Baltzer Journals June 5, 1997

Parallel and Hierarchical Decomposition Approaches
for Solving Large-Scale Data Envelopment Analysis
Models*

RICHARD S. BARR!'AND MATTHEW L. DURCHHOLZ?

! Department of Computer Science and Engineering
Southern Methodist University
Dallas, Texas 75275

E-mail: barr@seas.smu.edu

242 Technologies
Dallas, Texas
E-mail: matthew_durchholz@i2.com

Accompanying the increasing popularity of DEA are computationally challenging
applications: large-scale problems involving the solution of thousands of linear
programs. This paper describes a new problem decomposition procedure which
dramatically expedites the solution of these computationally intense problems and
fully exploits parallel processing environments. Testing of a new DEA code based
on this approach is reported for a wide range of problems, including the largest
reported to date: a 8,700-LP banking-industry application.

Keywords: Parallel computing, data envelopment analysis, decomposition,
mathematical programming

Surprisingly little has been published on the computational aspects of Data Envelop-
ment Analysis [1, 2, 3, 4, 5, 23, 31]. Since DEA typically involves the solution of a large
number of linear programs (LPs), many practitioners and researchers assume that the
repeated use of standard optimization codes is sufficient for an analysis. Unfortunately
this is not the case. Specialized codes are needed to correctly handle the preemptive
prioritized multiple objectives (reflecting the models’ non-Archimedian infinitesimal) and
to coordinate and expedite the solution of the large number of interrelated LPs.

This study was motivated by large applications we have encountered: franchise anal-
ysis (e.g., over 8,000 McDonald’s restaurants, 6,500 Century 21 real-estate offices, and
approximately 5,000 H&R Block tax-preparation service centers), the Federal Reserve
Bank’s efficiency study of 8,700 U.S. banks, a V.A. study of over 20,000 hospitals, and
U.S. Postal Service evaluations of over 30,000 branches. These problem sizes are clearly
beyond the limits of current DEA codes.

In this paper, we describe a new code for solving large-scale DEA problems in a
reasonable amount of time, demonstrate its performance on a real-world application, and

*This work was supported by National Science Foundation grant DMII-9313346 and the
United States Air Force

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 2

report on its ability to exploit parallel processing to further accelerate solution time. We
also introduce a new decomposition algorithm that streamlines the solution of problem
sets and provide in-depth computational testing of the code on small- and large-scale
problems, including the largest DEA problems reported to date.

1 Computational DEA

Key to the development of software for putting DEA into practice are the mathematical
underpinnings and associated means of exploiting domain-specific structure for compu-
tational gain. We now briefly summarize relevant DEA concepts, describe efficient im-
plementation techniques, and present the results of computational testing of a new DEA
research code.

1.1 DEA Fundamentals

Data Envelopment Analysis is a family of models for assessing and analyzing the relative
transformational efficiency of similar decision-making units [21]. All DEA models have the
same data requirements: for each decision-making unit (DMU) j, a nonnegative observed
value for each of the s outputs (Y;) and m inputs (X;), with at least one positive input
or output. A DMU’s efficiency 8 (0 < 6 < 1), is defined as a weighted ratio of the total
output produced to the total input consumed, with weights determined by a separate
linear program for each DMU in the analysis.

The various DEA models separate the set of n DMUs (D) into efficient (E*) and
inefficient (I*) sets. A DMU is efficient if # = 1,s° = 0, and s! = 0, where s° and s’ are
slacks in the associated LP’s input and output constraints, respectively. Mathematically
the members of E* are extreme points, extreme rays, or lie on a convex surface which,
when taken with their associated facets, form a piecewise-linear empirical production sur-
face, or efficient frontier. Otherwise, the DMU is deemed inefficient and the observation
lies within, not on, the efficient frontier. For each DMU d € I*, the corresponding lin-
ear program’s solution suggests a set of inputs and outputs that would make d efficient.
This virtual DMU is obtained by a projection onto the efficient frontier, using the vector
A* € R™ to form a linear combination of d’s reference set—those efficient DMUs with
which d is being directly compared.

Although there are many formulations of DEA models (see Appendix A), the useful
results in each case are similar in nature and are to be determined in practice by a DEA
code. A complete data envelopment analysis produces, for each DMU: ; a set, of weights,
w and v, for the outputs and inputs, respectively; and, for inefficient units, s°, s?, X,
and a reference set. Section 2 describes some of the techniques that have been used to
expedite the calculation of these items.

In the upcoming discussion, the following notation will be used. We define: D =
{1,...,n}, the index set of DMUs; B} (F;) is the set of basic (nonbasic) variables associ-
ated with an optimal basis for an envelopment-form DEA model applied to DMU j € D;
6%,s7%, and sé-* are the values of 4,s°, and s’, respectively, in Bj; Aj ={i € D|\; € Bj }J;
;i is the reduced cost of DMU weight); in a given optimal solution; E* = {j € D|§; =
1,82* = 0, and s = 0}; and I* = D — E*.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 3

2 Survey of Computational Efficiency Techniques

A naive implementation of the DEA calculations can lead to unreasonable solution times
for all but the smallest problems. This section surveys the variety of acceleration tech-
niques that have been devised to exploit the special characteristics of DEA models. Proofs
of the theorems can be found in [9].

2.1 Choice of Model Form

For each DEA model (CCR, BCC, NDRS, NIRS, and Additive) either the envelopment
or the multiplier forms may be used to compute solutions. Since typically (s +m) < n,
there will be fewer constraints and a smaller basis inverse to be maintained with the
envelopment form, used by virtually all DEA codes. This choice of model becomes an
increasingly favorable one as the size of the data set expands. This advantage can be
further exploited as the analysis reveals the memberships of E* and I*.

2.2 Early Identification of Efficient DMUs

It has been observed in [3, 18] that if A;,4 € D, is a member of any B7,j € D, then DMU
1 is efficient. The following theorem holds for all standard DEA models.

Theorem 1
Foranyje D, A; CE*.

The early identification of members of E C E* permits: (1) bypassing unsolved
subproblems associated with members of E, if values of the weights and slacks are not
needed; (2) near-optimal advanced starting solutions for known efficient DMUs; and (3)
pricing strategies that give priority to members of E. This can then reduce the number
of LP subproblems to be solved and expedite the solution of subproblems that must be
optimized.

In software implementations, the status of each DMU j, and its associated Aj, can
be easily maintained as: member of E C E*, member of I C I'*, or unknown (member
of U = D — E —I). When the subproblem associated with DMU j is solved, j can be
added to E or I. In addition, B} may reveal new members of E—from the reference set,
if DMU j is inefficient, or from degenerate basic variables, if it is efficient.

Corollary 2 _
If, at optimality, A; = 0,i € D, then i € E*.

This corollary supports an extended search for members of E associated with the non-
basic variables. Our experience is that there are often a substantial number of alternate
optimal solutions and nonbasic variables with zero reduced costs.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 4

2.3 Restricted Basis Entry

Since any A; associated with an optimal basis corresponds to an efficient DMU j, we need
only consider those variables associated with D — I when pricing. Hence as inefficient
DMUs are identified, their corresponding decision variables are dropped from subsequent,
problems. This has a ratchet-like effect on the size (number of variables) of the LPs being
solved, causing “later” subproblems in a series to solve more quickly than the “earlier”
ones.

2.4 Candidate List

Candidate lists, and other multi-pricing schemes, are standard computational procedures
for expediting the solution of linear programs [29, 30]. These basically involve pricing a
set of nonbasic variables to identify a short list of promising basis-entry candidates, from
which incoming variables are repeatedly selected before replenishment.

This heuristic can be specialized for DEA models. First, the restricted basis entry
procedure eliminates from consideration variables associated with I. Further, priority for
list inclusion can be given to members of E over U, since any basis will contain only slacks
and members of E* [3].

2.5 Degeneracy and Anti-Cycling Logic

Note that if DMU j is efficient, the optimal basic solution for the envelopment model
can be comprised of # = A; = 1, with all other variables equal to zero. When such
degeneracy exists, so does the possibility of cycling. Although dismissed by many as
unlikely, we find that cycling in DEA codes is not only common but likely in the absence
of countermeasures.

The standard methods for avoiding cycling within the simplex method—Ilexicographic
ordering, perturbation [17], and Bland’s rule [15]—can be computationally demanding.
Charnes, Rousseau, and Semple [23] observed an absence of stalling and substantially
fewer pivots when lexicographic ordering was added to a DEA code. A specialized ratio
test is proposed in [3] that gives preference to A variables over slacks when breaking ties
for zero minimum ratios, and yields large decreases in the number of pivots and solution
times on reported test problems.

Our experience indicates that, for many problems, simple scaling of the problem
data—Dby variables and by constraints, normalizing by averages [14]—is most effective in
lowering the incidence of stalling and cycling. In those cases where a lack of progress
is detected, the invocation of the lexicographic ordering procedure quickly remedies the
situation.

2.6 Non-Archimedean Infinitesimal, €

When DEA codes use small positive values (e.g., 107%) for the non-Archimedean infinites-
imal, £, the results of CCR and BCC analyses are dependent on the value chosen, and are
incorrect in many cases [5]. Such data dependencies can be avoided and correctness en-
sured by recasting envelopment-model objective functions in a preemptive priority form:
minimize P;@ + P,(—1s’ — 1s°). Proposed implementation schemes include two-stage
optimization [1], and a multi-objective pricing form of the simplex method [23].

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 5

2.7 Preprocessing of Observations

An analysis of the DMUs’ observations can lead to identification of members of I and F
prior to the application of optimization. A DMU i is inefficient if it is dominated by any
DMU j, that is if X; < X; and Y; > Y;. In the BCC and additive models, DMU j is
efficient if one of its outputs (inputs) has a unique maximum (minimum) value, or it has
the largest ratio O; = 1Y;/1X;. Processing DMUs in O; order is reported to identify
members of E* earlier than random order.

2.8 Advanced Starting Bases and Reoptimization

In many algorithms that involve the solution of a series of related linear programs, or
subproblems, the use of reoptimization can lead to substantial time savings. This is
accomplished by using B} as an initial basic feasible solution for the LP associated with
DMU j, as is possible when subproblems differ by one or more parameters (objective
function or right-hand-side values) but have the same mathematical structure.

DEA subproblems can employ reoptimization, but its effectiveness is dependent on
the mathematical “closeness” of the two solution points, Bf and Bj. Ali suggests the use
of this technique only for j € {A; — E} [3].

3 PIONEER Code

We have developed and tested PIONEER, a new DEA code which embodies most of
the above efficiency techniques[7]. The code was designed for testing and evaluating
alternative solution approaches to large-scale problems|8§].

PIONEER’s optimization kernel is based on the XMP library, a collection of portable,
reliable, and widely used Fortran subroutines for the solution of linear programs using
the primal and dual simplex methods [28]. The LP basis is maintained in LU-factorized
form with pivoting routines from the Harwell library. Our customization includes data
scaling and the invocation of lexicographic ordering when stalling is detected.

The PIONEER code implements all varieties of DEA models described in Appendix
A and all of the efficiency techniques in Section 1.2 are employed, except for preprocess-
ing and reoptimization. (Our testing showed that reoptimization was of uneven value—
sometimes reducing, sometimes increasing, run times.) The candidate list is not pri-
oritized, and the two-stage optimization approach to the non-Archimedean-infinitesimal
issue is employed.

Auxiliary data structures maintain the E, I, or U status of each DMU, as indicated
by the following outline of the code’s logic:

PIONEER DEA CODE SOLUTION OUTLINE
Step 0 Initialize U = D,E = 0,1 = 0.
Step 1 While U #0:

1. Select i € U.

2. Solve the subproblem for DMU 1.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 6

3. If DMU i is efficient, E = EU {i}, else I = T U {i}.
4. Update: E=EUA; U{j|l\; =0},andU=D—E—1.

The strength of step 1.4 depends on Theorem 1, Corollary 2, and the distribution of
observations in R+ relative to the efficient frontier.

It should be noted that while the XMP data structures are designed for sparse prob-
lems, DEA subproblems are almost totally dense. Hence there is unnecessary processing
in the code and the reported execution times should be considered conservative measures
of performance, relative to a fully customized implementation.

4 Baseline Computational Testing

To evaluate the efficiency of the PIONEER research code, and to provide a set of baseline
measurements from which to compare algorithmic and implementational enhancements,
a series of test runs were made on medium- and large-scale problems. Testing with and
without individual efficiency techniques lent insight into their impact on solution speed.

4.1 Test Data

Although the code was validated for solution accuracy on small problems from the open
literature, of primary interest was its effectiveness on large-scale problem sets. Data from
three sources were used in the testing.

First, the Federal Reserve Bank of Dallas provided a data set of 8,748 banks from its
Southwest district, with variables consisting of the six inputs and three outputs described
in [12, 13]. This challenging problem from industry was clearly beyond the state of the
art of DEA codes, and was a prime motivator for this research. Testing was performed
on smaller subsets by selecting the first n observations from the unordered file.

Randomly generated observations from a multinormal population provided a second
source of test data. Using the DRNMVN routine from the IMSL library and the variance-
covariance matrix given in Appendix B, large data sets could be easily created. The
variables were partitioned into 3 inputs and 4 outputs so as to observe positive correlations
between the “input” and “output” sets.

Finally, a random problem generator, DEA-GEN, was written to create observations
based on the classic Cobb-Douglas form of production surfaces. As detailed in Appendix
C, the program gives the user a measure of control over the proportion of efficient points,
and creates data sets that more closely approximate realistic economic processes than the
multinormal generator.

4.2 Test Environment

The PIONEER code was tested on Southern Methodist University’s Sequent Symmetry
S81B with 32MB of internal storage and processing units consisting of 16-MHz Intel
80386s with Weitek coprocessors. The software is written entirely in Fortran and executed
under Dynix 3.0.12, a BSD-Unix-based operating system. While the processors are rated
at 4 million operations per second, in terms of current technology they are equivalent to
relatively slow personal computers.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 7

Table 1: PIONEER Solution Times on Test Set A

Source s m DMUs No RBE Time RBE Time Ratio
FR Bank 3 6 1000 33.29 min 17.04 min 0.526
FR Bank 3 6 2000 17991 min 95.59 min 0.532
FR Bank 3 6 8000 44.21 hour 19.80 hour 0.448
Multinormal 4 6 1000 31.96 min 18.72 min 0.586
Multinormal 4 6 2000 106.90 min 61.65 min 0.577
DEA-GENa 4 6 1000 5751 min 33.13 min 0.576
DEA-GENa 5 3 2000 130.02 min 75.94 min 0.584
DEA-GENb 7 4 1000 61.49 min 37.96 min 0.617
DEA-GENb 7 2 2000 151.27 min 92.42 min 0.611
DEA-GENc 6 6 1000 72.83 min 43.29 min 0.594
DEA-GENc 6 5 2000 213.61 min 126.50 min 0.592
Average 0.567

4.8 Experimental Results
The PIONEER code was applied to problems from each of the three sources.

e Federal Reserve banking data: the first 1,000, 2,000, and 8,000 DMUs of the 8,748-
bank data set.

e Multinormal-data models: two problems with n = 1,000 and n = 2,000, generated
using the variance-covariance matrix and DEA interpretation given in Appendix B.

e DEA-GEN: problem sets with n = 1,000 and n = 2,000, created using and the
parameters given in Appendix C.

Solution times for these problems with the PIONEER code and the C'CR° model are
given in Table 1. The times are “wall-clock” or elapsed real execution times, exclusive
of problem input and output. Unsolved subproblems associated with members of E (as
determined by Step 1.4) were bypassed.

The code was run with and without the use of restricted basis entry (RBE) and early
identification of efficient units (EIE) to examine its impact on solution time. In all cases,
the RBE procedure had a strong impact, cutting solution times roughly in half. The
17.04-minute time for the 1,000- and 2,000-DMU problems indicated that the PIONEER
code is reasonably efficient for medium-sized problems. But, even with the help of RBE,
the 19.8-hour solution time for the 8,000-DMU problem is excessive for practical usage.

A closer examination of the 8000-DMU bank problem (BANK-8) solution process
gives insight into the sources of the speed improvements. Figure 1 gives the time to solve
each set of 1,000 subproblems in the 8,000 total, both with and without RBE logic. Note
that when RBE is not used, the time to solve each set of 1,000 subproblems is roughly the
same (around 4.1 hours). But when RBE is employed, the last group of 1,000 subproblems
is solved almost four times faster than the first group. By restricting the known inefficient

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 8

Figure 1: Solution Time for Subsets of BANK-8

DMUs from entering the basis, the later subproblems are smaller, and easier to solve. In
addition, the early identification of efficient DMUs results in fewer subproblems to be
solved. Typically, fewer than 20% of all DMUs are efficient, so the faster solution time
can be attributed mainly to restricted basis entry.

Figure 2 shows the cumulative effect of RBE on solution time for the BANK-8 prob-
lem. While the performance improvement is less pronounced in the earlier subproblem
groups, the 2:1 ratio becomes evident in the last few groups, and trends indicate an even
greater disparity might result for larger problem sets.

Although PIONEER’s solution times are encouraging and indicate that the code may
be comparable to others described in the literature, other performance improvements are
possible. The next section describes the use of parallel processing to further decrease
solution times for these and other problems.

5 Parallel PIONEER Code

A computational advance that holds great promise for expediting the solution of difficult
problems is application-level parallel processing. Parallel processing is the simultaneous
manipulation of data by multiple computing elements working to complete a common
body of work. With this, the power of many processing elements can be brought to bear
on a single problem. If an algorithm’s steps can be properly subdivided and assigned to
separate processors for simultaneous execution, opportunities for dramatic reductions in
solution times arise.

Of the numerous varieties of parallel machine architectures, the most prevalent com-
mercial design is multiple-instruction, multiple-data (MIMD) [10, 26]. Each such com-

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 9

Figure 2: Cumulative Solution Time for Subsets of BANK-8

puting system contains multiple independently executing processors that can operate si-
multaneously on different data sets. Processors communicate either via a shared memory
accessed through a central switch, or by messages passed through an interconnection net-
work in a distributed system. Shared-memory multiprocessors are called tightly coupled
if the time required to access a particular memory location is the same for all processors,
as opposed to being proximity dependent or loosely coupled, as in distributed-memory
systems.

As with traditional single-processor (serial) machines, solution efficiencies are directly
tied to how well the algorithmic steps match the architecture of the underlying machine.
Because a DEA problem involves the optimization of many separate linear-programming
subproblems, the use of MIMD-style parallelism to speed solution appears, on the sur-
face, to be a “natural” one. In fact, the mapping of the DEA solution process to a
tightly coupled MIMD architecture turns out to be an ideal example of the use of parallel
processing.

5.1 Parallel Code Design

The application of parallel processing to DEA problems was first reported in [31], where
four transputers were run from a Macintosh Ilcx on a 54-DMU problem. Times were
reduced by a factor of three in this loosely coupled MIMD implementation. The next
section describes a very different computing environment and how the PIONEER code
was modified to use this form of parallelism.

As with software designed for vector processors, parallel codes must be structured to
match the architecture of the target machine. Our test machine was the same Sequent
Symmetry S81B that was employed for serial testing, but which can be programmed for
parallel processing. The system has a tightly coupled MIMD design, with 20 16-MHz

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 10

80386 processors, Weitek coprocessors, and 32MB of sharable memory.

The Sequent’s operating system permits the programmer to create multiple, inde-
pendent processes which it schedules on the available processors. The processes can have
both private and shared data-spaces. The shared spaces can be read and written by
all designated processes, and can be used for interprocess communication and to avoid
duplication of common data.

This type of parallel machine is designed to be most effective with work that can be
decomposed into large, independent tasks. The DEA solution process can be organized
in this manner through the use of domain decomposition, where multiple identical pro-
cesses apply the same program steps to different data. By considering each DMU’s LP
subproblem to be a separate task, such large-granularity work decomposition is possible.

In the parallel PIONEER code, a self-scheduling approach is used, where processes
select and execute tasks from a shared work list, on a first-come-first-served basis. Al-
though incurring a minor amount of coordination overhead, such self-scheduling permits a
balanced distribution of the workload across processes, an important characteristic when
individual task times vary.

Each process solves its LP subproblems in its private memory; shared memory stores
the original problem data and the status of each DMU. Since a DMU’s status—in terms
of membership in E,I, or U—may change, restricted basis entry becomes dynamic and
time-based. At one moment, a given \; variable may be part of the £ U U pricing set
and, an instant later, be found to be inefficient and ineligible for basis entry. The shared
status array automatically communicates this information to all processes. This is an
instance of a race condition, or timing-dependent code, which can result in stochastic
solution statistics when the order of events differ from run to run due to minute timing
differences..

5.2 Testing Parallel PIONEER

To test the parallel implementation of the PIONEER code, a variety of problems were
chosen for analysis. Table 1 describes the characteristics of the problems chosen. The
original bank data consisted of 8,742 DMUs. For each of the bank problems, the DMUs
composing the data set were randomly chosen from the original data set. The multi-
normal and DEA-GEN data sets are described in Appendices B and C. These problems
were generated to simulate real life data of large-scale DEA problems. The C'C'R? model
was used for all runs.

The “wall clock” time, measured in minutes, to solve each DEA problem, exclusive
of input output times, are given in Table 2. For the problems consisting of 8,000 and
4,000 DMUs, the number of processors used was limited by the available memory on the
Sequent computer.

The reported relative speedup, S(p), is the ratio of the solution time of the PIONEER
code using a single processor to its solution time using p processors. Efficiency is defined
as E(p) = S(p)/p. The goal of any parallel implementation is to achieve a linear speedup
where S(p) = p and E(p) = 1.

Tables 3 and 4 give the speedups and efficiencies for the parallel testing. In all cases,
relative speedup was nearly linear. Isolated examples indicate that superlinear speedup
may be possible with the use of RBE/EIE in the PIONEER code. Since PIONEER is
asynchronous, i.e., each LP can be solved independently of all other LPs, the paralleliza-

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 2: Test Problems’ Parallel Run Times (min.)

11

No. Bank Bank Bank Multinorm DEA-GENa DEA-GENb DEA-GENc
Procs 1000 4000 8000 4000 2000 2000 2000
1 17.04 283.22 1189.81 242.96 75.94 92.42 126.50
2 8.70 151.23 589.22 122.35 38.20 46.52 63.63
3 5.68 101.42 389.46 81.81 25.58 31.06 42.48
4 4.27 73.26 61.39 19.19 23.39 31.91
5 3.40 61.27 49.14 15.35 18.71 25.57
6 2.86 12.82 15.60 21.32
7 2.45 11.02 13.38 18.28
8 2.15 9.65 11.74 16.02
9 1.96 8.57 10.45 14.26
10 1.72 7.72 9.40 12.80
15 1.17 5.19 6.33 8.61

tion is highly effective at improving solution times.

5.8 Limits of Parallelism

The computational testing indicated that the parallel PIONEER code was a highly scal-
able MIMD application that fully utilized the multiprocessing capability of the given
computer system. We feel that the software would also exhibit much of the same effi-
ciency if implemented in a loosely coupled MIMD environment. In the latter setting,
changes in a DMU’s status would have to be broadcast to all processors, thus incurring
additional overhead and a latency in communicating the information. While unneces-
sary work (avoidable in a shared-memory environment) might result, the use of a larger
number of processors could more than offset this disadvantage.

In our testing, memory size limited the dimensions of problems that could use the
full parallelism of this system. We believe that additional internal storage would permit
the same excellent speedups on the larger problems as was observed on the smaller ones.
(This notion was verified by preliminary testing on a larger system.)

Even with these encouraging results, we felt that further improvements were needed
and possible. In fact, a close examination of the parallel solution statistics led to a new
procedure which further reduced all times—both serial and parallel—by up to an order
of magnitude.

6 Hierarchical Decomposition

Experimentation with sets of problems that were identical except for the number of DMUs
yielded solution times such as those given in Figure 3. Not only did the memory re-
quirements of larger problems limit the amount of usable parallelism, but run times grew
exponentially in n. Hence if a larger problem could be decomposed into a series of smaller
ones, lower memory requirements, greater parallelism, and faster individual solution times

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 12

Table 3: Test Problems’ Relative Speedups

No. Bank Bank Bank Multinorm DEA-GENa DEA-GENb DEA-GENc

Procs 1000 4000 8000 4000 2000 2000 2000
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 196 1.87 2.02 1.99 1.99 1.99 1.99
3 3.00 2.79 3.06 297 2.97 2.98 2.98
4 3.99 387 3.96 3.96 3.95 3.96
5 5.01 4.62 4.94 4.95 4.94 4.95
6 5.96 5.92 5.92 5.93
7 6.96 6.89 6.91 6.92
8 7.93 7.87 7.87 7.90
9 8.69 8.86 8.84 8.87
10 9.91 9.84 9.83 9.88
15 14.56 14.63 14.60 14.69

Table 4: Test Problems’ Efficiencies

No. Bank Bank Bank Multinorm DEA-GENa DEA-GENb DEA-GENc

Procs 1000 4000 8000 4000 2000 2000 2000
1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.979 0.936 0.979 0.993 0.994 0.993 0.994
3 1.000 0.931 1.000 0.990 0.990 0.992 0.993
4 0.998 0.966 0.989 0.989 0.988 0.991
5 1.002 0.924 0.989 0.989 0.988 0.989
6 0.993 0.987 0.987 0.989
7 0.994 0.984 0.987 0.989
8 0.991 0.984 0.984 0.987
9 0.966 0.985 0.983 0.986
10 0.991 0.984 0.983 0.988
15 0.971 0.975 0.973 0.979

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 13

Figure 3: Solution Time versus Problem Size

might offset any additional work that might be required.

6.1 DEA Decomposition Background

Consider a partitioning of the set of DMUs into a series of k£ mutually exclusive and
collectively exhaustive subsets D; C D, where D = J;cx Di,(N;ex Di = 0, and K =
{1,...,k}. Define E(D;) and I(D;) to be the index sets of DMUs in D; that are efficient
and inefficient, respectively, relative to D; (i.e., D; = E(D;) U I(D;)), based on the
meaning of efficiency in the DEA model of interest.

Theorem 3
If D; C D, then I(D;) C I* and E* C |J;cx E(D;).

Hence if a DMU is inefficient in a subproblem, it is inefficient for the full problem; if
it is efficient for a subproblem, it may or may not be efficient overall. These relationships
provide the foundation for the following decomposition procedure for DEA models.

6.2 The Hierarchical Decomposition Procedure

The following approach to DEA problems solves a series of subproblems which are ar-
ranged in a hierarchy. The subproblems are themselves DEA problems created from
subsets of the DMUs in D. They can be solved independently, but information about set
I membership generated from the subproblems can accelerate the solution of others.

First we define a procedure for creating and solving the subproblems. It partitions
the set of DMUs whose efficiency is unknown (U) into a series of subsets, or blocks, of size
b. Recall that U = D — E — I and |U| is the cardinality of U.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 14

Figure 4: Hierarchical Decomposition Schematic

PROCEDURE SolveBlocks(b, ¢, 1)

Step 1 Partition U into k = [|U|/b] mutually exclusive, approximately equal-sized,
blocks of DMUs.

Step 2 For each block B;,i € K, K ={1,...,k}:

1. Apply a DEA envelopment model to compute Ef = F(B;), using early
identification of efficiency and restricted basis entry.

2. Set I = TUI(B;).

This procedure is used in the following hierarchical decomposition algorithm (HDEA).
A graphical representation of the process is given in Figure 4.

PROCEDURE HDEA(b, 3,7)

Level 1 (Initial pass)
1. I=0,U=D,0«1.
2. SolveBlocks(b, ¢, I).

Level 2 (Identify E* and I*.)
while (U # 0) do:

1. L+ (+1.

2. u+«|U|.

3. SolveBlocks(b, ¢, I).

4. if |U|/u >+, then b « |U], else b + 3b.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 15

Level 3 (Resolution of I*)
Re-solve the DEA model (with basis entry restricted to E*) for members of
I* to compute correct solution values.

User-supplied parameters § and 7 control the blocksize b in Level 2. Specifically, b
grows at each iteration by the 8 multiplier until it reaches |U|[; b is set equal to |U| when
the fraction of U retained in an iteration exceeds ~.

6.3 Implementation Considerations

HDEA is a divide-and-conquer algorithm similar in nature to merge sorting and sorting
networks [25, 27]: the original problem is broken into several smaller subproblems, which
are solved recursively and the results combined to solve the original problem. The block-
size parameter, b, defines sets of linear programs with the same number of constraints
as the original problem, but many fewer variables. This results in lower memory re-
quirements and faster solutions for the subproblems, although more linear programs may
be involved. Because of this increased speed and Theorem 3, these easier problems can
eliminate inefficient-DMU variables earlier than with non-hierarchical approaches.

The HDEA procedure focuses initially on isolation of E (in levels 1 and 2), so as to
expedite solution of the subproblems associated with I (in level 3). The method should
be particularly effective when |E| < |I|, as is typically the case. The decomposition into
subproblems with minimal data communication requirements is highly attractive from a
parallel processing standpoint.

Memory requirements are a function of max{b, |E|}. If primary storage is at a pre-
mium, its use can be minimized by paging in DMU data from external storage for each
subproblem separately. In parallel implementations, participating processes might place
in shared memory a copy of the X and Y data, plus a DMU-status array; each process
would also need its own private storage for solver-specific information such as a simplex
basis inverse and candidate list.

The choice of blocksize also affects overall solution time. Since b influences the tradeoff
between the size and the number of subproblems solved, computational testing for an
appropriate setting is required. Figure 5 shows the total solution time for various values
of b on an example problem.

6.4 Computational Testing

For testing the HDEA procedure, real life data, randomly generated data, and data based
on the economic Cobb-Douglas functional form were employed. For each test problem, an
array containing the status of each DMU was maintained in shared memory. A private
copy of the appropriate data was given to each processor in parallel so that each DMU
could be solved independently. Since the status of each DMU’s problem could be updated
without conflict from other processors, no locks were needed during the status update and
as a result, the parallel implementation is purely asynchronous.

All times reported are wall clock times, in minutes, to solve the problems exclusive
of any input/output. The single processor times represent the best achieved serial times
across the differing-sized DEA problems. The parallel case is a direct implementation of
the serial formulation, requiring only a few modifications for the parallel environment to
accomplish the self-scheduling parallel implementation. It is important to note that none

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 16

Figure 5: Total Solution Time vs. Blocksize for 8,000-DMU Problem

of the runs were made in a dedicated environment, and hence, times are subject to system
load. However, precautions were taken to conduct the runs during non-peak hours so as
to minimize the confounding of outside factors on the solution times.

For the test problems shown, a blocksize of 250 was used for the 8,000 and 4,000
DMU cases, 125 for the 2,000 DMU cases, and 100 for the 1,000 DMU cases. The effects
of different blocksizes must be investigated, hence, these results should not be viewed as
the best possible. During level 2 of the HDEA procedure, 8 = 1.5. As a result, each
subsequent block at level 2 grows by 50% until all DMUs have been classified as either
efficient or inefficient.

Table 5 shows that for all test runs the speedup was nearly linear. Larger more difficult
problems resulted in better speedup than smaller problems. With the smaller problems,
the overall solution time in parallel is so small that the overhead of maintaining the self-
scheduling tasks, as well as possible workload imbalance between processors, becomes
apparent. Consequently, although the parallel results for small problems are quite good,
the parallel implementation will be more efficient for large, difficult problems.

Table 5 also gives the total number of pivots and pricing operations executed to find
the DEA scores for each data set. These numbers vary with the number of processors
because of the method used to update the status of each DMU. As expected, problems
with a greater number of DMUs, and those with a larger density of efficient DMUs, require
more pivots and pricing operations and consequently take longer to solve.

Tables 6 thru 10 contain the results of each test problem for each level of the HDEA
procedure. The speedup remains relatively consistent across all problems across all levels
and is nearly linear.

The effects of using early identification of efficient DMUs to reduce the number of
linear programming problems that must be solved are shown in Tables 11 through 15.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 5: Hierarchical Test Problem Results

17

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 6: Bank Hierarchical Level Test Problem Results

18

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 7: Multinormal Hierarchical Level Test Problem Results

19

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 8: DEA-GENa Hierarchical Level Test Problem Results

20

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 9: DEA-GEND Hierarchical Level Test Problem Results

21

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 10: DEA-GENc Hierarchical Level Test Problem Results

22

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 23

With the HDEA procedure, the total number of linear programs that must be solved
is slightly more than twice the original number of DMUs contained in each data set.
However, since the HDEA linear programs are smaller than other DEA methods, overall
performance is improved. EIE improves performance further by reducing the number of
linear programs at level 1 and level 2 by 10-25%. Early identification has no effect at
level 3 since only DEA scores for inefficient DMUs are found at that level.

Table 16 shows the dramatic effect of the hierarchial procedure on reducing solution
time for the 8,000 DMU cases over the best DEA approach reported to date. Only three
processors are used in the parallel implementation because of memory limitations of the
non-hierarchial procedures. The HDEA procedure results in a 6- to 12-fold increase in
speed over the non-hierarchial procedure when both cases are run with the same number
of processors. Because the HDEA procedure requires less memory, permitting use of more
processors, the cases with 15 processors could be run and are 75 to 125 times faster than
the serial non-hierarchial procedure.

Although the test problems were limited to 8,000 DMUs because of the availability
of real life data, the HDEA procedure can accommodate much larger problems. A Cobb-
Douglas test case (Appendix C) consisting of 25,000 DMUs with 3 inputs and 3 outputs
was solved using 15 processors in 19.26 minutes. Again, memory size precluded solution
of this problem with the non-hierarchial procedure.

As seen with the test problems, the HDEA procedure allows for the solution of large-
scale DEA problems much faster than previously reported DEA methods. When coupled
with a parallel environment, the HDEA procedure yields solutions to problems in a matter
of minutes which previously, would have taken days. Additionally, the HDEA procedure
allows for the solution of very large-scale DEA problems that remain unsolvable (in a
practical sense) with any other reported approaches.

7 Further Computational Advantages of the HDEA Approach

Accompanying the HDEA method’s advances in sheer solution speed are a variety of
additional computational advantages in other settings. The hierarchial structure can be
exploited when solving multiple DEA models and further streamlining opportunities await
exploration.

7.1 Solving Multiple Models

There are numerous instances in which multiple models must be solved for each DMU un-
der consideration. The HDEA approach can be easily modified and extended to efficiently
determine all of the required values.

e To solve for technical, scale, and overall efficiency (inefficiency), both the BCC and
CCR models must be solved [33]. With HDEA, We can use the BCC or ADD
model through level 2 to find Ej,.. On only the Ej.. set we can apply the CCR
model formulation to find the E¥,. (C Ef..) set of DMUs. During level 3, while
determining the inefficient scores, we can solve the values for I}... Then, as an
advanced starting basis, we can allow all Ef.. DMUs to enter the basis and solve

for Ij},.. (Alternately, we could solve for the Iy.. values first, then relax the BCC

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 11: Bank Data Results: Linear Programs Required

24

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 12: Multinormal Data Results: Linear Programs Required

25

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 13: DEA-GENa Results: Linear Programs Required

26

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 14: DEA-GEND Results: Linear Programs Required

27

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 15: DEA-GENc Results: Linear Programs Required

28

R. Barr and M. Durchholz / Solving Large-Scale DEA Models

Table 16: Non-Hierarchical and Hierarchical Comparisons: 8,000-DMU Problems

29

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 30

7.2

1)\ = 1 constraint, tighten the basis entry rules, and solve for the I..., scores). Once
the BCC and CCR values are found, we can rapidly solve for the three efficiency
values desired. Note that this prevents a duplication of effort to find the inefficient
values.

Byrnes, Fére, and Grosskopf [16] argue that a “no increasing returns to scale”
(NIRS) model must be solved to determine if the DMU (or the virtual DMU if inef-
ficient) is in a region of increasing or decreasing returns to scale. Knowing this may
help indicate the direction the DMU should go to become efficient, either expand
operations through output augmentation, or downsize through input contraction.
We know that E}.. C Er. - C Ey . Consequently, the NIRS strategy could be

added to the strategy above to find these scores.

Besides solving for BCC, CCR, NIRS models, we can also apply assurance region
restrictions [33] once the E* for each model is found at level 2. The various assurance
region approaches can be solved at level 2 then extended to level 3. In this way, a
series of models can be solved rapidly without duplication of effort. We know that
the set of efficient DMUs under assurance-region constraints is a subset of E* for
any of the above models. This same approach can be used for the cone-ratio model
of [19, 20].

For the CCR and BCC models, there is an associated orientation, either input or
output. The inefficiency scores will vary depending on the orientation, but the Ej,.
and E?,,. sets will remain the same regardless of the orientation. Consequently, if
both orientations are needed, then only the level 3 values must be resolved to obtain

both.

Some versions of the model may provide faster solutions than others depending on
the number of output and input variables that are used. For example, if the number
of outputs exceeds the number of inputs, the output-oriented model solves faster.
Also, the CC R° model has an initial feasible solution, thus bypassing Phase I of the
simplex method. Since the output model may solve faster, this can be used through
level 2, then the input model applied in level 3 calculations if the input values are
needed. HDEA provides the flexibility to incorporate the fastest model to identify
E* through level 2, then at level 3 can use the model of choice to determine the
inefficiency scores.

Implementation Issues

As noted above, any method can be used to find the set of DMUs belonging to E*
and I* such as sorting, preprocessing, domination theory, etc. These can possibly
enhance the HDEA procedure to expedite the level 2 and level 3 efficiency score
values.

Computational concerns have arisen over the two-phase or multi-objective approaches
to the non-Archimedean infinitesimal issue, which can be decreased via HDEA. We
know that the efficiency scores do not vary with the sum-of-slack solutions. So in
HDEA, there is no need to solve for the sum of slacks during level 1 or most of level
2. Once potential E* DMUs are identified, the sum of slacks must be solved only for

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 31

7.3

7.4

these DMUs to determine if they are weakly efficient. If there are any weakly effi-
cient DMUs, they are removed from E*. During level 3, there is no need to solve for
the sum of slacks for the inefficient DMUs since a proper projection to the efficient
surface is obtained since no weakly efficient DMUs can enter the basis. Solving for
the sum of slacks for the inefficient DMUs may simply identify possible alternate
optimal solutions that offer no new information when weakly efficient DMUs are
not in the basis.

As the number of input/output variables grows, the likelihood of cycling also in-
creases because of severe degeneracy involved with the solution of some DMUs
(especially efficient DMUs). Anti-cycling procedures invoke a high computational
cost. Also, the possibility of cycling can increase with a larger number of DMUs
(variables) in the model. HDEA can help reduce the cost of cycling by maintaining
smaller problems. Additionally, at level 1 and most of level 2 there is no need to
invoke the anti-cycling rules. Any DMUs that exhibit cycling can be deferred. Only
when all potential members of E* are identified at level 2, must the anti-cycling
rules be invoked. By passing over the DMUs that cycle, inefficient DMUs may later
reveal the problematic DMUs as efficient. In this manner, the DMUs will not need
to be solved and the cost of applying anti-cycling rules is reduced.

Ezxploiting the Levels

As we progress through level 1 to level 2 to level 3, information at each level can be
used to enhance the solutions at the next level. DMUs that frequently show up in
efficient reference sets can be given priority during the pricing procedure to enter
the basis. By choosing the most attractive variables to enter the basis, the number
of pivots to solve the LPs may be reduced. This may also reduce the potential
for cycling. This also indicates the possibility of using different heuristics for the
entering and leaving variables for the different levels of the HDEA process.

One advantage of the HDEA process over domination and other preprocessing tech-
niques is that it can be used to find DEA scores for categorical variables and window
analysis enroute to determining overall DEA scores. By blocking appropriately, the
efficient DMUs for each category or window can be recorded along the way. In this
way, solving overall scores as well as those within particular categories or across
various categories can be accomplished without duplication of effort.

Parallel Implementation

The HDEA procedure can expand the parallel approach across many platforms. For
example, a SIMD distributed network can be used to solve each block of DMUs.
Since the blocks are smaller, memory requirements are smaller. The advantage of
updated restricted basis entry and early identification of DMU status within blocks
will be lost, but the basic process will still lead to a solution. The basis entry and
identification schemes will hold between levels.

For the parallel case, Amdahl’s law assumes that the same information is avail-
able for the single processor as for multiple processors. But with RBE and early

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 32

identification, the interaction between processors can enhance the solution process
resulting in high levels of efficiency when multiple processors are used. This is not
an HDEA-exclusive advantage, but it does hold for the HDEA process.

8 Conclusions

We have described a new hierarchial decomposition procedure for solving DEA problems
that advances the state of the art for computational data envelopment analysis. As
demonstrated with medium- and large-scale test sets, this approach can have dramatic
benefits over traditional methods—in both single-processor and parallel settings—and
permits enormous problems to be optimized in a modest amount of time. The ability to
routinely solve problems with thousands of DMUs permits researchers and practitioners
to be more ambitious in their application of this important class of models and, we hope,
will encourage new and even more exciting applications of DEA.

A DEA Models

A variety of models have been proposed for data envelopment analysis, each with different
assumptions and interpretations. This appendix provides a mathematical and notational
summary of the most commonly used formulations: CCR [22], BCC [6], additive [18],
non-decreasing returns-to-scale (NDRS) and non-increasing returns-to-scale (NIRS) [32].
Each basic model is shown in both envelopment and multiplier forms (which are duals
of each other), and for all traditional orientations. Model taxonomy follows the form
M7, where M is the base model’s abbreviation, r is the orientation indicator (r = o for
output-oriented, r = 7 for input-oriented, and missing for non-oriented), and j is the index
number of the DMU being evaluated by the model.

1.1 Envelopment Models

Input — oriented

CCR; - N L e(1s' +1s°)[YA =% =V}, 60;X; — XA —s' = 0}
BCC; N L e(1s’ +18%)|[YA =8 =Yj,0,X; — XA —s'=0,1A =1}
NDRS! A7si7r£oi§079]_{0j —e(1s" +1s%)[YA —s° =Y;,0,X; — XA —s' =0,1A > 1}
NIRS) A751_7r;1012()’9j{0j —e(1s" +1s%)[YA —s° =Y;,0,X; — XA —s'=0,1A < 1}
Outplzt — oriented
CCRj : A’Sifgoagcom{qﬁj +e(1s' + 18%) XA +s" = X;,0;Y; — YA +5° =0}
BCC : max {¢;+e(ls’ +1s°) XA +58" = X;, 6,7, - YA+s"=0,1A =1}

A8t s0 >0,0;

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 33

NDRS;) : }\Siriloa;(() ¢j{¢j +8(lsi + 1so)|X)\ +si = Xj,(f)jY}' —YA+s°= 0,1\ > 1}

NIRS]O. :)\,sil,’g"a;(O,d)j{QSj + E(lsi +1s%)| XA + st = X, 0;Y; = YA+s°=0,1A< 1}
Non — oriented

ADD; : max {1s'+1s°|]YA-s"=Y;, XA +s' = X;, 1A =1}

J A,st,5°>0

1.2 Multiplier Models

Input — oriented

CCR max{z = pY;|pY —vX < 0;vX; =1 u,v > 1e}
v

%

BCC max{z = pY; +ulpY —vX +1u < 0;vX; =1;p,v > 1e;u free}

vy

NDRS;- : max{z = pY; +ulpY —vX +1u < 0;vX; =1;p,v > 1e;u > 0}

v,
NIRS;- : max{z = pY; +ulpY —vX +1u < 0;vX; =1;p,v > 1e;u < 0}
1,

Output — oriented

0

CCR; min{z = vX;|pY —vX <0;uY; =1;p,v > 1e}
v
BCC]O. min{z = vX; +v|pY —vX +1v < 0;uY; = L;u,v > 1e;v free}
1,0
NDRS; : min{z=vX; +v|pY —vX +1v < 0;uY; = 1, v > 1e;v < 0}
11,0

NIRS; : min{z =vX; +v|pY —vX + 1v < 0;puY; = l;u,v > 1ejv > 0}

1,v,v
Non — oriented
ADD,; : max{pY; —vX;+wipY —vX +1w<0,pu>1,v > 1w free}

T

B Multinormal Population Parameters

Since few large-scale DEA problems are currently available, randomly generated data sets
were needed to simulate realistic applications. One procedure for generating such data is
to draw the samples from a multinormal distribution. To this end, the DRNMVN routine
from the IMSL library was used to generate observations for 10,000 DMUs based on the
variance-covariance matrix of Table 17. The code used to create this data is described in
[11].

From the randomly generated data, the variables representing inputs and outputs
needed to be carefully chosen. To coincide with sound economic theory, all outputs
should be positively correlated with all the inputs. By eliminating variable z4, variables
1, 3, and 27 could represent outputs since they would be positively correlated with
all the other remaining variables that would represent inputs. In this way, each DMU
would be comprised of 3 outputs and 4 inputs. Positively correlated inputs would be

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 34

compliments in the production process; those negatively correlated are substitutes. Since
the input variables cover a wide range of cases of compliment and substitute relationships,
the randomly generated values further simulate realistic data.

Table 17: Variance-Covariance Matrix 1 for Multinormal Data

X, 303.4

Xo 2.5 2.5

X3 12493.9 6093.9 112750625.0

Xy 4062.6 484.2 -2890405.7 31033992.2

X5 265.2 45.3 -1346076.8 -455158.7 7629765.5

Xg 19597.2 -195.0 3436081.9 -270405.4 -674642.7 86492323.0

X7 36418.8 6428.4 111950224.4 27415022.3 5153887.3 88983356.8 233502490.7

Xg 3647.0 1001.0 10815783.1 112293.8 -64824.7 -319883.0 10543369.3 7812141.0

C DEA-GEN, Cobb-Douglas Problem Generator

While random data generators can provide large problems, a more systematic approach is
needed to represent realistic scenarios. To this end, economic theory was used to generate
large-scale DEA problem sets.

In production economics, the most widely used functional form is known as the Cobb-
Douglas production function [24]. This function is written as:

m
yj:aOHa:%i, z;; >0,j=1,...,n

i=1

Here, y; is the single aggregate output produced by DMUj;, the z;;s are values of the
input variables used by DMU; in the production process, «; is the factor elasticity for
input 4, and a, is a constant scale factor. If 221 a; = 1 then only constant returns to
scale exist in the production process. For > " «a; < 1 decreasing returns to scale are
present, while Y- a; > 1 indicates increasing returns to scale. In the DEA studies,
increasing returns to scale are not used because the function results in only a few DEA
efficient points. Although this does not pose a problem, it does not realistically represent
realistic data.

For the single output model, this production function has many desirable properties.
If the inputs are randomly generated, the function generates output values that will always
lie on the production possibility frontier (i.e., they will be DEA efficient for > " a; <
1). This frontier is central to the theory of economic growth and measures the rate of
technological progress. The Cobb-Douglas frontier represents the best use of technology
as well as the best management practices to achieve efficient production. This coincides
with the practical use of DEA. Unlike DEA, the quest in economic studies is to attempt
to estimate the values of a; by fitting the function to the observed data. By choosing the
«; values a priori, then randomly generating the input values, the output values can be
determined so that they coincide with widely accepted economic theory. To insure that
not all generated data sets fall on the efficient frontier surface, the a, scale factor can
be randomly generated; the efficient DMUs will consist of those for which a, takes on it
maximum value. Control over the number of DMUs that are efficient in the data set can
be maintained by limiting the number of DMUs generated with maxa,.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 35

Table 18: Parameters for DEA-GEN Problems

Type #DMUs « Values Mean Values Standard Dev.

a 1,000 .3,.2,.2,.3 12,.13,.13,.14,.11 .03,.04,.02,.01,.01
a 2,000 .3,.2,.2,.2,.1 .20,.30,.15 .03,.04,.02

a 4,000 .3,.3,.2,.2 12,.12,.15,.14 .03,.04,.02,.01

a 8,000 .4,2,1,1,.1 5 1

b 1,000 .03,.07,.12,.03,.12,.1,.02 .2,.3,.15 .01,.05,.01

b 2,000 .1,.1,.1,.1,.1,.1,.1 .52,.13 .03,.04

b 4,000 .4,.3,1 4,3,.15 .13,.08,.02

b 8,000 .3,.17,.12,.03,.12,.2 2,.3,.15,.14 .01,.05,.01,.01

¢ 1,000 .18,.2,.14,.1,.1,.1 2,12,.14,.11,.11 .03,.04,.02,.01,.01
¢ 2,000 .13,.18,.2,.14,.1,.1 .2,.18,.15,.19 .03,.04,.02,.01

¢ 4,000 .13,.2,.12,.13 2,.3,.15,.14,.11 .03,.04,.02,.01,.01
¢ 8,000 .08,.12,.21,.07,.11 .3,.3,.3,.1 .04,.04,.1,.03

d 25,000 .3,.3,.3 3,.3 .01,.01

)

In DEA analysis, the single-output, multiple-input scenario is not of primary interest.
DEA was developed to analyze the case of multiple-output, multiple-input studies. Fare
and Grosskopf [51] point out that the existence of a joint production function has not been
established. That is, the multiple-output, multiple-input model does not produce values
strictly on the efficient production frontier. To do so, would require strict assumptions
that would not provide the desired realism for the DEA study. However, a joint model
without the strict assumptions would simulate economically sound production processes.
Consequently, a joint model was developed for the DEA-GEN problem generator.

For each of the problem sets, the input values were generated from a uniform dis-
tribution. The «; values were chosen to simulate constant returns to scale processes as
well as a variety of cases representing different levels of decreasing returns to scale. The
a, value was randomly generated, but with a modest control of the number of efficient
DMUs that could be present in the problem data.

Once the single aggregate output level was calculated, the individual output levels
were determined by assigning each individual output as a percentage of the aggregate.
The percentages for each individual output were drawn from normal distributions with
predetermined means and standard deviations. The means of the normal distributions
were chosen so that the percentages sum to one. Table 18 lists the «; values as well as the
means and standard deviations that were used to generate twelve different Cobb-Douglas
data sets.

Because of the economic foundations of the DEA-GEN code, the data generated
resembles a class of problems that should more closely simulate realistic economic data
than what would be possible from the data sampled from a multinormal distribution.

References

[1] A. I Ali, IDEAS: integrated data envelopment analysis system, technical report, Depart-
ment of General Business and Finance, University of Massachusetts, Amherst, MA, 1989.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 36

A. 1. Ali, Data envelopment analysis: computational issues, Comput. Environ. and Urban
Systems 14 (1990) 157-165.

A. I. Ali, Streamlined computation for data envelopment analysis, Furopean Journal of
Operational Research 64 (1993) 61-67.

A. 1. Ali, Computational aspects of data envelopment analysis, in A. Charnes, W. W.
Cooper, A.Y. Lewin, and L.M. Seiford, DEA: Theory, Methodology, and Applications,
Kluwer Academic Publishers, Boston, 1994, pp. 63-88.

A. 1. Ali, L. Seiford, Computational accuracy and infinitesimals in data envelopment anal-
ysis, INFOR 31 (1989) 290-297.

R. D. Banker, A. Charnes, W. W. Cooper, Some models for estimating technical and scale
inefficiencies in data envelopment analysis, Management Science 30 (1984) 1078-1092.

R. S. Barr, M. L. Durchholz, Parallel software for large-scale data envelopment analysis,
presented at the Joint National Meeting of ORSA and TIMS, San Francisco, CA, 1992.

R. S. Barr, M. L. Durchholz, Parallel and hierarchical decomposition approaches for solving
large-scale DEA models, presented at the Joint National Meeting of ORSA and TIMS,
Chicago, IL, 1993.

R. S. Barr, M. L. Durchholz, Parallel and hierarchical decomposition approaches for solving
large-scale DEA models, technical report 94-CSE-6, Department of Computer Science and
Engineering, Southern Methodist University, Dallas, TX, 1994

R. S. Barr, B. L. Hickman, Reporting computational experiments with parallel algorithms:
issues, measures, and experts’ opinions, ORSA Journal on Computing 5 (1993) 2-18.

R. S. Barr, B. L. Hickman, J. S. Turner, Statistical file merging: a new, constrained network
model and parallel solution approach, technical report, Department of Computer Science
and Engineering, Southern Methodist University, Dallas, TX, 1997

R. S. Barr, L. Seiford, T. F. Siems, An envelopment-analysis approach to measuring the
managerial quality of banks, Annals of Operations Research 42 (1993) 1-19.

R. S. Barr, T. F. Siems, Predicting bank failure using DEA to quantify management quality,
in R. Barr, R. Helgason, J. Kennington eds., Interfaces in Computer Science and Operations
Research: Advances in Metaheuristics, Optimization, and Stochastic Modeling Techniques,
Kluwer Academic Publishers, Boston, 1997, pp. 341-365.

R. E. Bixby, Implementing the simplex method: the initial basis, ORSA Journal on Com-
puting 4 (1992) 267-284.

R. G. Bland, New finite pivoting rules for the simplex method, Mathematics of Operations
Research 2 (1977) 103-107.

P. Byrnes, R. Fare, S. Grosskopf, Measuring productive efficiency: an application to illinois
strip mines, Management Science 30 (1984) 671-681.

A. Charnes, W. W. Cooper, Management Models and Industrial Applications of Linear
Programming, John Wiley, New York, 1961.

A. Charnes, W. W. Cooper, B. Golany, L. Seiford, J. Stutz, Foundations of data envel-
opment analysis for pareto-Koopmans efficient empirical production functions, Journal of
Econometrics 30 (1985) 91-107.

A. Charnes, W. W. Cooper, Z.M. Huang, Polyhedral Cone-Ratio DEA Models with an
Illustrative Application to Large Commercial Banks, Journal of Econometrics 46 (1990)
73-91.

A. Charnes, W. W. Cooper, Z.M. Huang, D.B. Sun, Relations between half-space and
finitely generated cones in polyhedral cone-ratio DEA models, International Journal of
Systems Science 22 (1991) 2057—-2077.

A. Charnes, W. W. Cooper, A. Y. Lewin, L. M. Seiford, Data Envelopment Analysis: The-
ory, Methodology, and Application, Kluwer Academic Publishers, Boston, 1994.

A. Charnes, W. W. Cooper, E. Rhodes, 1978. Measuring the efficiency of decision making
units, European Journal of Operational Research 2 (1978) 429-444.

R. Barr and M. Durchholz / Solving Large-Scale DEA Models 37

A. Charnes, J. Rousseau, J. Semple, An effective non-Archimedean anti-degeneracy/cycling
linear programming method especially for data envelopment analysis and like models Annals
of Operations Research 47 (1993), 271-278.

C. W. Cobb, P. H. Douglas, A theory of production, American Economic Review March
(Suppl.) (1928) 139-165.

T. H. Cormen, C. E. Leiverson, R. L. Rivest, Introduction to Algorithms, MIT Press, Cam-
bridge, MA, 1990.

M. J. Flynn, Very high-speed computing systems, Proceedings of the IEEE 54 (1966) 1901—
1909.

D. E. Knuth, The Art of Computer Programming Volume 8 / Sorting and Searching,
Addison-Wesley, Reading, MA, 1973.

R. Marsten, The design of the XMP linear programming library, ACM Transactions on
Mathematical Software 7 (1981) 481-497.

J. M. Mulvey, Pivot strategies for primal-simplex network codes, Journal of the ACM 25
(1978) 206-270.

W. Orchard-Hays, Advanced Linear Programming Computing Techniques, McGraw-Hill,
NY, 1968.

F. Phillips, R. G. Parsons, A. Donoho, Parallel microcomputing for data envelopment anal-
ysis, Comput., Environ., and Urban Systems 14 (1990) 167-170.

L. M. Seiford, R. M. Thrall, Recent development in DEA: the mathematical programming
approach to frontier analysis, Journal of Econometrics 46 (1990) 7-38.

R. G. Thompson, L. N. Langemeier, C.-T. Lee, E. Lee, R. M. Thrall, The role of multiplier
bounds in efficiency analysis with application to Kansas farming, Journal of Econometrics
46 (1990) 93-108.

Ti ne (hrs)

Cunul ati vdi ne (hrs)

ENoRBEFEIE [RBE/EIE

1000 2000 3000 4000 5000 6000 7000 8000
Nunber of DMJ s

Figure 1: Solution Time for Subsets of BANK-8

45+)
.---- NoRBE/EIE
40+ Py
— _ RBE/EIE
351 T
304 e

1000 2000 3000 4000 5000 6000 7000 8000
Curnul ati vilunber of DMJs

Figure 2: Cumulative Solution Time for Subsets of BANK-8

Ti me (m nutes)

200 300

100

[! ! ! ! ! 1

1000 2000 3000 4000 5000 6000 7000 8000
Number of DMUJs

Figure 3: Solution Time versus Problem Size

Level

Levelk

LeveB

Al I DMJs

Bl ockl Bl ock2 Bl ock3 _ _ ..

Bl ockk

L

/

Figure 4: Hierarchical Decomposition Schematic

Ti me

600 : : : : : i
50 75 100 150 200 250 300

Bl ocl6i ze

Figure 5: Total Solution Time vs. Blocksize for 8 000-DMU Problem

Table 5.-- Hierarchial Test Problem Results

DMUs Variables Eff. Number of Pivots Number Priced Time to Solve(min.) | Speedup |Efficiency
Out In 1 5 10 1 5 10 1 5 10 5 10 | 5 10
1000 3 6 67 | 43992 44532 45207 | 1590581 1632351 1680000 | 12.41 2.78 1.70 |4.46 7.30 (0.89 0.73
Bank 2000 3 6 70| 92374 93154 94219 | 4572332 4959926 4757618 | 32.81 7.17 4.19 |4.58 7.83(0.92 0.78
4000 3 6 87 |189784 190340 190987 |12093187 12232628 12242949 | 85.31 17.64 9.40 |4.84 9.08 |0.97 0.91
8000 3 6 77 1382755 374088 383872 22890453 26946497 23429491 | 166.00 37.68 18.18 |4.41 9.13 |0.88 0.91
1000 3 4 79| 43992 44532 45207 | 1590581 1632351 1680000 | 12.41 2.78 1.70 |4.46 7.30 (0.89 0.73
Multi- 2000 3 4 89 | 62418 62502 62674 | 4984732 5029902 5089368 | 28.03 5.85 3.14 |4.81 8.92(0.96 0.89
Normal 4000 3 4 85 [132884 133149 133566 {10490470 10595619 10723294 | 59.41 12.36 6.66 |4.79 8.93 (0.96 0.89
8000 3 4 104 282679 283219 284001 22740407 22934235 23190802 | 128.10 26.64 14.30 |4.81 8.96 |0.96 0.90
1000 6 4 96 | 51102 51645 52392 | 1922161 1964649 2019596 | 15.81 3.50 2.04 |4.52 7.75(0.90 0.78
DEA-GENa | 2000 3 5 147 | 87709 88084 88746 | 5211167 5275631 5364496 | 33.64 7.12 4.00 |4.72 8.411(0.94 0.84
4000 5 4 82 |168813 169281 169856 |12682231 12816378 12986010 | 83.38 17.18 9.11 |4.85 9.15(0.97 0.92
8000 2 5 70 1233108 233585 234293 |18772046 18962220 19215932 | 107.60 22.40 12.08 |4.80 8.91 (0.96 0.89
1000 4 T 214 | 72961 73706 74457 | 3530627 3583495 3638872| 30.60 6.43 3.51 |4.76 8.7210.95 0.87
DEA-GEND [2000 2 7 275 |119211 113755 114479 | 8040444 8143142 8239181 | 55.37 11.54 6.21 |4.80 8.92 (0.96 0.89
4000 3 3 64 | 98087 99237 99378 | 7397992 7474611 7560169 | 39.77 8.29 4.49 |4.80 8.86 (0.96 0.89
8000 4 6 153 | 16418 16443 16493 36671079 36943789 37360152 | 248.90 51.63 27.53 |4.82 9.04 0.96 0.90
1000 6 6 201 | 79180 79976 81034 | 3693590 3749286 3824666 | 33.97 7.19 3.91 |4.72 8.69(0.94 0.87
DEA-GENc |2000 5 6 265 (151704 152727 154118 (10210540 10327905 10479963 | 79.73 16.58 8.82 |4.81 9.04]0.96 0.90
4000 4 4 66 [127473 127684 127827 | 9348034 9440561 9547832 | 57.72 11.97 6.38 |4.82 9.05 (0.96 0.90
8000 4 5 216 1400772 401413 402133 37030392 37277393 37572989 | 231.20 48.24 25.57 |4.79 9.04 10.96 0.90

Table 6.-- Bank Hierarchial Level Test Problem Results

DMUs Number of Pivots Number Priced Time to Solve(min.) | Speedup |Efficiency [Fraction of Time

1 5 10 1 5 10 1 5 10 5 10 | 5 10 1 5 10

Level 1 | 14739 14968 15458 | 504349 528431 562621 3.92 087 0.53 |4.51 7.4010.90 0.74| 32 .31 .31
1000 |Level 2 | 7865 8176 8361 | 322718 340406 353865 241 053 0.30 |4.55 8.03 1091 0.80| .19 .19 .18
Level 3 | 21388 21388 21388 | 763514 763514 763514 6.08 1.38 0.87 |4.41 6.9910.88 0.70 | 49 .50 .51

Level 1 | 30770 31234 31679 | 1493465 1558862 1628509 | 10.53 2.30 1.31 |[4.58 8.04 (0.92 0.80 | .32 .32 .27
2000 |Level 2 | 14486 14702 14922 | 820049 842246 870291 5.82 1.22 0.67 |4.77 8.6910.95 0.87 | .18 .18 .16
Level 3 | 47218 47218 47218 | 2258818 2558818 2258818 | 16.46 3.65 2.21 |4.51 7.45(0.90 0.74 | 50 .50 .53

Level 1 | 80874 81060 81454 | 5347913 5438858 5441015 | 36.49 7.52 3.97 |4.85 9.19 (0.97 0.92 | 43 43 42
4000 |Level 2 | 20475 20845 21098 | 1614961 1663457 1671621 | 10.95 2.28 1.20 |4.80 9.13 |0.96 0.91 | .13 .13 .13
Level 3 | 88435 88435 88435 | 5130313 5130313 5130313 | 37.87 7.84 4.23 |4.83 895 (097 0.90 | 44 44 45

Level 1 |165189 165432 165996 (10774504 11051147 11232790 | 73.65 16.53 8.05 (4.46 9.15 (0.89 0.91 | 44 44 .44
8000 |Level 2 | 41814 41985 42124 | 3252093 3295040 3332845 | 22.26 481 2.34 |4.63 9.51 (0.93 0.95| .13 .13 .13
Level 3 |175752 175752 175752 | 8863856 8863856 8863856 | 70.10 16.34 7.79 |4.29 9.00 (0.86 0.90 | 43 43 .43

Table 7.-- Muli-normal Hierarchial Level Test Problem Results

DMUs Number of Pivots Number Priced Time to Solve(min.) | Speedup |Efficiency [Fraction of Time

1 5 10 1 5 10 1 5 10 5 10 | 5 10 1 5 10

Levell | 14739 14968 15458 | 504349 528431 562621 3.92 087 0.53 |4.51 7.4010.90 0.74| 32 .31 .31
1000 |Level2 | 7865 8176 8361 | 322718 340406 353865 241 053 0.30 |4.55 8.03 1091 0.80| .19 .19 .18
Level3 | 21388 21388 21388 | 763514 763514 763514 6.08 138 0.87 |4.41 6.9910.88 0.70 | 49 .50 .51

Levell | 27897 27969 28102 | 2239921 2279134 2330107 | 12.36 2.57 1.37 |4.81 9.02|0.96 0.90 | 44 44 .44
2000 |Level2 | 3928 3940 3979 | 366038 371995 380488 1.98 041 0.22 |4.83 9.00 [0.97 0.90 | .07 .07 .07
Level3 | 30593 30593 30593 | 2378773 2378773 2378773 | 13.69 287 1.55 |4.77 8.8310.95 0.88 | .49 .49 .49

Levell | 55307 55535 55790 | 4420400 4511812 4610712 | 24.29 5.09 2.71 |4.77 8.96 {0.95 0.90 | 41 .41 .41
4000 |Level2 | 12400 12437 12599 | 1131057 1144794 1173569 6.31 1.30 0.70 |4.85 9.0110.97 0.90 | .11 .11 .11
Level3 | 65177 65177 65177 | 4939013 4939013 4939013 | 28.81 5.97 3.25 |4.83 8.86 |0.97 0.89 | .48 .48 .48

Levell |112154 112564 113192 | 8900632 9068521 9286181 | 49.50 10.28 5.48 |4.82 9.03 |0.96 0.90 | .39 .39 .38
8000 |Level2 | 23633 23763 23917 | 2149424 2175363 2214270 | 12.17 249 1.30 |4.89 9.36 |0.98 0.94| .10 .09 .09
Level3 |146892 146892 146892 |11690351 11690351 11690351 | 66.40 13.87 7.52 |4.79 8.83 |0.96 0.88 | .51 .52 .53

Table 8.-- DEA-GENa Hierarchial Level Test Problem Results

DMUs Number of Pivots Number Priced Time to Solve(min.) | Speedup |Efficiency |[Fraction of Time

1 5 10 1 5 10 1 5 10 5 10 | 5 10 1 5 10

Levell | 16360 16749 17042 | 538284 569692 599536 454 1.02 0.60 [4.45 7.57 |0.89 0.76 | .29 .29 .29
1000 |Level2 | 7960 8114 8568 | 340961 352041 377144 266 058 034 (459 782092 0.78| .17 .17 .17
Level3 | 26782 26782 26782 |1042916 1042916 1042916 8.61 190 1.10 |4.53 7.83 |0.91 0.78 | .54 .54 .54

Levell | 25295 25565 26010 {1331525 1377928 1442319 858 186 1.08 |4.61 7.94|0.92 0.79| .26 .26 .27
2000 |Level2 | 16902 17007 17224 |1072520 1090581 1115055 6.77 139 075 |4.87 9.03 [0.97 0.90 | .20 .20 .19
Level3 | 45512 45512 45512 |2807122 2807122 2807122 | 18.29 3.87 2.17 |4.73 8.43 {0.95 0.84 | .54 b4 b4

Levell | 69334 69591 69879 |5397968 5501412 5623544 | 33.95 7.08 3.72 |4.80 9.13 |0.96 0.91 | 41 41 41
4000 |Level2 | 18130 18341 18628 |1935924 1966627 2014127 | 12.07 2.47 1.29 (489 9.36 (0.98 0.94 | .14 .14 .14
Level3 | 81349 81349 81349 |5348339 5348339 5348339 | 37.36 7.63 4.10 |4.90 9.11 |0.98 0.91 | 45 45 45

Levell | 93421 93782 94278 |7692497 7842514 8035761 | 42.46 890 4.79 |4.77 886 (0.95 0.89 | .39 .40 .40
8000 |Level2 | 26747 26863 27075 |3274462 3314619 3375084 | 17.28 3.53 1.84 |4.90 9.39 |0.98 0.94| .16 .16 .15
Level3 |112940 112940 112940 |7805087 7805087 7805087 | 47.87 9.97 5.45 |4.80 878 |0.96 0.88 | 45 .44 45

Table 9.-- DEA-GEND Hierarchial Level Test Problem Results

DMUs Number of Pivots Number Priced Time to Solve (min.) | Speedup |Efficiency [Fraction of Time

1 5 10 1 5 10 1 5 10 5 10 | 5 10 1 5 10

Levell | 14439 14815 15240 | 556774 584561 615245 492 1.09 0.65 |4.51 7.57(0.90 0.76 | .16 .17 .19
1000 |Level2 | 24853 25222 25548 | 1302084 1327165 1351858 10.76 2.25 1.21 |4.78 8.89 (0.96 0.89 | .35 .35 .34
Level3 | 33669 33669 33669 | 1671769 1671769 1671769 14.92 3.09 1.65 |[4.83 9.04 (0.97 0.90 | 49 48 .47

Levell | 24953 25337 25788 | 1404447 1456216 1514152 9.64 2.09 120 [4.61 8.03(0.92 0.80 | .17 .18 .19
2000 |Level2 | 32561 33021 33294 | 2456025 2506954 2545057 16.21 336 1.79 |[4.82 9.06 (0.96 0.91 | .29 .29 .29
Level3 | 55397 55397 55397 | 4179972 4179972 4179972 | 2952 6.09 3.22 |4.85 9.17 |0.97 0.92 | b4 B3 .52

Levell | 44515 45676 45831 | 3647181 3720602 3801151 18.56 3.86 2.08 |[4.81 8.92 (0.96 0.89 | 47 47 .46
4000 |Level2 | 7166 7155 7141 | 674808 678006 683015 3.47 0.70 036 [4.96 9.64 {0.99 0.96 | .09 .08 .08
Level3 | 46406 46406 46406 | 3076003 3076003 3076003 1774 373 2.05 |4.76 8.65 (0.95 0.87 | .44 45 .46

Levell |136962 137406 138254 {11300447 11493854 11764096 | 75.94 15.67 8.28 |4.85 9.17 (0.97 0.92 | .31 .30 .30
8000 |Level2 | 66459 66735 67432 | 7522680 7601983 7748104 | 50.08 10.19 5.24 |4.91 9.56 (0.98 0.96 | .20 .20 .19
Level3 |215839 215839 215839 |17847952 17847952 17847952 | 122.90 25.77 14.02 [4.77 876 [0.95 0.88 | 49 .50 .51

Table 10.-- DEA-GENc¢ Hierarchial Level Test Problem Results

DMUs Number of Pivots Number Priced Time to Solve (min.) | Speedup |Efficiency [Fraction of Time

1 5 10 1 5 10 1 5 10 5 10 | 5 10 1 5 10

Levell | 16890 17438 17904 | 632567 668930 705190 587 136 076 [4.32 7.72(0.86 0.77 | .17 .19 .19
1000 |Level2 | 26070 26318 26910 | 1310594 1329927 1369047 | 11.53 240 1.31 |4.80 8.80 |0.96 0.88 | .34 .33 .34
Level3 | 36220 36220 36220 | 1750429 1750429 1750429 16.57 3.43 1.84 |[4.83 9.01 [0.97 0.90 | 49 48 .47

Levell | 30545 31123 31848 | 1663487 1732443 1815061 13.02 281 159 |[4.63 8.19(0.93 0.82 | .16 .17 .18
2000 |Level2 | 41269 41714 42380 | 2975857 3024266 3093706 | 22.37 4.63 2.45 |4.83 9.13 (0.97 0.91 | .28 .28 .28
Level3 | 79890 79890 79890 | 5571196 5571196 5571196 | 44.34 9.14 4.78 |(4.85 9.28 [0.97 0.93 | .56 .B5 .54

Levell | 59940 60099 60225 | 4627122 4708855 4805916 | 27.30 5.66 2.99 (4.82 9.13 (0.96 0.91 | 47 47 .47
4000 |Level2 | 9627 9679 9696 | 979096 989890 1000100 5.82 1.19 0.61 |[4.89 9.54 {0.98 0.95 | .10 .10 .10
Level3 | 57906 57906 57906 | 3741816 3741816 3741816 | 24.60 5.12 2.78 |4.80 8.85 (0.96 0.88 | 43 43 .43

Levell |128400 128880 129358 {10534301 10730605 10964250 | 65.30 13.66 7.24 |4.78 9.02 |0.96 0.90 | .28 .28 .28
8000 |Level2 | 54664 54825 55067 | 5780407 5831104 5893065 | 35.75 7.30 3.75 [4.90 9.53 (0.98 0.95| .16 .15 .15
Level3 |217708 217708 217708 |20715684 20715684 20715684 | 130.10 27.28 14.58 (4.77 8.92 (0.95 0.89 | .57 .B7 .57

Table 11.-- Bank Data Results — Linear Programs Required

LPs LPs
DMUs No Early Identification With Early Identification
1 5 10 1 5 10
Levell 1000 1000 1000 795 807 827
1000 Level2 408 408 408 294 304 312
Level3 922 922 922 922 922 922
Total 2330 2330 2330 2011 2033 2061
Levell 2000 2000 2000 1649 1670 1694
2000 Level2 653 653 653 509 519 530
Level3 1918 1918 1918 1918 1918 1918
Total 4571 4571 4571 4076 4107 4142
Levell 4000 4000 4000 3552 3562 3577
4000 Level2 779 779 779 638 648 653
Level3 3902 3902 3902 3902 3902 3902
Total 8681 8681 8681 8092 8112 8132
Levell 8000 8000 8000 7092 7116 7149
8000 Level2 1487 1487 1487 1278 1288 1289
Level3 7923 7923 7923 7923 7923 7923
Total 17410 17410 17410 16293 16327 16361

Table 12.-- Multi-Normal Data Results — Linear Programs Required

LPs LPs
DMUs No Early Identification With Early Identification
1 5 10 1 5 10
Levell 1000 1000 100 795 807 827
1000 Level2 408 408 408 294 304 312
Level3 922 922 922 922 922 922
Total 2330 2330 2330 2011 2033 2061
Levell 2000 2000 2000 1781 1783 1788
2000 Level2 282 282 282 211 212 213
Level3 1911 1911 1911 1911 1911 1911
Total 4193 4193 4193 3903 3906 3912
Levell 4000 4000 4000 3530 3542 3549
4000 Level2 709 709 709 569 570 579
Level3 3915 3915 3915 3915 3915 3915
Total 8024 8624 8624 8014 8027 8043
Levell 8000 8000 8000 7106 7120 7145
8000 Level2 1295 1295 1295 1074 1080 1091
Level3 7896 7896 7896 7896 7896 7896
Total 17191 17191 17191 16076 16096 16132

Table 13.-- DEA-GENa Results — Linear Programs Required

LPs LPs
DMUs No Early Identification With Early Identification
1 5 10 1 5 10
Levell 1000 1000 1000 e 791 797
1000 Level2 435 435 435 288 291 300
Level3 904 904 904 904 904 904
Total 2339 2339 2339 1966 1986 2001
Levell 2000 2000 2000 1520 1533 1566
2000 Level2 972 972 972 682 687 692
Level3 1853 1853 1853 1853 1853 1853
Total 4825 4825 4825 4055 4073 4111
Levell 4000 4000 4000 3522 3530 3540
4000 Level2 729 729 729 612 616 623
Level3 3918 3918 3918 3918 3918 3918
Total 8647 8647 8647 8052 8064 8081
Levell 8000 8000 8000 7029 7050 7079
8000 Level2 1465 1465 1465 1271 1276 1285
Level3 7930 7930 7930 7930 7930 7930
Total 17395 17395 17395 16230 16256 16294

Table 14.-- DEA-GENb Results — Linear Programs Required

LPs LPs
DMUs No Early Identification With Early Identification
1 5 10 1 5 10
Levell 1000 1000 1000 670 688 709
1000 Level2 1105 1105 1105 716 729 740
Level3 786 786 786 786 786 786
Total 2891 2891 2891 2172 2203 2235
Levell 2000 2000 2000 1436 1455 1475
2000 Level2 1785 1785 1785 1173 1190 1201
Level3 1725 1725 1725 1725 1725 1725
Total 5510 5510 5510 4334 4370 4401
Levell 4000 4000 4000 3636 3644 3650
4000 Level2 438 438 438 384 384 383
Level3 3936 3936 3936 3936 3936 3936
Total 8374 8374 8374 7956 7964 7969
Levell 8000 8000 8000 6678 6698 6507
8000 Level2 2326 2326 2326 1893 1898 2506
Level3 7847 7847 7847 7847 7847 7886
Total 18173 18173 18173 16418 16443 16899

Table 15.-- DEA-GENc Results — Linear Programs Required

LPs LPs
DMUs No Early Identification With Early Identification
1 5 10 1 5 10
Levell 1000 1000 1000 684 704 726
1000 Level2 1052 1052 1052 670 684 700
Level3 799 799 799 799 799 799
Total 2851 2851 2851 2153 2187 2225
Levell 2000 2000 2000 1415 1446 1480
2000 Level2 1806 1806 1806 1181 1194 1213
Level3 1735 1735 1735 1735 1735 1735
Total 5541 5541 5541 4331 4375 4428
Levell 4000 4000 4000 3611 3616 3624
4000 Level2 462 462 462 413 413 413
Level3 3934 3934 3934 3934 3934 3934
Total 8396 8396 8396 7958 7963 7971
Levell 8000 8000 8000 6730 6757 6782
8000 Level2 2181 2181 2181 1712 1716 1724
Level3 7784 7784 7784 7784 7784 7784
Total 17965 17965 17965 16226 16257 16290

Table 16.-- Non-Hierarchial and Hierarchial Comparisons: 8,000 DMU Problems

Solution Times (min.)

No Hierarchial Hierarchial Speed Improvement
1 3 1 3 10 15 1:1 3:3 1:3 1:10 1:15
Bank 1294.07 434.58 166.00 61.73 18.18 14.27 7.80 7.04 2096 71.18 90.68
Multi-Normal 931.98 313.15 128.10 43.72 14.30 10.54 728 7.6 21.32 65.17 88.42
DEA-GENa 1088.50 366.51 107.60 31.92 12.08 8.83 10.12 11.48 34.10 90.11 123.27
DEA-GENbD 2091.20 704.13 248.90 84.47 27.53 19.89 840 8.34 2476 7596 105.14
DEA-GENCc 1437.32 482.84 231.20 78.88 2557 18.55 6.22 6.12 18.22 56.21 77.48

