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ABSTRACT

In developing microsimulation models or research databases, it is common to discover that the desired
data is not available from a single source. In such cases, practitioners can merge a pair of sample survey
files to form a composite microdata file by linking record pairs. Statistical merging is a widely—used class
of techniques to link records of sample units which have similar data attributes, but are not necessarily the

same person or household.

This paper describes a computational study undertaken to investigate empirically the impacts of merg-
ing scheme, distance function, and data measurement error on the statistical characteristics of the resul-
tant merge file. Merges of national data sets were performed to test the procedures’ ability (or lack

thereof) to create composite files which replicate an actual sample drawn from the original population.

The results indicate specific instances where merging works well and other cases in which it does not.
The optimal-constrained merge technique with an absolute difference distance function appears to be the
best of the methodologies in current use. Other distance functions proposed in the literature yielded
extremely poor matches when applied to sample survey data. The robustness of merge techniques when
bias and noise are present is clearly demonstrated as is the need for a reasonable number of variables in

the distance function.

In addition, the need for modifications to existing merge procedures which address their shortcomings

is discussed and easily-implementable improvements described.
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PART 1. BACKGROUND AND OVERVIEW
The concept of microanalytic simulation models was developed by Guy Orcutt in the mid-1950’s
[24]. Today, these models abound in governmental agencies and research organizations and are used
widely for policy analysis and projection of program needs. Examples include the various versions of the
Transfer Income Model (TRIM), the dynamic, demographic simulation model DYNASIM, and the tax

policy simulations at the U.S. Department of the Treasury, Brooking Institute and Statistics Canada.

At the heart of these models are sample survey files, or microdata. These files consist of data records
for a representative set of decision units (individuals, households, taxpayers, firms, etc.) which are proc-
essed by the simulator individually with data collected to identify aggregates, distributions, and interac-
tions. By working at the record level, this modeling technique is very flexible and can accommodate as

much detail as desired.

Microdata matching is useful when the data required for a model is located in two or more microdata
sets, as is often the case with governmental tax— or welfare-system models. Means for performing such
matchings are the subject of this study. At present, all known applications for microdata matching are in
the public sector, primarily at the national level. However, these same methodologies could be used in
business applications such as the construction of marketing research databases from a set of separately—

compiled samples.

1.1. Microdata Files
While the recording unit may vary, microdata files usually represent the national population or a
major subset such as taxpayers or Social Security system participants. Various sampling schemes are used
in collecting the data, hence each record includes a weight indicating the number of population units it

represents. These weights often differ among records in a given file.

Microdata files are created as byproducts of ongoing governmental programs, from legislative man-
date, or as special commissioned studies. For example, both I.R.S.’s Statistics of Income (SOI) and
Social Security Earnings (SSA) files are drawn from data collected in the process of program implementa-
tion and control. The U.S. Constitution mandates the taking of a decennial census, subsets of which are
used as microdata, and the Current Population Survey (CPS) is performed monthly to determine the
unemployment rate, as required by law. The Survey of Income and Education (SIE) was a special study,

as are numerous university—based surveys.

For the model designer and user, there are several pertinent characteristics of microdata files. First,

they are expensive to create, on the order of $10 millions each. Hence, their construction is not a trivial
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undertaking. Second, several versions are often created through editing procedures to “correct” the data
for underreporting, sample bias, etc. Third, a variety of sampling designs may be used, including strati-

fied, clustered, and simple randomized, in order to combine information richness with brevity.

Fourth, the end product of these sometimes elaborate machinations is a multi—attribute representation
of the underlying population, including all interactions and distributions of the reported data items. The
distributional and interaction details are especially important for microanalytic models since they operate
at the record level and base their computations on combinations of item values. Finally, by virtue of
taking a middle ground between a census and population aggregates, these files are efficient from both a

computational and information-content standpoint.

1.2. Limitations of Individual Samples
As illustrated by files such as the SOI and CPS, microdata are often collected primarily for the con-
struction of aggregates or for program implementation, analysis, and control. Their use as general re-
search data bases or in microanalytic simulation models is of secondary concern in the sample survey

designs, an aspect which creates problems for these applications.

As models are built and policy proposals are analyzed, data are often required which (a) are not part
of the current program, study, or system, as when new tax deductions are considered, or (b) are of

superior quality since sample survey items are deemed to be unreliable, such as business income on the

CPS.

The model user has four choices available: (1) commission a new study, at great expense and invest-
ment of time, (2) ignore the variables in question, and jeopardize the validity of the model’s results, (3)
impute the missing or unreliable items into an existing file, using methods which often ignore the distribu-
tional and interaction characteristics of the variables in question, or (4) merge a pair of microdata files to
combine the information from two surveys. This last option, file merging, is currently in widespread use

and is investigated in this paper.

1.3. Microdata File Merging
The basic idea behind file merging, or matching, is to combine one file A with another file B to form a
composite file C with all data items from the two original files. This is accomplished by selecting pairs of
records to match based on data items which are common to both files. The schemes for performing the

matching process fall into two general categories: exact and statistical matching.

Exact matching uses unique-valued common items to mate records for the same individual in both

files. By using a unique identifier, such as a social security number, the matching process is theoretically a



simple sort and merge operation. Problems with this approach include: insignificant overlapping of sam-
ples causing few records to be matched, absence of or error in the “unique” identifiers, confidentiality
restrictions which preclude legal linking of records, and the expense of handling a large number of excep-

tions.

Statistical merging (also called synthetic, stochastic, or attribute matching or merging) mates similar
records using several common items with non-unique values. By matching like records, file C contains
records which may be composites of two different persons, but whose attributes are similar enough for

research purposes. There are a variety of statistical merging schemes in use today, as discussed below.

In choosing a methodology, exact matching is obviously preferable. But where such a match is not

possible, statistical merging is often employed.

1.4. Statistical Merging

A pictorial description of statistical merging is presented in Figure 1.1. In this drawing, a; represents

the weight of the i-th record in file A and b; the weights of the j-th record in file B. The merged file, C,

contains composite records formed by matching a record in file A with a record in file B, and assigning a

merge record weight of w;; . An interrecord dissimilarity measure dj; , or distance function, is used to
choose matched record pairs. The “distance” between a pair of records is usually determined from a
user—defined function which compares corresponding common items and assigns a penalty value for each
item pair which differs significantly. These penalties are summed to create a measure of dissimilarity, with

a zero distance meaning all common items are identical or “close enough.”

There are two general categories of statistical merges: Unconstrained and constrained. In an uncon-
strained merge, file A is designated the base file and file B the augmentation file. Each base file record is

matched with the most similar record in the augmentation file; the selected file B record is appended to

the base file record and the base record’s weight is used for wj; .  This is, in essence, sampling with
replacement since some augmentation file records may not be matched while others may be used repeat-
edly. This is a very popular technique as evidenced by its use by Ruggles and Ruggles of Yale and NBER
[41], Radner of the Social Security Administration [37], Okner and Minarik at Brooking Institute

[29,32], Statistics Canada [20], and the Bureau of the Census.

In contrast, a constrained merge uses matching without replacement. The merging algorithm enforces

constraints on the record weights in both files to ensure that each record is neither under— nor over-
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Figure 1.1.
Statistical File Merging
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matched relative to the number of population units represented. Mathematically, the constrained merge

model is as follows.

> = i b; (1.1)

= 1.
Z Wij = aj 1=1! , M, ( 2)
=1
m
> oWy o= by i=1,..,n, (1.3)
i-1

wij =0, for all i and j. (1.4)

Constraint (1.1) reflects the assumed equivalent underlying population sizes for the two files, although
files A and B have m and n records, respectively. Some minor adjustments may be needed to accomplish
this in practice. Again, wi; is the merged record weight for matching record i in file A with record j in file
B, and the records are not matched if wj; = 0. Constraints (1.2) and (1.3) allow any record to be
matched one or more times but such that the merge file weights must sum to the original record weights.

Negative weights are precluded by (1.4). This merging algorithm is currently used by Mathematics Policy

Research.

Pictorially, the constrained merge process is depicted in Figure 1.2 where the leftmost set of circles, or

nodes, represent file A records with their respective weights, the rightmost nodes the file B records and

weights, and the connecting arcs the possible record matches. A set of Wwj; merge record weights are

shown which meet constraints (1.1)—(1.4).

This merge technique can be further refined by requiring the procedure to

m n
minimize z z dijw; (1.5)
i=1 j=1

subject to (1.1)-(1.4). This model, originally proposed by Turner and Gilliam [48] and later derived by
Kadane [25], seeks to find the best constrained match, the one with the minimum aggregate distance

between matched records. This optimal constrained merge procedure requires the solution of a linear



programming problem of extremely large dimensions, and is currently used by the U.S. Department of the

Treasury [5, 10, 13, 14].

Figure 1.2
Constrained Merge Model
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File A File A Record Matches File B File B
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1.5. Statistical Aspects of Merging Techniques

Unconstrained procedures utilize (1.5), subject to (1.1), (1.2), and (1.4); thus, by dropping con-
straint set (1.3), the composite records match up well at the record level. However, file B item statistics in
the composite file are distorted by their implicit reweighting of the augmentation records through over—
and under-matching. This reweighting has a strong impact on important extreme values, variances,

covariances, and other distributional aspects of the file B items, as shown below.

While the constrained procedures may not match up as well at the record level as unconstrained
procedures, their merged files contain all of the information from the original files and preserve all statisti-
cal properties of the A and B data items. Further, if optimization is applied, the best overall constrained
match is insured. Appendix A details, using two small example files, the effect of various merging

schemes on the mathematical structure of the resultant composite file.

All of these aspects influence the results of the microanalytic models and research studies which use

the merge file.

1.6. Underlying Merge Rationale

When two files are merged, we assume that two files (X1, Y) and (X2, Z) are drawn from the same
population, where X1 and X2 are the sets of common items in file A and B, respectively, and Y and Z the
sets of items unique to file A and B, respectively (the alignment assumption). The objective of merging is
to form a file (X1, X2, Y, Z) which corresponds statistically to a sample of (X, Y, Z) taken from the same
population. We do this in order to make inferences about (Y, Z) and (Y, Z|X) relationships, since we

can already make (X, X), (X, Y), and (X, Z) inferences from the two original files.

1.7. Quality Considerations

A strong theoretical justification for merging or an explanation of exactly what is being accomplished
by a merge is not available in the literature. What is needed is both a measure of the “accuracy” of (X1,
X2, Y, Z) in replicating (X, Y, Z), and a means for making decisions such as: are the two files mergable?

Is the composite file acceptable?

Typical reported measures of match accuracy are: counts of X1-X2 item agreements, item means,

and percentage agreement by common item. The notion is that a file which matches well on the X-items
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matches well on the Y-Z relationships. Rarely reported are (1) comparisons of covariances, such as
cov(Y) in unconstrained matches and cov(Y, Z) versus expected cov(Y, Z), (2) conditional and joint
frequencies for augmentation variables, and (3) other Y-Z studies. Ruggles, Ruggles, and Wolff [42] are
the only contributors in this area. Moreover, the following empirical data directs attention to potential

problems measured by the above mentioned statistical measures.

1.8. Preliminary Empirical Data

In a recent set of experiments to investigate the effect of merging techniques on resultant file quality,
subsets of the 1975 SOI and 1975 SIE were chosen, based on a nine—state geographic region. There were
7144 SOI records and 6283 SIE records, representing 12.7 million tax filling units, or approximately 15
percent of the population. The X-variables used in the distance function were: age, race, sex, marital
status, family size, wage income, business income, property income, spouse’s income, and adjusted gross
income. The two files were merged three ways: unconstrained with SOI as base file, unconstrained with

SIE as the base file, and optimally—constrained, all using the same distance function.

In Table 1.1, the distribution of SOI wages and business income is shown for both the original file and
the unconstrained merge file using the SIE as the base. Not only are the means not in agreement but the
distributions are altered, and dramatically in the case of business income. Of course, in the constrained

merge, the distributions were identical to the originals.

To evaluate the unconstrained procedure’s effect on covariance structure, the variance—covariance
matrices of several common items were compared with the original matrices. The median percentage
differences, by item, are shown in Table 1.2. In some cases, the median error is as small as 7 percent, but
in others these second-order statistics differ greatly. Analysis of the constrained merge verified the expec-

tation of zero error.

1.9. Research Questions

Despite the widespread use of merging as a data enrichment technique, there is a paucity of much—

needed research in this area. Consider the following questions.
1.9.1. Constrained Versus Unconstrained Techniques

When does either procedure create a match file which is statistically equivalent to a valid (X, Y, Z)
sample drawn from the population? A goodness—of-match criterion is needed not only to answer this

question but to compare alternative matching algorithms.
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Table 1.1
SOI Item Distributions

Total SOI Wages Total SOI Business Income

Income Class {$ Millions) ($ Millions)

{$000’s) Original Unconstrained Qriginal Unconstrained
<0 0 0 - 712 - 86
1-5 12,218 11,699 857 607
5-10 22,535 21,124 836 1,194
10-15 24,745 26,639 617 1,497
15-20 10,326 23,882 677 909
20-30 21,133 24,930 808 1,402
30-50 9,597 10,141 785 964
50-100 3,371 2,741 777 1,108
100-200 1,010 136 298 608
> 200 244 Q 111 0
Total 115,784 121,291 5,055 8,187
Mean $9,108 $9,542 $398 5644

Table 1.2

Variance-Covariance Differences

Median Variance—Covariance

Error Relative to QOriginal Data

Common Unconstrained Unconstrained
Variable — SIE —SOoI
Age 31.2% 26.4%
Family size 35.5 17.4
Wages 7.3 23.9
Business income 72.1 38.4
Farm income 97.7 88.8
Property income* 78.5 850.4
Spouse income 73.5 31.0
Adjusted gross income 9.9 24.4

*Interest + dividend + rental income.
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1.9.2. Covariance of (Y, Z|X)

What is the effect of omitting or including cov(Y, Z|X) in the matching methodology? Do correlated

X-variables carry along their correlated Y and Z variables properly?
1.9.3. Distance Functions

How do the various dissimilarity measures affect the resultant merge file? What is a “correct” dis-
tance function? (See [25].) In practice, distance functions usually reflect the data aspects of greatest

importance in the target microanalytic model or database.

For other research question and issues surrounding merging activities, see [47] by the Federal Com-

mittee on Statistical Methodology.

1.10. Experimentation Overview

In order to benchmark the various merging schemes and study the statistical aspects of the merge
process, a series of experiments were performed with public—use national data sets. The 1975 SIE file was
designated to be a test population from which a selected series of samples were drawn. Each record item
was declared to be in set X, Y, or Z based on data type and correlations with other data items. The
resultant set of files were merged pairwise in various combinations using a variety of distance functions,
merge schemes, and levels of data bias and error. By designating the full SIE file to be the population, the
actual (X, Y, Z) is known, unlike the usual case in practice. This availability of the complete population

provides an accurate standard for comparison with any merge file.

The experimental design was structured to study the effect, if any, of the above parameters on Y-Z
relationships, standard statistical tests, and measures of “goodness” of the match. The study also investi-
gates the sensitivity of the various merge algorithms to the distance function used and to the introduction

of bias and error.

PART 2. STATISTICAL FRAMEWORK AND EXPERIMENTAL DESIGN

2.1 Notation and Overview of the Study

Statistical matching methods have been developed for the purpose of combining the information from

two microdata files, each collected from a separate sample survey, into a single composite file. The
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objective of statistical matching is to create a single file which is “equivalent” to a valid sample taken from

the population of interest.

The two input files, A and B, are of the form (X1, Y) and (X2, Z), respectively, where (X1, Y) is a
sample with multivariate observations (x;, yi) on each sampling unit, while (X2, Z) is another inde-

pendent sample with multivariate observations (x; z;) on each sampling unit. Note that sets X1 and X2
are measured on the same data items (e.g., wages, interest income, family size) but the observation sets
X1 and X2 are measured on different sampling units arising from the two different surveys. The data
items (X1, Y) and (X2, Z) are obtained from either stratified or probability samples taken from the

national population. The number of observations is typically large, e.g., in excess of 50,000 records.

From such files a statistical match would create a single file of the form (X12, Y, Z) where set X12 is
a composite of X1 and X2. Presumably such a file would in practice be used as if it were a valid random
sample taken from the population of (x, y, z) measurements. Statistical inferences would be made with

standard methods developed to account for sampling variability of such random samples.

A fundamental question to be addressed is: when do matched files really contain the same sampling
variability as ordinary random samples? It is the goal of this project to empirically investigate the perform-
ance of some known matching methodologies from this point of view. The experimentation took the
general form of (1) creating file A and file B from known populations, (2) statistically matching the two
files, and (3) calculating a statistical summary of the matched files. By repeating these steps many times
for each matching methodology, the empirical sampling results of the matched files may be compared with

the known sampling properties of valid random samples.

2.2 Statistical Matching Issues to be Addressed

2.2.1. Statistical Inference with Matched Files

One objective of this work is to identify conditions under which the matching methodologies will
perform well. If a matching technique produces matched (X12, Y, Z) files which behave like random
samples (X, Y, Z), then the technique would be totally successful. This, however, may be too strict a
requirement to reasonably expect. A weaker condition for judging a matching technique as acceptable
would be to require that point estimates of the (x, y, z) population parameters be unbiased or consistent.
Matched files which provided accurate estimates would be of great value, even if the precisions of such

estimators were difficult to access.
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By conducting many replications of the matching process for known populations, it is possible to
statistically study the properties of matched file estimators of key population parameters, such as cov(Y,
Z). Since the success of a matching technique will quite possibly depend on the properties of the sampled
population, the experiments were conducted for a variety of theoretical populations which are expected to

affect the matched file estimators in different ways.

2.2.2. Constrained Versus Unconstrained Procedures

As described previously, matching procedures may be divided into two principal types, “constrained”
and “unconstrained.” In each case the (X1, Y) file is linked, record-by-record, to the (X2, Z) file to
form the (X12, Y, Z) composite file. In unconstrained matching, each record in the (X1, Y) file is
matched with the single closest record in the (X2, Z) file. The composite (x12, y, z) record weight is the
weight of the (x1, y) record. In constrained matching, each record in each file may be matched one or
more times; however, for a given record, the sum of the linked record weights must equal the original

weight.

The desirable statistical characteristics of unconstrained matching is that the degree of association
between X1 and X2 is closer at the unit level than the unit level association of X1 and X2 in a constrained
match. The potential disadvantage of unconstrained matches is that the statistical characteristics of (X2,
Z) can be altered in the matching process (assuming the (X2, Z) file is the one that is unconstrained).
The advantage of constrained matching is that all statistical properties of (X1, Y) and (X2, Z) are pre-
served in the matching process. It must be noted that the statistical characteristics of (X1, Z) might not
be the same as for (X2, Z) even though the data item X1 can be accepted as statistically equivalent to X2.
The disadvantage of constrained matching is that unit level associations between X1 and X2 are not as
close as can be obtained using unconstrained matching. However, for both constrained and uncon-
strained matching the ultimate test is whether or not the matched file generated is statistically equivalent to
a valid sample of (X, Y, Z) drawn from the population of such data items. The question becomes one of

identifying the conditions under which either constrained or unconstrained matches produce valid results.

2.2.3. Cov(Y, Z|X)

If Y and Z are uncorrelated for given levels of X, i.e., cov(Y, Z|X=x)=0 for all values x, then non-
matching methods distribution could be used to estimate the joint of (X, Y, Z) from information obtained

from the unmatched files alone. As pointed out by Sims [46] if, under conditional independence, the

- 14 -



joint distributions of (X, Y, Z) admit probability density functions, then

fxvz(%, ¥, 2) = fxy(%,y) * fxz(x,2) /Tx(%). (2.1)

The probability density functions on the right hand side of the above equation could all be estimated from
the separate (X1, Y) and (X2, Z) files, and from this the joint distribution of (X, Y, Z) could be esti-
mated. Then any population parameters of interest could be estimated using this estimated joint distribu-
tion. However, when the data files are large the computational effort for this approach may be as great or
greater than that for matching techniques. Furthermore, statistical properties for this estimation approach

might require unusual methods not available in standard statistical computing packages.

Current matching techniques usually accomplish the match by aligning X1 and X2 values which are
close by some distance function criterion. (See distance function discussion below.) Since information
about Y and Z is not used in the matching criteria, it would seem that the created matched files will likely
have sample cov(Y, Z|X=x) close to 0. This is because when several records have exactly the same x
information the matching is accomplished within these records by arbitrary or random selection. How-
ever, this might not be a problem if in fact there are only a few records with the same set of x values.
Most matching projects have not included Y-Z relationships in the matching methodology even though it

is not assumed that cov(Y, Z|X=x)=0. One of the major objectives of this project is to examine the results

of matched files which do not use Y-Z relationships in the matching when in fact cov(Y, Z|X=x) = 0.

2.3. Distance Functions and Matching Methodologies

The matching methodologies considered here all proceed by defining a distance function which meas-
ures the dissimilarity between a pair of records. This function assigns a value dj; to any pair of records
(x5, yi) and (x5 z;) from files A and B, respectively. For a given match, say, M, of the two files an

overall distance Dy is defined as a weighted sum of the distances of all matched record pairs as follows:

Du = Z wijdije (2.2)

G,)eM
In unconstrained and constrained matches, the final matched file is chosen as the match M* which

minimizes Dy over whatever class of possible matches is being considered.

This study focuses on four types of distance functions. There are two major groups: weighted abso-

lute difference methods and Mahalanobis distances. In addition, each of these types may be applied to
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the X items alone, or expanded to include all X, Y, and Z items. Each of these four types of distance
functions is used in conjunction with both an unconstrained and the constrained-optimal matching

scheme, thus giving eight primary matching methodologies for study.
2.3.1 Weighted Absolute Difference Measures

Distance functions in this category are of the type used by the U.S. Department of the Treasury’s
Office of Tax Analysis [13] and the Social Security Administration’s Office of Research and Statistics
[37]. This function uses subjective weights, reflecting the relative importance of each data item, which are
multiplied by the absolute differences of values of the corresponding items in the pair of records under
consideration. Specifically, when only the X items are being considered, the distance between record i in

file A and record j in file B is defined as:

T
dj = z sk xLik = X2/, (2.3)
k=1

where xljc and x2j denote the kth data items in the respective files, r is the number of data items in

X, and sx is the subjective weight for data item k.

This procedure can be expanded to include additional (X12, Y, Z) relationships by adding other

difference terms to the function definition. For example, to include some information about the relation
of data item k of X and data item 4  of Y, an additional component of the distance function could be
Si * |¥1lu—x2j|.The weight sy would be determined subjectively with the sign of the term corresponding

to the sign of cov(Xy, Yy). Similarly, relationships between the various X items themselves, X and Z
items, and even Y and Z items could be included in the matching criteria. Of course, the choice of the

subjective weights is an important one since they will have a strong impact on the matches obtained.
2.3.2. Mahalanobis Distance Metrics

The other category of distance functions studied was proposed by Kadane [26]. One procedure,

which uses only the X items, defines

dij= (Sli—XZj)'(Zxx)—l(Xli—X2j), (24)

where Zxx is the covariance matrix of the X variables. This is the Mahalanobis distance between two x
values and, using only the X information, it arises as the maximum likelihood solution for exact matching

of normal random variables. It seems quite plausible that it will also perform well in statistical matching.
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Kadane also suggests a procedure which employs full (X, Y, Z) information. In this instance, file A is
expanded from (X, Y) to V = (X1,Y,Z), where 7; = E(Z|X=x1;, Y=1y;) is the regression prediction
for the missing Z data of record i Likewise, file B is expanded to
U= (X2,Y,2) where y; = E(Y|X=x2;,Z=2z). S;and$,, the covariance matrices of (X1, Y, Z) and
(X2, Y, Z), respectively, may be formed from Z, the covariance matrix of (X, Y, Z). The match is

performed using

dij = (vi—uw)'(S1+S2) " (vi-uy. (2.5)

A difficulty here is in obtaining accurate 2xx entries used in calculating S;and S;. These must
come from a source outside of the two files being matched or, if cov(Y, Z|X=x) = 0 is assumed, can

be calculated as

ZYZ = Zyx(ZXx)_IZXz. (26)

2.4. Experimental Design

To gain insight into the impacts of merging scheme, distance functions, and measurement error in the

data, a set of experiments were performed using national datasets.

The 1975 Survey of Income and Education was treated as a population and, from this file, five
randomly—-drawn samples of 1000 records each were drawn. The records of each file were divided into
two new data sets by designating each record item to be in set X, Y, or Z and forming an (X, Y) file and
an (X, Z) file. These files were merged using various methodologies, and examined using the evaluation

design in the section that follows.

The data items designated for sets X, Y, and Z were selected to include each of the various types of
data available on the file and different levels of correlation. Also, the files were merged using different
numbers of X-variables. The performance of the matching methodologies can be simultaneously evalu-

ated, as in the Monte Carlo simulations, by comparison with known characteristics of the original records.

The existence of measurement error is simulated by adding bias, unbiased noise, and biased noise to
subsets of the X variables prior to merging. The sensitivity of the distance function definitions and merg-
ing schemes to such error are then evaluated both at the record level and in the aggregate using the

statistical evaluation design.
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2.5. Statistical Evaluation of the Merged Files

2.5.1. Bias for Matched File Estimators
Does a matching methodology induce a bias in the estimation of important population parameters?
To answer this question, the key parameters of interest will be cov(Y, Z) and cov(X, Z) with uz and
Var(Z) of particular interest for unconstrained matching. Let © be a parameter of interest. Note that
© will be known exactly, since we know the population from which we have samples. Also let T; be
the estimate of ® derived from the ith matched file generated with some particular methodology. Now
let pr be the mean of all T which could have possible been obtained as estimates of ® from matched

files. Then the matching procedure produces unbiased estimates of ® if ur =0

The question of biased estimators of ® can then be addressed by comparing the observed T; with

® . A simple test for ur= © can be made by using

22 T20) @.7)
where ‘
2T 2.8)
T=1—,
and
k
G - 2@ (2.9)

k-1).
For large values of k “(including this study’s k=100), z will have an approximate standard normal

distribution if p1 =0

As noted earlier, a randomized block design analysis would be available for comparing the T; - © bi-

ases of several methodologies simultaneously.
2.5.2. Matched Samples versus Valid Random Samples

Does the sampling variability of matched files resemble the variability in random samples? Here the
major concern is with the overall sampling distribution of the (X, Y, Z) merged files or with simply the

bivariate sampling distribution of (Y, Z) obtained from merged files.

An excellent way to examine a multivariate sample is to divide each variable into classes and form a

multiway contingency table of the sample. For example, for a (Y, Z) sample and selected values of a, b,
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¢, d, e, and g, we can analyze the table below where fj is the observed frequency of data in cell (i, j).

z=<d d<z=e e<z <g g<z

y=a f11 fi2 f13 f14
a<y=b f21 f22 f23 f24
b<y=c fa1 f32 f33 fa4
c<y f41 f42 f43 f44

Since the (Y, Z) population is known, the expected value for each fj; may be calculated for random
sampling. It is well know that the Pearson Chi-square statistic
[fi— E(f1*
=y
z E(f;)

has an approximate Chi-square distribution with 15 degrees of freedom when valid random sampling is

done. This suggests that we calculate x* for each matched file we obtain using a given methodology; if
the matched files are equivalent to random sampling, then these k X’ values should follow the appropri-

ate Chi-square distribution. The Kolmogorov test can be used to test this, or we can simply describe X
values with a histogram. A similar procedure can be used to compare the sampling variability of whole

matched files with that of valid random sampling.

If we wish to bypass the file-by-file comparison of matched file distribution and random sampling, all
matched file data can be pooled for a given methodology into a single table and the pooled distribution
compared with the expected values calculated from the known population. To test the hypothesis that the

matched file samples were simple random samples, a single Pearson Chi~square statistic can be used.

PART 3. ANALYSIS BASED ON A NATIONAL MICRODATA SET

The objective of this section is to empirically examine the statistical characteristics of selected
matched files, given that the population characteristics of the data are known. These comparisons will be

used to evaluate the matching techniques.
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The primary statistical procedure employed in these comparisons is a simple X goodness—of—fit test
using percentage distributions and prespecified categories. In addition, matched file correlation matrices
are compared directly with the population correlation matrix. No specific test for equality of correlation
matrices was applied since direct observation of the correlation matrices indicated that for certain data

items there existed very large deviations.

An absolute difference distance function was tested under conditions of noise, bias, and combined
noise and bias. The same function was studied for sensitivity to the number of common variables used
and the Mahalanobis distance function was also tested. Also investigated were the consequences of
matching a sample with itself under a wide variety of circumstances, and the effect of using an uncon-

strained merging procedure instead of a constrained model.

This work focuses upon the Y-Z distributions in the matched files and their relationship to the popu-
lation Y-Z distributions, since the implied motivation for most statistical matching is the construction of
Y-Z distributions. Prior to this study, published merge analyses paid almost exclusive attention to the
relationship between X1 and X2 in the matched file and to the vector of Z means. However, in these
previous studies, data limitations have been such that ex—post testing of Y-Z distributions has not been

possible.

Fifty matched files were generated and solved with the transportation model for empirical analysis of
the issues mentioned above. These constrained matches employed five samples of approximately 1000
records each, selected from the Survey of Income and Education family file. In addition to the con-

strained matches, a number of unconstrained matches were generated for comparison purposes.

3.1. Population, Samples, and Data Item Descriptions

In this phase of the study, an extract of the Survey of Income and Education family file, resident in
the Office of Tax Analysis’ data library, was designated to be a base population. This particular file has
54,034 records representing a full population of approximately 78 million families. The data items se-
lected for inclusion in the extract file were: family wage or salary income, interest income, countable
assets, age of the family head, highest grade of school completed by the family head, sex of the family
head, total annual family income, social security income, number of adults in the family, dividend in-

come, family size, and race of the family head.
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Five subsamples of approximately 1000 records were randomly selected for matching purposes. In
addition, one of the subsamples (STE5) was used to form “other samples” with the data items perturbed to

simulate noise and bias.

The five subsamples’ identifiers and their respective sizes are: SIE1, 938 records; SIE2, 943 records;
SIE3, 942 records; SIE4, 991 records; and SIE5, 951 records. The weights of each file summed to

approximately 1.4 million. The subsamples created from SIE5 and their characteristics are described in

Table 3.1.
Table 3.1.
Files Created from Perturbations of SIES

Name Modification Made to Record Ttem(s

SIE6A Asset value reduced by 20% for simulated bias.

SIE6B Asset value reduced by 10% for simulated bias.

SIE7A 25% of the records have asset value multiplied by a random number
between .75 and 1.25 for simulated noise.

SIE7B All asset values were multiplied by a random number between .75
and 1.25 for simulated noise.

SIE7C 25% of the records have asset value multiplied by a random number
between .9 and 1.1 for simulated noise.

SIE7D All asset values were multiplied by a random number between .9 and
1.1 for simulated noise.

SIESA 25% of the records have asset value multiplied by a random number
between .7 and 1.0 for simulated noise and downward bias.

SIESB All asset values were multiplied by a random number between .7

and 1.0 for simulated downward bias.

NOTE: Samples SIE6A-8B are otherwise the same as SIES, and different random

numbers were used for each randomly-perturbed record.
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Six items were designated as X, or common, variables: wages and salaries, interest income, assets,
age of family head, highest grade of head, and sex of family head. Total income, social security income,
and number of adults were chosen to be the Y variables (i.e., the variables unique to the first matching
file, A). The variables selected to be set Z (i.e., the variables unique to the second matching file, B) were

dividend income, family size, and race.

The Y-Z correlation matrix for the full population, and the differences between each subsample’s
Y-Z correlation matrix and the population correlations are given in Tables 3.2A-F. In addition, the

population percentage frequency counts for all Y-Z item pairs are given in Tables 3.3A-1.

Table 3.2A
Full SIE Population Y-Z Correlation Matrix

Total Income 1.00

Social Security -.14 1.00

Number of Adults .44 —-.04 1.00

Dividends 33 .06 .02 1.00

Family Size .34 -.17 .76 -.01 1.00

Race -.12 -.15 -.02 -.04 .05 1.00

Table 3.2B
Difference Between SIE1 Correlation Matrix
and Population Correlation Matrix

Total Income 0

Social Security .05 0

Number of Adults .06 .01 0

Dividends -.03 11 .05 0

Family Size .03 -.17 .02 -.01 0
Race -.12 .08 .02 -.04 .05
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Table 3.2C
Difference Between SIE2 Correlation Matrix
and Population Correlation Matrix

Total Income 0
Social Security -.02 0
Number of Adults -.01 -.03 0
Dividends -.14 -.01 -.03 0
Family Size -.04 .03 -.04 -.01 0
Race -.04 -.01 -.02 -.04 .02
Table 3.2D
Difference Between SIE3 Correlation Matrix
and Population Correlation Matrix
Total Income 0
Social Security .01 0
Number of Adults .01 -.05 0
Dividends -.05 .14 .02 0
Family Size .05 -.04 .03 -.01 0
Race -.08 -.07 .09 -.01 11
Table 3.2E
Difference Between SIE4 Correlation Matrix
and Population Correlation Matrix
Total Income 0
Social Security .03 0
Number of Adults -.03 -.05 0
Dividends .06 -.01 -.03 0
Family Size -.07 -.03 -.01 -.02 0
Race -.03 .06 -.06 .00 -.03
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Table 3.2F
Difference Between SIE5S Correlation Matrix
and Population Correlation Matrix

Total Income 0

Social Security -.02 0

Number of Adults -.01 .02 0

Dividends .02 -.03 -.02 0

Family Size .03 -.01 .02 -.01 0

Race -.08 .01 .00 -.01 -.03 0
Table 3.3A
Population

Total Income and Dividend Joint Distribution (Percentage Counts)

Dividends
Total Income $0_ $1 under $1.000 $1.000 Plus
Under $5,000 21.01 1.18 .16
$5,000 under $10,000 20.20 1.85 .58
$10,000 under $15,000 16.75 2.24 .55
$15,000 under $20,000 11.61 2.22 .56
$20,000 under $25,000 6.74 2.00 .54
$25,000 Plus 6.84 3.09 1.78

Table 3.3B
Population
Total Income and Family Size Joint Distribution (Percentage Counts)

Family Size

Total Income 1 2 3 4 Plus
Under $5,000 13.48 4.85 1.93 2.09
$5,000 under $10,000 7.69 7.71 2.97 4.27
$10,000 under $15,000 3.57 6.23 3.72 6.05
$15,000 under $20,000 1.20 4.06 2.91 6.22
$20,000 under $25,000 45 2.65 1.92 4.29
$25,000 Plus .46 2.89 2.35 6.06
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Table 3.3C
Population
Total Income and Race Joint Distribution (Percentage Counts)

Race
Total Income White Nonwhite
Under §5,000 17.82 4.53
$5,000 under $10,000 19.52 3.11
$10,000 under $15,000 17.62 1.94
$15,000 under $20,000 13.25 1.13
$20,000 under $25,000 8.70 .61
$25,000 Plus 11.08 .67

Table 3.3D
Population
Social Security and Dividend Joint Distribution (Percentage Counts)

Dividends
Social Security $0 $1 under $1.000 $1.000 Plus
$0 62.33 9.44 2.38
$1 under $3,000 12.92 1.59 .79
$3,000 Plus 7.9 1.55 1.01
Table 3.3E
Population

Social Security and Family Size Joint Distribution (Percentage Counts)

Family Size

Social Security 1 2 3 4

$0 17.26 17.42 13.35 26.20
$1 under $3,000 7.83 4.60 1.31 1.56
$3,000 Plus 1.77 6.35 1.14 1.21
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Table 3.3F
Population
Social Security and Race Joint Distribution (Percentage Counts)

Race
Social Security White Nonwhite
$0 64.94 9.28
$1 under $3,000 13.36 1.94
$3,000 Plus 9.69 .77

Table 3.3G
Population
Number of Adults and Dividend Joint Distribution (Percentage Counts)

Dividends
Number of Adults $0 $1 under $1.000 $1.000 Plus
1 27.35 2.64 1.02
2 37.38 6.28 2.06
3 Plus 18.18 3.66 1.09

Table 3.3H
Population
Number of Adults and Family Size Joint Distribution (Percentage Counts)

Family Size

Number of Adults 1 2 3 4 Plus
1 26.62 2.05 1.41 .95
2 0 26.33 7.43 12.02
3 Plus 0 0 6.96 16.00
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Table 3.31
Population
Number of Adults and Race Joint Distribution (Percentage Counts)

Race
Number of Adults White Nonwhite
1 26.05 4.96
2 41.55 4.23
3 Plus 20.22 2.74

3.2. Matched Files Generated Using the Transportation Model
A total of 50 matched files were generated using the Office of Tax Analysis’ optimal-constrained
merge system (see [14] for description). The sub-samples designated in the previous section were selec-
tively matched pairwise using six different distance functions. These six distance models use the X vector

of common data items.
3.2.1. Weighted Absolute Differences Model

Model 1 is an absolute difference distance function where for record i from the first file and record j
from the second file:
d;j=Ci+C+C5+C4+C5+ Cs
where the six components are calculated as follows, the first component in the distance function for any

given record match is

|(File A wage - File B wage)|}

C; =min {400, 100
1= min{ File A wage

The index C; is the absolute value of difference in wages and salaries for any pair of A and B records
divided by the File A wage, but constrained not to exceed 400. For example, if the File A wages are

$25,000 and the File B wages are $25,596,
C; = min {400, 100 - [(25,000 - 25,596)|/ 25,000} =2.4.
In this example the index C; denotes the fact that the given B record has a wage which differs from the A

by 2.4%. The upper limit of C; = 400 is arbitrary, but is intended to not allow differences in wages alone

to determine a match for situations with large total distance, i.e., in excess of 400.

The record distance function component, C; , is a penalty assessed for differences in countable

assets and follows the same formula as C;

- 927 -



The index C; denotes an index for differences in interest income between a pair of A and B records.
Interval categories are used for the calculation of C; , as defined in Table 3.4. The index C3 has an
upper limit of 52 which means that the greatest difference in property incomes has a distance function
penalty equivalent to a 52% difference in wages. Hence, the matching algorithm will try to maintain
compatibility between the broad categories of property income, but the penalty for noncompatibility is
never very large. In the lower segment of the income distribution, the impact of C3 is to match records
with zero property income together, whereas in the upper range of the income distribution the index C;

will keep records with large amounts of property income together, all else equal.

Demographic factors included in the distance function are age, sex, and highest grade attained by

head of household. The age penalty is defined by the variable C4 which is described in Table 3.5. The

age penalty is based upon the age of the first person in the tax record.

Table 3.4

C, = Interest Income Difference Index

File A Interest File B Interest Income
Income $0 $1-1000 $1001-10000 $10001-1000001 $100001 or more
0 0 13 26 39 52
$ 1-§ 1000 13 0 13 26 39
$ 1001 - $ 10000 26 13 0 13 . 26
$10001 - $100000 39 26 13 0 13
$100001 and above 52 39 26 13 0
Table 3.5

C; = Penalty Index for Difference in Ages

File B Age
File A Age = 17 18=< 22 23=< 61 62=< 65 65 and over
= 17 0 12 32 80 80
18 = 22 12 0 24 80 80
23 = 61 32 24 0 64 80
62 = 65 80 80 64 0 40
66 and over 80 80 80 40 0
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The penalty for age difference is never greater than an 80% difference in wages. The broad age
categories are defined to represent school age and retirement age. For example, the age breakpoint of 62
represents early retirement and 66 denotes regular retirement. The age “17 and less” represents children
living at home, and the age interval “18-22" represents college or beginning employment age. For the
objectives of this matched file, persons with ages between 23 and 61 are not considered to be different, if
all other factors are the same. However, a large penalty is imposed if a person 61 or younger is matched
with a person 62 or older in order to differentiate persons eligible for Social Security income from those

who are not.

The penalty index for differences in highest grade attained by head-of-household is calculated as
follows:
Cs = 16 * INT (|Grade of A - Grade of B|/3)
where INT(x) is a function whose value is the smallest integer less than or equal to x. This value never
exceeds a 100% difference in wages and represents a graduated penalty for increased differences in high-
est grade attained. Note that there is no penalty for a difference of under three years, a penalty of 16 for

a three to five year difference, and so on.

The last penalty included in the distance function is the index C¢ for differences in sex of head of

household. If the A record and the B record have different sex codes then the index C¢ is set equal to

100, which has the same impact as a 100% difference in wages.

_ 0 if A and B have the same sex code
Ce = { 100 if A and B have different sex codes

The distance function value for a given potential record match is the sum of variables Cx . More

precisely, the notation for the variable Cy discussed above should be Cix where i denotes the ith A
record, j denotes the jth B record, and k denotes the index for income and demographic characteristics.

Hence,
dy = distance function value for the ith A record and the jth B record.

6
= 2 Cipe
k=1

The objective of the distance function is to try to force matches within the intervals defined for

interest income, age, highest grade, and sex, and to try to obtain very close absolute agreement based
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upon wages and assets.

3.2.2. Mahalanobis Distance Model

Model 2 is the Mahalanobis distance function value for record i from the first file (A) and record j

from the second file (B) is defined in (2.4) as:
dij= (x11-x2)" (O %)™ (x1; - X2))
where
x1; is the vector of common data items from record i of file A,
x2; is the vector of common data items from record j of file B, and

ZXX is the covariance matrix of the X variable from the population file.

3.2.3 Other Constrained Models

Model 3 is Model 1 without “assets” in the distance function, and Model 4 is Model 1 without “as-

” &«

sets, age,” and “sex” in the distance function. Model 5 is an absolute value percentage difference

distance function using only “wages and salaries,” i.e., using only C; from Model 1. Model 6 uses only

i)

the “age ” and “highest grade attended,” i.e., C4 and Cs, of Model 1.
3.2.4. Matched Files Created

The specifications of the 50 generated matched files using the transportation algorithm are given in
Table 3.17. For matching purposes, the Z elements of the file A samples and the Y elements of the file B

samples were ignored.
These 50 matched files are in the following test classifications.

Matched files 1-10: pairwise matching of all samples using an absolute
difference distance function (model 1).

Matched files 11-20: pairwise matching of all samples using the Mahalanobis
distance function (model 2).

Matched files 23-30: matching the sample SIES5 with itself under conditions of
noise, bias, and combined noise and bias (model 1).

Matched file 21: matching STES with itself using the absolute difference

distance function and six common variables (model 1).
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Matched file 22:

Matched files 31-38:

Matched files 40-43:

Matched files 44-47:

Matched files 39:

Matched file 48:

Matched file 49:

Matched file 50:

matching SIES with itself using the Mahalanobis distance
function (model 2).

matching samples SIE1 with SIES under conditions of
noise, bias, and combined noise and bias (model 1).

pairwise matching of sample SIES with sample SIE1, SIE2,
SIE3, and SIE4 using absolute difference distance function
with five common variables (model 3).

pairwise matching of sample SIES with samples SIE1,
SIE2, SIE3, and SIE4 using the absolute difference
distance function with only three common variables
(model 4).

Sample SIES5 matched with itself using the absolute
difference distance function with five common variables
(model 3).

sample SIE5 matched with itself using the absolute
difference distance function with three common variables
(model 4).

sample SIE5 matched with itself using the absolute
difference distance function with only the common
variable wages and salaries (model 5).

sample SIE5 matched with itself using the absolute
difference distance function with only the two common
variables age and highest grade attained (model 6).

3.2.5. Tests Used to Compare Matched File Distributions with the Population Distributions

Two tests were selected for comparing the Y-Z distributions in a matched file to calculate a simple

X~ statistic for each Y-Z pair, based upon cross-tabulated, percentage for the categories specified in

Table 3.3-A-I, and using the population percentage counts from these tables as the expected values. The

X statistic is calculated in the following manner. For a given cell K in a Y-Z table,
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, _ (fm—fp)*
= 0
where fm = weighted percentage of matched records in the k-th cell,

k

f, = weighted percentage of population records in the k—-th cell taken from

Table 3.3A through 3.31,

2=

z
i

number of cells in the Y-Z table, and

degrees of freedom = (number of rows) (number of columns)-1.

Also for simplicity, cell counts with less than one percent of the cumulation frequency were set equal
to one, and all frequency counts were rounded to the nearest whole percent. This statistic was selected to

neutralize the effect of having weighted samples with enormous cell values, where the slightest percentage
difference will generate very large X figures. For example, a weighted sample with a weighted cell count

of one million deviating by 1% from the population cell count would result in a cell X of 100, which

would not pass a goodness—of-fit test with degrees of freedom less than or equal to 20.

Implied in the selection of a x goodness—of-fit test based upon percentage distributions is the as-
sumption that percentage counts are sufficient to represent the data. That is, for most applications using
microdata, a cell percentage count of 20.5% is just as useful as knowing that the actual weighted frequency
count is, for example, 287,000. Another important assumption for the goodness—of-fit test is that the

appropriate cell-defining categories have been selected. For instance, if the categories for dividend in-

come specified in Table 3.3A, 3.3D, and 3.3G are sufficient for any use of dividend income, then X fig-
ures based upon these categories are meaningful. However, it must be stated that for the purposes of this
study, the categories were selected to have relevance with the restriction that low—count cells were avoided
by aggregation. Consequently, for a small-frequency data item (such as “social security” used in Tables
3.3D-F), the categories (zero, $1 to $2999, and $3000+) were selected so that cross tabulated counts

using the other variables, categories are reasonable.

The second test used in the study is the direct comparison of the Y-Z correlation matrix of a matched
file with the population Y-Z correlation matrix. The comparison is displayed by subtracting the popula-

tion correlation matrix from the matched file correlation matrix. Ideally, the matrix obtained would be
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zero or have all elements very close to zero, hence the matched-file-generated Y-Z distribution is statisti-
cally the same as the corresponding population Y-Z distribution. As will be presented later in the report,
a direct test for equality of correlation matrices is not necessary because of large differences observed
between the matched file and population statistics for “dividends” and “total income,” and “family size”

and “number of adults.”

It must be noted that the matched file will be different to a certain extent from the population file

since the samples which are used for matching are slightly different from the population.

3.3. Comparison of Absolute Difference and Mahalanobis Distance Functions

Matched files 1-20 identified in Table 3.6 can be used to compare matched files generated by an
absolute difference distance function and a Mahalanobis distance function. Matched files 1-10 represent
all pairwise matching of the five subsamples SIE1 through SIE5 selected from the population file using an
absolute difference distance function. Matched files 11-20 represent all pairwise matching of the five

subsamples SIE1 through SIE5 using a Mahalanobis distance function.

Only the Y-Z distributions will be examined since the transportation model leaves all original distribu-
tions in their original form. For example, the covariance matrix for X1-Y in the matched file is the same
as the corresponding matrix in file A, and the covariance matrix for X2-Z in the matched file is identical

to the corresponding matrix in file B.

Table 3.8 summarizes this x° statistic for each of the nine frequency count tables representing all
Y-Z distributions. The rows in Table 3.8 were arranged to allow a direct comparison of Models 1 and 2
for the same input data files. For example, matched files 1 and 11 given in the first two rows of the table

are for input data files SIE1 and SIE2 where matched file 1 uses Model 1 and matched file 2 uses Model

2. The row averages are for the average %’ for a given matched file for the nine Y-Z frequency tables.
In all cases the average for the matched file using Model 1 is less than the matched file using Model 2

generated from the same input data files.

The following table is given to illustrate one of the %’calculations in Table 3.8. Table 3.7 gives the
percentage counts of records for the Y-Z distribution “total income” and “dividend income” in matched
file 1. An interesting feature of constrained matching models is that the marginal distributions in Table
3.7 are identical to the marginal distributions of the original files. For example, the marginal distribution

of the Y variable “total income” in this table is identical to the marginal Y distribution in sample SIE1,
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and the marginal distribution of the Z variable “dividend,” in this table is identical to the marginal Z
distribution in sample SIE2.
Table 3.7

Matched File 1
Total Income and Dividend Joint Distribution (Percentage Counts)

Dividends
Total Income $0 $1 - under $1,000 $1,000 Plus
Under $5,000 20.5 1.42 .39
$5,000 under $10,000 17.27 2.31 .73
$10,000 under $15,000 17.47 2.34 43
$15,000 under $20,000 11.91 2.40 .72
$20,000 under $25,000 7.30 2.32 .43
$25,000 Plus 6.79 4.07 .61

The population percentages for the corresponding Y-Z distribution for Table 3.7 are given in Table
3.3A and using the x figure previously defined, the resulted ¥ is 1.3. With (6) (3)-1=17 degrees of

freedom, a % of 1.3 indicates that the distribution in Table 3.7 is, for all practical purposes, the same
distribution in Table 3.3A, and consequently for this Y-Z distribution the matched file is the same as the
population file. However, this result is only true if the relevant categories are those in Tables 3.3A and
3.7, and percentage distributions are sufficient for the data being represented.

The degrees of freedom for the Y-Z distributions are given in the bottom row of Table 3.8. It is

: [ : ” ” 2 .
observed in the column for “total income” and “race,” that the average X for matched files 1 through

10 is 2.5 with a standard deviation of 2.0. A rough interpretation of these figures is that the mean
X plus two standard deviations = 2.5 + 4 = 6.5, which is an acceptable x figure given DF = 11. In fact

for matched files 1-10, the mean x plus two standard deviations yields an acceptable %’ for all Y-Z

distributions with the exception of “number of adults” and “family size.”

The average x* for the Mahalanobis distance function for each Y-Z distribution is given in the row
averages for matched files 11 through 20. If two standard deviations are added to the mean x figures

the resultant sum is an acceptable X in only five of the Y-Z tables.

In summary, it is observed from Table 3.8 using the X* test that the absolute difference distance

function is much better then than the Mahalanobis distance function. It is also observed that at the 5%
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level of acceptance, that all but one of the absolute value distance function Y-Z distribution are accept-

able.

Another way to compare matched files with the population file, and to compare one matching model
with another is to observe the difference between the correlation matrix of a matched file and the correla-
tion matrix of the population file. Table 3.9A gives the result of subtracting the population correlation

matrix given in Table 3.1 from the average correlation matrix obtained from matched files 1-10.

The blocked—-in portion of Table 3.8 represents the Y-Z distribution where for the ideal match all
entries should be zero or close to zero. It is observed from Table 3.9 A that these are significant differ-
ences from zero where the big differences are for the correlations between “total income” and “divi-

]

dends,” and between “number of adults” and “family size.” The difference between the population and
the matched file distribution for “family size” and “number of adults” were also very evident from Table
3.8. However, the difference between the population and matched file distributions for “total income”
and “dividends” was probably masked by classifying all dividends over $1,000 in the class “$1,000 Plus.”
Another feature of the blocked portion of Table 3.9A is that six of the differences are negative and only

one is positive, reflecting the fact that the matched file correlations are, on the average, smaller in abso-

lute value than the population correlations.

Table 3.9A
Average Correlation Matrix for Matched Files 1-10 Minus the Population Correla-
tion Matrix (Absolute Difference Distance Function)

Total Income 0

Social Security .02 0

Number of Adults .01 ~-.01 0

Dividends -.27 0 -.04 0

Family Size -.08 -.04 -.47 -.01 0

Race .02 0 -.01 -.01 .03 0
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Table 3.9B gives the difference between the average correlation matrix for matched files 11-20 and

the population correlation matrix given in Table 3.1.

From Table 3.9B it is observed that the Mahalanobis distance function produces larger deviations
from the population than the absolute difference distance function represented in Table 3.9A. The
blocked-in portion of Table 3.9B represents the Y-Z distributions and it is observed that correlation
between “family size” and “number of adults,” between “dividends” and “total income,” and between
“family size” and “total income” are very different from the population correlations. As observed in
Table 3.9A, there is a strong tendency for the matched file Y-Z correlations to be smaller in absolute
value than the population correlations. It is also observed from Tables 3.9A and 3.9B that the absolute

value distance function is better than the Mahalanobis distance function.

Table 3.9B
Average Correlation Matrix for Matched Files 11-20 Minus the Population Correla-
tion Matrix (Mahalanobis Distance Function)

Total Income 0

Social Security .02 0

Number of Adults .01 -.01 0

Dividends -.32 -.08 -.05 0

Family Size -.40 .12 -.77 .03 0

Race .12 .07 .08 -.01 .03 0

3.4 Comparison of Matched Files Generated with an Absolute Value Distance
Function Using a Range of Common Variables
Earlier in this chapter matching Models 1, 3, and 4 were specified. Essentially Model 3 is the same as
Model 1 with the data item “assets” left out. In the population file “assets” is strongly correlated (.57)
with the common variable “interest,” moderately correlated (.38) with the y variable “total income,” and
highly correlated (.70) with the z variable “dividends.” Model 4 is the same as Model 3 with the common
data items “age” and “sex” left out. In the population file age is moderately correlated (-.22) with the

common variable “wages and salaries,” moderately correlated (-.34) with the common variable “highest
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grade of family head,” strongly correlated (.58) with the Y variable “social security,” and moderately

correlated (—.20) with the Z variable “family size.”

The objective of this section is to compare Models 1, 3, and 4 consequently to investigate the effect of
altering the number of variables in the distance function. To achieve this objective matched files 9, 40,
and 47 are grouped together representing samples SIE5 and SIE4 matched respectively with matching
Models 1, 3, and 4. Matched files 4, 42, and 45 are grouped together representing samples SIE5 and
SIE2 matched respectively with Models 1, 3 and 4. Matched files 10, 43, and 44 are grouped together
representing samples SIE1 and SIE5 matched respectively using matching Models 1, 3, and 4. Also
matched files 7, 41, and 46 representing files STES and SIE3 matched respectively using matching Models
1, 3, and 4.

Table 3.10 displays X* statistics as defined previously to compare Models 1, 3, and 4 using pairwise

matching of sample SIES with samples SIE1, SIE2, SIE3, and SIE4. From the table it is observed from

the row average column that Model 4 yields the largest average X* statistics in three of the four groupings.
It is also observed from Table 3.10 that Model 4 has the largest column average in six of the nine fre-
quency tables. Models 1 and 3 appear to generate matched files with the same overall differences from

the population file.

Once again it is very obvious that the Y-Z distribution for “number of adults” and “family size” is
very poor, but the other distributions are reasonable given that the samples are different from the popula-

tion.

Models 1, 3, and 4 can also be examined using the average correlation matrices for matched files
using the different models. The correlation results for Model 1 were given in the previous section in Table
3.8. The differences between the average correlation matrix using Model 3 and the population correlation
matrix is given in Table 3.11. The difference between the average correlation matrix using Model 4 and

the population correlation matrix is given in Table 3.12.
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Table 3.11
Average Correlation Matrix for Matched Files 40-43 Minus the Population
Correlation Matrix (Model 3 Distance Function)

Total Income 0

Social Security -.02 0

Number of Adults -.01 .02 0

Dividends -.27 .02 .02 0

Family Size -.07 .04 .45 0 0

Race .02 .02 .05 .01 .04 0

Table 3.12
Average Correlation Matrix for Matched Files 44-47 Minus the
Population Correlation Matrix (Model 4 Distance Function)

Total Income 0

Social Security -.02 0

Number of Adults -.01 .02 0

Dividends -.25 .01 -.03 0

Family Size -.11 -.01 -.58 0 0

Race .04 .04 .01 -.01 .04 0

The blocked-in portions of Tables 3.11 and 3.12 reflect the difference between the Y-Z distributions
in the matched files using Models 3 and 4 and the population Y-Z distributions. As mentioned in the
previous section, the ideal match would have zero or near zero entries. However, as in the case for Model
1 observed in Table 3.8, there are significant differences in the matched correlations for dividends and
total income, and for family size and number of adults. These large differences are a result of the
tendency for the matched file correlations to have smaller absolute values than the absolute values of the
corresponding correlations in the full population. The population correlation for “dividends” and “family
income” is .33 as opposed to the average Model 3 corresponding correlation of .06, and the correspond-
ing correlation from the average results from Model 4 of .05. For “family size” and “number of adults”
the population correlation is .76, the average Model 3 correlation is .31, and the average Model 3 correla-

tion is .18.

It should be noted that the entries in Tables 3.8, 3.11, and 3.12 outside the blocked—in section are for

the correlations within the Y’s (given above the blocked-in portion), and for the correlations within the
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Z’s (given to the right of the blocked-in portion). Any nonzero entries outside the blocked-in portions
are a consequence of differences between the samples and the population, since the transportation algo-

rithm forces the within-Y and within-Z correlations to be the same as the sample values.

In summary, the results of this section indicate that Models 1 and 3 are better than Model 4. The
implication for matching is that it is possible to have too few common variables in the distance function.
However, because of the mixed results from Models 1 and 3, it cannot be stated that too many common

variables can degrade the accuracy of a generated matched f{ile.

3.5 Matching Under Conditions of Noise and Bias
Samples SIE1 and SIES were matched using Model 1 and the results of this match are designated as
matched file 10 in Table 3.7. Earlier in this chapter, samples 6 A-8B were identified as versions of SIES
with noise and bias injected into the X variable assets. The purpose of this section is to compare matched

file 10 with matched files 31-38 which are identified in Table 3.6. In all cases, matching Model 1 is used.

Table 3.13 displays the x* statistic as defined in the previous two sections for comparing sample SIE1
matched with SIE5 when bias and noise are injected into SIES. Match file 10 is for the unaltered sample
SIES, matched file 31 has “assets” in SIES reduced by 20%, matched file 32 has “assets” in STES reduced
by 10%, matched file 33 has a 25% noise factor in “assets” in 25% of the records in SIES, matched file 34
has a 25% noise factor in “assets” in all records in SIES5, matched file 35 has a 10% noise factor in
“assets” in 25% of the records in SIES, matched file 36 has a 10% noise factor in “assets” in all SIES
records, matched file 37 has an average 15% downward bias and noise factor in “assets” in 25% of the
records in SIES, and matched file 38 has an average 15% downward bias and noise factor in “assets” for

all records in SIES.

In Table 3.13 it is observed that the row average for matched file 10 is slightly better than the row

averages for matched files 31-38. It is also observed from the column averages of matched files 31-38

. . . 2 L
when compared with the row entries for matched file 10 that, on the average, X~ statistics for matched

file 10 are better than the average tables for the matched files 31-38.

Once again, as in the two previous sections, the Y-Z distribution for “number of adults” and “family
size” are very poor, and most of the other distributions are reasonable. The empirical result taken from
Table 3.13 is that moderate amounts of noise, bias, and combined noise and bias do not greatly affect the

Y-Z distributions in matched files.
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3.6 Results of Matching A Sample With Itself

The sample SIE5 was matched with itself under a variety of conditions, i.e., using all of the matching
models and using the conditions of bias, noise, and combined noise and bias. The files of particular
interest are described in Table 3.6 as matched file 21 (Model 1), 22 (Model 2), 39 (Model 3), 48 (Model
4), 49 (Model 5) and 50 (Model 6) and matched files 23-30 (noise and bias tests).

Matched files 39, 48, 49, and 50 (generated under conditions of a reduced set of common variables)
are unique in that they are identical with sample SIES5; that is, each sample record is matched with itself
and with the matched weights equal to the record weights. There are 951 records in sample SIES and
consequently there are 951 records in matched files 39, 48, 49, and 50. The correlation matrix for each

of these files is identical to correlation matrix for SIES.

Matched file 21 is slightly different from sample SIES. However, this matched file has 974 records
which implies that all except 24 records have been matched with themselves. These 24 exceptions have
been split and cross—matched with each other. The consequences of the “mismatching” of 24 records can
be observed in Table 3.14 where it is seen that the correlations are almost identical with the exception of
“race” and “family size” which has an approximate difference of —.01. However, the percentage fre-
quency in the table for “race” and “family size” are different between SIES and the matched file by less

than .1%.

Thus the results of matching a file with itself are perfect using Models 3, 4, 5, and 6 and near-perfect
using model 1. However, the results obtained using model 2, the Mahalanobis distance function, are very
poor by comparison. The difference between the correlation matrix from matched file 22 and SIES is

given in Table 3.15.
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Table 3.14
Correlation Difference Matrix for Matched File 21 Minus SIE5 (Model 1)

Total Income 0

Social Security 0 0

Number of Adults 0 0 0

Dividends 0 0 0 0

Family Size 0 -.001 -.004 0 0

Race -.001 .004 ~.009 0 0 0

From Table 3.15 it is observed that matched file 22 is very different from SIE5. These differences are

probably due to the non-normal and discrete data distributions in the sample.

Table 3.15

Correlation Difference Matrix for Matched File 22 Minus SIES5
Total Income 0
Social Security 0 0
Number of Adults 0 0 0
Dividends 365 -.071 .039 0
Family Size -.49 .094 -.891 0 0
Race 173 .079 .071 0 0 0

The impact of bias and noise on sample data can be studied by comparing the characteristics of
matched files 23-30. 1In all cases, the results are nearly identical to matched file 21, with correlation
differences from matched file 21 less than .003. Each of these output files only differ from each other by
less than 7 of the 951 records in SIES with the number of matched records ranging from 967 to 974. The
conclusion is that limited amounts of bias, noise, and combined bias and noise do not affect a matched

file.

3.7 Analysis of Unconstrained Procedures
To investigate the impact of unconstrained procedures on the resultant composite file, a single sample
file, SIE2, was merged with each of the four remaining sample files using an unconstrained method with
the absolute difference distance function of Section 3.2.1. In each case, the weights for SIE2 are not
constrained and the other file is used as the base file. By observing the distributional statistics of a

Z-variable, the effects of dropping the weight constraints are demonstrated.

The means and standard deviations of the Z-variable dividend income are shown in Table 3.16A for

all five sample files. Table 3.16B shows the same statistics for SIE2 when used as file B. Not only do the
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means vary, depending on the base file, but the standard deviations are also distorted, as much as £ 38

percent from the original values.

Noise and bias factors also influence the pattern of data in the X2 and Z variables as illustrated in
Table 3.16C. Files SIE6A through SIE8B are identical to file SIES but with the X2 variables perturbed
with noise or bias as described in Table 3.1. Table 3.16C demonstrates the impact of the X-data pertur-
bations on the same fundamental statistics. The presence of bias or noise tends to decrease the Z-vari-

ance and distort even the means either upwards or downwards.

Of course, all of these statistical changes are a result of the implicit modification of the weights on file
B by the unconstrained merge process. Such variations are in contrast with constrained procedures which,
as an integral part of the merge process, maintain the original (or equivalent) record weights and hence
preserve all of the X2 and Z data items and their interrelationships.
Table 3.16A
Dividend Income Statistics for Sample Files

Dividend Income

Sample File Mean tandard Deviation
SIE1 $227 $1,471
SIE2 194 1,717
SIE3 350 1,942
SIE4 353 2,929
SIES 292 1,990
Table 3.16B

SIE2 Dividend Income Statistics
After Unconstrained Merging

Dividend Income from SIE2

Standard
File A File B Mean (Deviation*) Deviation _{(Deviation*)
SIE1 SIE2 $176 (-9.2%) $1,057 (-38.4%)
SIE3 SIE2 268 (+38.1%) 1,922 (+11.9%)
SIE4 SIE2 146 (-24.7%) 1,454 (-15.3%)
SIES SIE2 186 ( ~4.1%) 1,210 (-29.5%)

*Percent deviations from original SIE2 values per Table 4.16A
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Table 3.16C
Unconstrained Merges: Noise and Bias Tests

Dividends of File B

File A File B Mean Standard Devigtion
SIE1 SIES $220 $1,713
SIE1 SIE6A 317 1,557
SIE1 SIE6B 294 1,433
SIE1 SIE7A 283 1,418
SIE1 SIE7B 216 1,028
SIE1 SIE7C 258 1,371
SIE1 SIE7D 286 1,475
SIE1 SIEBA 246 1,149
SIE1 SIESB 295 1,992
SIES Original File 292 1,990

In summary, this information seems to suggest not only that unconstrained approaches have difficulty
maintaining the basic descriptive statistics of Z-variables, but are also influenced by bias and noise in the

X-~variables, two problems not encountered in constrained procedures.

3.8 Summary and Results of the Real Data Empirical Investigation
All of the issues outlined in the introduction of this chapter were addressed using the fifty constrained
matched files defined in Section 3.2.4 and the unconstrained matched files discussed in Section 3.7. The
pattern of the results obtained indicate that sufficient observations have been generated for some general

conclusions.

These results are:

1. Absolute difference distance function yields significantly better results than the
Mahalanobis distance function.

2. Noise and bias have a nominal effect on constrained matched files.

3. When a file is matched with itself using the transportation model with an absolute
differences distance function, the desired matching of records is produced even under
conditions of bias, noise, and combined noise and bias.

4. All original statistical content in the input files is preserved with constrained matching.
However, there is a tendency for the absolute value of correlations between the Y-Z
items to be reduced from the population values.

5. The quality of a match is reduced if too few common variables are used in the

distance function.
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6. The absolute difference distance function generated acceptable Y-Z distributions in
seven of the nine Y-Z distributions specified, using the correlations in Table 3.9A

and the percentage distribution functions and categories specified in Tables 3.3A-1.

It is extremely interesting to note that the absolute difference distance function used with the transpor-

tation model generated the unacceptable Y-Z distributions when cov(YZ|X) was clearly non-zero.

Perhaps the most important conclusion is that the next applied research topic in this area should be
the identification and development of a matching criterion which has the “known” Y-Z relationship
included. That is, the matching function should exclude non-valid Y-Z patterns while encouraging the
valid ones. This conclusion is based upon the empirical evidence that the transportation model using an
absolute difference distance function produces acceptable Y-Z distributions in most situations, but not in
all. Also it is reasonable to predict that in a proper environment with the necessary matching software and
data that a matching function could be developed which would generate acceptable distributions for all

Y-Z pairs.

The long—run implication of this conclusion is that statistical matching would be a very useful tool for
data preparation in situations where, for example, every five years population Y-Z characteristics are
observed from a sample, and during the intervening years file matching is done when the data is available
only in X1-Y and X2-Z distributions. In this situation the population Y-Z characteristics are used to
match X1-Y and X2-Z files such that the matched file Y-Z distribution conform to expected patterns.

PART 4,
SUMMARY AND CONCLUSIONS

The objective of this study was to empirically measure the quality of statistical matching. To achieve
this result many statistical matches were generated and the properties of these matches were objerved and

analyzed.

Statistical matching creates a composite microdata file from two original microdata files A and B. The
records in the composite field are formed by appending the records from file B onto the recordds in file
A. Statistical matching algorithms identify the record weight to be associated with the record formed by
appending the j—th record from file B onto the i~th record in file A. The statistical matching procedures
currently used in large—scale matching projects are described in Section 1 fo this report. The statistical

framework and the experimental design are given in Section 2 and the statistical results in Section 3.

This study has been presented one of the first research studies of its kind in this area: an in-depth

computational work designed to achieve a foothold of understanding into the statistical nature of files
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formed by state—of-the—art merging techniques. The study views from dual aspects — theoretical and
direct-empirical — an important set of questions unanswered by the literature. An enormous body of data
has been created and analyzed; in the process, over fifty linear programming problems were solved with

dimensions of up to 2,000 constraints and 1 million variables.

Details of this research effort have been documented in the previous pages and, in this concluding
section, several general conclusions suggested by these results are presented. These interrelated summary
and conclusions are organized under the following headings: (1) the viability of merging, (2) choosing
a merge technique and distance function, (3) the effects of data perturbations, (4) improvements needed

in existing methods, and (5) future research directions.

4.1 The Viability of Merging

There are several instances suggested by this study in which specific statistical merging techniques
perform well but others where merging to accomplish certain goals is perhaps not advisable. The study
focused on the various merge techniques’ abilities (or lack thereof) to preserve known relationships be-
tween data items that came from and were unique to separate files. These relationships were expressed in
the form of correlation and covariance statistics and cross—tabulations of pairs of such items. These are

the so—called Y-Z relationships.

There is evidence to suggest that applications requiring that Y-Z relationships be preserved in “mod-
estly broad” categories can be obtained with generally good results from a merge file created by the
transportation model and the weighted absolute differences distance function described in Section 3.2.1.
While data categories such as “wages between $5,000 and $10,000” and “age between 20 and 30 years”
would be considered “modestly broad,” the categories “wages income between $5,000 and $5,100” and
“age of 21 years” would not. Therefore many existing microsimulation models, such as the Treasury’s
Individual Tax Model, which do not have extremely strict requirements in this area are well-suited to the

use of merged files.

This is not to suggest that there cannot be any problems with using such files or that improvements
cannot be made in their construction. The empirical study using SIE data demonstrated the ability of
merged files to create acceptable Y-Z data relationships in most cases, but also provided an excellent
example of the creation of illogical relationships. Specifically, several records were created to form sin-
gle—person families containing two adults. While such spurious results lead to reasonable concerns about

merging, it is clear that these erroneous record matches could have been easily avoided by adding a
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penalty to the process’s distance function for each illogical match pair. The extension of this notion to

less clear—cut cases is discussed below.

Another application of merge files is for correcting or expanding an existing file’s item to account for
underreporting. When, for example, items in a given file are not deemed sufficiently trustworthy, that file
might be merged with another primarily to upgrade those particular items. If the files have many items in
common, this use might be focused on either X1-X2 relationships or X1~Z relationships. Such relation-

ships seem to be retained by merging.

In the instance where there is no relationship between the non-common items, for a given set of
values for the common items [i.e. cov(Y, Z|X)=0], the Y-Z distribution is replicated well by merge

techniques. Of course this situation is not as useful as where there is such a relationship {cov(Y,

Z|X) # 0], a case current merging techniques have difficulty replicating. While it might be thought that
all nonzero relationships are forced to zero by the merge techniques studied, the testing based on SIE data
indicated that such relationships were only softened, not eliminated. This means that relationships which
are not an explicit part of the merge procedure (e.g., in the distance function) tend to be attenuated
through random pairings but on average hold to a certain, although lesser, degree. Hence, the user of

merge files should be cautioned about heavy reliance on them if a high degree of accuracy is required.

4.2 Choice of Merging Model
In summary, the study indicated that the best results can be obtained by applying an optimal~con-
strained merge model with an absolute difference distance function. Testing with “real” data files verified
the superiority of the constrained approach but found the Mahalanobis distance function to yield ex-

tremely poor results, most likely a consequence of the presence of non—-normally distributed data.

The number of common variables used in the distance function was also shown to have a strong effect
on the representativeness of matched files. As expected, more variables seemed better than fewer, per-

haps due to the procedures’ inability to distinguish between records when only a few variables are uses.

4.3 Effects of Data Perturbations
A notable finding from the SIE data study was the robustness of the constrained merge techniques
when the variables used in a distance function are subjected to noise, bias, and both noise and bias.
When the transportation model with an absolute differences distance function was used to match a sample
file with itself, 99 percent of all records were matched correctly, even under varying levels and types of
noise and bias. This lack of sensitivity to such prevalent conditions of sample survey data is a very positive

result that enhances the attractiveness of merging schemes in general.
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4.4 Tmprovements Needed in Existing Methods

It appears likely that current techniques, including the transportation model, could be improved with a
modicum of additional research. For example, distance functions should be designed to account for

known relationships among non-common variables and at the very least to rule out illogical matches.

It is very clear from many aspects of the research that for merging methods to perform well in main-
taining Y-2Z relationships, the procedures must inject some measure of control over those relationships.
In the simplest case, distance functions should associate heavy penalties with record matches that are

illogical not only in terms of X1-X2 data configurations but for Y-Z combinations as well.

In the more general case, the higher—order statistical relationships between X, Y, and Z items should
be incorporated into the merging procedures. Research to identify more sophisticated distance functions

or matching schemes which directly address data characteristics such as non-normality and cov(Y,

Z|X) # 0 should be undertaken to counteract shortcomings inherent in procedures which are quite robust

along other dimensions.

From a procedural point of view, it would be extremely useful for all merge file users if aggregate
statistics for non-common variable pairs could be collected at regular (five— or ten—year) intervals in order
to calibrate on~going merge models. Such information could be collected piecemeal and at various points
in time for subsequent construction and maintenance of these statistical mosaics. For example, the corre-
lations between some item pairs probably would not change dramatically from year-to-year and would
need to be updated or verified only over large time intervals. However, if such statistics were available,
new merging schemes could likely be designed to incorporate them and perhaps eliminate the problems

associated with cov(Y, Z|X) significantly different from zero.

4.5 Further Research Directions

In addition to the research topics described above, it is felt that this work is only a starting point for
research into the theory and practice of microdata file merging. In general, this line of research should be
continued (1) to devise merge methodologies which are better able to capture the Y-Z relationships, (2)
to identify criteria to determine when a pair of files can be said to be “mergeable,” and (3) to study the
impact of merge technique at the model output level, as opposed to the data input level, to gauge models

sensitivities to data perturbations from this source.

A very different line of research would be to explore the applicability of new “learning” techniques to

merging and imputation problems. For example, neural network models can be “trained,” through expo-
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sure to a large set of examples, to identify highly nonlinear relationships between variables. A typical
neural network model takes a set of input values and performs weighted computations to create a set of
output values. The network is trained by repeatedly comparing desired outputs with computed ones and,
if there is a difference, adjusting the model’s internal weights. This is repeated until the model can
adequately reproduce the desired outputs from a given set of input values. The ability of such a model to

handle “noisy” data has made it useful in image processing and pattern recognition applications.

Such a model might be used to learn the interrelationships among variables from a sample, for use in
massive imputation. The model might be trained with (X1, Y) data, using the X1’s as input variables and
the Y’s as desired output variables, so as to automatically uncover the X-Y interrelationships. The model
could then process a second file of (X2, Z) values, using the X2’s as inputs, and use the computed-Y
outputs to for (X2, Z, Y) records. The research would involve not only model construction and training,

but a statistical analysis of the resulting imputed file, and a comparison with merged model results.
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APPENDIX A

Detailed Description of a Small Matching Problem Using
Constrained and Unconstrained Methodologies

It can be shown algebraically and understood intuitively that the statistical merging technique chosen
directly affects the statistical structure of the resultant composite matched file. The objective of this

appendix is to illustrate these effects using two small hypothetical data files.
An Example Matching Problem

The data files, called A and B, that we will use in our examples have three records and four records
respectively. These records are completely described in Figure A.1. Note that files A and B have some
items in common and some that are not. The objective of merging would be to form a file of composite
records, each containing items from both files, as depicted in Figure 1.1. As in all merging and matching

techniques, the common items are used for identifying records with like attributes for matching purposes.

The tabulations given in Table A.1 show that the weight totals for each file are equal, indicating

identically~-sized sample populations. If we let a; be the weight of the i~th record in file A and bjbe the
weight of the j~th record in file B, this property can be expressed mathematically as:

a; + a, + a3 = b; + b, + by + ba (A1)
Table A.1 also indicates that the weighted item sums are slightly different, indicating reporting or sample

variations.

Overview of the Matching Problem

We shall let wj;represent the weight assigned to the composite record formed by merging record i of

file A with record j of file B, with a zero value indicating that the records are not matched. Microdata file

merging may be viewed as a problem of finding a set of nonnegative values for all wj;’s.

In order to guide the merge process to matching similar records a distance function, d, is used to
measure the extent to which the attributes in any one record differ from the same attributes in another
record. Intuitively, the parameter dj;can be viewed as the “distance” between record i of file A and
record j of file B, as illustrated in Figure A.2 below. In this example, file A record 2 (shown as point A2)
is considered to be closer to file B record 1 (B1) than to file B record 2 (B2), thatis dj; <d,;, since the

schedule codes and AGI values are in closer agreement.

A simplistic distance function will be used for illustrative purposes. (The effects of different dissimi-

larity metrics could also be studied using this example.) In this model, the interrecord distance will be



Figure A.1.

FILE A RECORDS:

Record Record
Number Weight
1 1000
2 2000
3 500

FILE B RECORDS:

Record Record
Number Weight

1400
400
1500
200

NI =

Example Files A and B

Reported

Schedule Adjusted
Code Gross Income

1 16,000
12,000
2 20,000

—_

Common
Items

Reported

Schedule Adjusted
Code Gross Income

14,000
19,500
11,000
17,000

(S N

Table A.1

Item Tabulations for Example Files

Description

Population size

Schedule code = 1
Schedule code = 2

AGI, Total ($000s)
Reported Deductions, Total
Family size, avgerage
Transfer income ($000s)

(Weighted)

File A File B

3,500 3,500
3,000 2,900
500 600
50,000 47,300
9,800 n.a.
n.a. 2.65
n.a. 5,200

F

Reported

Deductions

3,200
2,300
4,000

Non-common

Items

a

3

ily

Transfer
Income

500

0
3,000
0



defined as

d;; |(File A AGI) - (File B AGL)] + 0, if schedule codes agree
! 100 25, if schedule codes differ.
Schedule 2 —— » B2
Code
d22
| B A2 B1
d21

_/\[ >
0 10 12 14 16 18 20 22

AGI, in thousands

Figure A.2. Scatter Diagram of Selected Records

The following tableau can be used to summarize the matching problem. With a row for each record i

in file A and a column j for each record in file B, a tableau cell (i, j) corresponds to a match possibility
and an wjvalue. We will indicate a record match by including the composite record weight in a cell
(wi; > 0) and use a blank cell to mean that the records are not matched (wij=0) . The box inset in each

cell contains d;j, the distance function value. Row and column totals reflect the weights associated with

the record.

Problem Constraints

Of course any values could be assigned to the w;; variables. However, since the record weights are an
integral part of any computations made with the data items, these composite record weights directly affect
the merge file’s numerical structure. For this reason, we may wish that the sum of the w;j;values for any
record in file A to equal the original record weight, thereby not overmatching or undermatching that
record and preserving that record’s intrinsic data structure. In our example, this translates to the follow-

ing set of constraints that we may wish to be in force in our solution to the merge problem:
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Tableau 0. Sample Tableau for Example Merge Problem

FILE FILE B RECORD
A RECORD 1 2 3 4
20 50 50 35
1
Wi Wiz Wi3 Wig
20 100 10 75
2
W21 W22 W23 Wog
85 5 115 30
3
Wi3j W32 W33 W34
bj 1400 400 1500 200
Wip + Wiz + Wiz + Wiy = g
W21 + W2 + Wiz + Wyq = a3
W31 + Wiz + Wiz + Wiy = a3

If, in addition, we wish to place the

3
ZWU = b, for j=1, 2, 3, and 4.

i=1

aj

1000

2000

500

(A.2)

same conditions on the file B weights, we could also require:

(A.3)

Since we assume that negative weights are not permitted, we always require the constraints:

wj =0, i=1, 2, 3 and j=1, 2, 3, 4

(A.4)

Also, we may wish to use the distance function values to achieve a best overall solution, so that our

objective would be to require that the merge process:



minimize d11W11 + d12W12 + ...+ d34W34. (AS)

In so doing, we minimize the aggregate interrecord distance for the entire file.
Merging Techniques

Three statistical merging approaches will be considered in this study: unconstrained, constrained, and
constrained-optimal. Each of these can be described in terms of some or all of the expressions (A.1) -

(A.S).

The first, unconstrained matching uses one file as a base and matches each record with the minimum-
distance record in the other file. The merged records use the weights from the base file records. This
problem can be described mathematically by the set of expressions (A.1), (A.3), (A.4), (A.5) or (A.1),

(A.2), (A.4), (A.5). In either case, one set of weight constraints is dropped from the problem.

Using our example files, one unconstrained match would be to drop the file B constraints (A.3) and
use file A as the base file. The solution which minimizes the total distance (A.5) is found by matching

each file A record with the minimum-—distance file B record. This solution is shown in Tableau 1, where

wi; = 1000, was = 2000, w3y = 500, and the remaining variables are zero. The result is a match with a
low aggregate distance (42,500) and strong match statistics, but distortions in file B data. By applying
these record weights to the file B data, as shown in the tabulations, note that not only are schedule code
and AGI tabulations different, but the aggregate transfer income has increased by $1,300,000 and the
average family size has grown from 2.65 to 2.94. Because the weights on file A records are maintained by

constraints (A.2), the tabulated values of these record items do not change.

Tableau 2 illustrates the case in which file A weight constraints (A.2) are ignored but file B weight
constraints (A.3) are enforced. The match solution for this situation is found by matching each file B
record with the closest record in file A. By using the file B weights for merged records, the column totals

are maintained, but the row weight totals are altered.

The result is, again, good match statistics and aggregate distance but distorted data values, this time in
the file A items. Specifically, for file A, the schedule code tabulations are changed, total AGI has in-

creased $2,400,000 and total deductions increased $530,000.



Tableau 1.

Unconstrained File B (Ignore B Weights)

FILE FILE B RECORD
A RECORD 1 2 3 4
20 50 50 35
1 1000 1000
20 100 10 75
2 2000 2000
85 5 115 30
3 500 500
1400 400 1500 200
Total solution distance = 42,500
WEIGHTED TABULATIONS
Descripti This Merged File Original Value
File A Record Data:
Schedule code =1 3,000 3,000
Schedule code =2 500 500
Total AGI (000s) 50,000 50,000
Total Deductions (000s) 9,800 9,800
File B Record Data:
Schedule code =1 3,000 2,900
Schedule code =2 400 600
Total AGI (000s) 45,750 47,300
Transfer income (000s) 6,500 5,200
Avg. Family Size 2.94 2.65
Match Statistics (Wtd.)
% Agreement on Schedule
Code 100% n.a
Average Absolute AGE
Difference 1,214 n.a



Tableau 2. Unconstrained File A (Ignore A Weights)

FILE FILE B RECORD
A RECORD 1 2 3 4
20 50 50 35
1 1400
20 100 10 75
2 1500
85 5 115 30
3 400 200
1400 400 1500 200
Total solution distance = 51,000
WEIGHTED TABULATIONS
Description This Merged File Original Value
File A Record Data:
Schedule code =1 2,900 3,000
Schedule code =2 600 500
Total AGI (000s) 52,400 50,000
Total Deductions (000s) 10,330 9,800
File B Record Data:
Schedule code =1 2,900 2,900
Schedule code =2 600 600
Total AGI (000s) 47,300 47,300
Transfer income (000s) 5,200 5,200
Avg. Family Size 2.65 2.65
Match Statistics (Wtd.)
% Agreement on Schedule
Code 100% n.a
Average Absolute AGE
Difference 1,457 n.a

1000

2000

500



Tableau 3. Constrained Match

FILE FILE B RECORD
A RECORD 1 2 3 4
20 50 50 35
1 1000
20 100 10 75
2 400 400 1200
85 5 115 30
3 300 200
1400 400 1500 200

Total solution distance = 120,500

WEIGHTED TABULATIONS

Description This Merged File Original Value
File A Record Data:
Schedule code =1 3,000
Schedule code =2 Same 500
Total AGI (000s) 50,000
Total Deductions (000s)  Values 9,800
File B Record Data:
Schedule code =1 As 2,900
Schedule code =2 600
Total AGI (000s) Original 47,300
Transfer income (000s) 5,200
Avg. Family Size 2.65

Match Statistics (Wtd.)
% Agreement on Schedule

Code 80% n.a.
Average Absolute AGE
Difference 2,942 n.a.

1000

2000

500



Therefore, in either case, unconstrained matching can drastically distort the values associated with
one file or the other. This is of particular concern in the case of the non-common data. The purpose of
matching is to be able to draw inferences regarding relationships between one data file and the non-com-
mon items in another file. When the values from one file are distorted, the reliability of such inferences is

lessened and, thus, the objective of matching is being defeated.

An attempt to remedy this distortion problem is to include both sets of weight constraints, (A.2) and
(A.3). This is called constrained matching and is described mathematically by expressions (A.1) — (A.4),

with the imposition of (A.5) being the special case of constrained-optimal matching.

Tableau 3 depicts a constrained non-optimal match. Note that all match weights in a row sum to the
row total (original file A record weight) and column sums are similarly kept. By so doing, the original data

structures are maintained and all tabulations are the same as those for the original files.

This improvement is not without its costs. The trade-off is in terms of total solution distance and
poorer match statistics. The aggregate distance and average AGI discrepancy have more than doubled

plus schedule code agreement has dropped 20 percent, relative to the unconstrained matches.

To improve this solution to the greatest extent possible, expression (A.5) can be included and a
constrained-optimal match sought. This optimization problem can be solved iteratively by devising a
series of improved matches, each of which merges a new pair of records and drops an existing record

match, while simultaneously maintaining the weight totals. Tableaus 3 through 3b illustrate this process.



Tableau 3a. Constrained Match, Improved Solution 1

FILE FILE B RECORD
A RECORD 1 2 3 4
20 50 50 35
1 1000 1000
20 100 10 75
2 400 100 1500 2000
85 5 115 30
3 300 200 500
1400 400 1500 200

Total solution distance = 60,500

WEIGHTED TABULATIONS

Description This Merged File Original Value
File A Record Data:
Schedule code =1 3,000
Schedule code =2 Same 500
Total AGI (000s) 50,000
Total Deductions (000s)  Values 9,800
File B Record Data:
Schedule code =1 As 2,900
Schedule code =2 600
Total AGI (000s) Original 47,300
Transfer income (000s) 5,200
Avg. Family Size 2.65

Match Statistics (Wtd.)
% Agreement on Schedule

Code 97% n.a.
Average Absolute AGE
Difference 1,657 n.a.
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Tableau 3b. Constrained Match, Improved Solution 2

FILE FILE B RECORD
A RECORD 1 2 4
20 50 50 35
1 900 100
20 100 10 75
2 500 1500
85 5 115 30
3 300 200
1400 400 1500 200
Total solution distance = 55,500
WEIGHTED TABULATIONS
Description This Merged File Original Value
File A Record Data:
Schedule code =1 3,000
Schedule code =2 Same 500
Total AGI (000s) 50,000
Total Deductions (000s)  Values 9,800
File B Record Data:
Schedule code =1 As 2,900
Schedule code =2 600
Total AGI (000s) Original 47,300
Transfer income (000s) 5,200
Avg. Family Size 2.65
Match Statistics (Wtd.)
% Agreement on Schedule
Code 97% n.a
Average Absolute AGE
Difference 1,542 n.a
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Tableau 4. Optimal Constrained Match

FILE FILE B RECORD
A RECORD 1 2 3 4
20 50 50 35
1 900 100
20 100 10 75
2 500 1500
85 5 115 30
3 400 100
1400 400 1500 200

Total solution distance = 51,500

WEIGHTED TABULATIONS

Description This Merged File Original Value
File A Record Data:
Schedule code =1 3,000
Schedule code =2 Same 500
Total AGI (000s) 50,000
Total Deductions (000s)  Values 9,800
File B Record Data:
Schedule code =1 As 2,900
Schedule code =2 600
Total AGI (000s) Original 47,300
Transfer income (000s) 5,200
Avg. Family Size 2.65

Match Statistics (Wtd.)
% Agreement on Schedule

Code 97% n.a.
Average Absolute AGE
Difference 1,400 n.a.
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