Optimal Microdata File Merging: A New Model & Network Optimization Algorithm

> Richard S. Barr, *SMU* Betty L. Hickman, *U Nebraska Omaha* J. Scott Turner, *Oklahoma State*

> > ©2000 Richard Barr, Betty Hickman, J. Scott Turner

Microdata Files

- Stratified samples of large populations
- Multi-attribute representations of the underlying distributions and interactions
- Expensive to create

Example Microdata

- Statistics of Income
- Current Population Survey
- American Housing Survey
- Census of Agriculture
- Decennial Census
- Economic Census
- Integrated International Census
- Canadian Families

- Survey of Income and Program Participation
- Commodity Flow
- Foreign Trade
- County Business Patterns
- Population & Housing
- Nat'l Survey of Fishing, Hunting & Wildlife
- National Health Interview

Limitations of Individual Samples

- Data are often required that are
 - Not part of the current source
 - Of superior quality

- Choices available:
 - Commission a new study
 - Ignore variables
 - Impute missing items
 - Merge two files to combine surveys

Merging Microdata Files

- Two microdata samples
 - Are drawn from the same population
 - Include record *weights*, reflecting sampling rate
 - A record weight of 10 reflects 1:10 sampling rate
 - Record represents 10 population units
- Files A and B are merged to form file C
 - Composite C has data items from both A and B
 - A-B record pairs are matched, based on common attributes

Microdata Merge Diagram

INTERRECORD DISSIMILARITY MEASURE (DISTANCE FUNCTION)

 $c_{ij} = f (X1_{1i}, ..., Y_{Si}, X2_{1j}, ..., Z_{Tj})$

Microdata Matching Methods

- *Exact matching* uses unique-valued common items
- Statistical matching or merging
 - Mates similar records
 - Using non-unique common items
- Exact matches are
 - Always preferable
 - Rarely possible or permitted by law

Statistical Merging Techniques

- Unconstrained merges
 - Use a base file (A) and augmentation file (B)
 - Each base-file record matched with "most similar" file B record
 - Matching with replacement
 - Ignores file B's record weights
 - Greatly distorts the statistical characteristics of B's items

Statistical Merging Techniques

- Constrained merges
 - Weight constraints added to ensure records in each file are not over- or under-matched
 - The sum of each record's matched weights = original weight
 - One record may be matched with multiple records in the other file
 - Matching without replacement
 - Statistical characteristics of both file's values are preserved

Constrained File-Merge Model

- Given:
 - $-A_i = \text{record } i \text{ weight in}$ file A
 - $-B_j = \operatorname{record} j$ weight in file B
- Assumed: equal population size:

$$\sum_{i} A_{i} = \sum_{j} B_{j}$$

• Weight constraints

$$\sum_{j} w_{ij} = A_i, \text{ for all } i$$
$$\sum_{i} w_{ij} = B_j, \text{ for all } j$$
$$w_{ij} \ge 0, \text{ for all } i, j$$

where w_{ij} = weight of composite record (i,j)

Optimal Constrained Merge

Minimize
$$\sum_{i} \sum_{j} c_{ij} w_{ij}$$

subject to: $\sum_{j=1}^{n} w_{ij} = A_i$, for all i
 $\sum_{i=1}^{m} w_{ij} = B_j$, for all j
 $w_{ij} \ge 0$, for all i, j

where c_{ij} = dissimilarity measure (distance) between record *i* in A and *j* in B (Turner and Robbins, U.S. Treasury)

Optimal Constrained Merge Model

- Has the form of a transportation problem
- One source node for each file A record
- One sink node for each file B record
- One arc for each record-match possibility

Problem Characteristics

- Large network models
 - 1,000s of nodes (constraints)
 - Millions of variables (mn arcs)
- U.S. Treasury: Optimal merge system
 - In use since mid-1970s
 - Described in Barr and Turner, 1980
 - Routinely solves problems with 20,000 constraints and 30-million variables

Underlying Rationale for Merging

Assumptions

• File $A = \{X_1, Y\}$ and file $B = \{X_2, Z\}$, where

 $-X_1, X_2 =$ common items

- Y = set of data items found only in file A

- -Z = items found only in B
- Both A and B are valid samples from the same population

Objectives of Merging

- Form a sample file $C = \{X_1, X_2, Y, Z\}$
 - Such that C corresponds statistically to a {X,Y,Z} sample taken from the same population
- Make inferences about (Y,Z) and (Y,Z|X) relationships using C

– Can already infer (X,X), (X,Y), and (X,Z)

Problems and Criticisms

- Conditional independence assumption, CIA – If YZ relationships left out of merge process, merged files tend to yield correlations $r_{YZ} \approx 0$
- Effect of $r_{Y,Z} \approx 0$
 - Depends on usage of the file
 - From negligible to disturbing

New Optimal Merge Model

- Incorporates outside information
- YZ relationships included in the model via

 Penalties for illogical combinations
 - Estimates of second-order information
 - Based on intermittent samples, logic, or best guesses
 - For cases where CIA is unreasonable

Covariance $s_{y,z}$ Computation

Y-Z covariance:

$$s_{y,z} = \frac{1}{W} \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} (y_i - \overline{y}) (z_j - \overline{z})$$

where

W = sum of record weights $y_i = \text{value of item } y \text{ in } i\text{th record of file A}$ $z_j = \text{value of item } z \text{ in } j\text{th record of file B}$ $\overline{y}, \overline{z} = \text{sample means for y and } z$

Correlation Computation

Y-Z correlation:

$$r_{y,z} = \frac{s_{y,z}}{\sigma_y \sigma_z}$$

where

 σ_y , σ_z = standard deviations of y in A and z in B

Including a Correlation Constraint

• If an estimate for the correlation parameter is ρ, a goal-programming side condition is:

$$\sum_{i=1}^n \sum_{j=1}^m d_{ij} w_{ij} \approx \rho$$

where

$$d_{ij} = \frac{(y_i - \overline{y})(z_j - \overline{z})}{W\sigma_y \sigma_z}$$

Extended Merge Model

Minimize
$$\sum_{i} \sum_{j} c_{ij} w_{ij}$$

subject to: $\sum_{j} w_{ij} = A_i$, $\forall i$
 $\sum_{i} w_{ij} = B_j$, $\forall j$
 $\sum_{i} \sum_{j} d^k_{ij} w_{ij} \approx \rho_k$, $\forall k$ parameters
 $w_{ij} \ge 0$, $\forall i, j$

Model Characteristics

- A network with "side conditions"
- Network component:
 - Large, dense
 - Must be feasible
- Side conditions:
 - Few to many
 - Dense LHS, RHS are estimates & targets
 - Feasibility desirable, may not be possible

Network with Side Conditions Algorithm

NSC Problem

P: Min cx = zs.t. Ax = b Network constraints $Dx = d \pm \varepsilon$ Side conditions $x \ge 0$ Lagrangean Approach

Dualize the side conditions, ignoring error

LR(
$$\lambda$$
): $z_d(\lambda) = Min cx + \lambda (Dx-d)$
s.t. $Ax = b$
 $x \ge 0$
where λ = vector of Lagrangean multipliers

Subgradient Method

- 1. Begin with initial multiplier vector λ^0 , k=0
- 2. While x^k is infeasible to P (or other rule):
 - Generate λ^{k+1} using: $\lambda^{k+1} = \lambda^k + t^k (Dx^k-d)$
 - where x^k is an optimal solution to $LR(\lambda^k)$, and
 - t^k is a positive scalar step size
 - k = k + 1
 - Solve LR(λ^k)

Implementation Characteristics

• Stepsize: $t^{k} = \frac{\theta^{k} \left| \overline{z} - z_{d}(\lambda^{k}) \right|}{\left\| Dx^{k} - d \right\|^{2}}$

where $0 < \theta < 2$, $\overline{z} = z_d(0)$, an estimate of z

- Stopping criteria
 - Within ε -tolerances and 10% of z(0)
 - Cost of solution cx^k unchanged in p iterations
 - Iteration limit exceeded

Empirical Analysis

- Randomly generated multi-normal test data
- XYZ datasets with predetermined correlations were generated
- Records were divided into
 - "File A" records, with Z values removed- "File B" records, with Y values removed
- Attempted to construct File C with target correlation values

Test Sets

Test Set:	A	В
File A size:	100, 300	400, 1000
File B size:	200, 300	600, 1000
Correlations:	4 to 25	4 to 25
Possible pairs:	20K, 90K	240K, 1M

Solution Software

- PPNET-SC code
 - Based on parallel network optimizer, PPNET
 - Incorporates side-conditions
- Compared with NETSIDE, networks-withside-constraints optimizer

- The new model and algorithm effectively maintains all YZ relationships included in the model
- The convergence is relatively fast
- Improves the quality of the composite files
- Testing on larger problems is next