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process requires solving transportation problems with up to 50 000 constraints and 60 million
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1. Introduction and overview

In analyzing economic policy, one of the most important tools currently
available is the microanalytic model. With this class of econometric models,
calculations are performed on individual sample observations of decision units,
called microdata, to forecast aggregate population effects of changes in public
policy. The significance of this technique is underscored by its use in virtually
every Federal agency and a growing number of State governments for the
evaluation of policy proposals. This paper focuses on the models used exten-
sively by the U.S. Department of the Treasury’s Office of Tax Analysis (OTA)
to evaluate tax revision and reform proposals for the Administration and for
Congress.

One of the strengths of the microanalytic technique is its direct use of sample
observations rather than aggregated data. The need for high quality and com-
pleteness of these models’ microdata is evident from the importance of their
end-use applications: legislation design and public policy analysis. But for a
variety of reasons, including cost and legality, data is rarely collected specifically
for policy models. Instead, they inevitably rely on data accumulated as a part of
program implementation (for example, I.R.S. tax forms) or from a survey
commissioned for a different purpose (e.g., Census Bureau data). Therefore, the
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quality of a model’s data often depends on more than the sampling and recording
procedures; the data from a single source may be ill-specified or incomplete. In
this case, the problem becomes more complex; multiple sources are used and
files are merged to form a composite data file.

Merging involves matching each observation record in one file with one or
more records in another file. In this manner, composite records are formed
which contain the data items from both original files. This paper explores some
of the difficulties associated with the merging process and describes a new
technique for their resolution. :

Until recently, merging has been performed in either an ad hoc or a heuristic
manner, but research at OTA [23, 24] has shown that an optimal merge can be
defined by the solution to a large-scale, linear programming transportation
problem. This optimal merging not only produces the best possible match but
also preserves the complete statistical structure of the original files.

Because of the unusually large nature of the network optimization problems, a
new state-of-the-art solution system was designed to accommodate problems of
up to 50000 constraints and 65 million variables and is currently run on a
production basis on Treasury computer systems. This paper describes the
environment of the merge problem, the optimal merge model, and the pioneering
mathematical programming system devised to meet this special set of needs.

In summary, public policy models often require data that is unavailable from
existing sources and separate surveys would cost tens of millions of dollars
apiece. The file merging process described herein is used to combine available
sources for a small fraction of that cost. Thus, the objective of the optimal
merging approach is the cost-effective preparation of high-quality data for input
to the public decision-making process.

2. OTA tax models

The main responsibility of OTA is the evaluation of proposed tax code
revisions. In the personal tax area, proposed changes are analyzed to determine
the effect they would have on the tax liability of families or individuals having
certain characteristics. From the analysis of a set of exhaustive and mutually
exclusive classes (based on such characteristics as tax return income class,
family size, age of family head, and demographics) it can be determined, for
example, how a proposed change affects the Federal tax liability of a husband-
wife filing unit (joint return) with two dependent exemptions and with an
adjusted gross income between $15 000 and $20 000. From these components, the
total variation of tax revenue is determined.

The tax policy changes to be analyzed come both from the Administration via
the Treasury’s Assistant Secretary for Tax Policy and from the tax-related
Congressional committees (Ways and Means, Senate Finance, and Joint Com-
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mittee on Taxation). The process is usually iterative, with one alternative leading
to another, and subject to overall constraints such as a specific limit on the total
change in revenue. As a result, the computer models may be run hundreds of
times in response to a series of “what if”” questions.

Two microeconomic models in heavy use at OTA are the Federal Personal
Income Tax Model and the Transfer Income Model. Description of these models
follow.

2.1. Federal Personal Income Tax Model

The Federal Personal Income Tax Model is used to assess proposed tax law
changes in terms of their effects on distribution of after-tax income, the
efficiency with which the changes will operate in achieving their objectives, the
effects the changes are likely to have on the way in which individuals compute
their taxes, and the implications for the level and composition of the GNP.

For example, a proposal might be made to increase the standard deduction
from $2200 to $2600, impose a floor on itemized medical deductions equal to 5
percent of adjusted gross income, and eliminate gasoline taxes as an allowable
deduction. Because of interactions among variables, the combined effect of
these changes is quite different from the sum of the isolated effects. For

example, many taxpayers would switch from itemization to the standard deduc-
tion.

2.2. Transfer Income Model (TRIM)

The Transfer Income Model (TRIM) is an enormous and complex micro-
analytic model used by almost every Federal department for analysis of transfer
income programs such as welfare and social security. It generates total budget
requirements and detailed distributional effects of new transfer programs or
changes to existing programs. Moreover, the model can describe the impact of
simultaneous program changes. For example, TRIM can ascertain the effect of
the cost-of-living component in social security on the food stamp program’s
transfers.

3. Sources of microdata

The OTA models make heavy use of two sources of microdata: the Statistics
of Income file and the Current Population Survey. As microdata, these files
contain complete records from reporting units (individuals or households) but,
for reasons of privacy and computational efficiency, only a representative subset
of the population records are included. Each record is assigned a ‘“weight”
designating the number of reporting units represented by the particular record.



4 R.S. Barr, J.S. Turner| Microdata file merging

The resulting microdata file is a compromise between a complete census file
and fully aggregated data. Thus, sufficient detail remains to support micro-
analysis of the population, while partial aggregation protects individual privacy
and greatly diminishes the computational burden.

3.1. Statistics of Income (SOI)

The SOI file is generated annually by the Internal Revenue Service and
consists of personal tax return data. Returns are sampled at random from 15 to
20 income strata; selection rates differ by stratum and ‘:by sources of income
(e.g., business or farm).

Thus, the basic microdata record is a personal tax return with 100 to 200
recorded data items, together with a weight equal to the reciprocal of the
sampling rate. The sum of all weights equals the total number of returns (e.g., 82
million in 1975). For computational efficiency, the OTA tax models make use of
a subsample of 50 000 records taken from this file. Comparison of a large number
of tabulations produced from this subsample, with comparable tabulations based
on the full SOI, show an agreement of +(0.2 percent; hence the subsample
provides a very accurate representation of the full SOI.

3.2. Current Population Survey (CPS)

This survey is generated monthly by the Bureau of the Census, which
interviews approximately 67 000 households, representing some 64 000 potential
tax returns, to obtain information on work experience, education, demographics,
et cetera. Questions are asked on the individual level as well as on the family
level, and questions vary each month. The primary purpose of the CPS is to
estimate the unemployment rate.

Each March, an in-depth survey is made that includes some sources of income
that are common to the SOI and some that are not—such as social security and
workman’s compensation. Because of the presence of individual and household
data and the inclusion of most sources on income, such data are very useful for
analysis of tax policies and Federal transfer programs.

4. Merging microdata files

A typical problem in tax policy evaluation occurs when no single available
data file contains all the information needed for an analysis. For example, if the
policy question is the incidence and revenue effect of including Old Age
Survivors Disability Insurance (OASDI) benefits in adjusted gross income, the
Personal Statistics of Income (SOI) microdata file cannot be used in its original
form since QASDI benefits are not included. Census files (e.g., CPS) with
OASDI benefits do not of themselves allow a complete analysis of the effect of
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including this benefit, since information on allowable itemizations and capital
gains are not in these files.

In an attempt to resolve this problem, procedures for matching or merging two
microdata files have been proposed. They fall into the general categories of exact
matches and statistical matches. In an exact match, the records for identical
reporting units are contained in each file and are mated, usually on the basis of a
unique identifier such as the social security number. Statistical merges involve
files whose records are taken from the same population but are not necessarily
from the same reporting units. In this case, matching of records is performed on
the basis of their “closeness’ with respect to the attributes common to the two
files, as illustrated in Fig. 1.

4.1. Difficulties in obtaining exact matches

While in many instances exact matching may be the preferable approach, in
practice there are several accompanying problems: insignificant sample overlap,
lack of unique identifiers, confidentiality and expense.

In the OASDI example mentioned earlier, the necessary information for
analysis exists in the SOI and CPS files together. However, exact matching
would be useless because an insignificantly small number of persons will appear

FILE A RECORDS FILE B RECORDS
2000| acIT staTel CAP, GAINT 500{ AGIT sTaTE] 55, INC1
500 | AGI2 sTATE2 CAP, GAINZ 1600! AGI2 STATE2 55, INC2

Al P1iP21...Prt | ... P Bj Q1Q2...Qr |...Qm
RECORD  COMMON FILE A RECORD COMMON FILE B
WEIGHT ITEMS ONLY WEIGHT ITEMS ONLY

FILE C (COMPOSITE RECORDS)

Xy P11 P2i1...Psi Q1 Q2y...Qm

INTERRECORD DISSIMILARITY MEASURE (DISTANCE FUNCTION):

Cy=FP1,. ., Pri.Q1)

Fig. 1. Statistical file merging.
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in both sample files. Thus, even if exact matching were not in violation of the
confidentiality strictures, the information gain for policy purposes would be
insignificant.

Another prevalent problem is the absence of unique record identifiers. As a
result, even given a significant overlapping of two data files, a 100 percent
mapping of identical records between files is very unlikely (using common
attributes) since the data values are subject to both measurement and recording
errors. The situation in which two samples contain identical reporting units
without unique identifiers is not typical when publicly available files are used.
When this problem does arise, the application of a statistical matching procedure
using common attributes produces as good a mapping of records as is possible,
given the quality of the recorded attributes.

But even in situations where exact matching is possible, it is often precluded
by confidentiality and cost considerations. In many instances privacy legislation
guarantees respondents that information given for one file will not be used to
“check up” on information given for another file. It may also be significantly
more costly to achieve an exact match than a statistical match since, even if
unique identifiers are present, many nonresponse items and recording errors are
possible. A great deal of effort can be spent handling these ‘““exception’ records
that cannot be matched without obtaining additional data. Depending upon the
analytic purpose of the matched file, use of a statistical merging procedure may
be best.

4.2. Statistical and constrained merges

Matching data files with the restriction that the means and variance-covari-
ance matrix of data items in each file be fully retained in the matched file is
designated as constrained matching. The equivalence of this restriction to the
addition of a series of constraints to the merge process will be developed in
subsequent sections. Examples of constrained matching are given by Budd [10]
and by Turner and Gilliam {23]; see [22] for a history and survey of statistical
matching.

The simplest case for statistical constrained matching occurs when two
probability samples of equal size with equal record weights are merged. In this
case, for purposes of matching, all record weights can be set equal to one. The
condition for constrained matching is that each record in both files is matched
with one and only one record in the other file. Consider two files, A and B, both
with n records:

1, if i* record in file A is matched with the

j™ record in file B; (1)
0, if i* record in file A is not matched with

the j® record in file B;
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Equality constraints (2) and (3) ensure that the condition for constrained
matching is met.

4.3. The assignment model of a constrained merge

Each microdata record consisting of r items can be viewed as a point in a
Euclidean r-dimensional space. It can be shown for the example above that,
under certain assumptions, the permutation of the records (points) in set B that
satisfies the pertinent maximum likelihood condition has the following mathe-
matical form:

minimize D, >, ciX;; 4)
is11=2

subjectto D x;=1, i=1,..,n, (5)
j=1
Sxij=1, j=1,..,n, (6)

where

1, if i"™ record in A is matched with the j™
X = | record in B, )
tL 0, otherwise;

ij = f(pil’ pi2> ces pin qu qj2> ceey q]r)’
pax = value of the k™ common data item in record i of file A;
gy = value of the k™ common data item in record j of file B.

The mathematical model given by expressions (4) through (7) is the assignment
model. The optimal constrained matching of records in file A with records in file
B is obtained by using any one of the known assignment algorithms (see [4]) to
find a set of x; values that minimize expression (4) while satisfying constraints
(5), (6) and (7).

In this model, originally posed in [24], ¢; is a measure of inter-record
dissimilarity based on a comparison of corresponding record attributes. The
specification of this function is dependent upon the statistical properties of the
data items pi and gy and, given certain distributional assumptions, is uniquely
determined (see [16]). Thus, the parameter c; can be viewed as the “distance”
between record i of file A and record j of file B, and the problem of determining
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a set of x; values that minimize the aggregate distance between matched records
also yields the assignment problem.
Consider a pair of files with two common attributes: wages and salaries earned

(pi and g;)), the sex of the reporting unit (p;, and g;). A simplistic distance
function might take the form:

¢ = wilpin — qnl + wasi,

where s; =0 if pp=gq;, else s; =1; and w; and w, are weights reflecting the
relative importance and magnitude of the respective items. While a unique
measure has been derived, in practice distance functions are designed to
emphasize those items of importance to the merge file user. In either case, a file
obtained using the assignment model or the following transportation formulation
is said to be an optimal constrained match, as it has been optimized with respect
to a given distance function.

4.4. The transportation model of a constrained merge

A matching situation more typical of poiicy analysis problems is a constrained
merge of two microdata files with variable weights in both files and an unequal
number of records in the files. Let g; be the weight of the i™ record in file A, and
let b; be the weight of record j in file B. Suppose that file A has m records and
that file B has n records. Also suppose that the following condition holds:

M=

a; = _ b, ®)

1

J

The condition for a constrained matching of file A and file B is given by:

2 x,']' = da; fOI‘ l = 1, 2, ., m, (9)
=1
S x;=b, forj=1,2,...,n, (10)
i=1

x; =0, foralliandj, (11)

where x; represents the weight assigned to the composite record formed by
merging record i of file A with record j of file B, with a zero value indicating that
the records are not matched. An example of constrained matching using expres-
sions (8) through (11) is given in [10, 22].

If ¢; is specified as the assignment model example given earlier, and if the
objective is to minimize the aggregate after-matching distance between two files
(A and B) that satisfy (8), then the problem becomes:

minimize z= 2 '

n
i=1j=

CiiXij, (12)

1
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subjectto >, x;=a, fori=1,2,...,m, (13)
i=1

S x;=b, forj=1,2,...,n, (14)
i=1

x;=0, foralliand]j (15)

Note that expressions (13), (14) and (15) are the conditions-for constrained
matching and that the mathematical model given by (12) through (15) is a linear
program. Moreover, this problem is the classical uncapacitated transportation
model [11]. This last observation is extremely important for computational
reasons, as described in a subsequent section.

The dual problem for this model is:

maximize w =, aqu; + 2, by, (16)
i=1 j=1

subject to u;+v;=<c; foralliand j, (17)

u;, v; unrestricted in sign. (18)

The analogy between this formulation of the merge process and the trans-
portation network model described earlier in this volume also provides an
intuitively appealing means of visualizing the underlying common problem. In
the merge model analogy depicted to Fig. 2, the nodes represent individual
microdata records whose weights are given as the supply and demand values.

X1y = 400, ¢qq =10

2000 400
100
3000
Network Supply Origin Arcs, with Destination Den;and
Component: Values | Nodes Flows and Unit Nodes Values
(af) Costs { Xij. Cii) (b]‘)
Merge CPS cPs Record Matches S0O| SOl
Model Record Records with Assigned Records Record
Equivalent: | Weights Weights and Distances Weights

Fig. 2. Example constrained merge as represented by transportation network model
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The network arcs correspond to record matching combinations, and the asso-
ciated flows and costs represent the merge record weights and distance function
values, respectively. The objective is to determine the set of record matches and
associated weights such that the original record weight totals are maintained at a
minimum overall distance.

The solution to this problem identifies the records in file B that are to be
merged with each record in file A. In contrast with the assignment model, this
problem permits a record in one file to be split or to be matched with more than
one record in the other file. But since the weight of the original record is
apportioned among the otherwise identical split records, the marginal and joint
distributions of each file’s variables are preserved. (See appendix for proofs).
Therefore, this optimal merging not only minimizes aggregate information loss in
the matching process, but preserves the complete statistical structure of the
original files, two important characteristics missing from all other available
merging schemes.

Unconstrained matching of two microdata files is given by applying either
constraints (13) or (14) but not both. In this case the item means and variance-
covariance matrix of only one of the files is preserved in the matching process.
Okner [21] describes an example of unconstrained matching which is the model
of (12), (13), and (15)..See [7] for a critique of unconstrained matching.

The transportation model for optimal constrained microdata matching was
originally posed in [24] and further discussion is given in [23]. A theoretical
formulation of an optimal constrained merging is given in Kadane [16], where it
1s corroborated that under certain conditions constrained matching is analytically
equivalent to the transportation model.

5. An optimal file merge system

In the transportation network model given above, the number of constraints is
(m +n). Since each x; represents the merging of two records, there are up to
(mn) problem variables in a constrained file merge. These dimensions can be
extremely large, considering typical sizes of m and n and the fact that the
problem is totally dense (any of the mn variables might be positive). For
example, to merge the CPS and SOI files directly would involve over 110 000
constraints and 3 billion variables.

Since problems of this magnitude are far beyond the capability of the best
general-purpose linear programming system and, even if they were divided into a
series of subproblems, solution would involve an inordinate amount of machine
time, a large-scale network solution system for the optimally-constrained merge
problem was developed. This Extended Transportation System (ETS) makes use
of recent research into network solution techniques [2, 5, 6, 1315, 18, 20] and is
based on a specialization of the primal simplex method. This system has been
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used to solve some of the largest known optimization problems and is the only
file merge system of its kind in existence.

5.1. Computational aspects of the primal simplex method

The primal simplex method as specialized to transportation problems has
many computational advantages over other approaches. First, a simplex basis
for an m X n problem corresponds to a spanning tree with (m +n —1) arcs. As
such, a basis can be represented compactly using lists of node labels and
corresponding flow values. This same data structure carries the basis inverse
implicitly and, in conjunction with a set of node potentials and list structures for
their maintenance, dramatically streamlines the simplex pricing and pivoting
steps. It is through these elegant mathematical structures that the superior
efficiencies, in terms of solution speed and memory requirements, are attained
by this approach.

It is also important to note that, in contrast to out-of-kilter and primal-dual
approaches which require all problem data to be in primary storage, only the
basic arc data need be so maintained. In addition, the arc cost/distance data may
be inspected piecemeal and can therefore reside on a secondary storage device
and inspected in pages, or blocks of data. Identification of efficient rules for
paging and pivot selection has been the subject of much research [9, 13, 14, 18,
20].

Another valuable characteristic of network problems in general is the automa-
tic integrality of variables when all supplies and demands are whole numbers.
When the distance data are also integer-valued, no program data need be
represented as real numbers with the attendant concerns of numerical round-off
and error tolerances.

5.2. The ETS solution system

In designing a network solution system for the OTA merge problem, the
hardware available was a UNIVAC 1108 with only 150000 36-bit words of
primary storage, plus disk and drum secondary mass storage. This limited
amount of memory plus the enormous size of the problem precluded even the
use of an available paged-data primal-simplex network code [18] because of the
need to maintain in primary storage a basis of size (6m +6n) words plus a page
of arc distance data. Even when the problem specifications were reduced to
50 000 constraints and 65 million variables, primary storage was insufficient.

The result was a twofold problem: first, the major data processing task of
efficiently handling the arc distance data and, secondly, the extension of network
solution technology to a new level to accommodate problems of this magnitude.
The following sections describe ETS features designed to meet these needs.
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5.2.1. Transportation problem optimizer

The primal simplex transportation code with the smallest known memory
requirements is used. ETS employs a modification of the SUPERT code by Barr
[2] which stores the basis in (4m +4n) locations. Special packing techniques
reduce this memory requirement to (2m + 2n), thus allowing a 50 000 constraint
basis to be maintained in 100 000 words; the remaining locations are used for
storing the program and pages of the arc distance data. It should be noted,
however, that this condensed storage technique markedly increases the com-
putational burden associated with the execution steps since every reference to
problem data requires either a packing or an unpacking operation. Preliminary
testing indicated that, as a result, solution times have been increased by a factor
of from two to four over normal, unpacked data storage.

Partially offsetting this implementational disadvantage is the high efficiency of
the transportation optimizer. The SUPERT code uses an independently derived
variant of the ATI algorithm [14] and compares favorably with state-of-the-art
primal simplex network codes. As shown in Table 1, in a comparison of
aggregate solution times on a standard set of small transportation problems [19],
the PNET-I code [15] is 73% slower than SUPERT, the GNET code [9] requires
106% more time, and the ARC-II code [5] is roughly comparable. Besides these
primal simplex-based codes, the times for the SUPERK out-of-kilter code [3] are
over five times those of SUPERT. These network codes have the disadvantage
of being designed for more general capacitated problems but have the advantage

Table 1
Total solution times on transportation problems on a CDC 6600 *

NETGEN
Problem m n  Arcs SUPERT® PNET-I° GNETY ARC-II° SUPERK
1 100 100 1300 0.42 0.92 1.06 0.60 3.72
2 100 100 1500 0.59 0.98 1.08 0.68 425
3 100 100 2000 0.70 1.20 1.45 0.76 4.39
4 100 100 2200 0.70 1.07 1.44 0.68 427
.S 100 100 2900 0.85 1.61 1.76 0.90 4,23
6 150 150 3150 1.29 2.28 2.45 1.60 7.09
7 150 150 4500 1.70 2.79 3.39 1.62 8.11
8 150 150 5155 1.95 3.11 4.06 2.17 8.61
9 150 150 6075 2.05 3.29 4.12 2.11 DNR
10 150 150 6300 2.04 4.08 4.68 2.81 DNR
Total time: 12.29 21.33 25.49 13.93

DNR = Did not run in 201 000; words of memory.

2 All programs compiled under FTN with OPT =2. Times are elapsed CPU time exclusive of
input and output.

®* Modified row most negative pivot strategy used (see [14]).

¢ Modified node most negative pivot strategy used (see [13]).

4 Default pivot strategy used.
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of more advanced data structures. These programs also have substantially
greater memory requirements than the ETS transportation optimizer.

5.2.2. Nondense problem generation

The density, d, of a transportation problem is defined as the number of
problem arcs divided by (mn), the number of arcs if all origin—destination pairs
are considered. Because of the enormous size of (mn) in the merge model,
problems with d <1 are generated using a sampling window that restricts
consideration to a subset of the possible matches for a given record. Several
heuristic schemes are employed to determine this window, and these schemes
are based primarily on comparisons of dominant items in the distance function
so as to consider the “most likely” matches.

Specifically, one scheme narrows the window of consideration to the ¢ records
in file B that match most closely a given record in file A, based on one or more
common attributes. This has been used with t =500 and 1000, with the attribute
being adjusted gross income. Since the merge file in this case was used in tax
policy models, the income attribute was deemed to be of key importance;
however, the size of the window still allows the various other factors, as
expressed in the distance function, to influence the match process.

5.2.3. Distance function scaling

The range of the distance function values is reduced to 64 categories to permit
exploitation of the machine wordsize by the data packing scheme described
above. This is necessitated by a worst-case analysis of the size of the problem’s
dual variables (computed from sums of the c¢; values) and the number of bits
available for their storage. But even with this scaling, a sufficient degree of
distance value differentiation 1s available to produce an excellent match for the
problems under consideration (see Section 5.4 regarding match quality).

5.2.4. Phase 1/phase 2 solution strategy

Initially the construction of a feasible basis is attempted from a single pass of
the problem variables. If a feasible solution is not found, artificial arcs are added
to form the starting basis and must be purged by the solution process. The
wordsize restriction necessitates the use of a ‘“‘phase 1/phase 2” solution
approach instead of the more efficient “Big M”” method of eliminating artificial
variables from the solution basis. Since the actual merge problem is totally dense
(d = 1), these artificial variables correspond to legitimate matching possibilities
that fell outside of one record’s window. However, their associated interrecord
distances are unknown and are assumed to be extremely large. Phase 1 is used to
drive these variables out of solution so as to form an initial feasible basis for
phase 2 optimization,

This approach is a costly one, time-wise, as demonstrated in Section 5.3;
however, OTA deemed merged file quality to be more valuable than the
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additional machine time. The effect of allowing variables to remain in the merged
file have not been investigated.

5.2.5. Closeness to optimality calculations

Two new procedures are incorporated in ETS to compute ‘“‘closeness to
optimality” figures for intermediate solutions from this primal algorithm. The
objective function value associated with a given primal simplex basis is an upper
bound on the optimal solution value. Hence if a similar lower bound can be
determined, a conservative measure of closeness to optimality can also be
calculated. Such a measure can be used to terminate the solution procedure
when a given suboptimal solution is deemed to be ““‘good enough”.

Normally, a feasible solution to the dual problem must be constructed (at great
computational cost) in order to arrive at a lower bound on the optimal objective
function value, but the special structure of transportation problems can be
exploited to expedite calculation of such a lower bound. Both algorithms are
detailed in [1, 8] and the more successful, in terms of strength of the bound, will
now be presented.

From duality theory it is known that, for any feasible solution {x;} to the
primal problem (12)-(15) with value z and any feasible solution {u;, v;} for the
dual problem (16)-(18) with value w, the relationship w <z holds. Moreover,
w=w*=2%<2z where w* and z* are the optimal solution values for the dual
and primal problems. Hence, the objective function value w for any dual
feasible solution is a lower bound on the optimal solution value. The following
algorithm constructs just such a solution and bound from a primal feasible
transportation basis.

For each primal feasible solution to the transportation problem, the simplex
method associates a dual solution {u, v;}, the node potentials. If the primal
solution is not optimal, then the dual solution is not feasible and one or more
(nonbasic) arcs violate constraint (17). In particular, if arc (i, j) is dual infeasible,

H,-,-=u,-+v,~—c,-,~>0.

If node potential u; is decreased in value by Il the arc (i, j) becomes dual
feasible. This new dual solution is obtained by a change of variables using the
relation u} = u; — II;, which yields

u:- + Vi = Cyj
Moreover, the dual feasibility of any other arc (i, k) out of node i is not altered.
Since H,']' > O, if u; + v < Ci, then

wi+ v = (u; — 1) + v < i

No other arcs are affected by this change of dual variables.
The result of this substitution is a dual solution with at least one fewer dual
infeasible arc with the new objective function value w’=w — aIl;. This pro-
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cedure can be repeated for all dual infeasible arcs until a dual feasible solution is
obtained. The objective function value for this final solution is then a bound on
z*%,

While this bound requires substantial processing to calculate, the bound
becomes quite strong as intermediate solutions approach the optimal. This was
verified by testing on medium-sized (250 000 arc) problems. Because of the speed
of ETS, however, all production problems have been run to optimality. In other
instances where greater machine time restrictions exist, this bound can be used
to evaluate the quality of a suboptimal solution.

5.2.6. Pricing strategies

The pricing procedure is enhanced through the use of a multipricing technique
for pivot selection that has been shown to drop solution time for large problems
to half of that required when using the best pivot selection of earlier studies [13,
20, 25]. This tactic scans a page of arc data for pivot-eligible arcs (II; > 0) and
generates a ‘“‘candidate list” of such arcs with predefined length /. The arc with
the largest [I; value is selected, removed from the list, and pivoted into the
basis. The remaining arcs in the list are then repriced. The “most eligible”
candidate arc 1s selected from the revised list and the process continues until k
such candidates are chosen or all candidate arcs on the list price nonpositive. At
that point the list is replenished and the process repeated. This continues until
the entire page of arc data prices dual feasible or until s passes of the page have
been made. When all pages price nonpositive, optimality has been achieved. The
selection of values for the parameters k, /, and s determine the effectiveness of
the pricing procedure.

It should also be noted that all arc data input is ‘‘double-buffered”, a systems
programming technique which permits the pricing and pivoting operations to be
carried out simultaneously with the paging in of arc distance data. In this
manner, the central processing unit will rarely have to wait for a subsequent
page of data to be read into primary storage from disk.

5.2.7. Other ETS implementation aspects

The system is written entirely in FORTRAN to increase its maintainability and
portability. Of course, the use of a higher level language is not without its cost in
efficiency, since assembly language programming would allow full exploitation of
a particular machine’s architecture. The execution times of some mathematical
programming codes have been shown to improve by 30 percent to 300 percent
through the inclusion of assembly coding in critical areas alone [17].

ETS also includes the capability for resuming the optimization process from a
suboptimal solution, a command language for execution control, and report
generation options.
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5.3. Recent ETS usage

In order to assess the impact of tax rebate proposals and President Carter’s
tax reform initiatives, a merge of the 1975 SOI file and Survey of Income and
Education (SIE) file (a one-time survey, equivalent to the CPS) was performed
in the fall of 1978. The results were used in the preparation of [27]. Similar files
have been used in the past to analyze former Secretary William Simon’s
fundamental tax reform proposals, the results of which appeared in [26].

Because of the enormity of the problem (110 094 constraints), the merge was
broken into six subproblems based on census region. Each subproblem was
optimized and the ETS solution statistics for these runs are given in Table 2. It
should be noted that the solution times would be markedly reduced if data
packing were not used and if key portions of the system were coded in assembly
language. And, since the effect of many of the system parameters such as
pivoting strategy and page size has not been researched, even these extremely
fast times should not be construed as the best attainable with ETS.

Recent comparisons between a FORTRAN-language primal network code and
a state-of-the-art, commercial, general linear programming system (APEX III)
have shown the specialized approach to be 130 times faster [11]. Using this
figure as a basis of comparison, a general-purpose mathematical programming
system running on a dedicated UNIVAC 1108 would require over seven months
to solve these problems.

The values in Table 2 show that phase 1 required approximately one-third of
the solution time to drive out artificial variables constituting an average of 6.4%
of the initial basis. This is also an indication of the time that could potentially be
saved by the Big M method or by the construction of an initial primal feasible
solution.

The “percent degenerate pivots’ figures show that these transportation prob-
lems have relatively little degeneracy, a characteristic noted in studies of smaller
transportation problems. This is in sharp contrast with assignment and trans-
shipment network problems which have been shown to exhibit over 95 and 80
percent degenerate pivots, respectively [4, 6, 13].

A more curious finding from these statistics is that the number of pivots is
highly correlated with the number of constraints (p?=0.92) but not with the
number of variables (p* =0.06). This may indicate that a much larger window
could be used in the problem generator without drastically escalating the
solution times.

5.4. Quality of the merged file

Properly assessing the quality of a merge file is a difficult task since no
generally accepted measures of ‘“‘goodness” have been established and the
theory in this area has only recently begun to be investigated. (The derivation of
measures of match quality and their interrelationships with distance function
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definitions are important topics for future research.) Somewhat simplistic
measures can be used, however, to give a broad-brush indication of the degree
of agreement between the records joined to form the composite file. To this end,
Tables 3 and 4 provide summary information regarding the merge file described
above.

As depicted earlier in Fig. 1, a composite record is formed by mating a record
in file A with a record in file B and assigning a record weight. This record then
contains duplicate items since some attributes appear in both original files. These
common items are, of course, used in the distance function calculation but
specific values can also be compared to see how well individual records
matched.

Table 3 shows percentages of agreement and average differences between like
items in the composite records. For example, 95.1 percent of the merged records
had the same I.R.S. tax schedule code. These measurements are calculated using
the record weights, so as to reflect the degree of agreement for the merged
populations rather than the matched samples.

These figures indicate that by minimizing the aggregate distance function
values and maintaining the record weight constraints, that a very strong match
can be obtained. It should be noted that 100 percent agreement between items is
virtually impossible since the match is between different samples. For example,

Table 3
Ttem analysis of the complete merged file

Matched records Weighted percentage*
Common date item relationship of records or value -
1. Schedule code % agreement 95.1%
(single, joint, married
filing separately, etc.)
2. Age of tax filer % within 5 years 60.9%
% within 10 years 91.7%
3. Size of family % agreement 70.2%
% within 2 97.4%

4. Race % agreement 89.3%

S. Sex % agreement 94.6%

6. Adjusted gross income average difference $925
(including all taxable % within $1000 79.6%
sources of income) % within $2000 92.6%

7. Wages and salaries average difference | $637

% within $1000 86.7%
% within $2000 95.0%

* Percentages based on sums of record weights with indicated agreement as a
percentage of the total of all record weights.



R.S. Barr, J.S. Turner/ Microdata file merging 19

Table 4

Composite agreement count for six common items in the complete
merged file

Number of item  Percent of records Cumulative percent

agreements® (weighted)® (weighted)®

6 68.6% 68.6%
5 22.0 90.6

4 6.4 97.0

3 2.1 99.1

2 0.6 99.8.

1 0.2 100.0

0 0.0 100.0

* Categories of item agreement in a composite record: (1) same
schedule codes; (2) ages within ten years; (3) family size within
two:; (4) same race; (5) same sex; and (6) adjusted gross income
within $2000.

® Percentage based on sums of record weights exhibiting such
agreement as a percentage of the total of the record weights,
82215 537 (the number of tax filers).

if the match were made on the basis of schedule code alone and all constraints
relaxed, the best possible level of agreement would be 98.2 percent.

To identify record agreement on multiple items, six agreement categories were
defined, the number of categories of agreement for each record counted, and the
results summarized in Table 4. Again using weighted counts, 68.6 percent of the
merge file records agree in all six categories and over 90 percent agree in five or
more categories. Therefore, this particular file not only is a good match on
individual items but on combinations of items as well.

Postmerge calculations also verified the retention of the statistical structure of
both original files’ data. Note that while the figures in Tables 3 and 4 could be
improved by relaxing either constraints (13) or (14), this would yield distortions
in the aggregate statistics for all data items from the corresponding original file.
Such distortions could significantly alter the results obtained by the personal
income tax and transfer income models.

6. Summary

Whereas separate surveys for different informational needs would cost tens of
millions of dollars apiece, this optimal, constrained merge technique can bring
about the merging of available sources for a small fraction of that amount. And,
as its use continues, the ETS merge system is proving to be a cost-effective
means of providing new, high-quality data resources for the public decision-
making process.
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Appendix. Preservation of item statistics in constrained merging

In this section we show that the means and variance-covariance matrix of
items in a given file A are preserved in a file resulting from a fully constrained
statistical merge with another file B. This is a consequence of including con-
straints for the original record weights in the merge process and the inclusion of
all of the original items from both files in the composite file. (See Fig. 1.) This
discussion does not apply to any relationships between items that were originally
in different files.

A.l. Arithmetic mean

The arithmetic mean of a data item in the merge file will retain its value from
the originating file even though records may be split in the matching process.
This 1s because the sum of the weights of any split records equals the weight of
the original record.

To demonstrate this, let p;, represent the value of the r* data item in the i™
record of file A, and a; denote the record weight in that file of m records. The
mean of item r 1s given as

= (0n)/(3 o)

When file A is merged with an n-record file B, let x; again represent the weight
assigned to the composite record formed by merging record i of file A with
record j of file B. In the fully constrained model, up to (m +n —1) of these
values are positive, with the remaining zero values indicating that the records are
not matched. Constraint (9) ensures that

n
Zx,-}-=a,-, fori=1,2,...,m.
J=1

Therefore, the mean of the same item r in the merged file is given as

(& p)/(34)

which is equivalent to the expression for p,. This relationship holds for any item
in either of the original files.

A.2. Variance—covariance matrices

For a similar analysis of the items’ variance-covariance properties, let p, and



R.S. Barr, J.S. Turner| Microdata file merging 21

pis represent, respectively, the r'™ and s™ data items in the i record of file A.
The following expression defines o% as the variance of item r (if r =) or the
covariance of the two items (if r# s) in the original file:

m

=8 o500 ]/ (8 ).

i i=1

In a fully constrained merge file, the variances and covariances are given as

o= {2 ]:21 (xi(pir — PF)Dss — p’i‘)]} / ( 2 xif)-"-

i=1 =1
Since p* = p, and p* = p..

o3 {2 00~ -0)(Z )} /(33 @)

j=1

- [z ai(py ~ P —m]/ (E “>

= 1=

which is equivalent to o%. This equivalence applies to any items in either file A
or file B.

These relationships demonstrate that the constrained merge process preserves
the statistical content of both original files. Such would not be the case if either
weight constraint (9) or (10) were omitted, in which case distributional dis-
tortions would be introduced for items in the unconstrained file(s).
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