DUPCHECK routine is designed to check whether there are any duplications among the most recent ZeroØ vectors stored in

Zero(s) for s= 1 to sLim. Since each ZeroØ vector identifies the variables xj that equal 0 in a given solution (by setting ZeroØ(j)
= 1), and setting these variables to 0 automatically determines the network solution that sets remaining variables to 1, a dupli-

cation in these vectors implies that the associated fixed-charge solutions are duplicated. DUPCHECK carries out a check for

duplications (matches) by recording Zero(s) as a wraparound list, where the most recent ZeroØ vector is stored in Zero(First)

and Zero(Last) is the ZeroØ vector recorded sLim iterations ago. The Zero(s) array starts from s= First until reaching s= sLim,

and then continues at s= 1 until reaching s= First − 1. Then the new (now most recent) ZeroØ vector is recorded by writing

over the oldest one in the location s= First − 1 and then First is updated by setting First = First − 1. (Special case: If First = 1

then the location First − 1 is sLim.) This device avoids having to write the vectors into a temporary array and then write them

back into Zero(s) to allow Zero(s) to always go from s= 1 to sLim.

If the number of matches nMatch is found to exceed the limit LimMatch, the DIVERSIFY routine is executed that updates xG

if the current x* improves upon it and if the DIVERSIFY routine has been invoked MaxPass times the algorithm stops. Otherwise

the diversification proceeds by generating new f j values based on the formula f j = SumZeroØ(j)/Max, where SumZeroØ(j)
counts the number of times xj = 0 in a solution that produced a ZeroØ vector in the DUPCHECK routine and Max is the

maximum of these SumZeroØ(j) values. The new vj values are then determined by setting vj = ⌈f j ⋅Uj⌉ if SumZeroØ(j) > Max/2

and otherwise setting vj = max{⌈fj ⋅ Uo
j ⌉, 1}.

From this, the pj values are determined by the usual formula pj =Fj/vj as a basis for creating the problem LP(p), which is

then solved by postoptimization to obtain a solution x′. The locally optimal solution x* starts again “from scratch” by setting

x∗ = x′, and the bounds Uo
j are updated in the customary way, along with establishing the ZeroØ vector as in the first step of the



BARR ET AL. 7

Algorithm 4. DESCEND Algorithm

Input: x∗o, x′′o , AllTSImprove, AscentTenure, Descent, DescentImprove, DescentTenure, DoTabu, LastInsideImprove, Improve,

InsideIter, JIter, TSImprove

Output: x∗o, x′′o , AllTSImprove, Aspire, Improve, InsideOK, Tabu(), TabuTenure, TSImprove

1: — Continue pivoting to local optimum or execute ascent tabu phase
2: if Descent = TRUE then
3: if x∗oj<0 then // the Descent Phase continues to improve
4: Perform PIVOTJSTAR // to pivot in j∗ and remove k∗ from the basis
5: Update xo and set Aspire = min{x∗o, x′′o }
6: ++DescentImprove

7: else
8: Descent = FALSE // happens the first time that leave Descent Phase
9: TabuTenure = AscentTenure

10: if xo<x∗o then
11: Improve = TRUE

12: LastInsideImprove = InsideIter −1

13: Update x∗o = xo and x∗ = x
14: Perform V_UPDATE

15: end if
16: if DoTabu = FALSE then
17: InsideOK = FALSE, Return // Exit Inside loop
18: end if
19: Perform PIVOTJSTAR

20: end if
21: else // Descent = FALSE and we are not in the TS phase
22: Perform PIVOTJSTAR

23: if x∗oj<0 then
24: TabuTenure = DescentTenure

25: if x′′<x∗o then
26: Improve = TRUE

27: LastInsideImprove = InsideIter

28: Update x∗o = x′′o and x∗ = x′′
29: ++TSImprove and ++AllTSImprove

30: Aspire = x∗o
31: Perform V_UPDATE

32: end if
33: end if
34: end if
35: Update Tabu(k∗) = InsideIter + TabuTenure

36: RETURN

main algorithm. Finally, the V_UPDATE routine is executed, and the arrays associated with ZeroØ are likewise reinitialized,

to conclude the DIVERSIFY procedure.

In the event that Match is not True in the DUPCHECK procedure (and hence nMatch is not checked for exceeding LimMatch,

and DIVERSIFY is not executed), then the DUPCHECK procedure updates values for tracking the algorithm’s performance,

assures that nMatch = 0, and updates the Zero(s) array in accordance with the explanation above.

In conjunction with the main routine, these supporting procedures complete the GI/TS algorithm. (Note that the algorithm

contains no random components.)

3 GI/TS COMPUTATIONAL TESTING

An implementation of the above GI/TS algorithm, our code FixNetGI, was built using the alternating-path primal network sim-

plex methods and data structures described in References [4-6]. This solver is implemented in Fortran, compiled with gfortran



8 BARR ET AL.

Algorithm 5. Procedure PIVOTJSTAR

Input: j∗, k∗, x,Uo

Output: x′′, x′′o,Uo

1: — Pivot in arc j∗, remove k∗ to create x′′
2: Pivot in j∗ and remove k∗ from the basis tree (or perform a bound flip), yielding a new x′′ and updating x′′o
3: As x′′ is created, set Uo

j = max{Uo
j , x′′j } along the basis equivalent path

4: RETURN

Algorithm 6. Procedure DUPCHECK

Input: First, CheckDupnMatch, MaxRecover, Recover, sLim, sMax, SumZeroØ, Zero(), ZeroØ

Output: Last, MaxRecover, nMatch, sMax, SumZeroØ, Recover

1: —If Zero() has duplicate ZeroØ vectors, perform diversification
2: Set s = First and Match = False // Set True if some Zero(s) = ZeroØ
3: for CheckDup = 1 to sLim and Match = False do
4: if Zero(CheckDup) = ZeroØ then
5: Match = True // Exit loop
6: else
7: If ++s> sLim, then s = 1

8: end if
9: end for

10: if Match = True then
11: if ++nMatch > LimMatch then
12: sMax = max{sMax, CheckDup} // Record how far we had to go to find a match
13: Execute DIVERSITY

14: nMatch = 0

15: end if
16: else
17: if nMatch > 0 then
18: ++Recover, MaxRecover = max{Recover, MaxRecover}, nMatch = 0

19: end if
20: SumZeroØ = SumZeroØ + ZeroØ

21: if First > 1 then
22: Last = First − 1

23: else
24: Last = sLim

25: end if
26: Zero(Last) = ZeroØ and First = Last // Replace Zero(Last)
27: end if
28: RETURN

-O3, and tested under the Centos 6.10 version of the Linux operating system at Southern Methodist University. The test hard-

ware is a Dell R720 with a Dual Six Core Intel Xeon @ 3.5 GHz with 252 GB of RAM2 available to the runs, which are executed

in single-thread mode.

To assess the performance of FixNetGI, computational comparisons in terms of solution quality and speed are made with the

IBM commercial optimization software CPLEX 12.8 [20], running with default parameters except for specifying single-threaded

execution mode and a time limit per problem. Since CPLEX is a general-purpose optimizer for linear and mixed-integer prob-

lems, the special-purpose heuristic approach of FixNetGI gives it major advantages. This comparison, however, is valuable

because: no comparable solver for NetFC is available, CPLEX is widely used and respected by practitioners and researchers, and

the comparison will indicate the heuristic’s efficiency and solution quality for use on real-world industry problems of this type.

2FixNetGI memory requirements for a problem with n nodes and a arcs: 10n+ 12a+ a⋅sLim integer variables and 4a+ n double-precision variables.



BARR ET AL. 9

Algorithm 7. Procedure DIVERSIFY

Input: Uo
, x∗o, xG

o , x∗, MaxPass, Pass, sLim, SumZeroØ(), ZeroRefresh

Output: p,Uo
, v, xG

, xG
o , x′, x′o, x∗, x∗o, BestPass, First, Zero(), ZeroØ

1: — Diversify search after reaching local optimum
2: if x∗o<xG

o then
3: xG = x∗ and xG

o = x∗o and set BestPass = Pass

4: end if
5: if Pass = MaxPass then
6: STOP

7: end if
8: ++Pass

9: Let Max = max{SumZeroØ(j), over j ∈ N(FC)}
10: for all j ∈ N(FC) do
11: Let fj =SumZeroØ(j)/Max

12: if SumZeroØ(j)> Max/2 then
13: vj = ⌈fjUj⌉
14: else
15: vj = max{⌈fjUo

j ⌉, 1}
16: end if
17: pj = Fj∕vj
18: end for
19: — Create and solve LP(p) to get new “first” test solution x′
20: Solve LP(p) by postoptimization to get x′ and x′o
21: Begin x∗ again from scratch to set x∗ = x′ and x∗o = x′o
22: Update Uo

j = max{Uo
j , x′j} for each j ∈ N(FC)

23: Create the n-vector ZeroØ, where ZeroØ(j) = 1 if Fj>0 and x′j = 0, else ZeroØ(j) = 0

24: Perform V_UPDATE

25: Set First = 1 and Zero(1) = ZeroØ

26: Set Zero(s) = (0, …, 0) for s = 2 to sLim

27: if Pass is a multiple of ZeroRefresh then
28: Also reinitialize SumZeroØ = (0, …, 0), but otherwise let SumZeroØ continue to accumulate

29: end if
30: RETURN

To test the effectiveness of the new solution approach, two problem test sets are used for benchmarking. The first is a

collection of known problems from the literature and the second is a new suite of larger problems generated to explore the

effects of problem characteristics on performance.

Since there are over a dozen tuning parameters for the heuristic, we performed preliminary testing to identify a single set

of parameters to use for all computational results reported herein. Randomly selected values from assigned ranges were run on

the test sets, giving varied results, but providing guidance as to what value ranges seemed appropriate. The following parameter

settings are employed for all runs reported: MaxIter = 50, MaxPass = 10, MaxInsideImprove = 40, BadLuck = 5, OutOfLuck

= 20, Alpha(1) = 0.3, Alpha(2) = 0.45, Alpha(3) = 0.25, Beta = 0.4, MaxSolLimit = 1000, TabuTenure = 10, LimMatch =
10, sLim = 10, and ZeroRefresh = 30.

3.1 Test Set 1: Description
This first set of studied problems is drawn from the comprehensive FCTP testbed of Sun et al. [29] with a variety of problem

dimensions and characteristics. The problems were originally created with a version of the well-known NETGEN random

problem generator [7, 23], modified to include fixed costs on arcs.

These Test Set 1 problems have seven problem dimensions, eight fixed-cost ranges (or types, labeled A-H), and 17 randomly

generated instances of each combination. See Table 1 for definitions of these characteristics.

Each test problem is a totally dense capacitated fixed-charge transportation problem with randomly distributed supplies and

demands per Table 1(A) and with each arc randomly assigned a discrete variable cost between 3 and 8 plus a fixed cost in the

associated range from Table 1(B).



10 BARR ET AL.

TABLE 1 Test Set 1 problem characteristics: (A) dimensions, (B) fixed-cost range [29]

(A) (B)

Problem dimensions Total supply Fixed-charge type Fixed-charge range

10 × 10 10 000 A [50, 200]

10 × 20 15 000 B [100, 400]

15 × 15 15 000 C [200, 800]

10 × 30 15 000 D [400, 1600]

50 × 50 50 000 E [800, 3200]

30 × 100 30 000 F [1600, 6400]

50 × 100 50 000 G [3200, 12 800]

H [6400, 25 600]

TABLE 2 Test Set 1 solution results for small problems, type A

CPLEX 12.8 FixNetGI

Dimension Prob ID Best Z Time (s) Best Z Time (s) Z-Ratio Time-X

10 × 10 N104 40 255 * 1.49 40 258 0.01 1.0001 114.62

10 × 10 N107 42 026 * 1.16 42 029 0.01 1.0001 116.00

10 × 20 N304 56 361 * 0.74 56 366 0.02 1.0001 32.17

10 × 20 N307 49 737 * 1.61 49 742 0.03 1.0001 59.63

15 × 15 N204 54 497 * 1.48 54 547 0.03 1.0009 49.33

15 × 15 N207 53 591 * 1.26 53 601 0.03 1.0002 43.45

10 × 30 N504 56 883 * 3.2 57 137 0.04 1.0045 78.05

10 × 30 N507 52 898 * 4.72 52 998 0.04 1.0019 134.86

50 × 50 N1004 162 863 7200.03 163 764 1.64 1.0055 4395.62

50 × 50 N1007 161 186 7200.00 162 386 0.56 1.0074 12 834.22

30 × 100 N2004 103 163 7200.00 104 204 0.57 1.0101 12 543.55

30 × 100 N2007 103 402 7200.00 104 340 0.55 1.0091 13 162.71

Average: 78 072 2401.31 78 448 0.29 1.0033 3630.35

*Solved to optimality.

A subset of the 896 original testbed problems was selected for computational experiments with the FixNetGI code, following

the choices of Glover et al. [17]. For the six smallest problem sizes, two instances of type A were used for this experimentation.

For the largest and most difficult 50 × 100 size, all 15 instances of each fixed-charge type (A-H) were included, for a total of

132 problems. Hence the focus is on mixed-integer programs with 50 000 binary variables.

3.2 Test Set 1: Computational results and analysis
Table 2 describes the solution results for the 12 smaller problems tested. Shown are the dimensions of the transportation problem,

the problem identifier, the best solution value found (Z*) and CPU solution time for CPLEX 12.8 (run with a 7200-s time limit)

and the FixNetGI code, the ratio of the two solvers’ best solution values (Z-ratio = FixNetGI’s xG
o /CPLEX’s z*) and the CPLEX

time as a multiple of the FixNetGI solution time (Time-X).

With these smaller problems, the heuristic’s xG
o solution values are within 0.1% of the CPLEX best, on average, and were

identified an average of three orders of magnitude faster. Optimal solution values from CPLEX are indicated by “*” when solved

exactly.

The bulk of the testing was focused on the more-difficult totally dense fixed-charge transportation problems with 50 source

and 100 sink nodes, 50 000 arcs, supply of 50 000, and all fixed-charge ranges as described in Table 1(B). Table 3 summarizes

the results from solving 15 problem instances from each of the eight fixed-charge ranges (A-H). Detailed computational results

from these 120 problems are found in Tables 4–11.

The results on the larger problems underscore the effectiveness of the GI/TS algorithm. In every case, CPLEX did not run

to completion and exited at the 7200-s time limit, while FixNetGI used an average of 1.11 s of CPU time. Although FixNetGI’s

solution values averaged 9% higher, these were identified 6000 times faster.

To evaluate these solvers’ abilities to handle even more challenging problems, as found in industrial applications, a new

problem set was created. The problems are not only larger, but the suite is structured to facilitate statistical analysis of problem

characteristics.



BARR ET AL. 11

TABLE 3 Test Set 1: Summary of difficult, large 50 × 100 problems, averages of 15 problems per fixed-charge type

Fixed-charge CPLEX 12.8 FixNetGI

Type Range Best Z Time (s) Best Z Time (s) Z-Ratio Time-Xa

A 50–200 165 809 7200.01 167 499 1.09 1.010 6589

B 100–400 175 337 7200.00 178 795 1.09 1.020 6614

C 200–800 193 422 7200.00 200 498 1.22 1.037 5917

D 400–1600 227 260 7200.00 241 310 1.09 1.062 6625

E 800–3200 289 470 7200.01 316 637 1.08 1.094 6675

F 1600–6400 405 351 7200.00 459 073 1.08 1.133 6674

G 3200–12 800 624 726 7200.00 731 128 1.19 1.170 6303

H 6400–25 600 1 046 011 7200.01 1 258 395 1.08 1.203 6664

Average: 390 923 7200.01 444 167 1.11 1.091 6508

aAll CPLEX run times are 7200 s.

TABLE 4 Test Set 1: Solution results for larger, difficult problems, type A fixed costs in range [50, 200]

FixNetGI
PROB Size

Prob type
FC range

CPLEX 12.8
Best Z Best Z Time (s) Z-Ratio Time-Xa

N3001 50 × 100 A 165 214 166 974 1.12 1.011 6446

N3002 50 × 100 A 166 266 168 050 1.11 1.011 6516

N3003 50 × 100 A 167 095 168 503 1.16 1.008 6212

N3004 50 × 100 A 165 793 167 406 1.11 1.010 6516

N3005 50 × 100 A 166 360 168 106 1.07 1.010 6754

N3006 50 × 100 A 164 614 166 146 1.06 1.009 6818

N3007 50 × 100 A 166 007 167 552 1.11 1.009 6516

N3008 50 × 100 A 164 273 165 943 1.09 1.010 6618

N3009 50 × 100 A 165 641 167 421 1.07 1.011 6761

N300A 50 × 100 A 166 124 167 635 1.04 1.009 6930

N300B 50 × 100 A 167 103 168 913 1.05 1.011 6870

N300C 50 × 100 A 163 857 165 929 1.09 1.013 6624

N300D 50 × 100 A 164 909 166 494 1.10 1.010 6534

N300E 50 × 100 A 168 075 169 908 1.17 1.011 6138

Average: 165 809 167 499 1.09 1.010 6589

aAll CPLEX run times are 7200 s.

3.3 Test Set 2: Overview and experimental design
To explore still larger problems and the possible effects of problem structure on solution time and quality, an experimental

design using randomly generated test problems was established. For this, the NETGEN problem generator [23], modified to

include fixed charges, created a new structured suite of transportation and transshipment problems with up to 33 times as many

nodes, 100 000 binary variables, and a variety of problem characteristics.

Test Set 2 consists of 96 problems, each generated with a different seed value, and with problem characteristics varied to

enable a full-factorial experimental design. All combinations of five factors are used: number of problem nodes (500, 1000,

3000, and 5000), percentage of source and sink nodes (30%/70% for transportation, and 20%/20% for transshipment), number

of arcs (10 000, 50 000, and 100 000), total supply (100 000 and 500 000), and fixed-cost range (20–200 and 1600–6400). All

arcs have a fixed cost, a variable cost between 3 and 8, and an arc capacity from 200 to 1500 units. Transshipment sources and

sinks are not used.

Tables 12 and 13 display Test Set 2’s problem characteristics and solution results from the FixNetGI code and CPLEX 12.8,

run with a 1-h time limit and a single CPU thread. Problem characteristics shown are problem identifier and the number of

nodes, sources and sinks, arcs, total supply, and fixed-cost range. Solution results are: the best solution value found (Best Z) for

each application, the ratio of these solution values for FixNetGI to CPLEX (Z-ratio), the solution time using FixNetGI, and the

CPLEX time (3600 s in all instances) as a multiple of the FixNetGI solution time (CPLEX Time-X).

Summary performance statistics by problem size and structure are given in Table 14. In terms of solution quality between the

two solvers, The FixNetGI solution values average 1.2% larger than CPLEX, but for 13 of the 96 problems FixNetGI solutions



12 BARR ET AL.

TABLE 5 Test Set 1: Solution results for larger, difficult problems, type B fixed costs in range [100, 400]

FixNetGI
PROB Size

Prob type
FC range

CPLEX 12.8
Best Z Best Z Time (s) Z-Ratio Time-Xa

N3100 50 × 100 B 176 223 179 323 1.04 1.018 6943

N3101 50 × 100 B 174 779 178 546 1.07 1.022 6704

N3102 50 × 100 B 175 859 179 340 1.08 1.020 6667

N3103 50 × 100 B 176 296 179 287 1.15 1.017 6245

N3104 50 × 100 B 176 175 179 947 1.15 1.021 6283

N3105 50 × 100 B 175 673 179 081 1.06 1.019 6825

N3106 50 × 100 B 174 171 177 536 1.10 1.019 6545

N3107 50 × 100 B 175 253 178 562 1.13 1.019 6400

N3108 50 × 100 B 173 440 177 091 1.12 1.021 6457

N3109 50 × 100 B 174 661 178 350 1.06 1.021 6825

N310A 50 × 100 B 176 295 179 663 1.08 1.019 6691

N310B 50 × 100 B 176 731 180 122 1.06 1.019 6825

N310C 50 × 100 B 173 012 176 917 1.08 1.023 6698

N310D 50 × 100 B 174 555 177 726 1.07 1.018 6748

N310E 50 × 100 B 176 933 180 436 1.13 1.020 6349

Average: 175 274 178 757 1.09 1.020 6590

aAll CPLEX run times are 7200 s.

TABLE 6 Test Set 1: Solution results for larger, difficult problems, type C fixed costs in range [200, 800]

FixNetGI
PROB Size

Prob type
FC range

CPLEX 12.8
Best Z Best Z Time (s) Z-Ratio Time-Xa

N3200 50 × 100 C 194 225 201 498 1.05 1.037 6844

N3201 50 × 100 C 193 288 200 823 1.12 1.039 6440

N3202 50 × 100 C 194 189 202 126 1.08 1.041 6660

N3203 50 × 100 C 193 755 200 250 1.12 1.034 6434

N3204 50 × 100 C 195 218 202 696 1.12 1.038 6406

N3205 50 × 100 C 193 750 200 086 1.06 1.033 6805

N3206 50 × 100 C 192 095 199 228 1.08 1.037 6679

N3207 50 × 100 C 192 863 199 989 1.06 1.037 6786

N3208 50 × 100 C 191 262 197 823 1.10 1.034 6545

N3209 50 × 100 C 192 371 199 614 1.06 1.038 6773

N320A 50 × 100 C 195 345 201 847 1.08 1.033 6679

N320B 50 × 100 C 195 428 202 049 1.06 1.034 6786

N320C 50 × 100 C 190 533 197 625 1.98 1.037 3640

N320D 50 × 100 C 192 668 199 815 2.15 1.037 3347

N320E 50 × 100 C 194 341 202 005 1.13 1.039 6377

Average: 193 365 200 427 1.23 1.037 6169

aAll CPLEX run times are 7200 s.

are superior (Z-ratio less than 1), including some larger instances where CPLEX’s Best Z is 30 times larger. Based on average

Z-ratio, the heuristic’s solution quality tends to be superior for transportation problems when compared with transshipment

problems with the same number of nodes.

In terms of solution speed, CPLEX runs to the 1-h time limit in all cases. FixNetGI averages 10.1 s per problem, or 700

times faster than the 3600-s time limit for CPLEX, as shown in the CPLEX Time-X column of Table 14. These multiples are

better for the smaller problems, but all multiples would be much larger if CPLEX had been allowed to run to optimality.

3.4 Test Set 2: Computational results and statistical analysis
The structure of the test set enables rigorous statistical analysis of the relative performance of CPLEX and FixNetGI solvers in

terms of solution values and solution time, and the effect of the five factors described above. SAS 9.2’s analysis of variance pro-

cedure (ANOVA) and comparisons of means using Tukey’s significant difference (TSD) test are employed to determine whether



BARR ET AL. 13

TABLE 7 Test Set 1: Solution results for larger, difficult problems, type D fixed costs in range [400, 1600]

FixNetGI
PROB Size

Prob type
FC range

CPLEX 12.8
Best Z Best Z Time (s) Z-Ratio Time-Xa

N3300 50 × 100 D 228 374 241 643 1.05 1.058 6857

N3301 50 × 100 D 227 575 242 211 1.11 1.064 6498

N3302 50 × 100 D 228 110 242 684 1.10 1.064 6575

N3303 50 × 100 D 225 815 239 882 1.12 1.062 6440

N3304 50 × 100 D 229 561 244 426 1.16 1.065 6218

N3305 50 × 100 D 227 701 241 937 1.07 1.063 6710

N3306 50 × 100 D 226 219 239 843 1.08 1.060 6679

N3307 50 × 100 D 225 348 239 331 1.09 1.062 6636

N3308 50 × 100 D 224 414 236 798 1.10 1.055 6551

N3309 50 × 100 D 226 652 241 535 1.09 1.066 6630

N330A 50 × 100 D 231 382 244 641 1.05 1.057 6844

N330B 50 × 100 D 230 094 244 703 1.04 1.063 6916

N330C 50 × 100 D 224 210 238 289 1.06 1.063 6812

N330D 50 × 100 D 226 083 241 055 1.07 1.066 6729

N330E 50 × 100 D 227 364 240 667 1.13 1.059 6360

Average: 227 181 241 286 1.09 1.062 6614

aAll CPLEX run times are 7200 s.

TABLE 8 Test Set 1: Solution results for larger, difficult problems, type E fixed costs in range [800, 3200]

FixNetGI
PROB Size

Prob type
FC range

CPLEX 12.8
Best Z Best Z Time (s) Z-Ratio Time-Xa

N3400 50 × 100 E 291 035 316 495 1.03 1.087 6970

N3401 50 × 100 E 289 261 316 734 1.07 1.095 6754

N3402 50 × 100 E 290 616 319 367 1.08 1.099 6667

N3403 50 × 100 E 284 639 310 945 1.12 1.092 6434

N3404 50 × 100 E 292 426 321 563 1.13 1.100 6389

N3405 50 × 100 E 290 940 318 012 1.05 1.093 6870

N3406 50 × 100 E 288 448 314 592 1.08 1.091 6698

N3407 50 × 100 E 284 681 311 924 1.09 1.096 6599

N3408 50 × 100 E 285 990 312 083 1.08 1.091 6654

N3409 50 × 100 E 289 127 316 983 1.07 1.096 6710

N340A 50 × 100 E 296 495 324 751 1.07 1.095 6754

N340B 50 × 100 E 293 248 320 955 1.06 1.094 6786

N340C 50 × 100 E 287 021 315 303 1.07 1.099 6716

N340D 50 × 100 E 288 295 313 506 1.08 1.087 6661

N340E 50 × 100 E 289 837 316 340 1.12 1.091 6457

Average: 289 359 316 647 1.08 1.094 6654

aAll CPLEX run times are 7200 s.

the average results differed by solution method and whether factors affected the average results. The TSD procedure compares

and ranks solver performance under the effect of different single-factor levels and treatment combinations. Specifically, we test

hypotheses that the mean solution times and solution values are the same for both solvers and under different factor levels.

Based on the problem solution times and values in Tables 12 and 13, ANOVA shows a statistically significant difference in

mean solution times between the CPLEX and FixNetGI codes. Hence, as expected, the mean solution speeds of the two solvers

are statistically different, with FixNetGI being the faster. Statistical differences in time are also found between the four levels

of problem node count, the two fixed-charge ranges, transportation and transshipment network structures, the three levels of

number of problem arcs, and two levels of total supply and demand. Hence, all hypotheses of equivalent means are rejected

when runtime is the performance metric.

However, when comparing solvers based on problem solution values (Z), the TSD test finds no statistically significant

difference between the solvers. Therefore, while the mean Z-ratio for FixNetGI is slightly higher than CPLEX’s, ANOVA



14 BARR ET AL.

TABLE 9 Test Set 1: Solution results for larger, difficult problems, type F fixed costs in range [1600, 6400]

FixNetGI

PROB Size
Prob type
FC range

CPLEX 12.8
Best Z Best Z Time (s) Z-Ratio Time-Xa

N3500 50 × 100 F 406 610 462 061 1.05 1.136 6890

N3501 50 × 100 F 403 755 460 160 1.08 1.140 6667

N3502 50 × 100 F 405 202 459 936 1.09 1.135 6581

N3503 50 × 100 F 394 992 445 519 1.11 1.128 6475

N3504 50 × 100 F 409 471 464 457 1.09 1.134 6630

N3505 50 × 100 F 407 823 462 557 1.04 1.134 6923

N3506 50 × 100 F 403 233 450 885 1.07 1.118 6704

N3507 50 × 100 F 396 770 452 211 1.10 1.140 6534

N3508 50 × 100 F 402 621 457 526 1.09 1.136 6606

N3509 50 × 100 F 405 749 460 973 1.08 1.136 6642

N350A 50 × 100 F 415 374 464 597 1.06 1.119 6792

N350B 50 × 100 F 409 530 462 858 1.10 1.130 6575

N350C 50 × 100 F 405 979 459 980 1.07 1.133 6729

N350D 50 × 100 F 405 994 459 980 1.07 1.133 6735

N350E 50 × 100 F 407 160 462 399 1.09 1.136 6624

Average: 405 261 458 860 1.08 1.132 6658

aAll CPLEX run times are 7200 s.

TABLE 10 Test Set 1: Solution results for larger, difficult problems, type G fixed costs in range [3200, 12 800]

FixNetGI
PROB Size

Prob type
FC range

CPLEX 12.8
Best Z Best Z Time (s) Z-Ratio Time-Xa

N3600 50 × 100 G 628 353 728 685 1.05 1.160 6851

N3601 50 × 100 G 623 633 728 390 1.07 1.168 6748

N3602 50 × 100 G 622 435 739 308 1.07 1.188 6742

N3603 50 × 100 G 606 551 706 872 1.11 1.165 6463

N3604 50 × 100 G 629 427 733 056 1.83 1.165 3934

N3605 50 × 100 G 627 022 729 120 2.07 1.163 3483

N3606 50 × 100 G 623 664 726 111 1.10 1.164 6569

N3607 50 × 100 G 609 916 718 671 1.11 1.178 6516

N3608 50 × 100 G 621 534 724 269 1.09 1.165 6630

N3609 50 × 100 G 623 355 738 275 1.06 1.184 6792

N360A 50 × 100 G 638 942 735 655 1.07 1.151 6735

N360B 50 × 100 G 632 751 744 229 1.07 1.176 6761

N360C 50 × 100 G 627 701 741 241 1.06 1.181 6812

N360D 50 × 100 G 627 689 741 241 1.06 1.181 6805

N360E 50 × 100 G 627 919 731 792 1.08 1.165 6698

Average: 624 467 731 302 1.20 1.171 6263

aAll CPLEX run times are 7200 s.

shows that the mean solution values are not statistically different and the hypothesis of equality of mean solution values is not

rejected. The two fixed-charge ranges do produce statistically different average solution values, as expected, but transportation

and transshipment problems do not demonstrate statistically different values, nor do the numbers of problem arcs. Problems

with 5000 nodes had mean solution values that are statistically different from those with 500 and 1000 nodes, but not those with

3000 nodes.

This combination of hypothesis outcomes validates the effectiveness and speed of the GI/TS algorithm as implemented

in FixNetGI for these larger and more challenging problem types. With solution times three orders of magnitude faster than

CPLEX while producing comparable objective function values, this approach advances the state-of-the-art for fixed-charge

network problems and renders solvable large practical instances from industrial settings.



BARR ET AL. 15

TABLE 11 Test Set 1: Solution results for larger, difficult problems, type H fixed costs in range [6400, 25 600]

FixNetGI
PROB Size

Prob type
FC range

CPLEX 12.8
Best Z Best Z Time (s) Z-Ratio Time-Xa

N3700 50 × 100 H 1 054 655 1 266 006 1.07 1.200 6754

N3701 50 × 100 H 1 041 146 1 263 578 1.07 1.214 6704

N3702 50 × 100 H 1 040 325 1 252 861 1.09 1.204 6636

N3703 50 × 100 H 1 018 972 1 239 035 1.10 1.216 6522

N3704 50 × 100 H 1 050 443 1 263 694 1.09 1.203 6593

N3705 50 × 100 H 1 053 995 1 263 791 1.07 1.199 6704

N3706 50 × 100 H 1 049 237 1 260 282 1.08 1.201 6661

N3707 50 × 100 H 1 022 451 1 229 135 1.10 1.202 6563

N3708 50 × 100 H 1 040 737 1 255 743 1.10 1.207 6528

N3709 50 × 100 H 1 041 100 1 255 976 1.08 1.206 6667

N370A 50 × 100 H 1 067 181 1 281 905 1.08 1.201 6685

N370B 50 × 100 H 1 061 167 1 280 281 1.08 1.206 6685

N370C 50 × 100 H 1 052 506 1 260 941 1.07 1.198 6761

N370D 50 × 100 H 1 052 254 1 260 941 1.07 1.198 6761

N370E 50 × 100 H 1 044 003 1 241 756 1.07 1.189 6735

Average: 1 045 394 1 257 851 1.08 1.203 6657

aAll CPLEX run times are 7200 s.

3.5 Test Set 2: Analysis of early CPLEX solutions
The CPLEX software also uses heuristics to identify promising solutions early in its search process before applying branching

and cutting methods that lead to optimality. The termination criteria include finding a solution whose value is within a specified

distance from optimality and reaching a user-defined time limit. It is possible to identify an optimal or near-optimal solution

early in the process but spend significant time proving optimality or making incremental improvements.

To assess CPLEX’s early progress, some insight can be found through a retrospective analysis of its logs from Test Set 2’s

96 problems when run with a 3600-s time limit. We collected the following information: the initial integer feasible solution

value (InitialZ), the first integer solution value for which elapsed time is shown (EarlyZ), and the time that EarlyZ was reported.

These can then be compared with CPLEX’s best solution value found in 1 h (BestZ) and FixNetGI’s best solution value (GI Z)

and runtime (GI time). Table 15 displays averages of these values for groups of 12 problems organized by number of nodes and

transportation/transshipment structure.

The table shows by group, the number of problem nodes, numbers of problem sources and sinks, CPLEX’s average initial

integer solution value, ratio of InitialZ to BestZ, EarlyZ, ratio of EarlyZ to BestZ, time to EarlyZ, and the ratios of EarlyZ time

to GI time and EarlyZ to GI Z. Also included is the average time to best solution for FixNetGI. The means of these averages

are also given over all eight problem groups and show that the mean InitialZ is 1505 times larger than CPLEX’s final solution

value, mean EarlyZ is 1% larger than BestZ, and an average of 1115 s are required to identify EarlyZ.

In addition, CPLEX requires an average of 100 times longer to determine EarlyZ than FixNetGI requires to reach its final

solution, and those CPLEX EarlyZ values are 65% larger than FixNetGI’s final solution value. FixNetGI, which does not have

a timeout stopping capability, identifies its best solution (xG and xG
o ) in an average of 2.67 s (out of its average 10.13 s total

runtime). Unfortunately, neither code knows at the time-to-best whether or not a better solution will be discovered later.

4 CONCLUSIONS AND FUTURE DIRECTIONS

Statistical testing reveals that the FixNetGI code is not only dramatically faster than CPLEX in identifying its best solu-

tions, but its mean solution quality is statistically equivalent to that of CPLEX. This implementation of the GI/TS algorithm

makes it appropriate for applications requiring high-quality results quickly, as in time-critical logistics, military response,

airline rescheduling, telecommunications and content-delivery network reconfiguration for demand fluctuations, and other

near-real-time decision-making situations.

There are a variety of opportunities to improve the GI/TS algorithm in the future. The tabu-search procedure currently

employed in the method is exceedingly simple, and a more advanced version may well enhance overall performance. Another

conspicuous opportunity for future improvement will be to determine better parameters settings (e.g., based on problem size

and network class). A related possibility for investigation is to shortcut the Inside Loop operation and solve LP(p) more often,



16 BARR ET AL.

TABLE 12 Test Set 2, 500- and 1000-node problem characteristics and solution results for FixNetGI and CPLEX 12.8

Prob Nodes
Sources/
Sinks

Arcs
(000s)

Supply
(000s) FC Range

FixNetGI
Best Z

CPLEX
Best Z Z-Ratio

FixNetGI
time (s)

CPLEX
Time-X

1001 500 150/350 10 100 [20,200] 356 689 355 891 1.002 2.28 1582

1002 500 150/350 10 100 [1600,6400] 1 450 668 1 458 839 0.994 1.29 2793

1003 500 150/350 10 500 [20,200] 1 615 340 1 614 341 1.001 3.35 1075

1004 500 150/350 10 500 [1600,6400] 3 026 670 3 019 022 1.003 1.24 2903

1005 500 150/350 50 100 [20,200] 317 018 317 199 0.999 14.81 243

1006 500 150/350 50 100 [1600,6400] 1 233 074 1 228 705 1.004 6.30 572

1007 500 150/350 50 500 [20,200] 1 519 582 1 519 662 1.000 16.93 213

1008 500 150/350 50 500 [1600,6400] 2 475 879 2 472 508 1.001 7.64 471

1009 500 150/350 100 100 [20,200] 315 383 315 917 0.998 16.01 225

1010 500 150/350 100 100 [1600,6400] 1 242 415 1 230 644 1.010 5.78 623

1011 500 150/350 100 500 [20,200] 1 515 707 1 516 089 1.000 16.91 213

1012 500 150/350 100 500 [1600,6400] 2 507 125 2 493 600 1.005 6.11 590

1013 500 100/100 10 100 [20,200] 506 218 505 593 1.001 3.58 1006

1014 500 100/100 10 100 [1600,6400] 1 493 392 1 237 146 1.207 2.10 1713

1015 500 100/100 10 500 [20,200] 2 417 010 2 416 865 1.000 2.89 1245

1016 500 100/100 10 500 [1600,6400] 3 161 702 3 149 330 1.004 2.55 1410

1017 500 100/100 50 100 [20,200] 363 544 362 896 1.002 9.23 390

1018 500 100/100 50 100 [1600,6400] 1 193 942 916 022 1.303 3.94 913

1019 500 100/100 50 500 [20,200] 1 724 593 1 724 192 1.000 8.79 410

1020 500 100/100 50 500 [1600,6400] 2 472 404 2 363 545 1.046 4.14 869

1021 500 100/100 100 100 [20,200] 344 606 344 442 1.000 16.84 214

1022 500 100/100 100 100 [1600,6400] 946 404 821 025 1.153 6.28 574

1023 500 100/100 100 500 [20,200] 1 579 353 1 578 955 1.000 17.13 210

1024 500 100/100 100 500 [1600,6400] 2 120 325 2 106 602 1.007 9.52 378

1025 1000 300/700 10 100 [20,200] 423 114 419 652 1.008 2.61 1379

1026 1000 300/700 10 100 [1600,6400] 2 817 946 2 792 776 1.009 2.60 1387

1027 1000 300/700 10 500 [20,200] 1 848 984 1 847 206 1.001 2.35 1535

1028 1000 300/700 10 500 [1600,6400] 4 564 825 4 472 742 1.021 1.61 2232

1029 1000 300/700 50 100 [20,200] 359 472 358 373 1.003 7.32 492

1030 1000 300/700 50 100 [1600,6400] 2 615 272 2 607 964 1.003 8.08 446

1031 1000 300/700 50 500 [20,200] 1 582 610 1 581 089 1.001 8.58 420

1032 1000 300/700 50 500 [1600,6400] 3 803 147 3 773 611 1.008 7.76 464

1033 1000 300/700 100 100 [20,200] 338 193 337 842 1.001 15.25 236

1034 1000 300/700 100 100 [1600,6400] 2 168 455 2 144 094 1.011 13.77 261

1035 1000 300/700 100 500 [20,200] 1 558 965 1 557 745 1.001 16.83 214

1036 1000 300/700 100 500 [1600,6400] 3 592 581 3 568 389 1.007 16.32 221

1037 1000 200/200 10 100 [20,200] 655 125 652 786 1.004 4.99 722

1038 1000 200/200 10 100 [1600,6400] 2 798 754 2 202 916 1.270 2.56 1408

1039 1000 200/200 10 500 [20,200] 3 067 512 3 067 129 1.000 4.03 894

1040 1000 200/200 10 500 [1600,6400] 5 135 864 4 863 736 1.056 1.45 2488

1041 1000 200/200 50 100 [20,200] 424 763 421 677 1.007 7.58 475

1042 1000 200/200 50 100 [1600,6400] 2 004 296 1 580 543 1.268 5.41 666

1043 1000 200/200 50 500 [20,200] 1 903 514 1 903 031 1.000 13.61 265

1044 1000 200/200 50 500 [1600,6400] 3 439 539 3 318 684 1.036 5.84 616

1045 1000 200/200 100 100 [20,200] 385 023 383 094 1.005 18.33 196

1046 1000 200/200 100 100 [1600,6400] 1 840 723 1 406 015 1.309 9.36 385

1047 1000 200/200 100 500 [20,200] 1 677 809 1 677 451 1.000 22.68 159

1048 1000 200/200 100 500 [1600,6400] 3 197 222 2 914 185 1.097 8.86 406



BARR ET AL. 17

TABLE 13 Test Set 2, 3000- and 5000-node problem characteristics and solution results for FixNetGI and CPLEX 12.8

Prob Nodes
Sources/
Sinks

Arcs
(000s)

Supply
(000s)

FC
Range

FixNetGI
Best Z

CPLEX
Best Z Z-Ratio

FixNetGI
time (s)

CPLEX
Time-X

1049 3000 900/2100 10 100 [20,200] 659 133 650 375 1.013 2.76 1306

1050 3000 900/2100 10 100 [1600,6400] 7 733 243 7 642 712 1.012 1.98 1815

1051 3000 900/2100 10 500 [20,200] 2 396 668 2 391 344 1.002 2.39 1504

1052 3000 900/2100 10 500 [1600,6400] 10 099 152 10 064 444 1.003 2.12 1700

1053 3000 900/2100 50 100 [20,200] 498 714 494 887 1.008 12.13 297

1054 3000 900/2100 50 100 [1600,6400] 5 664 575 5 611 541 1.009 12.85 280

1055 3000 900/2100 50 500 [20,200] 1 818 914 1 816 890 1.001 14.22 253

1056 3000 900/2100 50 500 [1600,6400] 8 778 672 8 729 810 1.006 13.03 276

1057 3000 900/2100 100 100 [20,200] 455 864 454 198 1.004 22.16 162

1058 3000 900/2100 100 100 [1600,6400] 5 119 067 5 126 635 0.999 21.11 171

1059 3000 900/2100 100 500 [20,200] 1 715 184 1 713 425 1.001 23.56 153

1060 3000 900/2100 100 500 [1600,6400] 7 109 451 7 110 977 1.000 25.10 143

1061 3000 600/600 10 100 [20,200] 1 180 615 1 159 167 1.019 3.26 1103

1062 3000 600/600 10 100 [1600,6400] 8 011 095 7 545 095 1.062 2.18 1651

1063 3000 600/600 10 500 [20,200] 5 031 102 5 019 882 1.002 5.01 718

1064 3000 600/600 10 500 [1600,6400] 12 953 363 11 923 212 1.086 2.42 1490

1065 3000 600/600 50 100 [20,200] 692 841 675 280 1.026 9.76 369

1066 3000 600/600 50 100 [1600,6400] 6 398 952 4 697 047 1.362 9.15 393

1067 3000 600/600 50 500 [20,200] 2 716 655 2 703 913 1.005 10.36 347

1068 3000 600/600 50 500 [1600,6400] 8 666 228 7 987 438 1.085 9.69 371

1069 3000 600/600 100 100 [20,200] 562 672 545 123 1.032 15.31 235

1070 3000 600/600 100 100 [1600,6400] 5 849 454 5 230 491 1.118 15.90 226

1071 3000 600/600 100 500 [20,200] 2 287 102 2 277 315 1.004 16.73 215

1072 3000 600/600 100 500 [1600,6400] 7 638 972 7 031 009 1.086 16.26 221

1073 5000 1500/3500 10 100 [20,200] 878 096 871 688 1.007 2.76 1306

1074 5000 1500/3500 10 100 [1600,6400] 14 241 804 14 008 932 1.017 1.98 1815

1075 5000 1500/3500 10 500 [20,200] 2 806 918 2 796 959 1.004 2.39 1504

1076 5000 1500/3500 10 500 [1600,6400] 16 539 549 16 487 661 1.003 2.12 1700

1077 5000 1500/3500 50 100 [20,200] 646 918 648 049 0.998 12.13 297

1078 5000 1500/3500 50 100 [1600,6400] 10 034 153 10 419 983 0.963 12.85 280

1079 5000 1500/3500 50 500 [20,200] 2 119 350 6 903 430 0.307 14.22 253

1080 5000 1500/3500 50 500 [1600,6400] 12 157 360 12 408 107 0.980 13.03 276

1081 5000 1500/3500 100 100 [20,200] 578 204 573 823 1.008 22.16 162

1082 5000 1500/3500 100 100 [1600,6400] 8 781 707 8 697 678 1.010 21.11 171

1083 5000 1500/3500 100 500 [20,200] 1 927 148 1 921 606 1.003 23.56 153

1084 5000 1500/3500 100 500 [1600,6400] 10 903 122 296 140 690 0.037 25.10 143

1085 5000 1000/1000 10 100 [20,200] 1 617 523 1 594 130 1.015 3.56 1010

1086 5000 1000/1000 10 100 [1600,6400] 15 691 467 14 233 263 1.102 2.25 1599

1087 5000 1000/1000 10 500 [20,200] 6 619 232 6 607 723 1.002 7.93 454

1088 5000 1000/1000 10 500 [1600,6400] 21 746 227 20 078 528 1.083 3.01 1198

1089 5000 1000/1000 50 100 [20,200] 894 573 857 541 1.043 11.92 302

1090 5000 1000/1000 50 100 [1600,6400] 10 733 033 8 240 724 1.302 12.21 295

1091 5000 1000/1000 50 500 [20,200] 3 358 382 3 338 499 1.006 13.31 270

1092 5000 1000/1000 50 500 [1600,6400] 14 089 181 11 755 011 1.199 13.66 264

1093 5000 1000/1000 100 100 [20,200] 771 060 726 754 1.061 21.66 166

1094 5000 1000/1000 100 100 [1600,6400] 8 494 313 7 072 083 1.201 20.45 176

1095 5000 1000/1000 100 500 [20,200] 2 700 873 2 684 237 1.006 22.83 158

1096 5000 1000/1000 100 500 [1600,6400] 10 864 655 406 850 056 0.027 23.60 153



18 BARR ET AL.

TABLE 14 Problem group and overall average Z-ratio, FixNetGI time, CPLEX time multiple

Group Z-Ratio FixNetGI time (s) CPLEX Time-X

500-node transportation 1.001 8.221 958.4

500-node transshipment 1.060 7.250 777.7

1000-node transportation 1.006 8.589 773.8

1000-node transshipment 1.088 8.724 723.3

3000-node transportation 1.005 12.783 671.7

3000-node transshipment 1.074 9.670 611.8

5000-node transportation 0.861 12.783 671.7

5000-node transshipment 1.004 13.033 503.7

All 1.012 10.132 711.5

TABLE 15 Test Set 2, CPLEX average values for initial/early solutions, solution times, and comparisons with FixNetGI

Nodes InitialZ
InitialZ:
BestZ EarlyZ

EarlylZ:
BestZ

Time to
EarlyZ (s)

EarlyZ time:
GI time

EarlyZ:
GI Z

FixNetGI time
to best (s)

500-node transportation 78 613 523 50.0 1 471 696 1.006 46.1 9.56 1.00 0.20

500-node transshipment 12 397 367 792 9909.1 1 493 072 1.022 52.3 9.87 0.97 2.91

1000-node transportation 111 459 663 43.9 2 131 361 1.003 245.6 28.01 1.00 0.15

1000-node transshipment 2 967 146 722 1984.6 2 104 874 1.034 178.3 26.17 0.96 3.87

3000-node transportation 86 955 933 16.5 4 324 120 1.002 1974.3 195.58 1.00 0.16

3000-node transshipment 114 422 473 22.0 4 755 095 1.004 1656.5 155.13 0.94 5.58

5000-node transportation 83 376 753 8.2 31 014 631 1.002 2508.6 193.75 3.37 0.33

5000-node transshipment 113 820 110 11.9 40 432 228 1.007 2257.3 187.39 3.97 8.15

Average: 1 994 145 371 1505.8 10 965 885 1.010 1114.9 100.68 1.65 2.67

with the option of updating the solution each time by solving the restricted LP problem. Within the DUPCHECK procedure, the

trade-offs between the sLim and the LimMatch values likewise invite examination, as do the values of the “alpha parameters”

in V_UPDATE.

There is also great potential for enhancements to FixNetGI. Profiles of FixNetGI runs on Test Set 2 show that 88% of the

run time is spent evaluating the nonbasic arcs in lines 18–21 of Procedure STEPS23. For a given nonbasic, the basis equivalent

path is first evaluated to perform the ratio test; if the min ratio is positive, the path is retraced to determine xoj. (Runtime for

each operation averages 72% and 16%, respectively.) On average, the nonbasics were degenerate 79% of the time and, therefore,

nonimproving. Rather than following the algorithm’s steepest descent rule, candidate lists could help focus the effort on the

improving arcs and arc subsets in the Inside Loop.

Moreover, this evaluation process is highly parallelizable and could take advantage of multiprocessing, much as codes like

CPLEX do. A parallel version of FixNetGI (per Barr and Hickman [8]) would enable equitable comparisons with commercial

optimizers that have come to rely on multithreading for speed improvements and would be a valuable future study.

The attractive outcomes produced by the current version of GI/TS embodied in FixNetGI provides a significant advance in

our ability to solve fixed-cost network problems efficiently and motivates a study devoted to the solution of practical problems

in multiple areas.

ACKNOWLEDGMENT

We are indebted to Doug Shier and Cole Smith for valuable and perceptive observations that have improved the quality of this

article.

DATA AVAILABILITY STATEMENT
The test problems and related data used to produce the findings of this study are available from coauthor R. Barr upon request.

ORCID
Richard S. Barr https://orcid.org/0000-0002-1925-6642

Fred Glover https://orcid.org/0000-0001-6945-0438

REFERENCES

[1] R. Ahuja, T. Magnanti, and J. Orlin, Network flows, Prentice Hall, Upper Saddle River, NJ, 1993.

https://orcid.org/0000-0002-1925-6642
https://orcid.org/0000-0002-1925-6642
https://orcid.org/0000-0001-6945-0438
https://orcid.org/0000-0001-6945-0438


BARR ET AL. 19

[2] M. Alizadeh, Facility location in supply chain, in Facility location in supply chain facility location: Concepts, models, algorithms and case
studies, R. Z. Farahani and M. Hekmatfar, Eds., Springer-Verlag, Berlin, Germany, 2009, 473–504.

[3] S. A. Alumur, B. Y. Kara, and M. T. Melo, Location and logistics, in Location science, G. Laporte, S. Nickel, and F. Saldanha da Gama, Eds.,
Springer, New York, NY, 2015, 419–441.

[4] R. Barr, F. Glover, and D. Klingman, Enhancements of spanning tree labeling procedures for network optimization, INFOR. Inf. Syst. Oper.
Res. 17 (1979), 16–34.

[5] R. S. Barr, J. Elam, F. Glover, and D. Klingman, A network augmenting path basis algorithm for transshipment problems, in Extremal methods
and systems analysis, A. V. Fiacco and K. O. Kortanek, Eds., Springer-Verlag, New York, NY, 1980, 250–274.

[6] R. S. Barr, F. Glover, and D. Klingman, The generalized alternating path algorithm for transportation problems, Eur. J. Oper. Res. 2 (1978),
137–144.

[7] R. S. Barr, F. Glover, and D. Klingman, A new optimization method for large scale fixed charge transportation problems, Oper. Res. 29 (1981),
448–463.

[8] R. S. Barr and B. Hickman, Parallel simplex for large pure network problems: Computational testing and sources of speedup, Oper. Res. 42
(1994), 65–80.

[9] R. S. Barr, R. Jones, and A. Klinkert, An efficient optimization approach to designing large-scale hierarchical smart-grid data networks,
technical report, Southern Methodist University, Department of Engineering Management, Information, and Systems, Dallas, TX, 2019.

[10] M. Bazaraa, J. Jarvis, and H. Sherali, Linear programming and network flows, 4th ed., Hoboken, NJ: Wiley Online Library, 2010.
[11] M. Daskin, Network and discrete location: Models, algorithms, and applications, 2nd ed., Wiley, New York, NY, 2013.
[12] H. A. Eiselt, V. Marianov, and J. Bhadury, Location analysis in practice, in Applications of location analysis, H. Eiselt and V. Marianov, Eds.,

Springer, New York, NY, 2015.
[13] E. Fernández and M. Landete, Fixed-charge facility location problems, in Location science, G. Laporte, S. Nickel, and F. Saldanha da Gama,

Eds., Springer, New York, NY, 2015, 47–77. https://www.springer.com/us/book/9783030321765
[14] A. Forsgren and M. Prytz, Telecommunications network design, in Handbook of optimization in telecommunications, M. G. C. Resende and

F. M. Pardalos, Eds., Springer, New York, NY, 2006, 269–290.
[15] B. Fortz, Location problems in telecommunications, in Location science, G. Laporte, S. Nickel, and F. Saldanha da Gama, Eds., Springer, New

York, NY, 2015, 537–554.
[16] F. Glover, Optimization by ghost image processes in neural networks, Comput. Oper. Res. 21 (1994), 801–822.
[17] F. Glover, M. Amini, and G. Kochenberger, Parametric ghost image processes for fixed-charge problems: A study of transportation networks,

J. Heuristics 11 (2005), 307–336.
[18] F. Glover, D. Klingman, and N. V. Phillips, Network models in optimization and their applications in practice, Vol 36, Wiley-Interscience, New

York, NY, 1992.
[19] F. Glover and M. Laguna, Tabu search, Kluwer Academic Publishers, Boston, MA, 1997.
[20] IBM CPLEX optimizer 2019, Available at https://www.ibm.com/analytics/cplex-optimizer.
[21] J. J. Jarvis, R. L. Rardin, V. E. Unger, R. W. Moore, and C. C. Schimpeler, Optimal design of regional wastewater systems: A fixed-charge

network flow model, Oper. Res. 26 (1978), 538–550.
[22] L. Kaan and E. V. Olinick, The vanpool assignment problem: Optimization models and solution algorithms, Comput. Ind. Eng. 66 (2013), 24–40.
[23] D. Klingman, H. A. Napier, and J. Stutz, NETGEN: A program for generating large scale capacitated assignment, transportation, and minimum

cost flow network problems, Manag. Sci. 20 (1974), 814–821.
[24] G. R. Mateus and Z. K. G. Patrocinio Jr., Optimization issues in distribution network design, in Handbook of optimization in telecommunications,

M. G. C. Resende and F. M. Pardalos, Eds., Springer, New York, NY, 2006, 341–366.
[25] K. G. Murty, Network programming, Prentice-Hall, Inc, Upper Saddle River, NJ, 1992.
[26] C. D. Nicholson and W. Zhang, Optimal network flow: A predictive analytics perspective on the fixed-charge network flow problem, Comput.

Ind. Eng. 99 (2016), 260–268.
[27] M. Pioro and D. Medhi, Routing, flow, and capacity design in communication and computer networks, Elsevier, San Francisco, CA, 2004.
[28] E. Steinberg and H. A. Napier, Optimal multi-level lot sizing for requirements planning systems, Manag. Sci. 26 (1980), 1258–1271.
[29] M. Sun, J. E. Aronson, P. G. McKeown, and D. Drinka, A tabu search heuristic procedure for the fixed charge transportation problem, Eur.

J. Oper. Res. 106 (1998), 441–456.

How to cite this article: Barr RS, Glover F, Huskinson T, Kochenberger G. An extreme-point tabu-search algorithm

for fixed-charge network problems. Networks. 2021;1–19. https://doi.org/10.1002/net.22020

https://www.springer.com/us/book/9783030321765
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1002/net.22020
https://doi.org/10.1002/net.22020
https://doi.org/10.1002/net.22020
https://doi.org/10.1002/net.22020
https://doi.org/10.1002/net.22020
https://doi.org/10.1002/net.22020
https://doi.org/10.1002/net.22020

