ENHANCEMENTS OF SPANNING TREE LABELLING
PROCEDURES FOR NETWORK OPTIMIZATION*

RICHARD BARR
Southern Methodist University, Dallas, Texas

FRED GLOVER
University of Colorado, Boulder, Colorado

DARWIN KLINGMAN

University of Texas at Ausiin, Texas

ABSTRACT

New labelling techniques are provided for accelerating the basis exchange step of
specialized linear programming methods for network problems. Computational results
are presented which show that these techniques substantially reduce the amount of
computation involved in updating operations.

RESUME

Des techniques nouvelles d'étiqueter sont pourvues A accélérer le démarche du base
échange des méthodes du simplexe specialisées pour les problémes du réseau. Les
résuitats computationeaux sont presentés qui montent que ces techniques ameliorent
'efficience des opérations de revision par un facteur de deux.

1 INTRODUCTION

In solving minimum cost flow network problems by specialized simplex
methods, an important question is: How can one update the spanning
tree basis with the least amount of effort? A partial answer to this question
is provided by special list structure techniques such as the Ap1 method (®
and the more recent ATI method, ! which have contributed dramatically
to improving the efficiency of network algorithms (see, e.g., references (3,
5, 6,7, 11)). This paper addresses the issue of which supplemental tech-
niques can be used to implement these list structures (and particularly the
ATI method) with greater efficiency.

As shown in reference (6), the major updating calculations of a basis
exchange step can be restricted to just one of the two subtrees created by
dropping the cutgoing arc. Consequently, a natural goal is to identify the

*Received 10 October 1975; revised 3 February 1977 and 31 May 1978,
16
INFOR vol. 17, no. 1, February 1979

TREE LABELLING PROCEDURES 17

smaller of these two subtrees by means of a function {(x) that names the
number of nodes in the subtree ‘‘headed by node x.”” A clever and rather
intricate procedure for doing this was proposed by Srinivasan and
Thompson.®® Unfortunately, this procedure requires sorting the nodes
of the subtree by their distances from the root, and then further entails a
full subtree update of both the distance values and the ¢(x) values at each
basis exchange step. Because of the substantial amount of work required
to update the #(x) list, the advantages of using this list have been largely
offset by the computational costs involved in its maintenance, and the
potential of the original Srinivasan-Thompson proposal has not been
fully realized.

The purpose of this paper is to propose a new type of relabelling scheme
that succeeds in updating ¢(x) without sorting. In fact, this scheme re-
quires even less work than updating the distance values of reference (13).
The relabelling is based on ‘‘absorbing” f(x) into the updating calcula-
tions of the aT! method. Noreover, these calculations are carried out
simultaneously with the procedures®® for updating other changes intro-
duced by the basis exchange step.

To achieve the integration of the ATI calculations and the update of
#(x), an index function f(x) is introduced which names the last node in
the subtree rooted at x. Additionally, it is shown that f(x) makes it
possible to streamline the aTr calculations. Finally, as a bonus, it is
shown that {(x) can accommodate all of the relevant functions filled by
the distance values, and hence can replace these values. Computational
results presented in the last section indicate that the net gains of all these
advantages produce a procedure that is approximately twice as fast for
implementing the basis exchange operations.

2 BACKGROUND

2.1 Problem definition
The capacitated minimum cost flow network or capacitated transshipmeni
problem can be stated as follows:

Problem 1
Minimize
C 5% 15, (1)
({.7€4
subject to:
qu—zxn=bk.kEN 2)

1€k €0k

0 < xy; <ugyfor (i, j) € 4, (3)

18 RICHARD BARR, FRED GLOVER, AND DARWIN KLINGMAN

where I, = {i € N: (i, k) € A} and O, = {j € N:(k, j) € A}. In stan-
dard terminology A is the set of arcs (1, j) of the network G(V, 4) and N
is the set of nodes. The constant &, represents the ‘‘requirement’” at node
k, which is frequently referred to as the supply if by < 0 and as the
demand if b, > 0. Associated with each node £ € N is a dual variable =,
called its node potential. An arc (3, j) is directed from node 7 to node j. An
arc (¢, j) is also said to be out-directed from node ¢ and in-directed to
node j. Thus, in particular, 7, is the set of tail nodes of arcs that are in-
directed to node k&, and O, is the set of head nodes of arcs that arc out-
directed from node &.

The flow, cost, and upper bound of arc (,) are represented, respective-
ly, by x4, ¢y, and #. In the terminology of simplex solution algorithms
for networks, the reduced cost of arc (4, j) € 4 is ¢y = ¢y + 70 — 740
The objective is to determine a set of arc flows which satisfies the node
requirements and capacity restrictions at minimum total cost.

2.2 Graphical structure of network bases

A bounded variable simplex basis for a network flow problem corresponds
to a spanning tree with # — 1 arcs (where n denotes the cardinalitv of
the set V). An arc is called basic if it is contained among those arcs in the
basis tree and is called non-basic otherwise. Each non-basic arc has a low
equal to zero or to its upper bound.

Once the flows on the non-basic arcs have been set, the flows on the
basic arcs are uniquely assigned so that equation (2) is satisfied. If equa-
tion (3) is also satisfied, this assignment of flows is a basic feasible solu-
tion. For each basis, node potentials are assigned values that sausfy
complementary slackness; that is, these node potential values are deter-
mined so that the reduced cost for each basic arc is zero.

2.3 Representation of a spanning tree
The most efficient procedures for solving network flow problems are based
on storing the basis as a rooted tree. It will be assumed that a hasis tree
with # nodes and n — 1 arcs is known and has been rooted. The root node
will be regarded as the ‘‘highest’” node in the rooted tree, with all other
nodes hanging below it. If nodes ¢ and j denote endpoints of a common arc
in the rooted tree such that node 7 is closest to the root, then 7 is called
the predecessor of node j and node j is called an 1mmediate successor of
node 1.

The following notational conventions will be used to identify the com-
ponents of the basis exchange step:
[p, q] = the link between node p and g leaving the basis tree.

TREE LABELLING PROCEDURES 19

[u, v] = the link entering the basis tree where v is the node whose unique

path to the root node contains {p, ¢].
T = the basis tree.

T(x) = the subtree of T that is rooted at node x (hence the subtree that
includes x and all its successors under the predecessor ordering).

p(x) = the predecessor of node x where p(x) = 0 if node x is the root
node.

s(x) = the "“thread successor’ of x.

Intuitively, function s may be thought of as a thread which passes
through each node exactly once in a top to bottom, left to right order
starting from the root node.

More precisely the function s satisfies the following inductive character-
istics :

(a) Letting | denote the root node, the set {1, s(1), s*(1), ... s"~'(1)} is
precisely the set of nodes of the rooted tree where s2(1) = s(s(1)), s* =
s(s2(1)), etc. The nodes 1, s(1), ... s*7'(1), will be called the aniecedents of
node s*(1).

(b) For each node 7 other than node s*~'(1), s(1) is one of the immediate
successors of node 1, if 7 has a successor. Otherwise, s(1) is an immediate
successor of the closest predecessor of node 7, say node x, such that node x
has an immediate successor which is not an antecedent of node 1.

(c) s*(1) = 1; that is, the last node of the tree threads back to the
root node.

By virtue of the foregoing characterization, the set of nodes of 7'(x) is
{x, 51 (x), ..., s¥(x)} where k is the largest number such that p(s*(x)) is one
of the nodes x, s(x), ..., s*71(x). By convention s!(x) = s(x) and s°(x) = ..

t(x) = the number of nodes in 7(x).

f(x) = the “last node,”” s7(x), of the nodes in 7' (x), wherer = f(x) — 1.

Figure 1 illustrates the above functions as follows. The NODE array
specifies the node names. The entries in the arrays p, s, f, and ¢ parallel
to a node name specify the values of the functions p, 5, f, and ¢ for that
node name. Note that the links in Figure 1 indicate the existence of a
basis arc, but not the direction of the arc in problem 1.

2.4 Summary of the network simplex method
For completeness, the steps of the simplex method specialized to this
framework are summarized as follows.

Initialization: Determine Node Potentials

Assume that an initial feasible basis (possibly containing artificial arcs’
has been determined and stored as a rooted tree. It is then necessary to
determine node potentials 7, for each node %2 so that the reduced cost

20 RICHARD BARR, FRED GLOVER, AND DARWIN KLINGMAN

FUNCTIONS
NODE [p[s[f]t
[0 Tola2hisiis
2 1] 3[15/14
3 21 4| 6! 4
4 3| 5| 4}
5 3| 61 501
| 6 13} 7 61
7 2} 815} 9
’ 8 71 9] 8/ 1
|9 7 110[14} 6
I 10 9 |1ti10! 1
1 9 (12]14] 4
12 iz
13 111401301
14 |11 {15114] 1
15 71 1isi

F16. 1. Initial tree and function values.

equals zero for each basic arc (1, 7). Because of the redundancy in the
defining equations of the network problem, one node potential can be set
arbitrarily. Customarily, the node potential of the root is initially set to
zero. The remaining node potentials can be determined in a cascading
fashion by moving down the tree and computing the potential {or node j
from the potential previously set for its predecessor, node 7, and from
the equation

Ci +mg — ;= 0,

if the basic arc connecting nodes 7 and j is directed from node 7 to node j
in problem 1, or from

¢+ 7y — m =0,

if the basic arc is directed instead from node j to node 7 in problenm: 1.

Step 1: Identify the outgoing and incoming arcs.
The fundamental basis exchange step of the simplex method selects an

TREE LABELLING PROCEDURES 21

incoming arc and an outgoing arc from the set of non-basic and basic arcs,
respectively.

(a) The incoming arc: A non-basic arc which is profitable (i.e., has zero
flow and a negative reduced cost or has saturating (upper bound) flow
and a positive reduced cost) is selected to enter the basis. If no such arc
exists, the problem is solved. (In this case, the solution is feasible and the
current arc flows are optimal if no artificial arcs with positive flow exist:
otherwise the problem is infeasible.)

(b) The outgoing arc: The arc to leave the basis is determined bv
tracing the unique basis path which connects the two nodes of the in-
coming arc. This basis equivalent path can be determined by tracing the
predecessors of the two nodes to their initial point of intersection. An
attempted change of the flow of the incoming arc in its profitable direction
(away from the bound it currently equals) causes a change in the flows of
the arcs contained in this basis equivalent path. In order to maintain
primal feasibility, the outgoing arc must always be an arc in this pat:
whose flow goes to zero or its upper bound ahead of (or at least as soon as|
any others as a result of a flow change in the incoming arc. Such an arc is
called a blocking arc. (This arc can, of course, be the same as the incominy
arc in the capacitated problem.)

Step 2: Execute the basis exchange.

The outgoing and incoming arcs swap their basic/non-basic statuses o
become non-basic and basic, respectively; the basis tree functions, basis
flows, and node potentials are then updated and the method returns to
Step 1 with a new primal feasible basis.

To illustrate, consider figure 1 and assume that link {5, 13] has been
selected to enter the basis. The basis equivalent path for link [5, 13] is
the links in the predecessor path of the basis tree from node 5 to node 2
and from node 13 to node 2. Node 2 is referred to as the intersection node.

The purpose of this paper is to show how the functions p, s, f, and ¢ can
be efficiently updated and how these functions can be used to find the
basis equivalent path and used to update the node potentials.

Before proceeding, it may be helpful to review how the node potentials
can be updated from basis to basis. Observe that when [p, ¢} is deleted
from the basis tree, the tree splits into two subtrees. It is only necessary
to change the node potentials associated with one of these subtrees (pre-
ferably the subtree containing the fewest number of nodes) and these
potentials can be updated by simply adding or subtracting §, the reduced
cost of the entering arc, to each node potential in the selected subtree.
One adds the value § if the selected subtree contains the ““from” node of
the entering arc and subtracts § otherwise. (For a more complete descrip-
tion see reference (6).)

n

2 RICHARD BARR, FRED GLOVER, AND DARWIN KLINGMAN

To illustrate, consider figure 1 and assume that link [, v} Is directed
from u to v and let 8, denote its reduced cost. Updated node potentials
can be obtained by subtracting é,, from each node potential in 7(g) (i.e.,
nodes 9, 10, 11, 12, 13, and 14) or adding 4., to each node potential in
T — T7T(g) (l.e.,nodes 1,2, 3, 4,5,6,7,8,and 15).

2.5 Additional notation
The basisexchange step may be visualized as consisting of twocomponents:

(1) Dropping link [#, ¢] to create two independent subtrees: 7{.} an!
T — T{g) (where the latter is the subtree of T that excludes 7'(¢) and all
its nodes, and hence which excludes the ‘‘connecting link” [, ¢]};

(2) Adding link [z, v] to create a single new basis tree.

The subtrees 7(¢) and T — T(g) can be viewed as any two node-disjoint
trees which are to be joined by an arc to create a new basis tree. Updating
operations will be developed first to make 7(g) and T — T'(g) into falel
“independent’ trees in preparation for selecting one to be the new “'upper
tree”’ (talled 7\) rooted at x; and the other to be the new "lower tree”
(called T,) rooted at x,. [t may then be assumed that the root o7 77 fre-
comes the root of the new basis tree. Additionally, [y, 2] will be used 1o
denote the link that joins 77 and T, where 3 is a node of 75 and v, is a
node of Ts. Next, operations will be developed to re-root 7, at & in pre-
paration for attaching 7> to T via link [y, ¥.] to create the new Dasis
tree. (There is no requirement that v be distinct from x; or thit v. be
distinct from x;.)

3 PERFORMING THE BASIS EXCHANGE

3.1 Finding the basis equivalent path
In the simplex method an improving non-basic arc is selected to enter the
basis if the current basis is not optimal. Once this arc has been selected, it
is necessary to locate its basis equivalent path. The arc leaving the basis
always lies in the basis equivalent path and corresponds to a blocking arc.
The following procedure efficiently locates the basis equivalent path and
if the flows, lower bounds, and upper bounds on each basic arc are known,
simultaneously determines the arc to leave the basis. Specifically, this
loop can be located as follows:
(i) Set x, = u and x, = v.

(ii) If #(x,) < t(x,) go to step v.

(i) If t(x,) > t(x,) go to step 1.

(iv) If x, # x,, go to step v. Otherwise set z = x, and stop. The loop
created by adding [u, »] has been traversed and x, = x, = zis the unique
node of this loop which lies on the predecessor paths from both # and v

TREE LABELLING PROCEDURES 23

to the root node of the tree. Node 2z will henceforth be called the inter-
section node.

(v) Search the predecessor path from x, to the root of T for a node x
such thatt(x) > t(x,), setxy = x, and go to step (iii).

(v1) Search the predecessor path from x, to the root of T for a node x
such that t(x) > t(x,) and set x, = x. If {(x,) = t(x,), go to (iv); otherwise
go to step (v).

Graphically, the above algorithm implicitly traverses the predecessor
path from u to the root of 7 and the predecessor path from v to the root ¢/
7 in the most ‘‘node efficient’” manner to locate the basis equivalent path
and the intersection node 2. The intersection node possesses the following
obvious properties: (1) it will have the same ¢(x) value on both paths and
(2) it will have the same name on both paths. The algorithm avoids
checking two nodes for intersection unless condition (1) above holds true.
For example, in figure 1 the algorithm will bypass nodes 9and 7, but it wiil
check node 5 against node 13, then node 3 against node 11, and finally
node 2 against node 2. Any nodes above the intersection are ignored.

3.2 Updating operations
Using the preceding definitions, rules will be given to find updated values
p¥(x), s*(x), t*(x), f*(x) for p(x), s(x), t(x), and f(x), respectively.

For notational ease, we also make use of the “‘reverse thread’ functioun
r, which has the property such that s(r(x)) = x. The values of 7(x) nev:!
not be maintained and may be calculated as needed by using the s func-
tion to trace the thread from p(x). For a more efficient method, first let
y = p(x). Second, if s(y) = x, stop and let r(x) = y. Otherwise, let v =
f(s(3)) and return to the second step.

I Update p(x), s(x), and f(x) to make the subtree T(q) and T — T(q)
independent. .
The reader may find it helpful to perform the following operations using

figure 1.

1.1 Update for T — T(q):

For p*(x): No updating of any p(x) is required.

For s*(x): Set s*(r(q)) = s(f(g)). No other s(x) values are changed.

For f*(x): Let x* = p(s(f(¢))). If x* = 0, then set x* equal to the root
node index. Set f*(x) = 7{x) (i.e., the node y determined in updating s
above) for those nodes x on the path from p to x* excluding x* itself if
p(s(f(@))) # 0. (If x* = p, then no updating is done unless x* is the
root node.)

For t*(x) : Set t*(x) = t(x) — #(g) for those nodes x on the path from p
to the root of 7. It1s important to note that, due to cancellation effects of

24 RICHARD BARR, FRED GLOVER, AND DARWIN KLINGMAN

Nooel p T T
T 1 0| 2(15] %*
2 1| 3'15] &°
3 2 4 61 4l
4 31 5| 4|1 “indicotes values that
5 3] 6 5|1 changed during Step I
6 3L 7 6]y
7 2| 815 3°
8 7l 8l
9 010114 6
I 10 91110/ 1
n 911214 4
12 in sz
13 {11114 13 3
14 (11] 9141
15 7] t1s] 1

F16G. 2. Tree and function values after performing step I.

subsequent calculations, this step can be restricted to the partial back-
ward path from p to the intersection node z found in section 3.1.

Also observe that the updating of the ¢ and f function values can be
integrated in the tracing of the path from p to the root of T

1.2 Update for T(q):

For p*(x): Set p(g) = 0

For s*(x): Set s*(f(¢)) = ¢.

No other updating of any p(x), s(x), £(x), or f(x) values is required for
().

Figure 2 illustrates the updated values after performing Step I on
figure 1.
11 Decide which of T(q) and T — T(q) is to be T1 and which is to be 1.

The rule to use for picking which subtree to re-root depends heavily on
when the dual variables are updated. As noted earlier, the updating of

TREE LABELLING PROCEDURES 25

the dual variables involves adding or subtracting a constant from each
node potential in one of the subtrees. Further, as will be seen in Step 111,
updating the thread function involves visiting some of the nodes in the
subtree to be re-rooted. Thus these two operations could be integrated.

If the updating of the dual variables is not integrated with the other
updating operations, it will be clear from the operations performed in
Step 111 that the subtree to re-root should be selected according to the
number of nodes in the predecessor paths from « to the root of 77 — T'(g)
and from » to ¢. In particular, the subtree associated with the path con-
taining the minimum number of nodes should be re-rooted. Further, if
the dual variable updating operations are not integrated, the dual vari-
ables should be updated in the subtree containing the smallest number of
nodes.

Thus the following procedures will be computationally investigated in
section 5:

Procedure 1: Let T, be the subtree whose predecessor path from the
proposed new root to the old root is smallest and separately update the
dual variables in the subtree containing the fewer number of nodes.

Procedure 2: Same as Procedure 1 except that if T is to be both re-
rooted and its dual variables updated, then integrate the updating of the
dual variables with the other updating operations.

One computational disadvantage of the above procedures is that the
number of nodes in the path from « to the root of T — T'(g) is not known
and to calculate it involves traversing the path from the intersection
node z to the root of T — T'(g) for no purpose other than to calculate this
number. Another computational disadvantage simply involves the fact
that there are certain computational advantages to always performing
all updating operations on one subtree. To partially overcome these
difficulties, two compromise procedures are proposed :

Procedure 3: Let T» be the subtree containing the smallest number of
nodes. Perform all updating operations on T, integrating the dual vari-
able updating with the other updating operations.

Procedure 4: Determine Ty as in Procedure 3. Do not integrate the
updating of the dual variables.

111 Make y, the new root of T» and update p(x), s(x), t(x), and f(x).
The basic notion behind this step is to reverse the predecessor orienta-
tions in the y; — x; path and reset the thread function so as to move all
non-(y, — x;)-path nodes in the subtree to the left of this path.

For clarity, this and the subsequent step assume that each function
(p, f, ¢, and s) is updated independently. Integration of the operations is
described at the end of each step. (Again, the reader may find it helpful to

26 RICHARD BARR, FRED GLOVER, AND DARWIN KLINGMAN

carry out these operations using an updated figure 2 and Procedure 3 from

Section 11).

For p*(x). Reverse the predecessor orientation of the path from y, to
x2 as follows:

a.l. If x, = y,, stop; do nothing.

a.2. Otherwise set y = y,.

b.1. Recursively set p*(p(y)) = y and then y = p(y) until and including
p(y) = xa

c.l. Set p*(y2) = 0.

(It is important to note that p(x) and p*(x) must be kept distinct from

each other;i.e., it is not legitimate to replace p(x) by p*(x) in the compu-

tation.)
For s*(x): If x5 = v, no updating of s(x) is required. Otherwise cxecute
the following steps:

a.l. Set x = yo, w = f(x), and z = s(w).

b.l. Let y = r(x).

b.2. If p(2) = px), set s*(y) = z, s¥(w) = p(x), w = fFP(x)), and = =
s(w); otherwise, set s*(w) = p(x) and w = .

b.3. Set x = p(x).

b.4. If x = x4, go to b.1.

c.l. Set s*(w) = y, and stop. In the updating of f, this last value of w
(i.e., the node whose new thread is the new root v.) plavs a primary
role. (Note that w is either equal to f(x.) or the last y.)

For f*(x): If x» = y,, no updating is required. Otherwise, update as
follows:

c.1. Let %, be the unique node on the predecessor path from vy, to x; such
that p(x:) = x».

c.2. If f(xa) = f(Z4), then f*(x2) = f(x2) (i.e., f(x:) does not change).
Otherwise, f*(x2) = w, where w = r(%:). (As noted above, w will be
identified automatically at the conclusion of updating s.)

c.3. Set f*(x) = f*(x;) for all x on the predecessor path from y; to x..

For t*(x):

a.l. Set £*(ys) = t(xy). (Butif T'(g) = T;and the restricted update of ¢(x)
was carried out in Step 1.1, set t*(y,) = t(x:) — t(g).)

b.1. For each x on the predecessor path from y» to x: (excluding x = x5},
set t*(p(x)) = t*(y2) — t(x). (Again note that /(x) and *(x) must be
kept distinct and it is assumed that p(x) has not been updated.)

Figure 3 indicates the updated function values obtained by applying

Step 111 to figure 2. It appears that in order to integrate updating and

optimize computationa! operations, Step 111 should be implemented as

follows. Start by executing those operations labelled with an “a.” Next,
traverse the path from y, to x» and, for each x in sequence on this path,

use the “b’’ operations to simultaneously update the functions p(x), s(x),

W
-1

TREE LABELLING PROCEDURES

(3)
Fen® @ ®
(1)
(2 Gra-s)

(
FUNCTIONS ‘
NODE [p [s [F T

v | of2l15) 09

2 1, 3,15, 8

3 | 2 4(6| 4 *indicates values that
4 ' 3 5‘ 41 13 were set during Step III
5 | 3] 6)5]|1

6 31 7161

7 | 2)8|15] 3

8 7115} 8| 1

9 11*hi0i107 2%

10 9:1310 1!

1 13" 12 1107 5™

12 L1 e 12 | Vi

13 o 110t &

14 1] 9514} 1

15 71 1418 1‘

F1c. 3. Tree and function values after performing step 111.

and {(x), the basic flow values associated with arcs on this path, plus co-
ordinate the updating of the node potential values with the updating of
s(x). Next, the remaining operations labelled with a ‘‘c¢’’ are performed
and the new predecessor path from x, to ¥, should be traversed to up-
date f(x).

IV Attach Ty to T1 by adding arc {y1, ys] to creale the new basis tree (where
Ty1s now rooted at y, as a result of Step I11).

As before, in the following p(x), s(x), f(x), and {(x) refer to the value of
the functions p, s, f, and ¢ after the execution of Step 111 above and the
rules for updating each function assume that no other functions have becu
updated since Step 111.

For p¥(x): Set p*(v2) = 1.

For s*(x): Set s*(f(v2)) = s{y1) and s*(y1) = ¥».

For f*(x):Set & = p(s(y;)). If £ = 0 set £ = x;. Then for those nodes x

TREE LABELLING PROCEDURES 24

to the basis tree (i.e., finding the basis equivalence path of (x, 9)) as
shown in Section 3.1.

4 INITIALIZATION

It is left to characterize the procedure for establishing the initial values of
t(x) and f(x). This occurs simultaneously with the initial determination
of the s(x) values as follows.

Let x, denote the root of the tree. Consider the step in which s¥!(x,) =
s(s*(xo)) is identified (k& > 0). If s¥(x,) is the predecessor of s*'(x,)
(via the predecessor indexing), do nothing. Otherwise, for all nodes s*(x,)
on the predecessor path from s*(x,) to the predecessor of s¥*i(x,), ex-
cluding the predecessor of s¥*1(x,) itself, set t(s"(x¢)) = B + 1 — 1, and
set f(s'(xy)) = s*(xq).

When the last node s*~*(x,) of the network is determined, set ¢(s%(x,))
= n — tand set f(s'(xo)) = s™(x,) for all s'(x,) on the predecessor path
from s*1(xy) to x,.

To easily keep track of the index ¢ for each node s*(x;) that is to be
considered on a given step, it is convenient to keep a list that consists
precisely of the indexes ¢ of the nodes si(x,) to x,. Specifically, to begin
with the list contains the single index 0 (for s°(x,)). When s¥!(x) is
created, the number 2 + 1 is added to the end of the list. When a pre-
decessor path from s¥(x,) is traced, corsisting of » nodes (say) s'(xg)
whose values {(s*(xq)) and f(s*(x¢)) are to be set, the indexes of these r
nodes will be exactly the corresponding last r numbers on the list. By
removing these numbers from the list just before adding the number
E -+ 1, the desired structure of the list is maintained.

5 COMPUTATIONAL ANALYSIS

5.1. Highlights of the development of the ARC-II computer code

To evaluate the foregoing procedures, henceforth referred to as the
Extended Threaded Index (xT1) Method, we developed a new in-core
computer code entitled ARc-11 for solving capacitated transshipment
problems. ARC-II is written in a ‘‘manilla” FORTRAN with several sub-
routines to perform the various updating operations, for the following
reasons: (1) this modular approach simplifies testing of different up-
dating procedures, (2) minimal recoding is required to fit different ma-
chine and computer conventions, and (3) unbiased comparisons can be
made with codes which have not been ‘‘customized” to a particular
machine or compiler. One disadvantage of this approach, of course, is
that the reported times are conservative, since programs which have

30 RICHARD BARR, FRED GLOVER, AND DARWIN KLINGMAN

been ‘‘tuned’’ to a particular operating environment execute substantially
faster. However, our purpose in developing ARC-11 was to obtain unbiased
comparisons between the XTI approach and other procedures available in
the literature. To this end, the same starting and pivoting procedures as
described in references (8, 9) for transshipment problems are used.

After initially developing ARc-I1, preliminary Yesting was conducted on
the recoding rules described in part 11 of Section 3. Our initial testing
indicated that procedure 3 was never a good rule and that procedure 4
marginally dominated procedures 1 and 2. Thus, the times on the arc-11
code reported subsequently in this section reflect the use of procedure 4.

Another supplementary feature tested was maintaining the ‘‘reverse
thread function” described in Section 3.2. Using this function in conjunc-
tion with the other functions previously discussed, one can eliminate all
searching involved in the basis exchange operation; i.e., updating the
thread function is simply a matter of resetting known pointers. The
disadvantages of using the reverse thread directly include increased
memory requirements and the need to maintain an additional set of
function values. Our tests using the reverse thread function indicate thar
solution times are reduced by approximately 3%. In our opinion, this
reduction is not sufficient to warrant the additional memory space, and
therefore, ARc-11 does not maintain such a function.

5.2 Compuiational comparisons
To determine the efficiency of the xXT1 procedures, ARC-11 was compared
with three out-of-kilter codesreferred to hereinafter as SHARE,® SUPERK,
and BsrL (developed by T. Bray and C. Witzgall while at Boeing Scientific
Laboratories). Additionally, one dual simplex based code,® called DxNET,
one negative cycle code,® called BENN, and two primal simplex based
codes, called PNET and PNET-I, were tested for comparative purposes.
PNET®! uses the aPI list structure® and PNET-1¢® uses the ATI list struc-
ture. ¥

All of the above mentioned codes are in-core codes; i.e., the program
and all of the problem data simultaneously reside in fast-access memory.
All are coded in FORTRAN and none of them (including ArRc-11) has been
tuned (optimized) for a particular compiler. All of the problems were
solved on the cpc 6600 at the University of Texas Computation Center
using the RUN compiler. The computer jobs were executed during periods
when the machine load was approximately the same, and all solution
times are exclusive of input and output; i.e., the total time spent solving
the problem was recorded by calling a ¢cpu clock upon starting to solve
the problem and again when the solution was obtained.

Since the test problems of reference (11) are currently used worldwide

TREE LABELLING PROCEDURES 31

TABLE 1
SoLUTioN TIMES 1N SECONDS ON A ¢DpC 6600

Problems ARC-II PNET PNET-I] DNET BENN SUPERK SHARE BSRL
1 .78 1.30 1.07 12.85 20.25 5.68 17.76 30.25
2 .89 1.49 1.25 13.56 24.36 6.47 21.34 21.59
3 1.01 1.94 1.64 21.44 34.56 6.87 26.16 31.47
4 .95 1.64 1.27 17.96 31.45 6.57 25.13 36.47
b 1.25 1.88 1.63 23.34 52.10 6.77 30.97 47.73
6 2.11 3.55 2.86 46.10 61.00 11.05 46.40 16,64
7 2.23 4.06 3.37 74.88 DNR* 12.86 65.92 113.12
8 2.99 4.72 4.10 97.92 DXNR 13.69 81.00 175.10
9 2.99 4,80 4.15 101.65 DNR 13.40 81.21 136.99
10 4.02 5.88 5.27 95.96 DNR 14.13 84.24 I54.75
11 1.92 3.52 2.31 19.87 17 .44 6.44 19.93 30.39
12 2.36 4 .87 3.71 26.58 20.31 6.47 21.17 29 08
13 3.13 5.52 3.47 27.98 24 .92 7.25 25.81 20,02
14 206 6.02 3.44 30.15 27.40 6.95 24 .05 2311
15 3.12 6.50 4.79 31.57 DNR 7.56 27.05 2105
16 1.38 2.40 2.15 14.77 11.77 5.27 21.51 15.15
17 1.87 3.11 2.60 DNR 20.10 8.36 32.40 6464
18 1.26 1.92 1.70 DNR 11.31 5.13 2006 180
19 1.72 2.60 2.40 DNR 20.62 8.49 31.75 6107
20 1.28 2.67 2.47 DNR 10.38 4.69 18.11 2572
21 1.83 2.76 2.46 DNR 20.35 7.96 32.60 i nn
22 1.26 2:22 2.01 DNR 9.97 4.60 17.91 RSN

23 1.67 3.00 2.74 DNR 19.81 7.91 32.606 0T
24 1.52 3.12 2.91 DNR 11.71 5.59 25.27 21 N7
25 1.83 4.17 3.06 DNR 18.27 8.37 33.19 (RN
26 1.08 4.45 4.05 DNR 11.38 5.51 25.05 19,34
27 1.62 4 .42 4.21 DNR 16.37 7.50 30.45 4143
28 4 .40 6.35 5.37 DNR DNR 13.91 53.87 5398
29 4.87 7.39 6.25 DNR DNR 14.51 52.55 117 X3
30 4.88 9.08 7.90 DNR DNR 16.00 61.33 152.21
31 5.68 9.59 7.58 DNR DNR 17.05 61.33 135.73
32 7.42 15.70 11.73 DNR DNR 22.88 78.63 55340
33 7.82 2020 1595 DXNR DNR 25.89 101.92 21014
34 §.21 17.10 13.76 DNR DNR 25.42 92.25 24810
35 §.81 19.39 15.87 DNR DNR 29.96 DNR DNR

*pNr—did not run.

for comparison purposes, they were also used in our comparison. This
comparison included several different types of problems (e.g., assignment,
transportation, and minimum cost flow network problems), both capaci-
tated and uncapacitated, and with varying node and arc requirements.
The problem specifications of these 35 problems as required on the input
cards to the network generator are given in reference (11). Problems 1-5
are 100 X 100 transportation problems; problems 6-10 are 150 X 150
transportation problems. Problems 11-15 are 200 X 200 assignment
problems. Problems 16-27 are 400 node capacitated transshipment prob-

32 RICHARD BARR, FRED GLOVER, AND DARWIN KLINGMAN

TABLE 2

CODE SPECIFICATIONS

Developer Name Type Number of Arrays

1 Barr, Glover, ARC-11 Primal Simplex Network 7N + 3A
Klingman

2 Barr, Glover, SUPERK Out-of-Kilter 4N 4+ 9A
Klingman

3 Bennington BENN Non-Simplex 6N + 11A

4 Bray and Witzgall BSRL Our-of-Kilter 6N 4+ 8A

5 Clasen SHARE Out-of-Kilter 6N + 7A

6 Glover, Karney, PNET Primal Simplex Network ™ 4+ 3A
Klingman

7 Glover, Karney, DNET Dual Simplex Network 9N + 3A
Klingman

8 Glover, Karney, PNET-I Primal Simplex Network 6N + 3A
Klingman

9 General Motors GM Out-of-Kilter 3N + BA

N-Node Length
A-Arc Length

lems; problems 28-33 are uncapacitated 1000 and 1500 node transship-
ment problems. Table 1 reports the solution times for each of these
problems for each of the codes.

The results in table 1 clearly indicate the superiority of ARC-II over all

other codes tested. Furthermore, the data indicate, rather startlingly, that

ARC-11 is approximately twice as fast as one of the (previously) fastest
codes in the literature, PNET-1.

It is also particularly noteworthy that the solution times for the ArRc-11
code are based on using the simple pivot strategies of reference (8), rather
than the more sophisticated candidate list strategies whose superiority
has been documented by Mulvey.@? We have used the simpler pivot
strategies to differentiate more clearly the contribution of the new label-
ling procedures. (There has indeed been some confusion introduced into
the literature by a number of recent studies whose comparisons have not
been based on fundamental methodological differences in labelling pro-
cedures, but simply on differences in pivot strategies, and not clearly
identified as such.) Thus, the times in table 1, while extremely fast,
should not be construed as the best attainable with the arc-11 code.
Preliminary tests with candidate list strategies, not yet refined to achieve
the most effective trade-offs with the new labelling procedures, have, in
fact, resulted in times that are roughly half of those in table 1.

5.3 Memory requirements of the codes
Table 2 indicates the number of node and arc length arrays required in

TREE LABELLING PROCEDURES 33

each of the codes tested for solving capacitated problems. It should he
noted that the program memory requirements of all of the codes tested
were quite close (within 1000 words) excluding the array requirements.
Thus the important factor in comparing codes is the number of node and
arc length arrays. Also, it should be noted that the primal and dual sim-
plex codes require one less arc length array if the problem is uncapacitated.
This is not true of the out-of-kilter codes.

Since any meaningful network problem has to have more arcs than
nodes, it is clear by table 2 that the primal and dual simplex codes ha-«
a distinct advantage (in terms of memory requirements) over all of the
other codes. Further, this advantage greatly increases as the number of
arcs increases and if the problem is uncapacitated. For example, for a
problem which has 10 times as many arcs as nodes, ARC-I1, PNET, PNET-I,
or DNET require only about one-half the memory space of the best of the
other codes.

ACKNOWLEDGMENTS

A number of particularly apt comments by a referee have improved the
readability of this paper and are sincerely acknowledged. Also, the
editorial assistance of Dr John Hultz, Systems Analyst of Analysis,
Research, and Compurtation, Inc., and Mr David Karney, Systems
Analyst at the Center for Cybernetic Studies, the University of Texa: .-
Austin, are appreciated.

The authors also wish to acknowledge the cooperation of the staff of
the University of Texas Computation Center, and Southern Methodist
University Computation Center.

This research was partly supported by oxXR Contracts N00014-75-C-
0616, N00014-75-C-0569, and NO00014-78-0222 with the Center for
Cybernetic Studies, University of Texas.

REFERENCES

(1) R.S. Barr, F. Glover, and D. Klingman, ““An improved version of the Qut-of-Kilter
Method and a comparative study of computer codes,”” Mathematical Programming,
vol. 7, no. 1, 1974, 60-87.

(2) G.E. Bennington, “‘An efficient minimal cost flow algorithm,'" or Report 75, North
Carolina State University, Raleigh, North Carolina, June 1972.

(3) G. Bradley, G. Brown, and G. Graves, A comparison of storage structure for
primal network codes,”” presented at OrRsa/TiMs conference, Chicago, April 1077,

(4) R.J. Clasen, “The numerical solution of network problems using the Qut-of-Kiiter
algorithm,"” rRAND Corporation Memorandum RM-5456-PR, Santa Monica, Caii-
fornia, March 1968.

(5) F. Glover, D. Karney, and D. Klingman, '‘Double-pricing dual and feasible start
algorithms for the capacitated transportation (distribution) problem,” ccs Re-

34

(6)

@

(8)

9
(10)

(11)

(12)

13)

RICHARD BARR, FRED GLOVER, AND DARWIN KLINGMAN

search Report 105, Center for Cybernetic Studies, University of Texas, Austin,
Texas 78712.

F. Glover, D. Karney, and D. Klingman, “The augmented precedessor index
method for locating stepping stone paths and assigning dual prices in distribution
problems,” Transportation Sci., vol. 6, 1972, 171-180.

F. Glover, D. Karney, D. Klingman, and A. Napier, ‘A computational study on
start procedures, basis change criteria, and solution algorithms for transportation
problems,” Management Sci. vol. 20, no. 5, 1974, 793-813.

F. Glover, D. Karney, and D. Klingman, "“Implementation and computational
study on start procedures and basis change criteria for a primal network code,”’
Networks, vol. 20, 1974, 191-212.

F. Glover, D. Klingman, and J. Stutz, ‘‘Augmented Threaded Index Method,”
INFOR, vol. 12, no. 3, 1974, 293-298.

E. Johnson, “Networks and basic solutions,” Operations Research, vol. 14, no. 4,
1966, 619-623.

D. Klingman, A. Napier, and J. Stutz, ""NETGEN-a program for generating large
scale (un)capacitated assignment, transportation, and minimum cost flow network
problems,”” Management Sci., vol. 20, no. 5, 1974, 813-819.

J. Mulvey, “Column weighting factors and other enhancements to the Augmented
Threaded Index Method for network optimization,” Joint OrRsa/Tims Conference,
San Juan, Puerto Rico, 1974.

V. Srinivasan, and G.L. Thompson, “Accelerated algorithms for labeling and re-
labeling of trees with application for distribution problems,” J. Assoc. Comput.
Machinery, vol. 19, no. 4, 1972, 712-726.

