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Abstract

Presented herein is a methodology and justification for separating
DMUs in a data envelopment analysis into a series of nested efficient-
frontier layers, thus providing a new efficiency metric and explanation for
the inefficiecy of decision units. When coupled with a within-layer or-
dering technique, a complete ranking is identified for all DMUs within a
dataset, with results that can be more meaningful than the traditional
sorted-efficiency-score approach. These models are illustrated with com-
putational results on sample problems with up to 25,000 observations.
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Data envelopment analysis was originally developed for efficiency measure-
ment. The primary focus to date has been on the development of a set of DEA
models to identify the efficient and inefficient DMUs under different sets of as-
sumptions designed to measure various types of inefficiencies. In spite of the
tremendous growth and success of the DEA methodology, there has been little
research into methodologies for ordering the DMUs according to the efficiency
of their production and management practices. The inability to rank DMUs by
the comparative degree of efficiency or inefficiency limits the potential for DEA
to fully characterize successful and unsuccessful management practices.

Although inefficient DMUs receive a DEA score which reflects the degree
of inefficiency, a direct comparison of DMUs is problematic unless both DMUs
have the same efficient reference set (ERS). To illustrate, Fig. 1 depicts a unit
isoquant plot of a set of firms with one output and two inputs. Since each
point represents a firm and all firms produce the same level of output, the more
efficient units are closer to the origin. The efficient frontier is formed by DMUs
A, B ,Cand D. DMUS E, F, and G are all inefficient. The efficiency of each point
is determined by a ratio whose denominator is the length of the line segment
from the point to the origin and the numerator is the length of the line segment
from the origin to the efficient boundary. The line connecting an inefficient
DMU’s point and the origin will intersect one of the line segments forming the
efficient frontier. The endpoints of this line segment, composed of efficient DMU
points, form the efficient reference set for the inefficient DMU.

According to Charnes and Cooper [6], to compare DMUs with different ef-
ficient reference sets would require assumptions of the weighting (or pricing)
scheme used by DEA. But it is precisely this lack of restrictions on the weight-
ing scheme that makes the DEA methodology so attractive. Consequently, in
general such assumptions are undesirable. In our example, DMUFr can be com-
pared to DMUg because they share the same ERS consisting of DMU¢ and
DMUp. In this case DMUg with an efficiency score of 0.800 is more efficient
than DMUp with an efficiency score of 0.774. However, neither of these DMUs
should be compared with DMUg, with an efficiency score of 0.733, which has a
different ERS composed of DMUs B and C. Hence, for inefficient DMUs, a new
approach is necessary to further discriminate and allow comparisons across all
inefficient DMUs.

For efficient DMUs, the relative importance of each DMU is difficult to dis-
cern. Because each such unit has a DEA score of 1, there exists no variation
in scores to determine a relative value. Charnes and Cooper [6, 7] suggested a
tool which they called the envelopment map to characterize the magnitude of
the importance of each efficient DMU. This method consisted of counting the
number of times each efficient DMU occurred as a member of an ERS. Those
DMUs occurring more often would be considered more “consistently efficient.”
However, there are at least two problems with this measure. First, to correctly
count all occurrences of an efficient DMU in an ERS, all alternate optimal
solutions of the DEA models would need to be identified. This can be compu-
tationally expensive and difficult to track. Secondly, this counting offers only
a limited amount of useful information. An efficient DMU that occurs often in



Figure 1: Normalized data isoquant plot

an ERS merely indicates that the DMU helps define part of the efficient surface
which overshadows a high concentration of inefficient DMUs. Firms utilizing
new production techniques may be extremely efficient, yet operate far from the
“crowd” of other DMUs. As a result, these efficient firms do not occur often in
the efficient reference sets of the inefficient units. Consequently, these maverick
DMUs may not be deemed as important as they should be.

To discriminate between and identify the successful and unsuccessful pro-
duction practices of the DMUs, a new procedure is necessary that provides a
more detailed classification of DMUs than the ordinary DEA efficiency scores
offer. This procedure should result in a rank ordering of DMUs which serves as
a proxy measure for managerial efficiency. In this way, managers and analysts
will have a useful tool to identify management practices that both accentuate
and detract from productive efficiency by observing the practices of the higher
and lower ranked DMUs. Additionally, experts may want to state, a priori to
the DEA analysis, what they believe to be the most efficient firms in the indus-
try. The rank ordering procedure can then be used to determine how the DEA
results compare with the experts’ opinions. As in standard DEA analysis, the
ordering should allow either constant or variable returns-to-scale envelopments.
The remainder of this chapter presents just such a rank ordering procedure
which is easy to implement and meets all of the above criteria.



1 Need for a Ranking Procedure

Until recently, most modern writing on production theory assumed that all pro-
ducers were efficient. The premise was that in a competitive market place the
inefficient producers would realize the direct costs and indirect opportunity costs
of continued production and would leave the market to pursue more profitable
adventures. However, economic analysts have come to accept that inefficient
production occurs in the market place and its causes vary. Inefficient produc-
tion can occur because information on the most productive methods is neither
perfect nor free. As a result, some firms may be slower to respond to changing
market conditions than others. Along with imperfect information, market uncer-
tainty influences the production process. The organization’s (or the manager’s)
position towards risk will dictate the rapidity with which the firm will respond
to change in the shadow of this uncertainty. Additionally, because perfect com-
petition is rarely (if ever) seen, regulations, and other exogenous constraints
may induce inefficiencies in the production process. Because of the social costs
associated with inefficient conversion of input resources to output goods, there
has been a growing interest in identifying and quantifying the inefficient pro-
cesses. Data envelopment analysis has proven useful in measuring various types
of the production inefficiencies which may be attributed to inefficient managerial
practices.

The original DEA models focused on identifying technical inefficiency or
scale inefficiency [2]. Féare, Grosskopf, and Lovell [9], relaxed the usual DEA
assumption of strong disposability of inputs and outputs to further identify in-
efficiencies due to congestion of resources.! In addition, Fire, Grosskopf, and
Lovell, following the lead of Farrell [8], introduced prices of inputs and outputs
to identify allocative inefficiencies. A firm demonstrates allocative inefficiency
when it departs from its predefined goal such as maximizing profits or minimiz-
ing costs.

Even though technical, scale, and allocative inefficiencies can be measured,
little has been written to formulate a means of ranking the DMUs based on
the types of inefficiencies they demonstrate. As a result, even though the inef-
ficiencies can be identified, they have not fully been related to various aspects
of producer behavior. With a ranking system, the DMUs exhibiting the best
production processes, in terms of efficiency, could be compared to those char-
acterized by the worst production techniques. The management practices of
the best producing DMUs could then be compared to the worst DMUs in or-
der to identify the underlying managerial inefficiencies. Once identified, the
less efficient firms could adopt the practices of the best firms to improve the
productivity of their operations.

The purpose of this study is to present a new approach to rank order or
stratify the DMUs to more clearly relate the efficiency (or inefficiency) of a
given DMU to all others in the set. The intent is not to suggest this approach
as the only valid rank ordering scheme. Indeed, any set of items can be ranked by

ICongestion of inputs implies that as at least one input increases, at least one output is
reduced. That is, there is not a positive correlation between all outputs and inputs.



any subjective means. However, the purpose is to present a methodology, with
theoretical underpinnings, which can result in a meaningful ordering system.
It is hoped that this methodology may stimulate research into other possible
ranking procedures so that the richness of the DEA methodology can be more
fully utilized.

2 Basis of the Ranking Procedure

Data envelopment analysis defines efficiency based on empirical observations of
each evaluation unit’s behavior. Each DMU consumes multiple inputs in order
to produce one or more outputs. The implicit assumption in DEA is that the
DMUs transform the inputs into outputs by means of a well-behaved production
technology. According to Koopmans, a feasible input-output vector for a given
DMU is technically efficient if it is technologically impossible to increase any
output and/or to reduce any input without simultaneously reducing at least one
other output and/or increasing at least one other input. The empirical models of
DEA use observed data to identify the DMUs which form the Pareto-Koopman
efficient surface, and hence, are best at using the current technology to convert
the input resources to output goods. The level of technological achievement
revealed by the efficient surface will be highly dependent upon the choice of
DMUs used in the study since the methodology only measures relative (not
absolute) efficiency.

The ranking method presented in this study separates DMUs into groups
based on the level of technological achievement which they demonstrate. It will
be shown that this aggregation reveals additional aspects of inefficiencies not
available with traditional DEA measures. For example, a DMU that appears
to be very inefficient by the standard DEA measures, may rank well, compared
to other firms, when viewed in terms of the DMU’s ability to employ the most
recent technological advances. Once the DMUs are separated into these achieve-
ment levels, a procedure will be presented to rank the DMUs within each level.
The ranking within a level will be determined by the contribution the DMU
makes to defining the shape of the efficient surface of that level.

An attractive feature of the proposed ranking procedure is that it can be
used across the many formulations of the DEA models. In this paper, the rank-
ing procedure is introduced and applied to both the input- and output-oriented
BCC (variable-returns-to-scale) models. The input- and output-oriented mod-
els achieve identical stratification of DMUs into tiers of common technological
achievement levels. However, the ranking within each tier will differ according
to the orientation used. Next, the ranking procedure is applied to the CCR
(constant returns to scale) model. In this case, the input- and output-oriented
schemes result in identical rankings. The CCR model adds interesting interpre-
tations of the most productive scale size to achieve each technological level.



Procedure TDEA

1. Initialize: ¢t + 1,D[ « D.

2. While DIl #£ ¢ do:

(a) Apply a DEA model to the DMUs in set D] to identify E7y.
(b) Ity = DI —Ef,.

(c) t+t+1

(d) DM =T

where t is a tier index and Ef‘t] and If‘t] are the sets of efficient and inefficient

DMUs on tier ¢, respectively, relative to set D

Figure 2: Tiered DEA Algorithm

3 Tiered DEA

At the heart of data envelopment analysis is the separation of evaluation units
into (relatively) efficient and inefficient sets. The models’ objective function
values, 8 or z, have been used as metrics for the degree of inefficiency for com-
parative and predictive purposes [4, 5]. Since these values may be incompatible,
from an economic point-of-view, we present a different approach to comparing
DMUs that has significant appeal, from both intuitive and economic-theoretic
standpoints.

3.1 Tiering Algorithm

The tiered DEA (TDEA) procedure given in Figure 2 stratifies decision units
into tiers, or layers, of comparable productive efficiency, as measured by any
standard DEA model. The TDEA procedure begins as with a traditional data
envelopment analysis, then progressively strips away production surfaces, re-
vealing a series of frontiers of decreasing productivity.

Specifically, at tier 1 all of the DMUs in the dataset are analyzed using a
standard DEA model, thus separating them into efficient and inefficient sets.
The efficient units are then assigned to the current tier and the inefficient ones
become the dataset of interest for the next higher tier; this process is applied
recursively until all DMUs are assigned to a tier. In this way, the tier levels repre-
sent successive layers of relatively efficient production surfaces where the DMUs
at any given tier are less productively efficient than those of “outer” (lower-
numbered) tiers and more efficient than DMUs at “inner” (higher-numbered)
tiers.

An example application of the TDEA procedure can be seen in 3 where 10



Figure 3: Example tiered results — two inputs, one output

DMUs, each with 1 output and 2 inputs, are plotted. All DMUs have the same
output level so only the inputs are shown. DMUs A, B, and C are DEA efficient
since the line segments joining these DMUs envelop the other DMUs from below.
If firms A, B, and C were removed from the data set, a new efficient frontier
would be formed by DMUs D, E, F, and G. The TDEA procedure reveals that
the data contains three production surface layers.

Fig. 4 shows 10 DMUs each with 1 input and 2 outputs. In this case, all
DMUs use the same level of input so only the outputs are shown. Again, DMUs
A, B, and C are efficient since they form a boundary that envelops the other
DMUs from above. Again, TDEA reveals three production surface layers.

3.2 Example TDEA Applications

The TDEA procedure was applied to three 8,000-DMU data sets, one from
industry and the others randomly generated. The “Banking” data represents a
selection of banks from the Federal Reserve Bank’s Southwest district, with 6
input and 3 output values, as described in [3]. A set of “Cobb-Douglas” data
with 5 input and 4 output values per observation was created with DEA-GEN
using constant returns to scale and the parameter set o = (.20, .20, .20, .20, .20).
(See Appendix B for the generation procedure.) Also, a “Multi-Normal” data
set, with 4 inputs and 3 outputs and the variance-covariance matrix given in
Appendix A, was generated using the DRNMVN routine from the IMSL library.



Figure 4: Example tiered results — one input, two outputs

For this test bed, the TDEA procedure was applied, and used the CCR;-
model to assign DMUs to layers. Table 1 reports, for the first 20 tiers, the num-
ber of DMUs assigned to each layer and their maximum, minimum, and mean
tier 1 efficiency score (6). Note that, in each case, that the mean and maxi-
mum efficiencies drop with each successive interior layer, as might be expected.
However, the TDEA provides insight that DEA cannot provides. As noted by
the minimum values, some DMUs possess a low tier 1 efficiency score, yet fall
on an outer tier, indicating an efficient use of current technology. Conversely,
the maximum values indicate that while other DMUs may seem fairly efficient,
from a #-standpoint, they fall on an inner tier because of less productive uses
of current technology. It is precisely this behavior that should prove useful in
identifying a DMU’s true level of efficiency.

Of interest also are the differences between these three problems. The fre-
quency counts reveal that the banking data has only 18 tiers, while the Cobb-
Douglas data still has 3,286 of its 8,000 points still un-stratified after 20 tiers.
The multi-normal problem has more populous tiers than the Cobb-Douglas, but
less than most of the bank’s. The banking and multi-normal data sets have tier-
1-efficient DMUs on interior layers, but Cobb-Douglas does not. The banking
and Cobb-Douglas data have much larger mean-efficiency drops between tiers 1
and 2, relative to the multi-normal. Each problem seems to have a very different
structure from the others, as uncovered by the TDEA process.
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3.3 Tiered DEA and the BCC Model

The examples of the figures above illustrate the result of applying the tiering
procedure to the BCCJ’: and BCCY models. These models, used to identify the
Pareto-Koopmans efficient production surface, with no restrictions on returns
to scale, were first proposed by Banker, Charnes, and Cooper [2]. The BCC’;
model can be written as:

In Figs. 3 and 4, the outer layers designated by DMU 4, DMUpg, and DMU¢
represent the efficient set which demonstrate best practice in the production
process. However, this empirical production surface is dependent on the data
observed.

Suppose the original set had not included B. The models would have iden-
tified a different, yet legitimate, production surface revealing the current tech-
nology consisting of DMUs A, E, F, and C. If data on B later became available
and was added to the set of observations, it would markedly alter the shape of
the efficient production surface. B now reveals a new production process with
a corresponding level of technological achievement that was previously unseen.
It is precisely this realization that motivates the tiered ranking procedure.

In DEA, all of the efficient DMUs share a common characteristic: they all
demonstrate an ability to make the best use of the current technology to con-
duct their production process (i.e., they demonstrate best practice behavior).
Once these DMUs have been identified, they can be temporarily removed, and
the remaining DMUs form a new, valid DEA data set. When the BCC? model
is applied to this new data set a new efficient production surface is revealed.
Had the data for DMUs of the outer tier not been available originally, this
new production surface would legitimately characterize the best technological
achievement level observed. Consequently, the DMUs comprising this new effi-
cient surface share a common level of success of utilizing the currently revealed
technology. Repeating this process groups the DMUs according to common
achievement levels. DMUs on outer tiers reveal a technological advance not
realized by DMUs on inner tiers.

Of primary significance is that the tiering procedure provides greater dis-
criminatory power in determining managerial efficiency than previous DEA mea-
sures. To appreciate the importance of the new measure, an understanding of
what causes a DMU to be inefficient is helpful. By stratifying across differ-
ent tiers, the new measure provides a more complete description of the DMU’s
managerial efficiency relative to its contemporaries. One reason a DMU may
be characterized as relatively inefficient in DEA is that it is dominated by a
few highly efficient DMUs. A high concentration of other DMUs, with similar,
but superior, management practices can cause the inferior DMUs to attain a
low tier assignment. Fig. 5 depicts a set of DMUs with one output and one
input. The tiering procedure produces three layers. In this case, J is enveloped
by a concentration of DMUs using nearly the same level of inputs to produce
a similar level of outputs. However, J consistently under-achieves compared to
the other DMUs, consequently, it would receive a relatively low ranking. Even
though the original DEA scores for DMUs F, G, and J are similar, TDEA further
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Figure 5: Example 1 tiered results — one input, one output

discriminates J as less productive given the available technology than DMUs F
and G.

A second reason an inefficient DMU may result in a low efficiency score is
that it operates in a production process “away from the crowd.” These mav-
erick DMUs may be leaders in the introduction of new production technologies
or management methods into the market place. The transition to these new
procedures is penalized under traditional DEA analysis because it appears that
the DMUs introducing the new inputs consume more than the peers. The dom-
inant DMU of this shift may be efficient, but the other DMUs can appear to
be very inefficient. This situation can be seen with H. Notice, in this case H

has a technical efficiency score seen as the ratio x—g* J has a higher technical
efficiency score seen as the ratio % but is ranked lower than H in terms of tier

assignment. H may represent a risk-taker that shows a short-term reduction in
its DEA efficiency score, to take advantage of new technology, by introducing
new inputs. However, even with a short term loss of efficiency, the DMU could
see a rise in its rank ordering by moving to a higher tier level. Once the new
technology is fully integrated into the production process, the DMU may wit-
ness substantial increases in its DEA efficiency score. Traditional DEA analysis
would penalize the management decision, in the short run, to introduce the new
technology into the production process. Consequently, the decision to incur
possible short term losses to achieve long term gains would appear unfavorable
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Figure 6: Example 2 tiered results — one input, one output

in a traditional DEA analysis. However, the stratified ranking of DMUs reveals
the success of this management decision.

The above scenario can occur often in a free competitive market. Under
dynamic conditions, the firms in the competitive market must adapt to main-
tain market share. A DMU that adopts a management style and production
process similar to other DMUs, but consistently under performs, may result in
a seemingly high relative efficiency score, but with a low rank ordering. The
inability of this competitive firm to find its niche and distinguish itself from the
“competition” may result in its failure in the market place. Consequently it is
vital that these managerial effects are revealed. Current DEA methodologies
are inadequate to reveal such conditions; TDEA offers an attractive means to
discriminate between these managerial behaviors.

The example should not imply that the phenomena of a low efficient DMU
achieving a relatively high rank is restricted to DMUs at “fringe” production
levels. Data outliers can strongly affect the shape of the efficient surface. Fig.
6 shows the effect that outlier B has on the production surface. The outlier
significantly distorts the surface making F seem relatively inefficient. Had B
not been in the data set, F would be efficient. In spite of F’s low efficiency
score, TDEA ranks F relatively high. Consequently, the performance of F may
not be as poor as indicated by the DEA score.

A key advantage of stratifying DMUs into tiers is that it allows the DEA
methodology to more closely describe true managerial efficiency that may be
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masked by traditional DEA analysis. As a result, managers of inefficient DMUs
have increased flexibility in improving production operations. The manager’s
long term goal may be to achieve efficiency. The DMU can strive to accomplish
this by improving the short run rank ordering without a myopic focus on its
DEA efficiency score.

3.4 Tiered DEA and the CCR Model

The ranking procedure can also be applied to the CCR models. For these
models, which assume constant returns to scale, the efficient DMUs not only are
operating most efficiently (with the greatest level of technological achievement,)
but they are also operating at the most productive scale size (MPSS). For the
single input and single output model, the MPSS is determined by the DMUs
yielding the highest ratio of quantity output to quantity input. In economics
terms, this equates to the DMUs yielding the highest average product. Banker
[1] demonstrated that the CCR model revealed the efficient DMUs operating at
the MPSS in multi-dimensional processes.

The MPSS units which form the frontier for the CCR models are dependent
on the observed set of data. In a traditional DEA analysis, the CCR scores for
the inefficient DMUs reflect both technical and scale inefficiencies. To separate
the technical from the scale inefficiency, the BCC model must also be run. The
tiered procedure, when applied to the CCR model, presents a different picture
of scale inefficiency. As each outer tier is removed from the data set, the set
of DMUs which composes the most productive scale size changes. As a result,
the values of the scale inefficiencies for the other DMUs also change. Therefore
traditional DEA measures may overstate the amount of scale inefficiency that
a DMU demonstrates.

Fig. 7 shows two tiers of scale-efficient DMUs for the same set of data used
in Fig. 3.4, where DMUs A, B, C, and D were shown to be technically efficient.
However, Fig. 7 indicates B and C are scale efficient while A and D are both
scale inefficient. Because D falls far from the most productive scale boundary,
the CCR;'. DEA measure would indicate it is more scale inefficient than A.
Yet, with the tiering procedure, both become scale efficient at a common level.
Consequently, the two DMUs may not be as different, in terms of scale, as first
suggested by the DEA scores.

4 Ranking Within Tiers

The TDEA approach extends traditional DEA to allow for a stratification of
DMUs reflecting different productive efficiency layers. However, a ranking sys-
tem within each layer is still needed. This section describes a new procedure
that can provide a useful ranking.

Each tier defines a set of DMUs that forms a production surface (layer). To
determine the relative rank ordering among the DMUs at each tier, one could
measure the contribution of the DMU to the shape of its layer. DMUs that
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Figure 7: Example CCR tiered results — one input, one output

significantly distort the production surface layer on which they are assigned
play a more prominent role in determining the shape of the production surface.
Consequently, if these distortions can be measured, the DMUs could be ranked
by the degree of distortion they contribute to the production layer.

The following model describes an extremal DEA (EDEA) approach for the
CCR;- model. However, the formulation also applies to the output-oriented
models and to either constant- or variable-returns-to-scale formulations. With
this methodology, the DEA formulation is modified slightly to measure how far
a DMU is from the resulting production surface when the DMU itself is removed
from the data set of interest. The EDEA procedure can be described as follows.
Let X be an (m x n) matrix and Y be an (s x n) matrix of the observed input
and output values, respectively, of all the DMUs of interest. Select a DMU to
be observed, in this case DMU,. Let X[? and Yl be X and Y, respectively,
with the observations of DMU, removed. Then the extremal DEA measure 6 is
computed by the following model. .

In contrast to a traditional DEA analysis, 6 can now be greater than one.
For 6 > 1.0 the DMU will be efficient and 6 measures the allowable proportional
increase in inputs for the DMU to remain efficient. If § = 1, the corresponding
DMU is weakly efficient from a DEA standpoint. However, for the inefficient
DMUs, the EDEA scores will be identical to traditional DEA scores, (e.g.,
6 = ), since the inefficient DMU itself will never be a member of an opti-
mal basis (this can be shown in the same manner as theorem 1 of chapter II).
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Figure 8: Extremal DEA example

Consequently, EDEA has an advantage over traditional DEA models in that
it provides greater meaning to the scores for the efficient DMUs by allowing
additional variability in the efficient score values.

Fig. 8 illustrates the EDEA procedure for B when applied to the data in
Fig. 3. Here, B is projected onto the “new” efficient surface using EDEA. The

resultant objective value, 8* = % measures how “far” B is from the efficient

surface. Viewing the problem from a different perspective, 6* reflects the degree
to which B would contribute to the shape of the new efficiency surface if it was
added to the data set.

DMUs that cause significant and important distortions of the efficiency sur-
face will result in a high EDEA objective value. Those DMUs that have little
influence on the shape of the production surface will have objective values close
to 1. Consequently, the DMUs can be ranked by order of influence at each tier
level based on the EDEA scores.

An overall ranking of all DMUs can be achieved by: (1) using TDEA to to
stratify all DMUs into tiers, (2) applying EDEA to each tier level, (3) ranking
each tier’s DMUs by 6, (4) then finding each unit’s overall rank by ranking
those DMUs on outer tiers as more important than those on inner tiers. The
following section presents an illustrative example of this procedure and provides
some numerical interpretations.
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DMU
A B C D E F G H I J
y 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
z; 0.50 1.00 5.00 1.00 1.50 2.00 4.50 2.00 3.00 4.50
zo 4.00 1.50 1.00 3.50 250 2.00 1.50 3.50 2.50 1.80

Table 2: Tiered DEA Example Data

DMU

A B C D E F G H I J
DEA 1.00 1.00 1.00 .765 .650 .722 788 .482 .565 .688
TDEA 1 1 1 2 2 2 2 3 3 3
TEDEA1 2.00 1.60 1.50 .765 .650 .722 788 .482 .565 .688
TEDEA2 — — — 150 1.05 113 133 .733 .774 .889
TEDEA3 — — — — — — — 150 1.13 1.39
RANK1 1 2 3 — — — — — — —
RANK2 — — — 1 4 3 2 — — —
RANK3 — — — — — — — 1 3 2
RANK 1 2 3 4 7 6 ) 8 10 9
DEARANK 1 1 5 8 4 10 9 7

Table 3: Results of the tiered rank-ordering procedure

5 Example of Tiered DEA

Asillustrated in Fig. 3, based on the data in Table 2, the TDEA approach yields
three production surfaces. Those DMUs on tier 1 are the same efficient units
found in a standard envelopment analysis. The DMUs of succeeding inner tiers
compose less efficient production surface layers. Notice though, the inefficient
DMUs can now be further distinguished by the production surface on which they
fall. DMUs on outer tier levels represent more successful production processes.
Consequently, the DMUs on outer tiers can be ranked more efficient than DMUs
on inner tiers. As will be demonstrated, this does not necessarily coincide with
the traditional DEA score. The results of the TDEA coupled with the EDEA
are shown in Table 3 and labeled as TEDEA1 through TEDEA3.

The DEA row lists the CCR?  scores for each unit in the data set. The
TDEA row indicates the tier level to which each DMU is assigned as a result
of the TDEA procedure. TEDEAt rows give the EDEA 6 values for all DMUs
on tier ¢ or higher. DMUs in tier ¢ are ranked within tier in the RANKt rows.
The overall rank for the entire set of DMUs is given in the RANK row. This
can be compared to the ranking the DMUs would have been given, listed in
DEARANK, had they been ordered by the CCR! 6 value.

Some important observations can be made concerning these results. No-
tice, the DEA and the TEDEAI1 results are identical for the inefficient DMUs.
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Figure 9: TEDEA example

Likewise, the efficient DMUs are appropriately identified with values greater or
equal to 1. Notice that the higher inefficiency scores do not necessarily indicate
on what tier level a DMU may fall. For example J has a higher § than E but
falls on a lower tier level. By observing the results at TEDEA3 one notices
that the ranking of H, I, and J does not correspond with the ranking the DMUs
would receive if the DEA efficiency scores were used. In fact, H has the lowest
DEA efficiency score, but the highest rank of tier 3. Fig. 9 illustrates why this
is so. I does not significantly distort the efficiency surface that exists when the
I is not present. This is not true for H which significantly distorts the shape of
the production surface; H is more influential than I and thus is ranked higher.

A major advantage of TEDEA, besides ranking each DMU by its influence,
is that it can help paint a numerical picture of the environment in which a DMU
operates. As each tier level and associated production surface is removed, the
new DEA scores for the remaining DMUs can be calculated. In this way, the
migration of the DEA scores for a particular DMU can be traced through a series
of tiers. A rapid rise in the scores may indicate that the DMU is in a region with
a relative low density of other DMUs but is dominated by a few highly efficient
ones. A slow rise in the score may indicate that the DMU is surrounded by
a larger density of other DMUs which may have similar management styles or
environments but are operating more efficiently. This information can assist the
analyst and managers in determining appropriate courses of actions to improve
either the rank ordering or the efficiency score.

The rank ordering procedure may also prove useful in window analysis. If
DMU behavior is tracked over time, the changes in rank ordering should reflect
the relative effectiveness of on-going managerial decision-making. These man-
agerial changes may remain hidden from traditional DEA analysis unless the
changing practices result in a change in status of the DMU as being efficient or
inefficient. Consequently, the rank ordering methodology may provide prompt
managerial feedback as to how a DMU compares with the competition as a
result of implemented changes.
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6 Computational Considerations

It is important to note, unlike CCR or BCC models, with the EDEA method the
basic elements in the optimal solution need not represent efficient DMUs. Fig.
8 depicts such a situation. When B is removed from the data set, the resulting
efficient surface includes E and F, both of which are inefficient according to a
traditional DEA. Therefore, the advantage of computational efficient techniques
for DEA, such as restricted basis entry and early identification of efficient DMUs,
can not be maintained for the EDEA models. However, other computational
efficient procedures are possible for the EDEA model. Computational efficiency
can be maintained by combining TDEA and EDEA into a single formulation,
TEDEA®, based on the following observation.

When a DMU is removed from tier t’s data set, the resulting production
surface will consist of DMUs belonging to either tier t or t + 1.

In this way, the stratification of DMUs proves to be a valuable computational
tool for the EDEA method. Since the number of DMUs at tier t and ¢t + 1 is
typically small compared to the entire set, the linear programming problems re-
main small when determining the EDEA scores. As a result, TDEA and EDEA
can be combined to form a computationally efficient rank ordering method. Let
Xy« and Y+ be the matrices of input and output vectors of DMUs belonging
to tier t or t + 1. Choose a DMU from tier ¢ for analysis, let this be DMUS,.
The TEDEA* model can be written as:

(TEDEA*) min 6 (1)
st. Yia—s = v, 2)
0x,-xXIx—si= o0 (3)
Ash,s >0 4)

6 free (5)

Because the TEDEA™* problem consists of LPs that are much smaller than
EDEA, computational efficiency is maintained.

7 Additional Benefits of Ranking

As mentioned previously, the empirical production surface of the DEA model
is greatly influenced by possible outliers in the data. In 1971, Timmer [11]
assumed a Cobb-Douglas form to develop a probabilistic frontier production
function for observed data. Using the Cobb-Douglas from, Timmer translated
the problem into a linear programming model with a striking similarity to the
DEA model. Since he assumed a single output, multi-input case, he was able
to compare the frontier analysis with the traditional econometric model. He
showed by eliminating the top 2% of observations which appeared to be outliers,
the linear programming frontier model yielded results that could be supported
by the econometric models.
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In DEA, no functional form is assumed. Consequently, potential outliers
have been difficult to identify. In this case, the efficient DMUs may not represent
normal production activities and therefore may not serve as a legitimate basis
of comparison. Consequently, DEA efficiency scores of outliers could distort
the true picture of managerial efficiency of the inefficient DMUs. As a result,
identification of possible outlier or extremely dominant DMUs is essential. With
TEDEA®, the outliers will be located on outer tiers. If possible outliers are
revealed, the problematic DMUs can be removed from the analysis. By following
this procedure, a better estimation of managerial efficiency can be achieved.

8 Conclusions

This chapter has outlined a rank ordering of DMUs based on the influence they
serve in forming empirical production layers for the data set. The intent is not
to present the only valid system or rank ordering, but to stimulate thought as
to how DEA methods may be modified to make the results more meaningful to
practitioners. One concern of the rank ordering approach is the computational
requirements to achieve the results. On some layers the density of efficient
DMUs will be high and other layers the density may be low. The code must be
computationally efficient across this wide variety of conditions. In addition, the
code must be flexible to allow for constant or variable returns to scale in either
the input or output models. Flexibility to switch between models at different
layers may also be desirable. The TEDEA* approach meets the requirements
to effectively and efficiently perform such tasks.

The rank order procedure presented in this discussion classifies DMUs by
their ability to use the current technology to efficiently conduct the production
process. This classification can serve as a proxy measure of management effi-
ciency that provides more detailed information than offered by standard DEA
models. By identifying the best and worst performing DMUs, analysts can
pinpoint which DMUs should serve as a basis of comparison from which to de-
termine which management practices enhance and which deter from productive
efficiency. In addition, the rank ordering methodology presented here reveals
the need to further characterize the computational issues of DEA and provide
efficient codes to accomplish these new tasks.

A Multinormal Data Generator

Since few large-scale DEA problems are currently available, randomly generated
data sets were needed to simulate possible real life data. One procedure to
generate such data is to draw the samples from a multinormal distribution. To
this end, the DRNMVN routine from the IMSL library was used to generate
data for 10,000 DMUs. The variance covariance matrix of Table 4 was used to
generate the data for the input and output variables for each DMU. The code
to generate this data is described by Hickman [10].
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Figure 10: Correlations of multinormal data variables

From the randomly generated data, the variables representing inputs and
outputs needed to be carefully chosen. To coincide with sound economic theory,
all outputs should be positively correlated with all the inputs. In Figure 10, all
negatively correlated variables are connected with a line.

By eliminating variable x4, variables x1, 3, and x7 could represent outputs
since they would be positively correlated with all the other remaining variables
that would represent inputs. In this way, each DMU would be comprised of 3
outputs and 4 inputs. Notice also, inputs positively correlated would be com-
pliments in the production process; those negatively correlated are substitutes.
Since the input variables cover a wide range of cases of compliment and substi-
tute relationships, the randomly generated data further simulates possible real
life data.

B DEA-GEN

While random data generators can provide large problems, a more systematic
approach is need to represent real life scenarios. To this end, economic theory
was used to generate large-scale DEA problem sets. In production economics,
the most widely used functional form is known as the Cobb-Douglas production
function. This function is written as:

m
— 2] ;) —
yj_aonmij, .Z'z]>0, J—l,...,n
i=1

Here, y; is the single aggregate output produced by DMUj, z;; is the values of
the input variables used by DMUj in the production process, «; is the factor
elasticity for input 4, and a, is a constant scale factor. If 37", @; = 1 then
only constant returns to scale exist in the production process. For EZL a; <1
decreasing returns to scale are present, while »:", a; > 1 indicates increasing
returns to scale. In the DEA studies, increasing returns to scale are not used
because the function results in only a few DEA efficient points. Although this
does not pose a problem, it does not realistically represent true life data.

For the single output model, this production function has many desirable
properties. If the inputs are randomly generated, the function generates output
values that will always lie on the production possibility frontier, i.e., they will be
DEA efficient for 3" | a; < 1. This frontier is central to the theory of economic
growth and measures the rate of technological progress. The Cobb-Douglas
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frontier represents the best use of technology as well as the best management
practices to achieve efficient production. This coincides with the practical use
of DEA. Unlike DEA, the quest in economic studies is to attempt to estimate
the values of a; by fitting the function to the observed data. By choosing the
a; values a priori, then randomly generating the input values, the output values
can be determined so that they coincide with widely accepted economic theory.
To insure that not all generated data sets fall on the efficient frontier surface, the
a, scale factor can be randomly generated. The efficient DMUs will consist of
those generated where a, takes on it maximum value. Control over the number
of DMUs that are efficient in the data set can be maintained by limiting the
number of DMUs generated with max a,.

In DEA analysis, the single-output, multiple-input scenario is not of primary
interest. DEA was developed to analyze the case of multiple-output, multiple-
input studies. Fare and Grosskopf [9] point out that the existence of a joint
production function has not been established. That is, the multiple-output,
multiple-input model does not produce values strictly on the efficient produc-
tion frontier. To do so, would require strict assumptions that would not provide
the desired realism for the DEA study. However, a joint model without the strict
assumptions would simulate economically sound production processes. Conse-
quently, a joint model was developed for the DEA-GEN problem generator.

For each of the problem sets, the input values were generated from a uniform
distribution. The «; values were chosen to simulate constant returns to scale
processes as well as a variety of cases representing different levels of decreasing
returns to scale. The a, value was randomly generated, but with a modest
control of the number of efficient DMUs that could be present in the problem
data.

Once the single aggregate output level was calculated, the individual output
levels were determined by assigning each individual output as a percentage of
the aggregate. The percentages for each individual output were drawn from
normal distributions with predetermined means and standard deviations. The
means of the normal distributions were chosen so that the percentages sum to
one. Table 5 lists the a; values as well as the means and standard deviations
that were used to generate twelve different Cobb-Douglas data sets.

Because of the economic foundations of the DEA-GEN code, the data gen-
erated resembles a class of problems that should more closely simulate realistic
economic data than what would be possible from the data sampled from a
multinormal distribution.
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