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Abstract. This study considers the routing and wavelength assignment
problem (RWA) in optical wavelength-division-multiplexed networks. The
focus is dynamic traffic, in which the number of wavelengths per fiber is
fixed. We minimize connection blocking using an ant-colony-optimization
(ACO) algorithm that quantifies the importance of combining path-
length and congestion information in making routing decisions to min-
imize total network connection blocking. The ACO algorithm achieves
lower blocking rates than an exhaustive search over all available wave-
lengths for the shortest path.

A wavelength-routing all-optical network consists of wavelength-crossconnect
nodes interconnected by fiber links. A set of individual network demands are
routed from origin to destination (O-D) nodes, across these fiber links. The
higher transmission capacity of all-optical networks is accomplished, in part,
by sending multiple signals simultaneously through the same fiber-optic cable
using wavelength-division multiplexing (WDM), which transmits multiple data
streams simultaneously on different frequencies, or wavelengths.

1 Problem Definition

In wavelength-routed WDM networks, lightpaths are established between nodes
and can span multiple fiber links in the network. A lightpath is realized by allo-
cating a wavelength on each link comprising a path between two nodes. In the
absence of wavelength-conversion equipment, a lightpath must occupy the same
wavelength on all of its links, a property known as the wavelength continuity
constraint.

Once a network is designed, the routing and wavelength-assignment problem
(RWA) determines a set of lightpaths to carry the designated communications
traffic. In the static RWA problem, all lightpath requests are known in advance,
and the objective is to minimize the network resources required to satisfy all
demands. The focus of this study is the dynamic RWA problem, in which light-
path requests arrive dynamically, and the number of wavelengths is limited.
The objective is to minimize connection blocking. The optimal RWA problem is
NP-complete [2], and thus is suited to heuristic methods.



Although the RWA problem has been studied extensively, this paper intro-
duces a new algorithm for evaluating potential routes based on length and con-
gestion information. Ant-colony optimization (ACO) as a method for routing
and wavelength assignment on all-optical networks is introduced, and provides
valuable insight on the length-versus-congestion tradeoffs. While ACO has been
applied to the static RWA problem, this is its first use for the dynamic case. ACO
is used to test the hypothesis that occasionally choosing slightly longer paths
with less congestion improves blocking performance. ACO provides an effective
testing platform for investigating the efficacy of unconstrained dynamic routing,
by using ants that prefer paths with lower levels of network traffic.

This study decreases blocked requests by quantifying the importance of using
congestion information. When confronted with a shorter path carrying more
traffic or a slightly longer path with less congestion, the question of how much
additional path length is acceptable to avoid congestion is examined.

2 Background and Previous Research

In [4], ACO is applied to the static routing and wavelength assignment problem
and provides a background for the ACO approach to the dynamic RWA presented
in this paper. In each algorithmic time step, ants move from each demand origin
to each destination. Varela introduced backtracking, with each ant keeping a
“tabu” list [6] of previously visited nodes. Backtracking avoids dead-ends and
cycles—an approach adopted in the ACO algorithms in this paper. When an ant
finds itself blocked, it pops its current location from a list of visited nodes and
attempts to proceed from the previous location. This ability requires each ant’s
memory to contain a list of nodes visited in order.

Each ant in [4] maintains its own type of pheromone, and while ants are
attracted to their own pheromone, they are repulsed by the pheromone of other
ants in order to obtain even loading. The best results are achieved through a
global update wherein ants are increasingly repulsed by paths on which more
ants have traversed. Maintaining an ant and pheromone type for each connection
request is time consuming, however.

All work in this paper focuses on extensions of work done on the dynamic
RWA problem. The previous studies have focused on k-shortest-path-based rout-
ing schemes [1, 3]. More recent developments have incorporated congestion in-
formation into routing decisions [5, 8, 12].

Previous research tested the effectiveness of incorporating congestion infor-
mation by testing a k -shortest-path (ksp) algorithm against a single-shortest-
path strategy [7]. This work showed that a ksp algorithm achieves lower blocking
than a strategy in which only a single path is available.

Chan and Yum [8] compare two routing strategies: routing connection re-
quests on the shortest path with available capacity and on the least-loaded route
from source to destination. Since the latter paths may be significantly longer, the
shortest-routing strategy almost always provided lower blocking. A goal of this
paper is to combine these two strategies into a routing algorithm that chooses
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Fig. 1. Example path selection probabilities for an Ant at Node 1

short paths with low congestion, in an effort to improve performance over each
strategy individually.

3 Ant-Colony Optimization

In the ACO algorithm introduced in this paper, an ant’s “life” begins randomly
at either the origin or destination node of the demand. It proceeds until it finds
the corresponding destination or origin node, using a selected available wave-
length. Each ant chooses its wavelength according to parametric rules such as
most-used or random selection. At the completion of its search, the ant deposits
pheromone along the path. In addition, each ant has memory of all nodes pre-
viously visited. Subsequent ants proceed similarly, choosing each vertex in their
search paths based probabilistically on the level of pheromone on the connecting
link, as shown in Figure 1 and described below.

We use the following notation: N is number of ants per connection request;
L the set of links available from the current node; φ the normalized weight of
length vs. weight of number of available wavelengths; l a link compromising a
path P ; lc the total capacity in wavelengths of link l; la the set or available
wavelengths on link l; and ψl the level of pheromone on link l. The probability
γ that an ant will take a path l is the pheromone on that path normalized over
the pheromone on all links available from the current node is γl = ψl/

∑
i∈L

ψi.

Pheromone is deposited on a per-demand basis. The pheromone matrix is
reset once the final selection of wavelength and route is made for a connection
request. This requires only one type of pheromone and avoids much of the over-
head found in the implementation of the static case in [4], which requires running
times on the order of hours. Even loading is achieved by having more pheromone
deposited on paths that fewer previously routed O-D pairs occupy.

The shortest path found with the highest pheromone is selected as the best
and final route for the demand. It is important to note that this may not be the
shortest available path.



A global pheromone update is performed after each ant completes a route.
The shortest path found receives pheromone in inverse proportion to its length.
We also favor paths that have the fewest conflicts with demands already routed.
Therefore, a component of pheromone update includes more pheromone for paths
with more available wavelengths. Global update is assigned based on the follow-
ing equations.

The sum of available lane quantity ratios for a path P is defined as AP =∑
l∈P

la
lc

, with the mean available lane ratio for a path P of MP = AP

|P | . The

pheromone value on link l at time-step t, given as ψt
l , is updated according to

Equation 1 where the scalar parameter φ , 0 ≤ φ ≤ 1, controls the emphasis on
path length versus available-lane ratio.

ψt+1
l = ψt

l +
φ

|P | + MP (1− φ), ∀l ∈ P (1)

Although each ant initially chooses a wavelength, the final wavelength selec-
tion is not made until all ants have completed a tour from source to destination
for this connection request. The best route after N ants is found. Among the
contiguous wavelengths available along this path, one is selected based on the
most-used, first-fit, or random wavelength selection policy.

4 Computational Experiments and Analysis

For purposes of performance comparison, network blocking is the primary focus.
Hereafter, general references to the performance of a particular heuristic refer to
the percentage of blocked connection requests calculated during a simulation.

In all tests, connection-request arrival and duration rates follow a Poisson
distribution with a mean of λ. All tests were conducted for 5x105 demands at
each Erlang. Load is measured in Erlang for the entire network, as in [1]. If
network traffic is modeled at 50 Erlang, and the 51st connection request arrives,
a random existing connection is broken and its resources freed. Testing was
conducted on the well-known 21-node, 26-link ARPA-2 network [7], with each
edge in the network having an assumed capacity of 16 wavelengths.

Parametric Tests. The first test conducted concerned the wavelength-
selection method. Random wavelength selection provided the lowest blocking
at 50 ants, but performance for random selection peaked at this N . At 200 ants,
most-used was the preferential method, outperforming first-fit and random at
all traffic levels. In both tests, differences in blocking were small and details are
omitted for brevity. However slight the differences in performance between wave-
length selection methods, most-used was the method employed in all subsequent
ACO tests.

The next set of tests concerned measuring blocking at several levels of N, for
a fixed φ of 0.50. Performance will only improve up to a certain number of ants,
although reductions in blocking percentages were seen at 200 ants. Significant
processing is required with N = 200, however this increased processing load is
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Fig. 2. Blocking % vs. N , for φ = 0.5, lc = 16, and most-used selection rule

easily distributed, a strength of the ACO algorithm. Results of 32, 50, and 200
ants are presented in Fig. 2 for four traffic levels. Two hundred ants provided
the best performance in all situations, and is the N value used for comparisons
with other algorithms in the next section.

Comparisons with Published Algorithms. Mokhtar and Azizoglu present
several heuristic RWA algorithms in [7]. They achieve the best results through an
exhaustive search over all wavelengths for the shortest available path from source
to destination. Their exhaustive search provided lower blocking than methods
employing static routing, and provides a benchmark for ACO algorithms in this
paper.

The ACO algorithm at various parameters was compared with this algo-
rithm, with the results displayed in Fig. 3. Using 200 ants, ACO provides the
best results, outperforming the shortest available path at every traffic load. A φ
value of 0.80 provided the best results in all but one case. At 70 Erlang, using
no congestion information provided the best results by a slight margin. These
results seem to indicate that while short paths are important, the best solution
incorporates congestion information in selecting the route for each connection
request. With a φ = 1, congestion information is ignored, and the algorithm
searches exclusively for the shortest path. However, since an initial pheromone
value (ψ) of 1.0 is present on all edges in the network, ants may not find the
shortest possible path.

References

1. Hui, Z., Jue, J., and Mukherjee, B. “A Review of Routing and Wavelength As-
signment Approaches for Wavelength-Routed Optical WDM Networks,” Optical



0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

Algorithmic parameters

B
lo

ck
in

g
 %

Erlang 80 16.26% 16.00% 16.21% 16.37%

Erlang 70 10.99% 10.59% 10.32% 10.88%

Erlang 60 5.18% 4.78% 4.80% 5.26%

Erlang 50 0.82% 0.74% 0.77% 1.04%

0.5 0.8 1 SP

Fig. 3. φ and Shortest-Path Comparison, for N = 200, lc = 16, and most-used rule

Networks, January 2000.
2. Zhang, X. and Qiao, C. “Wavelength Assignment for Dynamic Traffic in Multi-fiber

WDM Networks,” ICCCN ’98, pp. 479-585, 1998.
3. Stern, T.E. and Bala, K., “Multiwavelength Optical Networks.” Addison-Wesley,

1999.
4. Navarro-Varela, G. and Sinclair, M. “Ant-Colony Optimisation for Virtual-

Wavelength-Path Routing and Wavelength Allocation,” Proc. Congress on Evolu-
tionary Computation (CEC’99), Washington DC, USA, July 1999, pp. 1809-1816.

5. Li, L. and Somani, A., “Dynamic Wavelength Routing Using Congestion and
Neighborhood Information.” IEEE Trans. Networking, Vol 7, No. 5, Oct. 1999.

6. Glover, F., Laguna M., and Laguna F., Tabu Search. Kluwer Academic Publishers,
1997.

7. Mokhtar, A. and Azizoglu, M. “Adaptive Wavelength Routing in All-Optical Net-
works,” IEEE/ACM Transactions on Networking, Vol. 6, No. 2, April 1998.

8. Chan, K. and Yum, T.P., “Analysis of least congested path routing in WDM light-
wave networks.” INFOCOM ’94. Networking for Global Communications, 13th

Proceedings IEEE, 1994. pp. 962-969.
9. Banerjee, D. and Mukherjee, B. “A Practical Approach for Routing and Wave-

length Assignment in Large Wavelength-Routed Optical Networks.” IEEE Journal
on Selec. Areas in Comm., vol 14, No. 5, June 1996.

10. Colorni, A., Dorigo, M. & Maniezzo, V. “Distributed optimization by ant colonies,”
Proc. First European Conference on Artificial Life, Paris, France, pp. 134-142, 1991.

11. Dorigo, M. and Gambardella, L.M., “Ant-Colony System: A Cooperative Learning
Approach to the Travelling Salesman Problem.” IEEE Transactions on Evolution-
ary Computation, pp. 53-66.

12. Karasan, E. and Ayanoglu E., “Effects of Wavelength Routing and Selection Algo-
rithms on Wavelength Conversion Gain in WDM Optical Networks.” IEEE Trans.
Networking, vol 6, pp. 186-196, April 1998.


