
Baltzer Journals June 5, 1997

Parallel and Hierarchical Decomposition Approaches

for Solving Large-Scale Data Envelopment Analysis

Models�

Richard S. Barr
1
and Matthew L. Durchholz

2

1Department of Computer Science and Engineering

Southern Methodist University

Dallas, Texas 75275

E-mail: barr@seas.smu.edu

2i2 Technologies

Dallas, Texas

E-mail: matthew_durchholz@i2.com

Accompanying the increasing popularity of DEA are computationally challenging

applications: large-scale problems involving the solution of thousands of linear

programs. This paper describes a new problem decomposition procedure which

dramatically expedites the solution of these computationally intense problems and

fully exploits parallel processing environments. Testing of a new DEA code based

on this approach is reported for a wide range of problems, including the largest

reported to date: a 8,700-LP banking-industry application.

Keywords: Parallel computing, data envelopment analysis, decomposition,

mathematical programming

Surprisingly little has been published on the computational aspects of Data Envelop-

ment Analysis [1, 2, 3, 4, 5, 23, 31]. Since DEA typically involves the solution of a large

number of linear programs (LPs), many practitioners and researchers assume that the

repeated use of standard optimization codes is suÆcient for an analysis. Unfortunately

this is not the case. Specialized codes are needed to correctly handle the preemptive

prioritized multiple objectives (reecting the models' non-Archimedian in�nitesimal) and

to coordinate and expedite the solution of the large number of interrelated LPs.

This study was motivated by large applications we have encountered: franchise anal-

ysis (e.g., over 8,000 McDonald's restaurants, 6,500 Century 21 real-estate oÆces, and

approximately 5,000 H&R Block tax-preparation service centers), the Federal Reserve

Bank's eÆciency study of 8,700 U.S. banks, a V.A. study of over 20,000 hospitals, and

U.S. Postal Service evaluations of over 30,000 branches. These problem sizes are clearly

beyond the limits of current DEA codes.

In this paper, we describe a new code for solving large-scale DEA problems in a

reasonable amount of time, demonstrate its performance on a real-world application, and

�This work was supported by National Science Foundation grant DMII-9313346 and the

United States Air Force

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 2

report on its ability to exploit parallel processing to further accelerate solution time. We

also introduce a new decomposition algorithm that streamlines the solution of problem

sets and provide in-depth computational testing of the code on small- and large-scale

problems, including the largest DEA problems reported to date.

1 Computational DEA

Key to the development of software for putting DEA into practice are the mathematical

underpinnings and associated means of exploiting domain-speci�c structure for compu-

tational gain. We now briey summarize relevant DEA concepts, describe eÆcient im-

plementation techniques, and present the results of computational testing of a new DEA

research code.

1.1 DEA Fundamentals

Data Envelopment Analysis is a family of models for assessing and analyzing the relative

transformational eÆciency of similar decision-making units [21]. All DEA models have the

same data requirements: for each decision-making unit (DMU) j, a nonnegative observed
value for each of the s outputs (Yj) and m inputs (Xj), with at least one positive input

or output. A DMU's eÆciency � (0 < � � 1), is de�ned as a weighted ratio of the total

output produced to the total input consumed, with weights determined by a separate

linear program for each DMU in the analysis.

The various DEA models separate the set of n DMUs (D) into eÆcient (E�) and
ineÆcient (I�) sets. A DMU is eÆcient if � = 1; so = 0, and si = 0, where so and si are

slacks in the associated LP's input and output constraints, respectively. Mathematically

the members of E� are extreme points, extreme rays, or lie on a convex surface which,

when taken with their associated facets, form a piecewise-linear empirical production sur-

face, or eÆcient frontier. Otherwise, the DMU is deemed ineÆcient and the observation

lies within, not on, the eÆcient frontier. For each DMU d 2 I�, the corresponding lin-

ear program's solution suggests a set of inputs and outputs that would make d eÆcient.

This virtual DMU is obtained by a projection onto the eÆcient frontier, using the vector

�� 2 <n to form a linear combination of d's reference set|those eÆcient DMUs with

which d is being directly compared.

Although there are many formulations of DEA models (see Appendix A), the useful

results in each case are similar in nature and are to be determined in practice by a DEA

code. A complete data envelopment analysis produces, for each DMU: �; a set of weights,
� and �, for the outputs and inputs, respectively; and, for ineÆcient units, so, si, �,

and a reference set. Section 2 describes some of the techniques that have been used to

expedite the calculation of these items.

In the upcoming discussion, the following notation will be used. We de�ne: D =

f1; : : : ; ng, the index set of DMUs; B�
j
(B

�

j
) is the set of basic (nonbasic) variables associ-

ated with an optimal basis for an envelopment-form DEA model applied to DMU j 2 D;
��
j
; so�

j
, and si�

j
are the values of �; so, and si, respectively, in B�

j
; �j = fi 2 Dj�i 2 B

�
j
g;

�i is the reduced cost of DMU weight �i in a given optimal solution; E� = fj 2 Dj�j =
1; so�

j
= 0, and si�

j
= 0g; and I� = D �E�.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 3

2 Survey of Computational EÆciency Techniques

A naive implementation of the DEA calculations can lead to unreasonable solution times

for all but the smallest problems. This section surveys the variety of acceleration tech-

niques that have been devised to exploit the special characteristics of DEA models. Proofs

of the theorems can be found in [9].

2.1 Choice of Model Form

For each DEA model (CCR, BCC, NDRS, NIRS, and Additive) either the envelopment

or the multiplier forms may be used to compute solutions. Since typically (s+m)� n,
there will be fewer constraints and a smaller basis inverse to be maintained with the

envelopment form, used by virtually all DEA codes. This choice of model becomes an

increasingly favorable one as the size of the data set expands. This advantage can be

further exploited as the analysis reveals the memberships of E� and I�.

2.2 Early Identi�cation of EÆcient DMUs

It has been observed in [3, 18] that if �i; i 2 D, is a member of any B
�
j
; j 2 D, then DMU

i is eÆcient. The following theorem holds for all standard DEA models.

Theorem 1

For any j 2 D, �j � E� .

The early identi�cation of members of E � E� permits: (1) bypassing unsolved

subproblems associated with members of E, if values of the weights and slacks are not

needed; (2) near-optimal advanced starting solutions for known eÆcient DMUs; and (3)

pricing strategies that give priority to members of E. This can then reduce the number

of LP subproblems to be solved and expedite the solution of subproblems that must be

optimized.

In software implementations, the status of each DMU j, and its associated �j , can
be easily maintained as: member of E � E�, member of I � I�, or unknown (member

of U = D � E � I). When the subproblem associated with DMU j is solved, j can be

added to E or I . In addition, B�
j
may reveal new members of E|from the reference set,

if DMU j is ineÆcient, or from degenerate basic variables, if it is eÆcient.

Corollary 2

If, at optimality, �i = 0; i 2 D, then i 2 E�.

This corollary supports an extended search for members of E associated with the non-

basic variables. Our experience is that there are often a substantial number of alternate

optimal solutions and nonbasic variables with zero reduced costs.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 4

2.3 Restricted Basis Entry

Since any �j associated with an optimal basis corresponds to an eÆcient DMU j, we need
only consider those variables associated with D � I when pricing. Hence as ineÆcient

DMUs are identi�ed, their corresponding decision variables are dropped from subsequent

problems. This has a ratchet-like e�ect on the size (number of variables) of the LPs being

solved, causing \later" subproblems in a series to solve more quickly than the \earlier"

ones.

2.4 Candidate List

Candidate lists, and other multi-pricing schemes, are standard computational procedures

for expediting the solution of linear programs [29, 30]. These basically involve pricing a

set of nonbasic variables to identify a short list of promising basis-entry candidates, from

which incoming variables are repeatedly selected before replenishment.

This heuristic can be specialized for DEA models. First, the restricted basis entry

procedure eliminates from consideration variables associated with I . Further, priority for
list inclusion can be given to members of E over U , since any basis will contain only slacks
and members of E� [3].

2.5 Degeneracy and Anti-Cycling Logic

Note that if DMU j is eÆcient, the optimal basic solution for the envelopment model

can be comprised of � = �j = 1, with all other variables equal to zero. When such

degeneracy exists, so does the possibility of cycling. Although dismissed by many as

unlikely, we �nd that cycling in DEA codes is not only common but likely in the absence

of countermeasures.

The standard methods for avoiding cycling within the simplex method|lexicographic

ordering, perturbation [17], and Bland's rule [15]|can be computationally demanding.

Charnes, Rousseau, and Semple [23] observed an absence of stalling and substantially

fewer pivots when lexicographic ordering was added to a DEA code. A specialized ratio

test is proposed in [3] that gives preference to � variables over slacks when breaking ties

for zero minimum ratios, and yields large decreases in the number of pivots and solution

times on reported test problems.

Our experience indicates that, for many problems, simple scaling of the problem

data|by variables and by constraints, normalizing by averages [14]|is most e�ective in

lowering the incidence of stalling and cycling. In those cases where a lack of progress

is detected, the invocation of the lexicographic ordering procedure quickly remedies the

situation.

2.6 Non-Archimedean In�nitesimal, "

When DEA codes use small positive values (e.g., 10�6) for the non-Archimedean in�nites-

imal, ", the results of CCR and BCC analyses are dependent on the value chosen, and are

incorrect in many cases [5]. Such data dependencies can be avoided and correctness en-

sured by recasting envelopment-model objective functions in a preemptive priority form:

minimize P1� + P2(�1s
i � 1so). Proposed implementation schemes include two-stage

optimization [1], and a multi-objective pricing form of the simplex method [23].

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 5

2.7 Preprocessing of Observations

An analysis of the DMUs' observations can lead to identi�cation of members of I and E
prior to the application of optimization. A DMU i is ineÆcient if it is dominated by any

DMU j, that is if Xj � Xi and Yj � Yi. In the BCC and additive models, DMU j is
eÆcient if one of its outputs (inputs) has a unique maximum (minimum) value, or it has

the largest ratio Oj = 1Yj=1Xj . Processing DMUs in Oj order is reported to identify

members of E� earlier than random order.

2.8 Advanced Starting Bases and Reoptimization

In many algorithms that involve the solution of a series of related linear programs, or

subproblems, the use of reoptimization can lead to substantial time savings. This is

accomplished by using B�
i
as an initial basic feasible solution for the LP associated with

DMU j, as is possible when subproblems di�er by one or more parameters (objective

function or right-hand-side values) but have the same mathematical structure.

DEA subproblems can employ reoptimization, but its e�ectiveness is dependent on

the mathematical \closeness" of the two solution points, B�
i
and B�

j
. Ali suggests the use

of this technique only for j 2 f�i �Eg [3].

3 PIONEER Code

We have developed and tested PIONEER, a new DEA code which embodies most of

the above eÆciency techniques[7]. The code was designed for testing and evaluating

alternative solution approaches to large-scale problems[8].

PIONEER's optimization kernel is based on the XMP library, a collection of portable,

reliable, and widely used Fortran subroutines for the solution of linear programs using

the primal and dual simplex methods [28]. The LP basis is maintained in LU-factorized

form with pivoting routines from the Harwell library. Our customization includes data

scaling and the invocation of lexicographic ordering when stalling is detected.

The PIONEER code implements all varieties of DEA models described in Appendix

A and all of the eÆciency techniques in Section 1.2 are employed, except for preprocess-

ing and reoptimization. (Our testing showed that reoptimization was of uneven value|

sometimes reducing, sometimes increasing, run times.) The candidate list is not pri-

oritized, and the two-stage optimization approach to the non-Archimedean-in�nitesimal

issue is employed.

Auxiliary data structures maintain the E; I; or U status of each DMU, as indicated

by the following outline of the code's logic:

PIONEER DEA CODE SOLUTION OUTLINE

Step 0 Initialize U = D;E = ;; I = ;.

Step 1 While U 6= ; :

1. Select i 2 U .

2. Solve the subproblem for DMU i.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 6

3. If DMU i is eÆcient, E = E [fig, else I = I [fig.

4. Update: E = E [�i [fjj�j = 0g, and U = D �E � I .

The strength of step 1.4 depends on Theorem 1, Corollary 2, and the distribution of

observations in <(s+m), relative to the eÆcient frontier.

It should be noted that while the XMP data structures are designed for sparse prob-

lems, DEA subproblems are almost totally dense. Hence there is unnecessary processing

in the code and the reported execution times should be considered conservative measures

of performance, relative to a fully customized implementation.

4 Baseline Computational Testing

To evaluate the eÆciency of the PIONEER research code, and to provide a set of baseline

measurements from which to compare algorithmic and implementational enhancements,

a series of test runs were made on medium- and large-scale problems. Testing with and

without individual eÆciency techniques lent insight into their impact on solution speed.

4.1 Test Data

Although the code was validated for solution accuracy on small problems from the open

literature, of primary interest was its e�ectiveness on large-scale problem sets. Data from

three sources were used in the testing.

First, the Federal Reserve Bank of Dallas provided a data set of 8,748 banks from its

Southwest district, with variables consisting of the six inputs and three outputs described

in [12, 13]. This challenging problem from industry was clearly beyond the state of the

art of DEA codes, and was a prime motivator for this research. Testing was performed

on smaller subsets by selecting the �rst n observations from the unordered �le.

Randomly generated observations from a multinormal population provided a second

source of test data. Using the DRNMVN routine from the IMSL library and the variance-

covariance matrix given in Appendix B, large data sets could be easily created. The

variables were partitioned into 3 inputs and 4 outputs so as to observe positive correlations

between the \input" and \output" sets.

Finally, a random problem generator, DEA-GEN, was written to create observations

based on the classic Cobb-Douglas form of production surfaces. As detailed in Appendix

C, the program gives the user a measure of control over the proportion of eÆcient points,

and creates data sets that more closely approximate realistic economic processes than the

multinormal generator.

4.2 Test Environment

The PIONEER code was tested on Southern Methodist University's Sequent Symmetry

S81B with 32MB of internal storage and processing units consisting of 16-MHz Intel

80386s with Weitek coprocessors. The software is written entirely in Fortran and executed

under Dynix 3.0.12, a BSD-Unix-based operating system. While the processors are rated

at 4 million operations per second, in terms of current technology they are equivalent to

relatively slow personal computers.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 7

Table 1: PIONEER Solution Times on Test Set A

Source s m DMUs No RBE Time RBE Time Ratio

FR Bank 3 6 1000 33.29 min 17.04 min 0.526

FR Bank 3 6 2000 179.91 min 95.59 min 0.532

FR Bank 3 6 8000 44.21 hour 19.80 hour 0.448

Multinormal 4 6 1000 31.96 min 18.72 min 0.586

Multinormal 4 6 2000 106.90 min 61.65 min 0.577

DEA-GENa 4 6 1000 57.51 min 33.13 min 0.576

DEA-GENa 5 3 2000 130.02 min 75.94 min 0.584

DEA-GENb 7 4 1000 61.49 min 37.96 min 0.617

DEA-GENb 7 2 2000 151.27 min 92.42 min 0.611

DEA-GENc 6 6 1000 72.83 min 43.29 min 0.594

DEA-GENc 6 5 2000 213.61 min 126.50 min 0.592

Average 0.567

4.3 Experimental Results

The PIONEER code was applied to problems from each of the three sources.

� Federal Reserve banking data: the �rst 1,000, 2,000, and 8,000 DMUs of the 8,748-

bank data set.

� Multinormal-data models: two problems with n = 1; 000 and n = 2; 000, generated
using the variance-covariance matrix and DEA interpretation given in Appendix B.

� DEA-GEN: problem sets with n = 1; 000 and n = 2; 000, created using and the

parameters given in Appendix C.

Solution times for these problems with the PIONEER code and the CCRo model are

given in Table 1. The times are \wall-clock" or elapsed real execution times, exclusive

of problem input and output. Unsolved subproblems associated with members of E (as

determined by Step 1.4) were bypassed.

The code was run with and without the use of restricted basis entry (RBE) and early

identi�cation of eÆcient units (EIE) to examine its impact on solution time. In all cases,

the RBE procedure had a strong impact, cutting solution times roughly in half. The

17.04-minute time for the 1,000- and 2,000-DMU problems indicated that the PIONEER

code is reasonably eÆcient for medium-sized problems. But, even with the help of RBE,

the 19.8-hour solution time for the 8,000-DMU problem is excessive for practical usage.

A closer examination of the 8000-DMU bank problem (BANK-8) solution process

gives insight into the sources of the speed improvements. Figure 1 gives the time to solve

each set of 1,000 subproblems in the 8,000 total, both with and without RBE logic. Note

that when RBE is not used, the time to solve each set of 1,000 subproblems is roughly the

same (around 4.1 hours). But when RBE is employed, the last group of 1,000 subproblems

is solved almost four times faster than the �rst group. By restricting the known ineÆcient

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 8

Figure 1: Solution Time for Subsets of BANK-8

DMUs from entering the basis, the later subproblems are smaller, and easier to solve. In

addition, the early identi�cation of eÆcient DMUs results in fewer subproblems to be

solved. Typically, fewer than 20% of all DMUs are eÆcient, so the faster solution time

can be attributed mainly to restricted basis entry.

Figure 2 shows the cumulative e�ect of RBE on solution time for the BANK-8 prob-

lem. While the performance improvement is less pronounced in the earlier subproblem

groups, the 2:1 ratio becomes evident in the last few groups, and trends indicate an even

greater disparity might result for larger problem sets.

Although PIONEER's solution times are encouraging and indicate that the code may

be comparable to others described in the literature, other performance improvements are

possible. The next section describes the use of parallel processing to further decrease

solution times for these and other problems.

5 Parallel PIONEER Code

A computational advance that holds great promise for expediting the solution of diÆcult

problems is application-level parallel processing. Parallel processing is the simultaneous

manipulation of data by multiple computing elements working to complete a common

body of work. With this, the power of many processing elements can be brought to bear

on a single problem. If an algorithm's steps can be properly subdivided and assigned to

separate processors for simultaneous execution, opportunities for dramatic reductions in

solution times arise.

Of the numerous varieties of parallel machine architectures, the most prevalent com-

mercial design is multiple-instruction, multiple-data (MIMD) [10, 26]. Each such com-

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 9

Figure 2: Cumulative Solution Time for Subsets of BANK-8

puting system contains multiple independently executing processors that can operate si-

multaneously on di�erent data sets. Processors communicate either via a shared memory

accessed through a central switch, or by messages passed through an interconnection net-

work in a distributed system. Shared-memory multiprocessors are called tightly coupled

if the time required to access a particular memory location is the same for all processors,

as opposed to being proximity dependent or loosely coupled, as in distributed-memory

systems.

As with traditional single-processor (serial) machines, solution eÆciencies are directly

tied to how well the algorithmic steps match the architecture of the underlying machine.

Because a DEA problem involves the optimization of many separate linear-programming

subproblems, the use of MIMD-style parallelism to speed solution appears, on the sur-

face, to be a \natural" one. In fact, the mapping of the DEA solution process to a

tightly coupled MIMD architecture turns out to be an ideal example of the use of parallel

processing.

5.1 Parallel Code Design

The application of parallel processing to DEA problems was �rst reported in [31], where

four transputers were run from a Macintosh IIcx on a 54-DMU problem. Times were

reduced by a factor of three in this loosely coupled MIMD implementation. The next

section describes a very di�erent computing environment and how the PIONEER code

was modi�ed to use this form of parallelism.

As with software designed for vector processors, parallel codes must be structured to

match the architecture of the target machine. Our test machine was the same Sequent

Symmetry S81B that was employed for serial testing, but which can be programmed for

parallel processing. The system has a tightly coupled MIMD design, with 20 16-MHz

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 10

80386 processors, Weitek coprocessors, and 32MB of sharable memory.

The Sequent's operating system permits the programmer to create multiple, inde-

pendent processes which it schedules on the available processors. The processes can have

both private and shared data-spaces. The shared spaces can be read and written by

all designated processes, and can be used for interprocess communication and to avoid

duplication of common data.

This type of parallel machine is designed to be most e�ective with work that can be

decomposed into large, independent tasks. The DEA solution process can be organized

in this manner through the use of domain decomposition, where multiple identical pro-

cesses apply the same program steps to di�erent data. By considering each DMU's LP

subproblem to be a separate task, such large-granularity work decomposition is possible.

In the parallel PIONEER code, a self-scheduling approach is used, where processes

select and execute tasks from a shared work list, on a �rst-come-�rst-served basis. Al-

though incurring a minor amount of coordination overhead, such self-scheduling permits a

balanced distribution of the workload across processes, an important characteristic when

individual task times vary.

Each process solves its LP subproblems in its private memory; shared memory stores

the original problem data and the status of each DMU. Since a DMU's status|in terms

of membership in E; I , or U|may change, restricted basis entry becomes dynamic and

time-based. At one moment, a given �j variable may be part of the E [U pricing set

and, an instant later, be found to be ineÆcient and ineligible for basis entry. The shared

status array automatically communicates this information to all processes. This is an

instance of a race condition, or timing-dependent code, which can result in stochastic

solution statistics when the order of events di�er from run to run due to minute timing

di�erences..

5.2 Testing Parallel PIONEER

To test the parallel implementation of the PIONEER code, a variety of problems were

chosen for analysis. Table 1 describes the characteristics of the problems chosen. The

original bank data consisted of 8,742 DMUs. For each of the bank problems, the DMUs

composing the data set were randomly chosen from the original data set. The multi-

normal and DEA-GEN data sets are described in Appendices B and C. These problems

were generated to simulate real life data of large-scale DEA problems. The CCRi model

was used for all runs.

The \wall clock" time, measured in minutes, to solve each DEA problem, exclusive

of input output times, are given in Table 2. For the problems consisting of 8,000 and

4,000 DMUs, the number of processors used was limited by the available memory on the

Sequent computer.

The reported relative speedup, S(p), is the ratio of the solution time of the PIONEER
code using a single processor to its solution time using p processors. EÆciency is de�ned

as E(p) = S(p)=p. The goal of any parallel implementation is to achieve a linear speedup

where S(p) = p and E(p) = 1.

Tables 3 and 4 give the speedups and eÆciencies for the parallel testing. In all cases,

relative speedup was nearly linear. Isolated examples indicate that superlinear speedup

may be possible with the use of RBE/EIE in the PIONEER code. Since PIONEER is

asynchronous, i.e., each LP can be solved independently of all other LPs, the paralleliza-

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 11

Table 2: Test Problems' Parallel Run Times (min.)

No. Bank Bank Bank Multinorm DEA-GENa DEA-GENb DEA-GENc

Procs 1000 4000 8000 4000 2000 2000 2000

1 17.04 283.22 1189.81 242.96 75.94 92.42 126.50

2 8.70 151.23 589.22 122.35 38.20 46.52 63.63

3 5.68 101.42 389.46 81.81 25.58 31.06 42.48

4 4.27 73.26 61.39 19.19 23.39 31.91

5 3.40 61.27 49.14 15.35 18.71 25.57

6 2.86 12.82 15.60 21.32

7 2.45 11.02 13.38 18.28

8 2.15 9.65 11.74 16.02

9 1.96 8.57 10.45 14.26

10 1.72 7.72 9.40 12.80

15 1.17 5.19 6.33 8.61

tion is highly e�ective at improving solution times.

5.3 Limits of Parallelism

The computational testing indicated that the parallel PIONEER code was a highly scal-

able MIMD application that fully utilized the multiprocessing capability of the given

computer system. We feel that the software would also exhibit much of the same eÆ-

ciency if implemented in a loosely coupled MIMD environment. In the latter setting,

changes in a DMU's status would have to be broadcast to all processors, thus incurring

additional overhead and a latency in communicating the information. While unneces-

sary work (avoidable in a shared-memory environment) might result, the use of a larger

number of processors could more than o�set this disadvantage.

In our testing, memory size limited the dimensions of problems that could use the

full parallelism of this system. We believe that additional internal storage would permit

the same excellent speedups on the larger problems as was observed on the smaller ones.

(This notion was veri�ed by preliminary testing on a larger system.)

Even with these encouraging results, we felt that further improvements were needed

and possible. In fact, a close examination of the parallel solution statistics led to a new

procedure which further reduced all times|both serial and parallel|by up to an order

of magnitude.

6 Hierarchical Decomposition

Experimentation with sets of problems that were identical except for the number of DMUs

yielded solution times such as those given in Figure 3. Not only did the memory re-

quirements of larger problems limit the amount of usable parallelism, but run times grew

exponentially in n. Hence if a larger problem could be decomposed into a series of smaller

ones, lower memory requirements, greater parallelism, and faster individual solution times

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 12

Table 3: Test Problems' Relative Speedups

No. Bank Bank Bank Multinorm DEA-GENa DEA-GENb DEA-GENc

Procs 1000 4000 8000 4000 2000 2000 2000

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.96 1.87 2.02 1.99 1.99 1.99 1.99

3 3.00 2.79 3.06 2.97 2.97 2.98 2.98

4 3.99 3.87 3.96 3.96 3.95 3.96

5 5.01 4.62 4.94 4.95 4.94 4.95

6 5.96 5.92 5.92 5.93

7 6.96 6.89 6.91 6.92

8 7.93 7.87 7.87 7.90

9 8.69 8.86 8.84 8.87

10 9.91 9.84 9.83 9.88

15 14.56 14.63 14.60 14.69

Table 4: Test Problems' EÆciencies

No. Bank Bank Bank Multinorm DEA-GENa DEA-GENb DEA-GENc

Procs 1000 4000 8000 4000 2000 2000 2000

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.979 0.936 0.979 0.993 0.994 0.993 0.994

3 1.000 0.931 1.000 0.990 0.990 0.992 0.993

4 0.998 0.966 0.989 0.989 0.988 0.991

5 1.002 0.924 0.989 0.989 0.988 0.989

6 0.993 0.987 0.987 0.989

7 0.994 0.984 0.987 0.989

8 0.991 0.984 0.984 0.987

9 0.966 0.985 0.983 0.986

10 0.991 0.984 0.983 0.988

15 0.971 0.975 0.973 0.979

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 13

Figure 3: Solution Time versus Problem Size

might o�set any additional work that might be required.

6.1 DEA Decomposition Background

Consider a partitioning of the set of DMUs into a series of k mutually exclusive and

collectively exhaustive subsets Di � D, where D =
S
i2K Di;

T
i2K Di = ;, and K =

f1; : : : ; kg. De�ne E(Di) and I(Di) to be the index sets of DMUs in Di that are eÆcient

and ineÆcient, respectively, relative to Di (i.e., Di = E(Di) [I(Di)), based on the

meaning of eÆciency in the DEA model of interest.

Theorem 3

If Di � D, then I(Di) � I� and E� �
S
i2K E(Di).

Hence if a DMU is ineÆcient in a subproblem, it is ineÆcient for the full problem; if

it is eÆcient for a subproblem, it may or may not be eÆcient overall. These relationships

provide the foundation for the following decomposition procedure for DEA models.

6.2 The Hierarchical Decomposition Procedure

The following approach to DEA problems solves a series of subproblems which are ar-

ranged in a hierarchy. The subproblems are themselves DEA problems created from

subsets of the DMUs in D. They can be solved independently, but information about set

I membership generated from the subproblems can accelerate the solution of others.

First we de�ne a procedure for creating and solving the subproblems. It partitions

the set of DMUs whose eÆciency is unknown (U) into a series of subsets, or blocks, of size
b. Recall that U = D �E � I and jU j is the cardinality of U.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 14

Figure 4: Hierarchical Decomposition Schematic

PROCEDURE SolveBlocks(b; `; I)

Step 1 Partition U into k = djU j=be mutually exclusive, approximately equal-sized,

blocks of DMUs.

Step 2 For each block Bi; i 2 K;K = f1; : : : ; kg:

1. Apply a DEA envelopment model to compute E`

i
= E(Bi), using early

identi�cation of eÆciency and restricted basis entry.

2. Set I = I [I(Bi).

This procedure is used in the following hierarchical decomposition algorithm (HDEA).

A graphical representation of the process is given in Figure 4.

PROCEDURE HDEA(b; �;)

Level 1 (Initial pass)

1. I = ;; U = D; ` 1.

2. SolveBlocks(b; `; I).

Level 2 (Identify E� and I�.)
while (U 6= ;) do:

1. ` `+ 1.

2. u jU j.

3. SolveBlocks(b; `; I).

4. if jU j=u > , then b jU j, else b �b.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 15

Level 3 (Resolution of I�)
Re-solve the DEA model (with basis entry restricted to E�) for members of
I� to compute correct solution values.

User-supplied parameters � and control the blocksize b in Level 2. Speci�cally, b
grows at each iteration by the � multiplier until it reaches jU j; b is set equal to jU j when
the fraction of U retained in an iteration exceeds .

6.3 Implementation Considerations

HDEA is a divide-and-conquer algorithm similar in nature to merge sorting and sorting

networks [25, 27]: the original problem is broken into several smaller subproblems, which

are solved recursively and the results combined to solve the original problem. The block-

size parameter, b, de�nes sets of linear programs with the same number of constraints

as the original problem, but many fewer variables. This results in lower memory re-

quirements and faster solutions for the subproblems, although more linear programs may

be involved. Because of this increased speed and Theorem 3, these easier problems can

eliminate ineÆcient-DMU variables earlier than with non-hierarchical approaches.

The HDEA procedure focuses initially on isolation of E (in levels 1 and 2), so as to

expedite solution of the subproblems associated with I (in level 3). The method should

be particularly e�ective when jEj � jI j, as is typically the case. The decomposition into

subproblems with minimal data communication requirements is highly attractive from a

parallel processing standpoint.

Memory requirements are a function of maxfb; jEjg. If primary storage is at a pre-

mium, its use can be minimized by paging in DMU data from external storage for each

subproblem separately. In parallel implementations, participating processes might place

in shared memory a copy of the X and Y data, plus a DMU-status array; each process

would also need its own private storage for solver-speci�c information such as a simplex

basis inverse and candidate list.

The choice of blocksize also a�ects overall solution time. Since b inuences the tradeo�
between the size and the number of subproblems solved, computational testing for an

appropriate setting is required. Figure 5 shows the total solution time for various values

of b on an example problem.

6.4 Computational Testing

For testing the HDEA procedure, real life data, randomly generated data, and data based

on the economic Cobb-Douglas functional form were employed. For each test problem, an

array containing the status of each DMU was maintained in shared memory. A private

copy of the appropriate data was given to each processor in parallel so that each DMU

could be solved independently. Since the status of each DMU's problem could be updated

without conict from other processors, no locks were needed during the status update and

as a result, the parallel implementation is purely asynchronous.

All times reported are wall clock times, in minutes, to solve the problems exclusive

of any input/output. The single processor times represent the best achieved serial times

across the di�ering-sized DEA problems. The parallel case is a direct implementation of

the serial formulation, requiring only a few modi�cations for the parallel environment to

accomplish the self-scheduling parallel implementation. It is important to note that none

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 16

Figure 5: Total Solution Time vs. Blocksize for 8,000-DMU Problem

of the runs were made in a dedicated environment, and hence, times are subject to system

load. However, precautions were taken to conduct the runs during non-peak hours so as

to minimize the confounding of outside factors on the solution times.

For the test problems shown, a blocksize of 250 was used for the 8,000 and 4,000

DMU cases, 125 for the 2,000 DMU cases, and 100 for the 1,000 DMU cases. The e�ects

of di�erent blocksizes must be investigated, hence, these results should not be viewed as

the best possible. During level 2 of the HDEA procedure, � = 1:5. As a result, each

subsequent block at level 2 grows by 50% until all DMUs have been classi�ed as either

eÆcient or ineÆcient.

Table 5 shows that for all test runs the speedup was nearly linear. Larger more diÆcult

problems resulted in better speedup than smaller problems. With the smaller problems,

the overall solution time in parallel is so small that the overhead of maintaining the self-

scheduling tasks, as well as possible workload imbalance between processors, becomes

apparent. Consequently, although the parallel results for small problems are quite good,

the parallel implementation will be more eÆcient for large, diÆcult problems.

Table 5 also gives the total number of pivots and pricing operations executed to �nd

the DEA scores for each data set. These numbers vary with the number of processors

because of the method used to update the status of each DMU. As expected, problems

with a greater number of DMUs, and those with a larger density of eÆcient DMUs, require

more pivots and pricing operations and consequently take longer to solve.

Tables 6 thru 10 contain the results of each test problem for each level of the HDEA

procedure. The speedup remains relatively consistent across all problems across all levels

and is nearly linear.

The e�ects of using early identi�cation of eÆcient DMUs to reduce the number of

linear programming problems that must be solved are shown in Tables 11 through 15.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 17

Table 5: Hierarchical Test Problem Results

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 18

Table 6: Bank Hierarchical Level Test Problem Results

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 19

Table 7: Multinormal Hierarchical Level Test Problem Results

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 20

Table 8: DEA-GENa Hierarchical Level Test Problem Results

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 21

Table 9: DEA-GENb Hierarchical Level Test Problem Results

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 22

Table 10: DEA-GENc Hierarchical Level Test Problem Results

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 23

With the HDEA procedure, the total number of linear programs that must be solved

is slightly more than twice the original number of DMUs contained in each data set.

However, since the HDEA linear programs are smaller than other DEA methods, overall

performance is improved. EIE improves performance further by reducing the number of

linear programs at level 1 and level 2 by 10-25%. Early identi�cation has no e�ect at

level 3 since only DEA scores for ineÆcient DMUs are found at that level.

Table 16 shows the dramatic e�ect of the hierarchial procedure on reducing solution

time for the 8,000 DMU cases over the best DEA approach reported to date. Only three

processors are used in the parallel implementation because of memory limitations of the

non-hierarchial procedures. The HDEA procedure results in a 6- to 12-fold increase in

speed over the non-hierarchial procedure when both cases are run with the same number

of processors. Because the HDEA procedure requires less memory, permitting use of more

processors, the cases with 15 processors could be run and are 75 to 125 times faster than

the serial non-hierarchial procedure.

Although the test problems were limited to 8,000 DMUs because of the availability

of real life data, the HDEA procedure can accommodate much larger problems. A Cobb-

Douglas test case (Appendix C) consisting of 25,000 DMUs with 3 inputs and 3 outputs

was solved using 15 processors in 19.26 minutes. Again, memory size precluded solution

of this problem with the non-hierarchial procedure.

As seen with the test problems, the HDEA procedure allows for the solution of large-

scale DEA problems much faster than previously reported DEA methods. When coupled

with a parallel environment, the HDEA procedure yields solutions to problems in a matter

of minutes which previously, would have taken days. Additionally, the HDEA procedure

allows for the solution of very large-scale DEA problems that remain unsolvable (in a

practical sense) with any other reported approaches.

7 Further Computational Advantages of the HDEA Approach

Accompanying the HDEA method's advances in sheer solution speed are a variety of

additional computational advantages in other settings. The hierarchial structure can be

exploited when solving multiple DEA models and further streamlining opportunities await

exploration.

7.1 Solving Multiple Models

There are numerous instances in which multiple models must be solved for each DMU un-

der consideration. The HDEA approach can be easily modi�ed and extended to eÆciently

determine all of the required values.

� To solve for technical, scale, and overall eÆciency (ineÆciency), both the BCC and

CCR models must be solved [33]. With HDEA, We can use the BCC or ADD

model through level 2 to �nd E�
bcc
. On only the E�

bcc
set we can apply the CCR

model formulation to �nd the E�
ccr

(� E�
bcc
) set of DMUs. During level 3, while

determining the ineÆcient scores, we can solve the values for I�
ccr

. Then, as an

advanced starting basis, we can allow all E�
bcc

DMUs to enter the basis and solve

for I�
bcc
. (Alternately, we could solve for the Ibcc values �rst, then relax the BCC

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 24

Table 11: Bank Data Results: Linear Programs Required

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 25

Table 12: Multinormal Data Results: Linear Programs Required

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 26

Table 13: DEA-GENa Results: Linear Programs Required

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 27

Table 14: DEA-GENb Results: Linear Programs Required

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 28

Table 15: DEA-GENc Results: Linear Programs Required

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 29

Table 16: Non-Hierarchical and Hierarchical Comparisons: 8,000-DMU Problems

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 30

1� = 1 constraint, tighten the basis entry rules, and solve for the Iccr scores). Once
the BCC and CCR values are found, we can rapidly solve for the three eÆciency

values desired. Note that this prevents a duplication of e�ort to �nd the ineÆcient

values.

� Byrnes, F�are, and Grosskopf [16] argue that a \no increasing returns to scale"

(NIRS) model must be solved to determine if the DMU (or the virtual DMU if inef-

�cient) is in a region of increasing or decreasing returns to scale. Knowing this may

help indicate the direction the DMU should go to become eÆcient, either expand

operations through output augmentation, or downsize through input contraction.

We know that E�
ccr
� E�

nirs
� E�

bcc
. Consequently, the NIRS strategy could be

added to the strategy above to �nd these scores.

� Besides solving for BCC, CCR, NIRS models, we can also apply assurance region

restrictions [33] once the E� for each model is found at level 2. The various assurance
region approaches can be solved at level 2 then extended to level 3. In this way, a

series of models can be solved rapidly without duplication of e�ort. We know that

the set of eÆcient DMUs under assurance-region constraints is a subset of E� for
any of the above models. This same approach can be used for the cone-ratio model

of [19, 20].

� For the CCR and BCC models, there is an associated orientation, either input or

output. The ineÆciency scores will vary depending on the orientation, but the E�
bcc

and E�
ccr

sets will remain the same regardless of the orientation. Consequently, if

both orientations are needed, then only the level 3 values must be resolved to obtain

both.

� Some versions of the model may provide faster solutions than others depending on

the number of output and input variables that are used. For example, if the number

of outputs exceeds the number of inputs, the output-oriented model solves faster.

Also, the CCRo model has an initial feasible solution, thus bypassing Phase I of the

simplex method. Since the output model may solve faster, this can be used through

level 2, then the input model applied in level 3 calculations if the input values are

needed. HDEA provides the exibility to incorporate the fastest model to identify

E� through level 2, then at level 3 can use the model of choice to determine the

ineÆciency scores.

7.2 Implementation Issues

� As noted above, any method can be used to �nd the set of DMUs belonging to E�

and I� such as sorting, preprocessing, domination theory, etc. These can possibly

enhance the HDEA procedure to expedite the level 2 and level 3 eÆciency score

values.

� Computational concerns have arisen over the two-phase or multi-objective approaches

to the non-Archimedean in�nitesimal issue, which can be decreased via HDEA. We

know that the eÆciency scores do not vary with the sum-of-slack solutions. So in

HDEA, there is no need to solve for the sum of slacks during level 1 or most of level

2. Once potential E� DMUs are identi�ed, the sum of slacks must be solved only for

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 31

these DMUs to determine if they are weakly eÆcient. If there are any weakly eÆ-

cient DMUs, they are removed from E�. During level 3, there is no need to solve for
the sum of slacks for the ineÆcient DMUs since a proper projection to the eÆcient

surface is obtained since no weakly eÆcient DMUs can enter the basis. Solving for

the sum of slacks for the ineÆcient DMUs may simply identify possible alternate

optimal solutions that o�er no new information when weakly eÆcient DMUs are

not in the basis.

� As the number of input/output variables grows, the likelihood of cycling also in-

creases because of severe degeneracy involved with the solution of some DMUs

(especially eÆcient DMUs). Anti-cycling procedures invoke a high computational

cost. Also, the possibility of cycling can increase with a larger number of DMUs

(variables) in the model. HDEA can help reduce the cost of cycling by maintaining

smaller problems. Additionally, at level 1 and most of level 2 there is no need to

invoke the anti-cycling rules. Any DMUs that exhibit cycling can be deferred. Only

when all potential members of E� are identi�ed at level 2, must the anti-cycling

rules be invoked. By passing over the DMUs that cycle, ineÆcient DMUs may later

reveal the problematic DMUs as eÆcient. In this manner, the DMUs will not need

to be solved and the cost of applying anti-cycling rules is reduced.

7.3 Exploiting the Levels

� As we progress through level 1 to level 2 to level 3, information at each level can be

used to enhance the solutions at the next level. DMUs that frequently show up in

eÆcient reference sets can be given priority during the pricing procedure to enter

the basis. By choosing the most attractive variables to enter the basis, the number

of pivots to solve the LPs may be reduced. This may also reduce the potential

for cycling. This also indicates the possibility of using di�erent heuristics for the

entering and leaving variables for the di�erent levels of the HDEA process.

� One advantage of the HDEA process over domination and other preprocessing tech-

niques is that it can be used to �nd DEA scores for categorical variables and window

analysis enroute to determining overall DEA scores. By blocking appropriately, the

eÆcient DMUs for each category or window can be recorded along the way. In this

way, solving overall scores as well as those within particular categories or across

various categories can be accomplished without duplication of e�ort.

7.4 Parallel Implementation

� The HDEA procedure can expand the parallel approach across many platforms. For

example, a SIMD distributed network can be used to solve each block of DMUs.

Since the blocks are smaller, memory requirements are smaller. The advantage of

updated restricted basis entry and early identi�cation of DMU status within blocks

will be lost, but the basic process will still lead to a solution. The basis entry and

identi�cation schemes will hold between levels.

� For the parallel case, Amdahl's law assumes that the same information is avail-

able for the single processor as for multiple processors. But with RBE and early

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 32

identi�cation, the interaction between processors can enhance the solution process

resulting in high levels of eÆciency when multiple processors are used. This is not

an HDEA-exclusive advantage, but it does hold for the HDEA process.

8 Conclusions

We have described a new hierarchial decomposition procedure for solving DEA problems

that advances the state of the art for computational data envelopment analysis. As

demonstrated with medium- and large-scale test sets, this approach can have dramatic

bene�ts over traditional methods|in both single-processor and parallel settings|and

permits enormous problems to be optimized in a modest amount of time. The ability to

routinely solve problems with thousands of DMUs permits researchers and practitioners

to be more ambitious in their application of this important class of models and, we hope,

will encourage new and even more exciting applications of DEA.

A DEA Models

A variety of models have been proposed for data envelopment analysis, each with di�erent

assumptions and interpretations. This appendix provides a mathematical and notational

summary of the most commonly used formulations: CCR [22], BCC [6], additive [18],

non-decreasing returns-to-scale (NDRS) and non-increasing returns-to-scale (NIRS) [32].

Each basic model is shown in both envelopment and multiplier forms (which are duals

of each other), and for all traditional orientations. Model taxonomy follows the form

Mr

j
, where M is the base model's abbreviation, r is the orientation indicator (r = o for

output-oriented, r = i for input-oriented, and missing for non-oriented), and j is the index
number of the DMU being evaluated by the model.

1.1 Envelopment Models

Input� oriented

CCRi

j
: min

�;si;so�0;�j
f�j � "(1si + 1so)jY�� so = Yj ; �jXj �X�� s

i = 0g

BCC i

j
: min

�;si;so�0;�j
f�j � "(1si + 1so)jY�� so = Yj ; �jXj �X�� s

i = 0;1� = 1g

NDRSi
j

: min
�;si;so�0;�j

f�j � "(1si + 1so)jY�� so = Yj ; �jXj �X�� s
i = 0;1� � 1g

NIRSi
j

: min
�;si;so�0;�j

f�j � "(1si + 1so)jY�� so = Yj ; �jXj �X�� s
i = 0;1� � 1g

Output� oriented

CCRo

j
: max

�;si;so�0;�j
f�j + "(1si + 1so)jX�+ si = Xj ; �jYj �Y�+ so = 0g

BCCo

j
: max

�;si;so�0;�j
f�j + "(1si + 1so)jX�+ si = Xj ; �jYj �Y�+ so = 0;1� = 1g

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 33

NDRSo
j

: max
�;si;so�0;�j

f�j + "(1si + 1so)jX�+ si = Xj ; �jYj �Y�+ so = 0;1� � 1g

NIRSo
j

: max
�;si;so�0;�j

f�j + "(1si + 1so)jX�+ si = Xj ; �jYj �Y�+ so = 0;1� � 1g

Non� oriented

ADD
j

: max
�;si;so�0

f1si + 1sojY�� so = Yj ;X�+ si = Xj ;1� = 1g

1.2 Multiplier Models

Input� oriented

CCR
i

j
: max

�;�

fz = �Yj j�Y � �X � 0;�Xj = 1;�;� � 1"g

BCC
i

j
: max

�;�;u

fz = �Yj + uj�Y � �X + 1u � 0;�Xj = 1;�;� � 1";u freeg

NDRS
i

j
: max

�;�;u

fz = �Yj + uj�Y � �X + 1u � 0;�Xj = 1;�;� � 1";u � 0g

NIRS
i

j
: max

�;�;u

fz = �Yj + uj�Y � �X + 1u � 0;�Xj = 1;�;� � 1";u � 0g

Output� oriented

CCR
o

j
: min

�;�

fz = �Xj j�Y � �X � 0;�Yj = 1;�;� � 1"g

BCC
o

j
: min

�;�;v

fz = �Xj + vj�Y � �X + 1v � 0;�Yj = 1;�;� � 1"; v freeg

NDRS
o

j
: min

�;�;v

fz = �Xj + vj�Y � �X + 1v � 0;�Yj = 1;�;� � 1"; v � 0g

NIRS
o

j
: min

�;�;v

fz = �Xj + vj�Y � �X + 1v � 0;�Yj = 1;�;� � 1"; v � 0g

Non� oriented

ADD
j

: max
�;�;!

f�Yj � �Xj + !j�Y � �X + 1! � 0;� � 1;� � 1;! freeg

B Multinormal Population Parameters

Since few large-scale DEA problems are currently available, randomly generated data sets

were needed to simulate realistic applications. One procedure for generating such data is

to draw the samples from a multinormal distribution. To this end, the DRNMVN routine

from the IMSL library was used to generate observations for 10,000 DMUs based on the

variance-covariance matrix of Table 17. The code used to create this data is described in

[11].

From the randomly generated data, the variables representing inputs and outputs

needed to be carefully chosen. To coincide with sound economic theory, all outputs

should be positively correlated with all the inputs. By eliminating variable x4, variables
x1, x3, and x7 could represent outputs since they would be positively correlated with

all the other remaining variables that would represent inputs. In this way, each DMU

would be comprised of 3 outputs and 4 inputs. Positively correlated inputs would be

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 34

compliments in the production process; those negatively correlated are substitutes. Since

the input variables cover a wide range of cases of compliment and substitute relationships,

the randomly generated values further simulate realistic data.

Table 17: Variance-Covariance Matrix 1 for Multinormal Data

X1 303.4

X2 2.5 2.5

X3 12493.9 6093.9 112750625.0

X4 4062.6 484.2 -2890405.7 31033992.2

X5 265.2 45.3 -1346076.8 -455158.7 7629765.5

X6 19597.2 -195.0 3436081.9 -270405.4 -674642.7 86492323.0

X7 36418.8 6428.4 111950224.4 27415022.3 5153887.3 88983356.8 233502490.7

X8 3647.0 1001.0 10815783.1 112293.8 -64824.7 -319883.0 10543369.3 7812141.0

C DEA-GEN, Cobb-Douglas Problem Generator

While random data generators can provide large problems, a more systematic approach is

needed to represent realistic scenarios. To this end, economic theory was used to generate

large-scale DEA problem sets.

In production economics, the most widely used functional form is known as the Cobb-

Douglas production function [24]. This function is written as:

yj = ao

mY

i=1

x�i

ij
; xij > 0; j = 1; : : : ; n

Here, yj is the single aggregate output produced by DMUj , the xijs are values of the

input variables used by DMUj in the production process, �i is the factor elasticity for

input i, and ao is a constant scale factor. If
P

m

i=1
�i = 1 then only constant returns to

scale exist in the production process. For
P

m

i=1
�i < 1 decreasing returns to scale are

present, while
P

m

i=1
�i > 1 indicates increasing returns to scale. In the DEA studies,

increasing returns to scale are not used because the function results in only a few DEA

eÆcient points. Although this does not pose a problem, it does not realistically represent

realistic data.

For the single output model, this production function has many desirable properties.

If the inputs are randomly generated, the function generates output values that will always

lie on the production possibility frontier (i.e., they will be DEA eÆcient for
P

m

i=1
�i �

1). This frontier is central to the theory of economic growth and measures the rate of

technological progress. The Cobb-Douglas frontier represents the best use of technology

as well as the best management practices to achieve eÆcient production. This coincides

with the practical use of DEA. Unlike DEA, the quest in economic studies is to attempt

to estimate the values of �i by �tting the function to the observed data. By choosing the

�i values a priori, then randomly generating the input values, the output values can be

determined so that they coincide with widely accepted economic theory. To insure that

not all generated data sets fall on the eÆcient frontier surface, the ao scale factor can

be randomly generated; the eÆcient DMUs will consist of those for which ao takes on it

maximum value. Control over the number of DMUs that are eÆcient in the data set can

be maintained by limiting the number of DMUs generated with maxao.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 35

Table 18: Parameters for DEA-GEN Problems
Type #DMUs � Values Mean Values Standard Dev.

a 1,000 .3,.2,.2,.3 .12,.13,.13,.14,.11 .03,.04,.02,.01,.01

a 2,000 .3,.2,.2,.2,.1 .20,.30,.15 .03,.04,.02

a 4,000 .3,.3,.2,.2 .12,.12,.15,.14 .03,.04,.02,.01

a 8,000 .4,.2,.1,.1,.1 .5 .1

b 1,000 .03,.07,.12,.03,.12,.1,.02 .2,.3,.15 .01,.05,.01

b 2,000 .1,.1,.1,.1,.1,.1,.1 .52,.13 .03,.04

b 4,000 .4,.3,.1 .4,.3,.15 .13,.08,.02

b 8,000 .3,.17,.12,.03,.12,.2 .2,.3,.15,.14 .01,.05,.01,.01

c 1,000 .18,.2,.14,.1,.1,.1 .2,.12,.14,.11,.11 .03,.04,.02,.01,.01

c 2,000 .13,.18,.2,.14,.1,.1 .2,.18,.15,.19 .03,.04,.02,.01

c 4,000 .13,.2,.12,.13 .2,.3,.15,.14,.11 .03,.04,.02,.01,.01

c 8,000 .08,.12,.21,.07,.11 .3,.3,.3,.1 .04,.04,.1,.03

d 25,000 .3,.3,.3 .3,.3 .01,.01

In DEA analysis, the single-output, multiple-input scenario is not of primary interest.

DEA was developed to analyze the case of multiple-output, multiple-input studies. F�are

and Grosskopf [51] point out that the existence of a joint production function has not been

established. That is, the multiple-output, multiple-input model does not produce values

strictly on the eÆcient production frontier. To do so, would require strict assumptions

that would not provide the desired realism for the DEA study. However, a joint model

without the strict assumptions would simulate economically sound production processes.

Consequently, a joint model was developed for the DEA-GEN problem generator.

For each of the problem sets, the input values were generated from a uniform dis-

tribution. The �i values were chosen to simulate constant returns to scale processes as

well as a variety of cases representing di�erent levels of decreasing returns to scale. The

ao value was randomly generated, but with a modest control of the number of eÆcient

DMUs that could be present in the problem data.

Once the single aggregate output level was calculated, the individual output levels

were determined by assigning each individual output as a percentage of the aggregate.

The percentages for each individual output were drawn from normal distributions with

predetermined means and standard deviations. The means of the normal distributions

were chosen so that the percentages sum to one. Table 18 lists the �i values as well as the
means and standard deviations that were used to generate twelve di�erent Cobb-Douglas

data sets.

Because of the economic foundations of the DEA-GEN code, the data generated

resembles a class of problems that should more closely simulate realistic economic data

than what would be possible from the data sampled from a multinormal distribution.

References

[1] A. I. Ali, IDEAS: integrated data envelopment analysis system, technical report, Depart-

ment of General Business and Finance, University of Massachusetts, Amherst, MA, 1989.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 36

[2] A. I. Ali, Data envelopment analysis: computational issues, Comput. Environ. and Urban

Systems 14 (1990) 157{165.

[3] A. I. Ali, Streamlined computation for data envelopment analysis, European Journal of

Operational Research 64 (1993) 61{67.

[4] A. I. Ali, Computational aspects of data envelopment analysis, in A. Charnes, W. W.

Cooper, A.Y. Lewin, and L.M. Seiford, DEA: Theory, Methodology, and Applications,

Kluwer Academic Publishers, Boston, 1994, pp. 63{88.

[5] A. I. Ali, L. Seiford, Computational accuracy and in�nitesimals in data envelopment anal-

ysis, INFOR 31 (1989) 290{297.

[6] R. D. Banker, A. Charnes, W. W. Cooper, Some models for estimating technical and scale

ineÆciencies in data envelopment analysis, Management Science 30 (1984) 1078{1092.

[7] R. S. Barr, M. L. Durchholz, Parallel software for large-scale data envelopment analysis,

presented at the Joint National Meeting of ORSA and TIMS, San Francisco, CA, 1992.

[8] R. S. Barr, M. L. Durchholz, Parallel and hierarchical decomposition approaches for solving

large-scale DEA models, presented at the Joint National Meeting of ORSA and TIMS,

Chicago, IL, 1993.

[9] R. S. Barr, M. L. Durchholz, Parallel and hierarchical decomposition approaches for solving

large-scale DEA models, technical report 94-CSE-6, Department of Computer Science and

Engineering, Southern Methodist University, Dallas, TX, 1994

[10] R. S. Barr, B. L. Hickman, Reporting computational experiments with parallel algorithms:

issues, measures, and experts' opinions, ORSA Journal on Computing 5 (1993) 2{18.

[11] R. S. Barr, B. L. Hickman, J. S. Turner, Statistical �le merging: a new, constrained network

model and parallel solution approach, technical report, Department of Computer Science

and Engineering, Southern Methodist University, Dallas, TX, 1997

[12] R. S. Barr, L. Seiford, T. F. Siems, An envelopment-analysis approach to measuring the

managerial quality of banks, Annals of Operations Research 42 (1993) 1{19.

[13] R. S. Barr, T. F. Siems, Predicting bank failure using DEA to quantify management quality,

in R. Barr, R. Helgason, J. Kennington eds., Interfaces in Computer Science and Operations

Research: Advances in Metaheuristics, Optimization, and Stochastic Modeling Techniques,

Kluwer Academic Publishers, Boston, 1997, pp. 341{365.

[14] R. E. Bixby, Implementing the simplex method: the initial basis, ORSA Journal on Com-

puting 4 (1992) 267{284.

[15] R. G. Bland, New �nite pivoting rules for the simplex method, Mathematics of Operations

Research 2 (1977) 103{107.

[16] P. Byrnes, R. F�are, S. Grosskopf, Measuring productive eÆciency: an application to illinois

strip mines, Management Science 30 (1984) 671{681.

[17] A. Charnes, W. W. Cooper, Management Models and Industrial Applications of Linear

Programming, John Wiley, New York, 1961.

[18] A. Charnes, W. W. Cooper, B. Golany, L. Seiford, J. Stutz, Foundations of data envel-

opment analysis for pareto-Koopmans eÆcient empirical production functions, Journal of

Econometrics 30 (1985) 91{107.

[19] A. Charnes, W. W. Cooper, Z.M. Huang, Polyhedral Cone-Ratio DEA Models with an

Illustrative Application to Large Commercial Banks, Journal of Econometrics 46 (1990)

73{91.

[20] A. Charnes, W. W. Cooper, Z.M. Huang, D.B. Sun, Relations between half-space and

�nitely generated cones in polyhedral cone-ratio DEA models, International Journal of

Systems Science 22 (1991) 2057{2077.

[21] A. Charnes, W. W. Cooper, A. Y. Lewin, L. M. Seiford, Data Envelopment Analysis: The-

ory, Methodology, and Application, Kluwer Academic Publishers, Boston, 1994.

[22] A. Charnes, W. W. Cooper, E. Rhodes, 1978. Measuring the eÆciency of decision making

units, European Journal of Operational Research 2 (1978) 429{444.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 37

[23] A. Charnes, J. Rousseau, J. Semple, An e�ective non-Archimedean anti-degeneracy/cycling

linear programming method especially for data envelopment analysis and like models Annals

of Operations Research 47 (1993), 271{278.

[24] C. W. Cobb, P. H. Douglas, A theory of production, American Economic Review March

(Suppl.) (1928) 139{165.

[25] T. H. Cormen, C. E. Leiverson, R. L. Rivest, Introduction to Algorithms, MIT Press, Cam-

bridge, MA, 1990.

[26] M. J. Flynn, Very high-speed computing systems, Proceedings of the IEEE 54 (1966) 1901{

1909.

[27] D. E. Knuth, The Art of Computer Programming Volume 3 / Sorting and Searching,

Addison-Wesley, Reading, MA, 1973.

[28] R. Marsten, The design of the XMP linear programming library, ACM Transactions on

Mathematical Software 7 (1981) 481{497.

[29] J. M. Mulvey, Pivot strategies for primal-simplex network codes, Journal of the ACM 25

(1978) 206{270.

[30] W. Orchard-Hays, Advanced Linear Programming Computing Techniques, McGraw-Hill,

NY, 1968.

[31] F. Phillips, R. G. Parsons, A. Donoho, Parallel microcomputing for data envelopment anal-

ysis, Comput., Environ., and Urban Systems 14 (1990) 167{170.

[32] L. M. Seiford, R. M. Thrall, Recent development in DEA: the mathematical programming

approach to frontier analysis, Journal of Econometrics 46 (1990) 7{38.

[33] R. G. Thompson, L. N. Langemeier, C.-T. Lee, E. Lee, R. M. Thrall, The role of multiplier

bounds in eÆciency analysis with application to Kansas farming, Journal of Econometrics

46 (1990) 93{108.

0

0.8

1.3

1.8

2.3

2.8

3.3

3.9

4.4

1000 2000 3000 4000 5000 6000 7000 8000

No RBE/EIE

Number of DMU’s

T
i
m
e
(
h
r
s
)

RBE/EIE

Figure 1: Solution Time for Subsets of BANK-8

5

Cumulative Number of DMUs

T
i
m
e

No RBE/EIE

RBE/EIE

1000 2000 3000 4000 5000 6000 7000 8000

10

15

20

25

30

35

40

45

C
u
m
u
l
a
t
i
v
e

(
h
r
s
)

Figure 2: Cumulative Solution Time for Subsets of BANK-8

1

Number of DMUs

T
i
m
e

0
1
0
0

2
0
0

3
0
0

(
m
i
n
u
t
e
s
)

1000 2000 3000 4000 5000 6000 7000 8000

Figure 3: Solution Time versus Problem Size

2

Block1 Block2 Block3 Blockk

A
l
lD
M
U
s

E
2
i

1
E i

E

L
e
v
e
l 1

L
e
v
e
l 2

L
e
v
e
l 3

3
I i

Figure 4: Hierarchical Decomposition Schematic

3

600
620

640

660

680

700
720

740

760

780

800
820

50 75 100 150 200 250 300

T
i
m
e

Block Size

Figure 5: Total Solution Time vs. Blocksize for 8,000-DMU Problem

4

T
a
b
le
5
.
--
H
ie
r
a
r
c
h
ia
l
T
e
s
t
P
r
o
b
le
m

R
e
s
u
lt
s

D
M
U
s
V
a
ria
b
les
E
�
.

N
u
m
b
er
o
f
P
iv
o
ts

N
u
m
b
er
P
riced

T
im
e
to
S
o
lv
e(m
in
.)

S
p
eed
u
p
E
�
cien
cy

O
u
t

In

1

5

1
0

1

5

1
0

1

5

1
0

5

1
0

5

1
0

1
0
0
0

3

6

6
7

4
3
9
9
2

4
4
5
3
2

4
5
2
0
7

1
5
9
0
5
8
1

1
6
3
2
3
5
1

1
6
8
0
0
0
0

1
2
.4
1

2
.7
8

1
.7
0

4
.4
6
7
.3
0
0
.8
9
0
.7
3

B
a
n
k

2
0
0
0

3

6

7
0

9
2
3
7
4

9
3
1
5
4

9
4
2
1
9

4
5
7
2
3
3
2

4
9
5
9
9
2
6

4
7
5
7
6
1
8

3
2
.8
1

7
.1
7

4
.1
9

4
.5
8
7
.8
3
0
.9
2
0
.7
8

4
0
0
0

3

6

8
7
1
8
9
7
8
4
1
9
0
3
4
0
1
9
0
9
8
7
1
2
0
9
3
1
8
7
1
2
2
3
2
6
2
8
1
2
2
4
2
9
4
9

8
5
.3
1
1
7
.6
4

9
.4
0

4
.8
4
9
.0
8
0
.9
7
0
.9
1

8
0
0
0

3

6

7
7
3
8
2
7
5
5
3
7
4
0
8
8
3
8
3
8
7
2
2
2
8
9
0
4
5
3
2
6
9
4
6
4
9
7
2
3
4
2
9
4
9
1

1
6
6
.0
0
3
7
.6
8
1
8
.1
8

4
.4
1
9
.1
3
0
.8
8
0
.9
1

1
0
0
0

3

4

7
9

4
3
9
9
2

4
4
5
3
2

4
5
2
0
7

1
5
9
0
5
8
1

1
6
3
2
3
5
1

1
6
8
0
0
0
0

1
2
.4
1

2
.7
8

1
.7
0

4
.4
6
7
.3
0
0
.8
9
0
.7
3

M
u
lti-

2
0
0
0

3

4

8
9

6
2
4
1
8

6
2
5
0
2

6
2
6
7
4

4
9
8
4
7
3
2

5
0
2
9
9
0
2

5
0
8
9
3
6
8

2
8
.0
3

5
.8
5

3
.1
4

4
.8
1
8
.9
2
0
.9
6
0
.8
9

N
o
rm
a
l

4
0
0
0

3

4

8
5
1
3
2
8
8
4
1
3
3
1
4
9
1
3
3
5
6
6
1
0
4
9
0
4
7
0
1
0
5
9
5
6
1
9
1
0
7
2
3
2
9
4

5
9
.4
1
1
2
.3
6

6
.6
6

4
.7
9
8
.9
3
0
.9
6
0
.8
9

8
0
0
0

3

4

1
0
4
2
8
2
6
7
9
2
8
3
2
1
9
2
8
4
0
0
1
2
2
7
4
0
4
0
7
2
2
9
3
4
2
3
5
2
3
1
9
0
8
0
2

1
2
8
.1
0
2
6
.6
4
1
4
.3
0

4
.8
1
8
.9
6
0
.9
6
0
.9
0

1
0
0
0

6

4

9
6

5
1
1
0
2

5
1
6
4
5

5
2
3
9
2

1
9
2
2
1
6
1

1
9
6
4
6
4
9

2
0
1
9
5
9
6

1
5
.8
1

3
.5
0

2
.0
4

4
.5
2
7
.7
5
0
.9
0
0
.7
8

D
E
A
-G
E
N
a

2
0
0
0

3

5

1
4
7

8
7
7
0
9

8
8
0
8
4

8
8
7
4
6

5
2
1
1
1
6
7

5
2
7
5
6
3
1

5
3
6
4
4
9
6

3
3
.6
4

7
.1
2

4
.0
0

4
.7
2
8
.4
1
0
.9
4
0
.8
4

4
0
0
0

5

4

8
2
1
6
8
8
1
3
1
6
9
2
8
1
1
6
9
8
5
6
1
2
6
8
2
2
3
1
1
2
8
1
6
3
7
8
1
2
9
8
6
0
1
0

8
3
.3
8
1
7
.1
8

9
.1
1

4
.8
5
9
.1
5
0
.9
7
0
.9
2

8
0
0
0

2

5

7
0
2
3
3
1
0
8
2
3
3
5
8
5
2
3
4
2
9
3
1
8
7
7
2
0
4
6
1
8
9
6
2
2
2
0
1
9
2
1
5
9
3
2

1
0
7
.6
0
2
2
.4
0
1
2
.0
8

4
.8
0
8
.9
1
0
.9
6
0
.8
9

1
0
0
0

4

7

2
1
4

7
2
9
6
1

7
3
7
0
6

7
4
4
5
7

3
5
3
0
6
2
7

3
5
8
3
4
9
5

3
6
3
8
8
7
2

3
0
.6
0

6
.4
3

3
.5
1

4
.7
6
8
.7
2
0
.9
5
0
.8
7

D
E
A
-G
E
N
b

2
0
0
0

2

7

2
7
5
1
1
9
2
1
1
1
1
3
7
5
5
1
1
4
4
7
9

8
0
4
0
4
4
4

8
1
4
3
1
4
2

8
2
3
9
1
8
1

5
5
.3
7
1
1
.5
4

6
.2
1

4
.8
0
8
.9
2
0
.9
6
0
.8
9

4
0
0
0

3

3

6
4

9
8
0
8
7

9
9
2
3
7

9
9
3
7
8

7
3
9
7
9
9
2

7
4
7
4
6
1
1

7
5
6
0
1
6
9

3
9
.7
7

8
.2
9

4
.4
9

4
.8
0
8
.8
6
0
.9
6
0
.8
9

8
0
0
0

4

6

1
5
3

1
6
4
1
8

1
6
4
4
3

1
6
4
9
3
3
6
6
7
1
0
7
9
3
6
9
4
3
7
8
9
3
7
3
6
0
1
5
2

2
4
8
.9
0
5
1
.6
3
2
7
.5
3

4
.8
2
9
.0
4
0
.9
6
0
.9
0

1
0
0
0

6

6

2
0
1

7
9
1
8
0

7
9
9
7
6

8
1
0
3
4

3
6
9
3
5
9
0

3
7
4
9
2
8
6

3
8
2
4
6
6
6

3
3
.9
7

7
.1
9

3
.9
1

4
.7
2
8
.6
9
0
.9
4
0
.8
7

D
E
A
-G
E
N
c

2
0
0
0

5

6

2
6
5
1
5
1
7
0
4
1
5
2
7
2
7
1
5
4
1
1
8
1
0
2
1
0
5
4
0
1
0
3
2
7
9
0
5
1
0
4
7
9
9
6
3

7
9
.7
3
1
6
.5
8

8
.8
2

4
.8
1
9
.0
4
0
.9
6
0
.9
0

4
0
0
0

4

4

6
6
1
2
7
4
7
3
1
2
7
6
8
4
1
2
7
8
2
7

9
3
4
8
0
3
4

9
4
4
0
5
6
1

9
5
4
7
8
3
2

5
7
.7
2
1
1
.9
7

6
.3
8

4
.8
2
9
.0
5
0
.9
6
0
.9
0

8
0
0
0

4

5

2
1
6
4
0
0
7
7
2
4
0
1
4
1
3
4
0
2
1
3
3
3
7
0
3
0
3
9
2
3
7
2
7
7
3
9
3
3
7
5
7
2
9
8
9

2
3
1
.2
0
4
8
.2
4
2
5
.5
7

4
.7
9
9
.0
4
0
.9
6
0
.9
0

T
a
b
le
6
.
--
B
a
n
k
H
ie
r
a
r
c
h
ia
l
L
e
v
e
l
T
e
s
t
P
r
o
b
le
m

R
e
s
u
lt
s

D
M
U
s

N
u
m
b
er
o
f
P
iv
o
ts

N
u
m
b
er
P
riced

T
im
e
to
S
o
lv
e
(m
in
.)

S
p
eed
u
p

E
�
cien
cy
F
ra
ctio
n
o
f
T
im
e

1

5

1
0

1

5

1
0

1

5

1
0

5

1
0

5

1
0

1

5

1
0

L
ev
el
1

1
4
7
3
9

1
4
9
6
8

1
5
4
5
8

5
0
4
3
4
9

5
2
8
4
3
1

5
6
2
6
2
1

3
.9
2

0
.8
7

0
.5
3

4
.5
1
7
.4
0
0
.9
0
0
.7
4

.3
2

.3
1

.3
1

1
0
0
0

L
ev
el
2

7
8
6
5

8
1
7
6

8
3
6
1

3
2
2
7
1
8

3
4
0
4
0
6

3
5
3
8
6
5

2
.4
1

0
.5
3

0
.3
0

4
.5
5
8
.0
3
0
.9
1
0
.8
0

.1
9

.1
9

.1
8

L
ev
el
3

2
1
3
8
8

2
1
3
8
8

2
1
3
8
8

7
6
3
5
1
4

7
6
3
5
1
4

7
6
3
5
1
4

6
.0
8

1
.3
8

0
.8
7

4
.4
1
6
.9
9
0
.8
8
0
.7
0

.4
9

.5
0

.5
1

L
ev
el
1

3
0
7
7
0

3
1
2
3
4

3
1
6
7
9

1
4
9
3
4
6
5

1
5
5
8
8
6
2

1
6
2
8
5
0
9

1
0
.5
3

2
.3
0

1
.3
1

4
.5
8
8
.0
4
0
.9
2
0
.8
0

.3
2

.3
2

.2
7

2
0
0
0

L
ev
el
2

1
4
4
8
6

1
4
7
0
2

1
4
9
2
2

8
2
0
0
4
9

8
4
2
2
4
6

8
7
0
2
9
1

5
.8
2

1
.2
2

0
.6
7

4
.7
7
8
.6
9
0
.9
5
0
.8
7

.1
8

.1
8

.1
6

L
ev
el
3

4
7
2
1
8

4
7
2
1
8

4
7
2
1
8

2
2
5
8
8
1
8

2
5
5
8
8
1
8

2
2
5
8
8
1
8

1
6
.4
6

3
.6
5

2
.2
1

4
.5
1
7
.4
5
0
.9
0
0
.7
4

.5
0

.5
0

.5
3

L
ev
el
1

8
0
8
7
4

8
1
0
6
0

8
1
4
5
4

5
3
4
7
9
1
3

5
4
3
8
8
5
8

5
4
4
1
0
1
5

3
6
.4
9

7
.5
2

3
.9
7

4
.8
5
9
.1
9
0
.9
7
0
.9
2

.4
3

.4
3

.4
2

4
0
0
0

L
ev
el
2

2
0
4
7
5

2
0
8
4
5

2
1
0
9
8

1
6
1
4
9
6
1

1
6
6
3
4
5
7

1
6
7
1
6
2
1

1
0
.9
5

2
.2
8

1
.2
0

4
.8
0
9
.1
3
0
.9
6
0
.9
1

.1
3

.1
3

.1
3

L
ev
el
3

8
8
4
3
5

8
8
4
3
5

8
8
4
3
5

5
1
3
0
3
1
3

5
1
3
0
3
1
3

5
1
3
0
3
1
3

3
7
.8
7

7
.8
4

4
.2
3

4
.8
3
8
.9
5
0
.9
7
0
.9
0

.4
4

.4
4

.4
5

L
ev
el
1

1
6
5
1
8
9
1
6
5
4
3
2
1
6
5
9
9
6

1
0
7
7
4
5
0
4
1
1
0
5
1
1
4
7
1
1
2
3
2
7
9
0

7
3
.6
5

1
6
.5
3

8
.0
5

4
.4
6
9
.1
5
0
.8
9
0
.9
1

.4
4

.4
4

.4
4

8
0
0
0

L
ev
el
2

4
1
8
1
4

4
1
9
8
5

4
2
1
2
4

3
2
5
2
0
9
3

3
2
9
5
0
4
0

3
3
3
2
8
4
5

2
2
.2
6

4
.8
1

2
.3
4

4
.6
3
9
.5
1
0
.9
3
0
.9
5

.1
3

.1
3

.1
3

L
ev
el
3

1
7
5
7
5
2
1
7
5
7
5
2
1
7
5
7
5
2

8
8
6
3
8
5
6

8
8
6
3
8
5
6

8
8
6
3
8
5
6

7
0
.1
0

1
6
.3
4

7
.7
9

4
.2
9
9
.0
0
0
.8
6
0
.9
0

.4
3

.4
3

.4
3

T
a
b
le
7
.
--
M
u
li-n
o
r
m
a
l
H
ie
r
a
r
c
h
ia
l
L
e
v
e
l
T
e
s
t
P
r
o
b
le
m

R
e
s
u
lt
s

D
M
U
s

N
u
m
b
er
o
f
P
iv
o
ts

N
u
m
b
er
P
riced

T
im
e
to
S
o
lv
e
(m
in
.)

S
p
eed
u
p

E
�
cien
cy
F
ra
ctio
n
o
f
T
im
e

1

5

1
0

1

5

1
0

1

5

1
0

5

1
0

5

1
0

1

5

1
0

L
ev
el1

1
4
7
3
9

1
4
9
6
8

1
5
4
5
8

5
0
4
3
4
9

5
2
8
4
3
1

5
6
2
6
2
1

3
.9
2

0
.8
7

0
.5
3

4
.5
1
7
.4
0
0
.9
0
0
.7
4

.3
2

.3
1

.3
1

1
0
0
0

L
ev
el2

7
8
6
5

8
1
7
6

8
3
6
1

3
2
2
7
1
8

3
4
0
4
0
6

3
5
3
8
6
5

2
.4
1

0
.5
3

0
.3
0

4
.5
5
8
.0
3
0
.9
1
0
.8
0

.1
9

.1
9

.1
8

L
ev
el3

2
1
3
8
8

2
1
3
8
8

2
1
3
8
8

7
6
3
5
1
4

7
6
3
5
1
4

7
6
3
5
1
4

6
.0
8

1
.3
8

0
.8
7

4
.4
1
6
.9
9
0
.8
8
0
.7
0

.4
9

.5
0

.5
1

L
ev
el1

2
7
8
9
7

2
7
9
6
9

2
8
1
0
2

2
2
3
9
9
2
1

2
2
7
9
1
3
4

2
3
3
0
1
0
7

1
2
.3
6

2
.5
7

1
.3
7

4
.8
1
9
.0
2
0
.9
6
0
.9
0

.4
4

.4
4

.4
4

2
0
0
0

L
ev
el2

3
9
2
8

3
9
4
0

3
9
7
9

3
6
6
0
3
8

3
7
1
9
9
5

3
8
0
4
8
8

1
.9
8

0
.4
1

0
.2
2

4
.8
3
9
.0
0
0
.9
7
0
.9
0

.0
7

.0
7

.0
7

L
ev
el3

3
0
5
9
3

3
0
5
9
3

3
0
5
9
3

2
3
7
8
7
7
3

2
3
7
8
7
7
3

2
3
7
8
7
7
3

1
3
.6
9

2
.8
7

1
.5
5

4
.7
7
8
.8
3
0
.9
5
0
.8
8

.4
9

.4
9

.4
9

L
ev
el1

5
5
3
0
7

5
5
5
3
5

5
5
7
9
0

4
4
2
0
4
0
0

4
5
1
1
8
1
2

4
6
1
0
7
1
2

2
4
.2
9

5
.0
9

2
.7
1

4
.7
7
8
.9
6
0
.9
5
0
.9
0

.4
1

.4
1

.4
1

4
0
0
0

L
ev
el2

1
2
4
0
0

1
2
4
3
7

1
2
5
9
9

1
1
3
1
0
5
7

1
1
4
4
7
9
4

1
1
7
3
5
6
9

6
.3
1

1
.3
0

0
.7
0

4
.8
5
9
.0
1
0
.9
7
0
.9
0

.1
1

.1
1

.1
1

L
ev
el3

6
5
1
7
7

6
5
1
7
7

6
5
1
7
7

4
9
3
9
0
1
3

4
9
3
9
0
1
3

4
9
3
9
0
1
3

2
8
.8
1

5
.9
7

3
.2
5

4
.8
3
8
.8
6
0
.9
7
0
.8
9

.4
8

.4
8

.4
8

L
ev
el1

1
1
2
1
5
4
1
1
2
5
6
4
1
1
3
1
9
2

8
9
0
0
6
3
2

9
0
6
8
5
2
1

9
2
8
6
1
8
1

4
9
.5
0

1
0
.2
8

5
.4
8

4
.8
2
9
.0
3
0
.9
6
0
.9
0

.3
9

.3
9

.3
8

8
0
0
0

L
ev
el2

2
3
6
3
3

2
3
7
6
3

2
3
9
1
7

2
1
4
9
4
2
4

2
1
7
5
3
6
3

2
2
1
4
2
7
0

1
2
.1
7

2
.4
9

1
.3
0

4
.8
9
9
.3
6
0
.9
8
0
.9
4

.1
0

.0
9

.0
9

L
ev
el3

1
4
6
8
9
2
1
4
6
8
9
2
1
4
6
8
9
2

1
1
6
9
0
3
5
1
1
1
6
9
0
3
5
1
1
1
6
9
0
3
5
1

6
6
.4
0

1
3
.8
7

7
.5
2

4
.7
9
8
.8
3
0
.9
6
0
.8
8

.5
1

.5
2

.5
3

T
a
b
le
8
.
--
D
E
A
-G
E
N
a
H
ie
r
a
r
c
h
ia
l
L
e
v
e
l
T
e
s
t
P
r
o
b
le
m

R
e
s
u
lt
s

D
M
U
s

N
u
m
b
er
o
f
P
iv
o
ts

N
u
m
b
er
P
riced

T
im
e
to
S
o
lv
e
(m
in
.)

S
p
eed
u
p

E
�
cien
cy
F
ra
ctio
n
o
f
T
im
e

1

5

1
0

1

5

1
0

1

5

1
0

5

1
0

5

1
0

1

5

1
0

L
ev
el1

1
6
3
6
0

1
6
7
4
9

1
7
0
4
2

5
3
8
2
8
4

5
6
9
6
9
2

5
9
9
5
3
6

4
.5
4

1
.0
2

0
.6
0

4
.4
5
7
.5
7
0
.8
9
0
.7
6

.2
9

.2
9

.2
9

1
0
0
0

L
ev
el2

7
9
6
0

8
1
1
4

8
5
6
8

3
4
0
9
6
1

3
5
2
0
4
1

3
7
7
1
4
4

2
.6
6

0
.5
8

0
.3
4

4
.5
9
7
.8
2
0
.9
2
0
.7
8

.1
7

.1
7

.1
7

L
ev
el3

2
6
7
8
2

2
6
7
8
2

2
6
7
8
2

1
0
4
2
9
1
6
1
0
4
2
9
1
6
1
0
4
2
9
1
6

8
.6
1

1
.9
0

1
.1
0

4
.5
3
7
.8
3
0
.9
1
0
.7
8

.5
4

.5
4

.5
4

L
ev
el1

2
5
2
9
5

2
5
5
6
5

2
6
0
1
0

1
3
3
1
5
2
5
1
3
7
7
9
2
8
1
4
4
2
3
1
9

8
.5
8

1
.8
6

1
.0
8

4
.6
1
7
.9
4
0
.9
2
0
.7
9

.2
6

.2
6

.2
7

2
0
0
0

L
ev
el2

1
6
9
0
2

1
7
0
0
7

1
7
2
2
4

1
0
7
2
5
2
0
1
0
9
0
5
8
1
1
1
1
5
0
5
5

6
.7
7

1
.3
9

0
.7
5

4
.8
7
9
.0
3
0
.9
7
0
.9
0

.2
0

.2
0

.1
9

L
ev
el3

4
5
5
1
2

4
5
5
1
2

4
5
5
1
2

2
8
0
7
1
2
2
2
8
0
7
1
2
2
2
8
0
7
1
2
2

1
8
.2
9

3
.8
7

2
.1
7

4
.7
3
8
.4
3
0
.9
5
0
.8
4

.5
4

.5
4

.5
4

L
ev
el1

6
9
3
3
4

6
9
5
9
1

6
9
8
7
9

5
3
9
7
9
6
8
5
5
0
1
4
1
2
5
6
2
3
5
4
4

3
3
.9
5

7
.0
8

3
.7
2

4
.8
0
9
.1
3
0
.9
6
0
.9
1

.4
1

.4
1

.4
1

4
0
0
0

L
ev
el2

1
8
1
3
0

1
8
3
4
1

1
8
6
2
8

1
9
3
5
9
2
4
1
9
6
6
6
2
7
2
0
1
4
1
2
7

1
2
.0
7

2
.4
7

1
.2
9

4
.8
9
9
.3
6
0
.9
8
0
.9
4

.1
4

.1
4

.1
4

L
ev
el3

8
1
3
4
9

8
1
3
4
9

8
1
3
4
9

5
3
4
8
3
3
9
5
3
4
8
3
3
9
5
3
4
8
3
3
9

3
7
.3
6

7
.6
3

4
.1
0

4
.9
0
9
.1
1
0
.9
8
0
.9
1

.4
5

.4
5

.4
5

L
ev
el1

9
3
4
2
1

9
3
7
8
2

9
4
2
7
8

7
6
9
2
4
9
7
7
8
4
2
5
1
4
8
0
3
5
7
6
1

4
2
.4
6

8
.9
0

4
.7
9

4
.7
7
8
.8
6
0
.9
5
0
.8
9

.3
9

.4
0

.4
0

8
0
0
0

L
ev
el2

2
6
7
4
7

2
6
8
6
3

2
7
0
7
5

3
2
7
4
4
6
2
3
3
1
4
6
1
9
3
3
7
5
0
8
4

1
7
.2
8

3
.5
3

1
.8
4

4
.9
0
9
.3
9
0
.9
8
0
.9
4

.1
6

.1
6

.1
5

L
ev
el3

1
1
2
9
4
0
1
1
2
9
4
0
1
1
2
9
4
0

7
8
0
5
0
8
7
7
8
0
5
0
8
7
7
8
0
5
0
8
7

4
7
.8
7

9
.9
7

5
.4
5

4
.8
0
8
.7
8
0
.9
6
0
.8
8

.4
5

.4
4

.4
5

T
a
b
le
9
.
--
D
E
A
-G
E
N
b
H
ie
r
a
r
c
h
ia
l
L
e
v
e
l
T
e
s
t
P
r
o
b
le
m

R
e
s
u
lt
s

D
M
U
s

N
u
m
b
er
o
f
P
iv
o
ts

N
u
m
b
er
P
riced

T
im
e
to
S
o
lv
e
(m
in
.)

S
p
eed
u
p

E
�
cien
cy
F
ra
ctio
n
o
f
T
im
e

1

5

1
0

1

5

1
0

1

5

1
0

5

1
0

5

1
0

1

5

1
0

L
ev
el1

1
4
4
3
9

1
4
8
1
5

1
5
2
4
0

5
5
6
7
7
4

5
8
4
5
6
1

6
1
5
2
4
5

4
.9
2

1
.0
9

0
.6
5

4
.5
1
7
.5
7

0
.9
0
0
.7
6

.1
6

.1
7

.1
9

1
0
0
0

L
ev
el2

2
4
8
5
3

2
5
2
2
2

2
5
5
4
8

1
3
0
2
0
8
4

1
3
2
7
1
6
5

1
3
5
1
8
5
8

1
0
.7
6

2
.2
5

1
.2
1

4
.7
8
8
.8
9

0
.9
6
0
.8
9

.3
5

.3
5

.3
4

L
ev
el3

3
3
6
6
9

3
3
6
6
9

3
3
6
6
9

1
6
7
1
7
6
9

1
6
7
1
7
6
9

1
6
7
1
7
6
9

1
4
.9
2

3
.0
9

1
.6
5

4
.8
3
9
.0
4

0
.9
7
0
.9
0

.4
9

.4
8

.4
7

L
ev
el1

2
4
9
5
3

2
5
3
3
7

2
5
7
8
8

1
4
0
4
4
4
7

1
4
5
6
2
1
6

1
5
1
4
1
5
2

9
.6
4

2
.0
9

1
.2
0

4
.6
1
8
.0
3

0
.9
2
0
.8
0

.1
7

.1
8

.1
9

2
0
0
0

L
ev
el2

3
2
5
6
1

3
3
0
2
1

3
3
2
9
4

2
4
5
6
0
2
5

2
5
0
6
9
5
4

2
5
4
5
0
5
7

1
6
.2
1

3
.3
6

1
.7
9

4
.8
2
9
.0
6

0
.9
6
0
.9
1

.2
9

.2
9

.2
9

L
ev
el3

5
5
3
9
7

5
5
3
9
7

5
5
3
9
7

4
1
7
9
9
7
2

4
1
7
9
9
7
2

4
1
7
9
9
7
2

2
9
.5
2

6
.0
9

3
.2
2

4
.8
5
9
.1
7

0
.9
7
0
.9
2

.5
4

.5
3

.5
2

L
ev
el1

4
4
5
1
5

4
5
6
7
6

4
5
8
3
1

3
6
4
7
1
8
1

3
7
2
0
6
0
2

3
8
0
1
1
5
1

1
8
.5
6

3
.8
6

2
.0
8

4
.8
1
8
.9
2

0
.9
6
0
.8
9

.4
7

.4
7

.4
6

4
0
0
0

L
ev
el2

7
1
6
6

7
1
5
5

7
1
4
1

6
7
4
8
0
8

6
7
8
0
0
6

6
8
3
0
1
5

3
.4
7

0
.7
0

0
.3
6

4
.9
6
9
.6
4

0
.9
9
0
.9
6

.0
9

.0
8

.0
8

L
ev
el3

4
6
4
0
6

4
6
4
0
6

4
6
4
0
6

3
0
7
6
0
0
3

3
0
7
6
0
0
3

3
0
7
6
0
0
3

1
7
.7
4

3
.7
3

2
.0
5

4
.7
6
8
.6
5

0
.9
5
0
.8
7

.4
4

.4
5

.4
6

L
ev
el1

1
3
6
9
6
2
1
3
7
4
0
6
1
3
8
2
5
4

1
1
3
0
0
4
4
7
1
1
4
9
3
8
5
4
1
1
7
6
4
0
9
6

7
5
.9
4

1
5
.6
7

8
.2
8

4
.8
5
9
.1
7

0
.9
7
0
.9
2

.3
1

.3
0

.3
0

8
0
0
0

L
ev
el2

6
6
4
5
9

6
6
7
3
5

6
7
4
3
2

7
5
2
2
6
8
0

7
6
0
1
9
8
3

7
7
4
8
1
0
4

5
0
.0
8

1
0
.1
9

5
.2
4

4
.9
1
9
.5
6

0
.9
8
0
.9
6

.2
0

.2
0

.1
9

L
ev
el3

2
1
5
8
3
9
2
1
5
8
3
9
2
1
5
8
3
9

1
7
8
4
7
9
5
2
1
7
8
4
7
9
5
2
1
7
8
4
7
9
5
2

1
2
2
.9
0

2
5
.7
7

1
4
.0
2

4
.7
7
8
.7
6

0
.9
5
0
.8
8

.4
9

.5
0

.5
1

T
a
b
le
1
0
.
--
D
E
A
-G
E
N
c
H
ie
r
a
r
c
h
ia
l
L
e
v
e
l
T
e
s
t
P
r
o
b
le
m

R
e
s
u
lt
s

D
M
U
s

N
u
m
b
er
o
f
P
iv
o
ts

N
u
m
b
er
P
riced

T
im
e
to
S
o
lv
e
(m
in
.)

S
p
eed
u
p

E
�
cien
cy
F
ra
ctio
n
o
f
T
im
e

1

5

1
0

1

5

1
0

1

5

1
0

5

1
0

5

1
0

1

5

1
0

L
ev
el1

1
6
8
9
0

1
7
4
3
8

1
7
9
0
4

6
3
2
5
6
7

6
6
8
9
3
0

7
0
5
1
9
0

5
.8
7

1
.3
6

0
.7
6

4
.3
2
7
.7
2

0
.8
6
0
.7
7

.1
7

.1
9

.1
9

1
0
0
0

L
ev
el2

2
6
0
7
0

2
6
3
1
8

2
6
9
1
0

1
3
1
0
5
9
4

1
3
2
9
9
2
7

1
3
6
9
0
4
7

1
1
.5
3

2
.4
0

1
.3
1

4
.8
0
8
.8
0

0
.9
6
0
.8
8

.3
4

.3
3

.3
4

L
ev
el3

3
6
2
2
0

3
6
2
2
0

3
6
2
2
0

1
7
5
0
4
2
9

1
7
5
0
4
2
9

1
7
5
0
4
2
9

1
6
.5
7

3
.4
3

1
.8
4

4
.8
3
9
.0
1

0
.9
7
0
.9
0

.4
9

.4
8

.4
7

L
ev
el1

3
0
5
4
5

3
1
1
2
3

3
1
8
4
8

1
6
6
3
4
8
7

1
7
3
2
4
4
3

1
8
1
5
0
6
1

1
3
.0
2

2
.8
1

1
.5
9

4
.6
3
8
.1
9

0
.9
3
0
.8
2

.1
6

.1
7

.1
8

2
0
0
0

L
ev
el2

4
1
2
6
9

4
1
7
1
4

4
2
3
8
0

2
9
7
5
8
5
7

3
0
2
4
2
6
6

3
0
9
3
7
0
6

2
2
.3
7

4
.6
3

2
.4
5

4
.8
3
9
.1
3

0
.9
7
0
.9
1

.2
8

.2
8

.2
8

L
ev
el3

7
9
8
9
0

7
9
8
9
0

7
9
8
9
0

5
5
7
1
1
9
6

5
5
7
1
1
9
6

5
5
7
1
1
9
6

4
4
.3
4

9
.1
4

4
.7
8

4
.8
5
9
.2
8

0
.9
7
0
.9
3

.5
6

.5
5

.5
4

L
ev
el1

5
9
9
4
0

6
0
0
9
9

6
0
2
2
5

4
6
2
7
1
2
2

4
7
0
8
8
5
5

4
8
0
5
9
1
6

2
7
.3
0

5
.6
6

2
.9
9

4
.8
2
9
.1
3

0
.9
6
0
.9
1

.4
7

.4
7

.4
7

4
0
0
0

L
ev
el2

9
6
2
7

9
6
7
9

9
6
9
6

9
7
9
0
9
6

9
8
9
8
9
0

1
0
0
0
1
0
0

5
.8
2

1
.1
9

0
.6
1

4
.8
9
9
.5
4

0
.9
8
0
.9
5

.1
0

.1
0

.1
0

L
ev
el3

5
7
9
0
6

5
7
9
0
6

5
7
9
0
6

3
7
4
1
8
1
6

3
7
4
1
8
1
6

3
7
4
1
8
1
6

2
4
.6
0

5
.1
2

2
.7
8

4
.8
0
8
.8
5

0
.9
6
0
.8
8

.4
3

.4
3

.4
3

L
ev
el1

1
2
8
4
0
0
1
2
8
8
8
0
1
2
9
3
5
8

1
0
5
3
4
3
0
1
1
0
7
3
0
6
0
5
1
0
9
6
4
2
5
0

6
5
.3
0

1
3
.6
6

7
.2
4

4
.7
8
9
.0
2

0
.9
6
0
.9
0

.2
8

.2
8

.2
8

8
0
0
0

L
ev
el2

5
4
6
6
4

5
4
8
2
5

5
5
0
6
7

5
7
8
0
4
0
7

5
8
3
1
1
0
4

5
8
9
3
0
5
5

3
5
.7
5

7
.3
0

3
.7
5

4
.9
0
9
.5
3

0
.9
8
0
.9
5

.1
5

.1
5

.1
5

L
ev
el3

2
1
7
7
0
8
2
1
7
7
0
8
2
1
7
7
0
8

2
0
7
1
5
6
8
4
2
0
7
1
5
6
8
4
2
0
7
1
5
6
8
4

1
3
0
.1
0

2
7
.2
8

1
4
.5
8

4
.7
7
8
.9
2

0
.9
5
0
.8
9

.5
7

.5
7

.5
7

T
a
b
le
1
1
.--
B
a
n
k
D
a
ta
R
esu
lts
{
L
in
ea
r
P
ro
g
ra
m
s
R
eq
u
ired

L
P
s

L
P
s

D
M
U
s

N
o
E
a
rly
Id
en
ti�
ca
tio
n

W
ith
E
a
rly
Id
en
ti�
ca
tio
n

1

5

1
0

1

5

1
0

L
ev
el1

1
0
0
0

1
0
0
0

1
0
0
0

7
9
5

8
0
7

8
2
7

1
0
0
0

L
ev
el2

4
0
8

4
0
8

4
0
8

2
9
4

3
0
4

3
1
2

L
ev
el3

9
2
2

9
2
2

9
2
2

9
2
2

9
2
2

9
2
2

T
o
ta
l

2
3
3
0

2
3
3
0

2
3
3
0

2
0
1
1

2
0
3
3

2
0
6
1

L
ev
el1

2
0
0
0

2
0
0
0

2
0
0
0

1
6
4
9

1
6
7
0

1
6
9
4

2
0
0
0

L
ev
el2

6
5
3

6
5
3

6
5
3

5
0
9

5
1
9

5
3
0

L
ev
el3

1
9
1
8

1
9
1
8

1
9
1
8

1
9
1
8

1
9
1
8

1
9
1
8

T
o
ta
l

4
5
7
1

4
5
7
1

4
5
7
1

4
0
7
6

4
1
0
7

4
1
4
2

L
ev
el1

4
0
0
0

4
0
0
0

4
0
0
0

3
5
5
2

3
5
6
2

3
5
7
7

4
0
0
0

L
ev
el2

7
7
9

7
7
9

7
7
9

6
3
8

6
4
8

6
5
3

L
ev
el3

3
9
0
2

3
9
0
2

3
9
0
2

3
9
0
2

3
9
0
2

3
9
0
2

T
o
ta
l

8
6
8
1

8
6
8
1

8
6
8
1

8
0
9
2

8
1
1
2

8
1
3
2

L
ev
el1

8
0
0
0

8
0
0
0

8
0
0
0

7
0
9
2

7
1
1
6

7
1
4
9

8
0
0
0

L
ev
el2

1
4
8
7

1
4
8
7

1
4
8
7

1
2
7
8

1
2
8
8

1
2
8
9

L
ev
el3

7
9
2
3

7
9
2
3

7
9
2
3

7
9
2
3

7
9
2
3

7
9
2
3

T
o
ta
l

1
7
4
1
0

1
7
4
1
0

1
7
4
1
0

1
6
2
9
3

1
6
3
2
7

1
6
3
6
1

T
a
b
le
1
2
.--
M
u
lti-N
o
rm
a
l
D
a
ta
R
esu
lts
{
L
in
ea
r
P
ro
g
ra
m
s
R
eq
u
ired

L
P
s

L
P
s

D
M
U
s

N
o
E
a
rly
Id
en
ti�
ca
tio
n

W
ith
E
a
rly
Id
en
ti�
ca
tio
n

1

5

1
0

1

5

1
0

L
ev
el1

1
0
0
0

1
0
0
0

1
0
0

7
9
5

8
0
7

8
2
7

1
0
0
0

L
ev
el2

4
0
8

4
0
8

4
0
8

2
9
4

3
0
4

3
1
2

L
ev
el3

9
2
2

9
2
2

9
2
2

9
2
2

9
2
2

9
2
2

T
o
ta
l

2
3
3
0

2
3
3
0

2
3
3
0

2
0
1
1

2
0
3
3

2
0
6
1

L
ev
el1

2
0
0
0

2
0
0
0

2
0
0
0

1
7
8
1

1
7
8
3

1
7
8
8

2
0
0
0

L
ev
el2

2
8
2

2
8
2

2
8
2

2
1
1

2
1
2

2
1
3

L
ev
el3

1
9
1
1

1
9
1
1

1
9
1
1

1
9
1
1

1
9
1
1

1
9
1
1

T
o
ta
l

4
1
9
3

4
1
9
3

4
1
9
3

3
9
0
3

3
9
0
6

3
9
1
2

L
ev
el1

4
0
0
0

4
0
0
0

4
0
0
0

3
5
3
0

3
5
4
2

3
5
4
9

4
0
0
0

L
ev
el2

7
0
9

7
0
9

7
0
9

5
6
9

5
7
0

5
7
9

L
ev
el3

3
9
1
5

3
9
1
5

3
9
1
5

3
9
1
5

3
9
1
5

3
9
1
5

T
o
ta
l

8
0
2
4

8
6
2
4

8
6
2
4

8
0
1
4

8
0
2
7

8
0
4
3

L
ev
el1

8
0
0
0

8
0
0
0

8
0
0
0

7
1
0
6

7
1
2
0

7
1
4
5

8
0
0
0

L
ev
el2

1
2
9
5

1
2
9
5

1
2
9
5

1
0
7
4

1
0
8
0

1
0
9
1

L
ev
el3

7
8
9
6

7
8
9
6

7
8
9
6

7
8
9
6

7
8
9
6

7
8
9
6

T
o
ta
l

1
7
1
9
1

1
7
1
9
1

1
7
1
9
1

1
6
0
7
6

1
6
0
9
6

1
6
1
3
2

T
a
b
le
1
3
.--
D
E
A
-G
E
N
a
R
esu
lts
{
L
in
ea
r
P
ro
g
ra
m
s
R
eq
u
ired

L
P
s

L
P
s

D
M
U
s

N
o
E
a
rly
Id
en
ti�
ca
tio
n

W
ith
E
a
rly
Id
en
ti�
ca
tio
n

1

5

1
0

1

5

1
0

L
ev
el1

1
0
0
0

1
0
0
0

1
0
0
0

7
7
4

7
9
1

7
9
7

1
0
0
0

L
ev
el2

4
3
5

4
3
5

4
3
5

2
8
8

2
9
1

3
0
0

L
ev
el3

9
0
4

9
0
4

9
0
4

9
0
4

9
0
4

9
0
4

T
o
ta
l

2
3
3
9

2
3
3
9

2
3
3
9

1
9
6
6

1
9
8
6

2
0
0
1

L
ev
el1

2
0
0
0

2
0
0
0

2
0
0
0

1
5
2
0

1
5
3
3

1
5
6
6

2
0
0
0

L
ev
el2

9
7
2

9
7
2

9
7
2

6
8
2

6
8
7

6
9
2

L
ev
el3

1
8
5
3

1
8
5
3

1
8
5
3

1
8
5
3

1
8
5
3

1
8
5
3

T
o
ta
l

4
8
2
5

4
8
2
5

4
8
2
5

4
0
5
5

4
0
7
3

4
1
1
1

L
ev
el1

4
0
0
0

4
0
0
0

4
0
0
0

3
5
2
2

3
5
3
0

3
5
4
0

4
0
0
0

L
ev
el2

7
2
9

7
2
9

7
2
9

6
1
2

6
1
6

6
2
3

L
ev
el3

3
9
1
8

3
9
1
8

3
9
1
8

3
9
1
8

3
9
1
8

3
9
1
8

T
o
ta
l

8
6
4
7

8
6
4
7

8
6
4
7

8
0
5
2

8
0
6
4

8
0
8
1

L
ev
el1

8
0
0
0

8
0
0
0

8
0
0
0

7
0
2
9

7
0
5
0

7
0
7
9

8
0
0
0

L
ev
el2

1
4
6
5

1
4
6
5

1
4
6
5

1
2
7
1

1
2
7
6

1
2
8
5

L
ev
el3

7
9
3
0

7
9
3
0

7
9
3
0

7
9
3
0

7
9
3
0

7
9
3
0

T
o
ta
l

1
7
3
9
5

1
7
3
9
5

1
7
3
9
5

1
6
2
3
0

1
6
2
5
6

1
6
2
9
4

T
a
b
le
1
4
.--
D
E
A
-G
E
N
b
R
esu
lts
{
L
in
ea
r
P
ro
g
ra
m
s
R
eq
u
ired

L
P
s

L
P
s

D
M
U
s

N
o
E
a
rly
Id
en
ti�
ca
tio
n

W
ith
E
a
rly
Id
en
ti�
ca
tio
n

1

5

1
0

1

5

1
0

L
ev
el1

1
0
0
0

1
0
0
0

1
0
0
0

6
7
0

6
8
8

7
0
9

1
0
0
0

L
ev
el2

1
1
0
5

1
1
0
5

1
1
0
5

7
1
6

7
2
9

7
4
0

L
ev
el3

7
8
6

7
8
6

7
8
6

7
8
6

7
8
6

7
8
6

T
o
ta
l

2
8
9
1

2
8
9
1

2
8
9
1

2
1
7
2

2
2
0
3

2
2
3
5

L
ev
el1

2
0
0
0

2
0
0
0

2
0
0
0

1
4
3
6

1
4
5
5

1
4
7
5

2
0
0
0

L
ev
el2

1
7
8
5

1
7
8
5

1
7
8
5

1
1
7
3

1
1
9
0

1
2
0
1

L
ev
el3

1
7
2
5

1
7
2
5

1
7
2
5

1
7
2
5

1
7
2
5

1
7
2
5

T
o
ta
l

5
5
1
0

5
5
1
0

5
5
1
0

4
3
3
4

4
3
7
0

4
4
0
1

L
ev
el1

4
0
0
0

4
0
0
0

4
0
0
0

3
6
3
6

3
6
4
4

3
6
5
0

4
0
0
0

L
ev
el2

4
3
8

4
3
8

4
3
8

3
8
4

3
8
4

3
8
3

L
ev
el3

3
9
3
6

3
9
3
6

3
9
3
6

3
9
3
6

3
9
3
6

3
9
3
6

T
o
ta
l

8
3
7
4

8
3
7
4

8
3
7
4

7
9
5
6

7
9
6
4

7
9
6
9

L
ev
el1

8
0
0
0

8
0
0
0

8
0
0
0

6
6
7
8

6
6
9
8

6
5
0
7

8
0
0
0

L
ev
el2

2
3
2
6

2
3
2
6

2
3
2
6

1
8
9
3

1
8
9
8

2
5
0
6

L
ev
el3

7
8
4
7

7
8
4
7

7
8
4
7

7
8
4
7

7
8
4
7

7
8
8
6

T
o
ta
l

1
8
1
7
3

1
8
1
7
3

1
8
1
7
3

1
6
4
1
8

1
6
4
4
3

1
6
8
9
9

T
a
b
le
1
5
.--
D
E
A
-G
E
N
c
R
esu
lts
{
L
in
ea
r
P
ro
g
ra
m
s
R
eq
u
ired

L
P
s

L
P
s

D
M
U
s

N
o
E
a
rly
Id
en
ti�
ca
tio
n

W
ith
E
a
rly
Id
en
ti�
ca
tio
n

1

5

1
0

1

5

1
0

L
ev
el1

1
0
0
0

1
0
0
0

1
0
0
0

6
8
4

7
0
4

7
2
6

1
0
0
0

L
ev
el2

1
0
5
2

1
0
5
2

1
0
5
2

6
7
0

6
8
4

7
0
0

L
ev
el3

7
9
9

7
9
9

7
9
9

7
9
9

7
9
9

7
9
9

T
o
ta
l

2
8
5
1

2
8
5
1

2
8
5
1

2
1
5
3

2
1
8
7

2
2
2
5

L
ev
el1

2
0
0
0

2
0
0
0

2
0
0
0

1
4
1
5

1
4
4
6

1
4
8
0

2
0
0
0

L
ev
el2

1
8
0
6

1
8
0
6

1
8
0
6

1
1
8
1

1
1
9
4

1
2
1
3

L
ev
el3

1
7
3
5

1
7
3
5

1
7
3
5

1
7
3
5

1
7
3
5

1
7
3
5

T
o
ta
l

5
5
4
1

5
5
4
1

5
5
4
1

4
3
3
1

4
3
7
5

4
4
2
8

L
ev
el1

4
0
0
0

4
0
0
0

4
0
0
0

3
6
1
1

3
6
1
6

3
6
2
4

4
0
0
0

L
ev
el2

4
6
2

4
6
2

4
6
2

4
1
3

4
1
3

4
1
3

L
ev
el3

3
9
3
4

3
9
3
4

3
9
3
4

3
9
3
4

3
9
3
4

3
9
3
4

T
o
ta
l

8
3
9
6

8
3
9
6

8
3
9
6

7
9
5
8

7
9
6
3

7
9
7
1

L
ev
el1

8
0
0
0

8
0
0
0

8
0
0
0

6
7
3
0

6
7
5
7

6
7
8
2

8
0
0
0

L
ev
el2

2
1
8
1

2
1
8
1

2
1
8
1

1
7
1
2

1
7
1
6

1
7
2
4

L
ev
el3

7
7
8
4

7
7
8
4

7
7
8
4

7
7
8
4

7
7
8
4

7
7
8
4

T
o
ta
l

1
7
9
6
5

1
7
9
6
5

1
7
9
6
5

1
6
2
2
6

1
6
2
5
7

1
6
2
9
0

T
a
b
le
1
6
.--
N
o
n
-H
iera
rch
ia
l
a
n
d
H
iera
rch
ia
l
C
o
m
p
a
riso
n
s:
8
,0
0
0
D
M
U
P
ro
b
lem
s

S
o
lu
tio
n
T
im
es
(m
in
.)

N
o
H
iera
rch
ia
l

H
iera
rch
ia
l

S
p
eed
Im
p
rov
em
en
t

1

3

1

3

1
0

1
5

1
:1

3
:3

1
:3

1
:1
0

1
:1
5

B
a
n
k

1
2
9
4
.0
7

4
3
4
.5
8

1
6
6
.0
0

6
1
.7
3

1
8
.1
8

1
4
.2
7

7
.8
0

7
.0
4

2
0
.9
6

7
1
.1
8

9
0
.6
8

M
u
lti-N
o
rm
a
l

9
3
1
.9
8

3
1
3
.1
5

1
2
8
.1
0

4
3
.7
2

1
4
.3
0

1
0
.5
4

7
.2
8

7
.1
6

2
1
.3
2

6
5
.1
7

8
8
.4
2

D
E
A
-G
E
N
a

1
0
8
8
.5
0

3
6
6
.5
1

1
0
7
.6
0

3
1
.9
2

1
2
.0
8

8
.8
3

1
0
.1
2

1
1
.4
8

3
4
.1
0

9
0
.1
1

1
2
3
.2
7

D
E
A
-G
E
N
b

2
0
9
1
.2
0

7
0
4
.1
3

2
4
8
.9
0

8
4
.4
7

2
7
.5
3

1
9
.8
9

8
.4
0

8
.3
4

2
4
.7
6

7
5
.9
6

1
0
5
.1
4

D
E
A
-G
E
N
c

1
4
3
7
.3
2

4
8
2
.8
4

2
3
1
.2
0

7
8
.8
8

2
5
.5
7

1
8
.5
5

6
.2
2

6
.1
2

1
8
.2
2

5
6
.2
1

7
7
.4
8

