PARALLEL SSIMPLEX FOR LARGE PURE NETWORK PROBLEMS:
COMPUTATIONAL TESTING AND SOURCES OF SPEEDUP

Richard S. Barr!
Betty L. Hickman®

March, 1993
(Revised)

! southern Methodist University
Department of Computer Science and Engineering
Dallas, Texas 75275
(214) 768-2605
barr @ seas.smu.edu

U niversity of Nebraska at Omaha
Department of Mathematics and Computer Science
Omaha, Nebraska 68182-0243
(402) 554-2831
hickman @ unocss.unomaha.edu

ABSTRACT

This paper reports on a new parallel implementation of the primal simplex method for minimum
cost network flow problems, that decomposes both the pivoting and pricing operations. The self-
scheduling approach is both flexible and efficient; its implementation is close in speed to the best se-
rial code when using one processor, and is capable of substantial speedups as parallel computing
units are added. An in-depth computational study of randomly generated transportation and trans-
shipment problems verified the effectiveness of this approach, with results on a 20-processor 80386-
based system that are competitive with—and occasionally superior to—massively parallel imple-
mentations using tens of thousands of processors. A micro-analysis of the code's behavior identified
unexpected sources of (the occasionally superlinear) speedup, including the evolutionary topology

of the network basis.

The past two decades have seen dramatic advances in the development and implementation of
algorithms for solving the minimum-cost network flow problem. Large-scale models that previ-
ously required days to optimize using general linear programming methods now require only hours
with a special-purpose network code. Even with such achievements, many applications require
more rapid results, since the value of a model's solution may be either short-lived—as with stock ar-
bitrage opportunities—or otherwise time-sensitive—as with evacuation models, aircraft rerouting;
missile targeting, or human interaction problems (see Ahuja, Magnanti, and Orlin, 1993; Aronson,
1989; Bertsekas, 1991; Glover, Klingman, and Phillips, 1989, 1992; Murty, 1992). Large pure net-
work models also arise as subproblems in the context of integer, nonlinear, relaxation, and stochastic
optimization algorithms (see survey by Amini and Barr, 1990). In many cases, such as Lagrangean
relaxation, algorithms require that subproblems be solved sequentially, hence time improvements
must come from faster solutions to individual problems. Such needs have led researchers to explore
advances in computing technology for new means of further reducing the real time to optimize a pro-
gram.

One promising advance is application-level parallel processing, whereby the power of multiple
processors can be brought to bear on a single problem. If the work associated with an algorithm can
be properly subdivided and scheduled to separate processors for simultaneous execution, opportuni-
ties for dramatic new model solution times arise. As with traditional, serial machines, solution effi-
ciencies are directly tied to how well the algorithmic steps match the architecture of the underlying
machine. Therefore, with the evolution in computing machinery comes a corresponding evolution in
algorithms and their implementations.

The objective of this research was to design and implement a new primal-simplex-based parallel
algorithm for efficiently solving the minimum-cost, or pure, network flow problem and test its per-
formance on medium- and large-scale problems. The results, obtained on a shared-memory multi-
processor, not only show that substantial improvements in solution time are indeed possible but also
that such improvements are due in great measure to temporal characteristics of the basis topology.

The sections that follow give a brief background on parallel processing and network flow prob-
lems; describe our parallel algorithm, its implementation, and the results of computational testing;

and analyze the evolutionary characteristics of the simplex basis.
1. BACKGROUND

Parallel processing is the simultaneous manipulation of data by multiple computing elements
working to complete a common body of work. The key objective of parallel processing is the reduc-

tion of real (“wall clock™) time required to complete the work. Hence the motivation for such new

machine architectures springs from the need to solve existing problems faster or to make tractable
larger and more difficult problems.

The most common measure of the effect of parallelism on the solution of a given problem is
speedup, S(p). While several definitions of speedup have been proposed (see Barr and Hickman,
1993a), we use: the ratio of the problem's solution time using the fastest serial code to the time using
a parallel code and p processors on the same machine. (Some authors simply report r €l ative speedup,
which compares the parallel code with itself using one processor.) Linear speedup, with S(p)=p, is
considered an ideal application of parallelism, although superlinear results, with S(p)>p, are possi-

ble in some instances.
1.2 Parallel Computer Architectures

While most computers have some degree of parallelism, only recently have systems become
commercially available that allow an applications programmer to control several processing units.
Such parallel computers are as varied in design as they are many, but the two main categories—as
defined by Flynn (1966)—are: single-instruction, multiple-data (SIMD), a parallel machine design
wherein all processors execute the same instruction in lockstep, and apply it to different pieces of
data; and multiple-instruction, multiple-data (MIMD), a computing system containing multiple, in-
dependently executing processors which can operate on different datasets.

Processors in SIMD and MIMD parallel computers communicate either via a common shared
memory accessed through a central switch, or by messages passed through an interconnection net-
work in a distributed system. Shared-memory multiprocessors are called tightly coupled if the time
required to access a particular memory location is the same for all processors, as opposed to being
proximity dependent or l00sely coupled. Our research was carried out in a shared-memory MIMD
multiprocessing environment, the most prevalent commercial parallel computer architecture.

Since automatic parallelization of serial programs is in the embryonic stage of development, im-
plementations of parallel algorithms must be coded for a parallel processing environment. Work
must be decomposed into a series of tasks which may be assigned to separate processors for simulta-
neous execution. Our parallel network algorithm was implemented using both functional and do-
main decomposition (see Osterhaug, 1992), with a prioritized, self-scheduled synchronization and

work allocation scheme, as described in Section 3.
1.3 Previous Parallel Research on Pure Network Problems

Two previous parallel implementations of the primal simplex for pure networks have been re-
ported. Miller, Pekny, and Thompson (1990) used a 14-processor BBN Butterfly Plus—a tightly
coupled, heterogeneous MIMD computer—to solve large dense uncapacitated transportation prob-

lems. They execute only the simplex pricing step in parallel. Peters (1990) performed in parallel the

pricing step and parts of the pivot operation; decomposition of the pivot was deemed “not competi-
tive.” His code was tested on a Sequent S81, hence direct comparisons are possible with our imple-
mentation and are described below.

Bertsekas and Castafion (1990) implemented Ford and Fulkerson's (1957) primal-dual method
for pure networks, based on earlier ideas by Balas, et al. (1989) and their own work for assignment
problems. This was implemented and tested on an Encore Multimax using one to four processors.

Li and Zenios (1991) implemented an €-relaxation network algorithm on a massively parallel
Connection Machine CM-2 with 16,384 processors. Nielsen and Zenios (1991) applied two differ-
ent algorithms—quadratic proximal point (QPP) and entropy proximal point (EPP)—to large pure
networks on the loosely coupled SIMD CM-2 with 32,768 processors. In these last two papers, test

problems were used that are equivalent to some we tested, so that comparisons can be made.

2. SOLVING THE PURE NETWORK FLOW PROBLEM

2.1 Problem Statement

The minimum cost network flow problem, PN, may be formulated mathematically as follows:

PN: Minimize Z Ci X
(1) e
subject to: Z Xj — Z X; = by, foralli o N,
(2) j:(, DA Ji(,) e A
0<x; suy, forall(i, j) « A,
3)

where Ais the set of all arcs and N is the set of all nnodes in the network. Associated with each arc
(i,]) is a variable Xij representing the number of units of flow through the arc from node i to node j, and
the constants Cjj and Ujj representing, respectively, the cost per unit of flow and upper bound. Associ-
ated with each node i is a dual variable T1,, the node potential and bj, the requirement at node i, called
the supply at source nodei if positive or demand at sink node i if negative.

2.2 Primal Simplex Algorithm for Pure Networks

The most widely used method for solving PN is a specialization of the primal simplex algorithm
which capitalizes on the triangularity property of the problem's bases. In this setting, a simplex basis
corresponds to a spanning tree on the nodes. The set B denotes such a set of n —1basicarcs, and L and
U respectively denote the sets of nonbasic arcs with flow at zero and their upper bounds. If the as-
signment of flows denoted by the triplet (B,L,U) satisfies (2) and (3), it is termed a basic feasible so-

lution. The reduced cost, T; =c; + T, — 11}, of each basic arc (i,j) must equal zero. A feasi-
ble basis is also an optimal basisif it is possible to identify a set of Tg such that:

c; =0, for each arc (i,j) [B,
“4)

C; 2 0, for each arc (i,j) O L, and
)

C; <0, for each arc (i,)) O U.
(6)

It is useful to organize a network basis B as a rooted spanning tree, by selecting one node
I to be the root, with the remainder of the tree hanging below it. Each pair of nodes i andj I N
has a unique connecting path in the basis tree, P(i,j); every node ksuch that i I P(k,r) is called
a successor of i. The basis subtree containing node i and all of its successors is T(i).

The network primal simplex algorithm proceeds as follows.

« Sep O: Initialization. A basic feasible solution, (B,L,U), is identified, possibly
containing artificial arcs, and a set of dual values, Tt, are determined from (4).

o Sep 1: Pricing. A nonbasic arc (k,I) which violates (5) or (6) is selected to be the
incoming arc. If no such arc exists, the algorithm terminates with the current basis
being optimal if it contains no artificial arcs with positive flow; otherwise, the
problem is infeasible.

o Sep2: Ratiotest. Adding arc (k,l) to the basis forms a unique basiscycle, consist-
ing of (k) and P(k,!), the basis-equivalent path of the incoming arc. The algo-
rithm changes the flow in this cycle by &, the maximum possible improving
amount that does not violate the bound constraints (3). This step identifies a block-
ing or outgoing arc (p,q) which blocks further change in flow.

» Sep 3: Basisand dual updates. The flows in the basis-equivalent-path arcs are ad-
justed by +0, depending on orientation. If the incoming arc is the blocking arc, it
remains nonbasic, but changes L/U set membership. Otherwise, a pivot is per-
formed whereby arc (k,|) becomes a member of B, arc (p,q) becomes a member of
L or U, and a subset of the duals Ttare adjusted by a constant. In either case the al-

gorithm returns to Step 1.
2.3 Implementing the Network Simplex M ethod

Our parallel network code was built from one of the fastest serial network codes, NET-
STAR, written by Barr, which is a descendent of the ARC-II code of Barr, Glover, Klingman
(1979). We will use this code to illustrate an efficient implementation of the network simplex

algorithm in the serial environment.

The network basis is represented and maintained by the Extended Threaded Index (XTI)
Method described in Barr, Glover, and Klingman (1979). The basis data consists of a set of
labels associated with each problem node. For node i « N —r, the predecessor label, p(i),
identifies the basic variable (i,p(i)) or (p(i),i) whose flow is the label value x(i). The potential
for node i is the label T1(i).

Only a portion of the node potentials must be updated during a pivot. Specifically, when
the blocking arc is removed from the basis, two subtrees result and it is necessary to update
the duals in only one of them. Four node labels, or functions, facilitate this time-consuming
process. The cardinality, (i), of node i [0 N is the number of nodes in T(i) and is used to iden-
tify the smaller subtree. The set of thread labels, t(i), may be viewed as placing a top-to-
bottom, left-to-right ordering on the nodes and provides an efficient means of identifying all
nodes in T(i) when used with the cardinality function. The reverse thread function, (i), ex-
pedites the updating of the thread function and is defined so that t(f(i)) = i. Finally, the end-
node label, €(i), identifies the last node in T(i), when considered in thread order, and facili-
tates the updating of the other labels. These labels are important for parallelization of the
pivot operation, and we later statistically analyze the data structures to describe the evolving
basis topology in a parallel setting.

An example network basis and associated labels are shown in Figure 1. The flows are not
given and the duals reflect a cost of five for all basic arcs. For the nonbasic incoming arc (K,|),
the basis-equivalent path is emphasized. Note that, for the blocking arc (p,q), the potentials
must be updated for either those nodes in T(p), flagged with a “*”, or those not in T(p), un-
flagged.

3. PARALLEL CODE DESIGN AND IMPLEMENTATION

3.1 Design Issues

Since pricing and pivoting are the primary simplex operations, their concurrent execu-
tion would provide an excellent basis for any parallelization scheme. Unfortunately the op-
erations are not independent, since pivoting modifies the duals used in the pricing procedure.
In dealing with this dependency, our design used a single shared set of node potentials, rather
than maintain multiple datasets. Since the number of potentials which change at each pivotis
relatively small (ranging from 0.2% to 17% in our tests), the probability of selecting an in-
correctly priced candidate arc is low. And since all candidates are repriced with correct duals
prior to incoming arc selection, the pivoting operation is not compromised. Our parallel code
simultaneously executes the pricing and pivoting steps.

Further parallelism is achieved by decomposing each of these operations. In the pricing

step, the arc data is partitioned for multiple pricing units. The intensification of the pricing

*member of T(4)

Node Node Label
i p(i) (i) s(i) (i) t(i) e(i)
1 - 0 11 2 3 3
2 1 5 9 4 1 10
3 1 -5 1 1 10 3
4 2 0 4 6 2 7
5 2 10 4 8 7 10
6 4 5 2 11 4 11
7 4 5 1 5 11 7
8 5 5 1 9 5 8
9 5 15 1 10 8 9
10 5 15 1 3 9 10
11 6 1 7 6 11

Figure 1. Example Network Basis and Node Labels

effort with multiple processors should produce better candidates for basis entry and acceler-
ate progress towards optimality.

Decomposition of the pivot operation is more involved. A pivot consists of three steps:
the ratio test, the basis update, and the dual update. Studies of our serial code indicated that
the total time spent pivoting during the solution of a problem is roughly divided among these
steps as follows: ratio test, 17%; basis update, 23%; and dual update, 60%. Clearly decompo-
sition of the dual update would have the greatest potential for reducing the real time spent
pivoting.

Our approach permits division of the dual update step into two tasks, each resetting half
of the nodes in the appropriate (smaller) subtree. The XTI data structure made this decompo-
sition practical. For a given subtree, say T(i), a first task updates the S(i)/2 potentials found in
thread order beginning at node i; the remaining duals are updated by a “delegated” second
task that starts at node €(i) and proceeds in reverse-thread order. This was found to be benefi-

cial if the subtree was of sufficient size.
3.2 Parallel Network Simplex Implementation

An elegant and efficient means of synchronizing parallel processes is via a programming
construct called a monitor (Hoare, 1974). A monitor is a self-scheduled work allocation
scheme that consists of: (1) a critical section of code (i.e., one which can be executed by only
one processor at atime); (2) a shared work list, accessible only within the critical section; and
(3) adelay queue for idle processes. Access to the critical section is controlled by an associ-
ated lock. Idle processes enter the common critical section one-at-a-time and update the
work list, select a task from the list, exit the section, perform the task, and return for addi-
tional work. If work is not available from the monitor, the process is placed in a delay queue,
to be released when additional tasks become available. Termination occurs when all proces-
sors are in the delay queue. Note that this design permits participation of one or many proces-
SOrS.

The steps of our monitor-based parallel algorithm for the network simplex are given in-
formally in Figure 2. Note that this logic is executed concurrently by all processes participat-
ing in solving the problem, although only one may be in the critical section at a given point in
time. With only a single process, the procedure alternates between pricing and pivoting
tasks.

Such a self-scheduled approach is effective when the number and time requirements of
tasks vary widely or are unknown, hence was particularly apropos for our network simplex
implementation. Our design maintains both an implicit work list of tasks and a candidate list
as shared datasets accessible only within a monitor, with all problem and basis data in shared,

globally accessible memory.

algorithm Parallel_Network_Simplex

begin
NewDuals =true {Boolean, shared, global variable}
loop forever
Enter monitor {Begin critical section}
if last task was pricing and favorably priced arc was found then
Add arc to candidate list
endif
if previous pivot is complete then
if NewDuals then
Reset arc pricing list
NewDuals = false
endif
Reprice candidate list
if favorable arc is found on candidate list then
Assign pivot as task, with most favorable arc as incoming
NewDuals =true
else
if unpriced arc group remains then
Assign arc group for pricing as task
else
Enter delay queue
if all processes delayed then exit loop
endif
endif
else {previous pivot isin progress}
if parallel dual update was requested by pivot task then
Assign dual update as task
else
if unpriced arc group remains then
Assign arc group for pricing as task
else
Enter delay queue
if all processes are delayed then exit loop
endif
endif
endif
if work is available and a process is delayed then
Release all processes from the delay queue
endif
Exit monitor {End critical section}
Perform assigned task
endloop

stop {Solution optimal or problem infeasible}

Figure 2. Algorithm for Parallel Network Simplex Monitor

Tasks scheduled by the monitor are: (1) select an eligible arc from the candidate list and
perform a pivot; (2) perform any delegated portion of the dual update; and (3) price a group
of arcs and return the most pivot-eligible, if any, to the candidate list. Since, in this imple-
mentation, pivots cannot be executed concurrently and only a portion of each pivot may be
decomposed, this operation tends to be the bottleneck in a parallel environment. Hence pri-
orities were established to minimize the time between pivots. Pivot execution is given the
highest priority and, with pivot completion depending on updated node potentials, secon-
dary priority is given to any delegated dual update task; pricing is given the lowest priority.

A parallel pure network code, PPNET, implementing the above algorithm was con-
structed from the NETSTAR code's network simplex routines. Figure 3 illustrates the paral-
lel network-simplex monitor's operation and participating processes' data usage.

Performance of the code is strongly affected by the pricing and pivot decomposition
strategies. Using a parallel variant of the Mulvey (1978) candidate list approach, each pric-
ing task consists of pricing all arcs leaving M1 nodes, and identifying the most attractive one,
if any; such an arc replaces any less attractive nonbasic on the mp-length candidate list. De-
composition of the dual update portion of the pivot is performed only if the subtree to be up-
dated is of sufficient size to justify incurring the associated overhead. This minimum subtree
size was a third user-specified parameter, m3. Hence a pricing and pivoting strategy is speci-
fied by the triplet (m,, m,, m,).

The other user-specified parameter is the “Big-M” value assigned to artificial arcs in the
all-artificial initial basis. Computational testing shows that the smallest value for M that still
eliminates all artificials is superior to a larger M value or “Phase I-II"” approach. Our imple-
mentation used M=4(max {cjj | (i,j) O A}), so as to gradually drive artificials from the basis as
a natural byproduct of the pivoting process.

In the computational testing reported below, substantial effort was invested to determine
reasonable values for the pricing and pivot decomposition parameters, a task complicated by
the fact that “good” values vary not only with problem characteristics but also with the
number of processors used to solve a given problem. Rather than specify parameter values
for each test problem individually, they were computed using simple rules or fixed to values
that were observed to work reasonably well on a variety of test problems. The rules are based
solely on the number of processors and are therefore problem independent. Although this ap-
proach yielded inferior results on some individual cases, it was used in order to avoid tuning

the code to each problem. Of course, dramatically better times are possible with such tuning.
4. COMPUTATIONAL TESTING

PPNET was tested on medium-and large-scale problems, as would be encountered in

practical applications. All problems were generated using the most current version of the

TASK ASSIGNMENT MONITOR

Task List
Idle processes Delayed
> " .

desiring wor. process Processes access fask list

one-at-a-fime for unique
O/ Q assignments
Candidate
List

Processes executing assigned tasks: A
I
Dual @ C
Updatg
D
A
T
/ "
BASIS NODE
DATA DUALS Data in shared memory

Figure 3. Parallel Network Simplex Monitor & Data Structures

NETGEN random problem generator by Klingman, Napier, and Stutz (1974). The medium-
scale set consists of 50 problems defined in a NETGEN problem suite designed by Klingman
and Mote (1987), as described in Table 1. (Although this problem suite has been used by nu-
merous researchers, it has not been previously documented in a technical report or publica-
tion.)

Testing was performed at Southern Methodist University on a Sequent Symmetry S81, a
tightly coupled MIMD machine with 20 16-MHz Intel 80386 processors and 32 megabytes
of sharable memory. Due to a system upgrade during this research project, we were able to
test PPNET on both the Sequent Symmetry “Rev. A” and the upgraded “Rev. B.” The pri-
mary difference between systems is in their memory updating schemes for maintaining
cache coherency (see Dubois, Scheurich, and Briggs, 1988), that have the effect of increas-
ing individual processor throughput from three to four million instructions per second. This
permitted computational comparisons with an earlier paper and to note the effect, if any, of

processor speed on speedup.
4.1 Problem Set A: Medium-Scale Problems

Problem set A consisted of 17 problems from the Klingman and Mote (1987) NETGEN
problem suite described in Table I, selected for the availability of comparable parallel results
by Peters (see Table II). The test set consists of transportation and transshipment problems
typically having 5000 nodes and 25,000 arcs, with a variety of cost and capacitation ranges,
total supply, etc.

These problems were solved on a dedicated Rev. A system using one to ten processors.
The real, or “wall clock™ solution times were recorded, exclusive of input and output time.
For all problems, PPNET used the pricing strategy mi=max{40/p,5}, mp=5, and n3=80/p,
where pis the number of participating processors. The resulting one-and three-processor re-
sults are shown in Table II.

To provide benchmarks with which to compare our one-processor results, test set A was
also solved using the well-known serial code NETFLO (Kennington and Helgason, 1980)
and NETSTAR. The NETFLO times are included in Table II—as a point of reference—and
are seven to eight times longer than the serial PPNET code.

One-processor PPNET times were used in problem set A testing as the best serial case for
the computation of speedups. (Testing performed on the Rev. A machine indicated that
NETSTAR and PPNET results were indistinguishable. Testing on the updated Rev. B ma-
chine indicated that NETSTAR was somewhat faster than the one-processor PPNET code,
hence NETSTAR times were used for speedup computation in all Rev. B testing.) The mean
speedups from Table Il show that, on average, PPNET achieves near-linear speedup on three

processors. The occasional, and surprising, superlinear speedups are explored in section 5.

Prob.

No.

No.

No. No.

Arc Costs

Total

Transshipment

%Hi

% Capacity

Random

Objective

No. Nodes Source Sinks Arcs Min Max Supply Src Sinks Cost Cap Min Max No. Seed Function

101 5000 2500 2500 25000 1 100 250000 0 0 0 100 1 1000 13502460 6191726
102 5000 2500 2500 25000 1 100 2500000 0 0 0 100 1 1000 4281922 72337144
103 5000 2500 2500 25000 1 100 6250000 0 0 0 100 1 1000 44820113 218947553
104 5000 2500 250025000 -100 -1 250000 0 0 0 100 1 1000 13450451 -19100371
105 5000 2500 250025000 101 200 250000 0 0 0 100 1 1000 14719436 31192578
106 5000 2500 2500 12500 1 100 125000 0 0 0 100 1 1000 17365786 4314276
107 5000 2500 2500 37500 1 100 375000 0 0 0 100 1 1000 19540113 7393769
108 5000 2500 2500 50000 1 100 500000 0 0 0 100 1 1000 19560313 8405738
109 5000 2500 2500 75000 1 100 750000 0 0 0 100 1 1000 2403509 9190300
110 5000 2500 2500 12500 1 100 250000 0 0 0 100 1 1000 92480414 8975048
111 5000 2500 2500 37500 1 100 250000 0 0 0 100 1 1000 4230140 4747532
112 5000 2500 2500 50000 1 100 250000 0 0 0 100 1 1000 10032490 4012671
113 5000 2500 2500 75000 1 100 250000 0 0 0 100 1 1000 17307474 2979725
114 5000 500 4500 25000 1 100 250000 0 0 0 100 1 1000 4925114 5821181
115 5000 1500 3500 25000 1 100 250000 0 0 0 100 1 1000 19842704 6353310
116 5000 2500 2500 25000 1 100 250000 0 0 0 0 1 1000 88392060 5915426
117 5000 2500 2500 12500 1 100 125000 0 0 0 0 1 1000 12904407 4420560
118 5000 2500 2500 37500 1 100 375000 0 0 0 0 1 1000 11811811 7045842
119 5000 2500 2500 50000 1 100 500000 0 0 0 0 1 1000 90023593 7724179
120 5000 2500 2500 75000 1 100 750000 0 0 0 0 1 1000 93028922 8455200
121 5000 50 50 25000 1 100 250000 50 50 0 100 1 1000 72707401 66366360
122 5000 250 250 25000 1 100 250000 250 250 0 100 1 1000 93040771 30997529
123 5000 500 500 25000 1 100 250000 500 500 0 100 1 1000 70220611 23388777
124 5000 1000 1000 25000 1 100 250000 1000 1000 0 100 1 1000 52774811 17803443
125 5000 1500 1500 25000 1 100 250000 1500 1500 0 100 1 1000 22492311 14119622
126 5000 500 500 12500 1 100 125000 500 500 0 100 1 1000 35269337 18802218
127 5000 500 500 37500 1 100 375000 500 500 0 100 1 1000 30140502 27674647
128 5000 500 50050000 1 100 500000 500 500 0 100 1 1000 49205455 30906194
129 5000 500 500 75000 1 100 750000 500 500 0 100 1 1000 42958341 40905209
130 5000 500 500 12500 1 100 250000 500 500 0 100 1 1000 25440925 38939608
131 5000 500 500 37500 1 100 250000 500 500 0 100 1 1000 75294924 16752978
132 5000 500 50050000 1 100 250000 500 500 0 100 1 1000 4463965 13302951
133 5000 500 500 75000 1 100 250000 500 500 0 100 1 1000 13390427 9830268
134 1000 500 500 25000 1 100 250000 500 500 0 100 1 1000 95250971 3804874
135 2500 500 500 25000 1 100 250000 500 500 0 100 1 1000 54830522 11729616
136 7500 500 500 25000 1 100 250000 500 500 0 100 1 1000 520593 33318101
137 10000 500 500 25000 1 100 250000 500 500 0 100 1 1000 52900925 46426030
138 5000 500 500 25000 1 100 250000 500 500 0 100 1 50 22603395 60710879
139 5000 500 500 25000 1 100 250000 500 500 0 100 1 250 55253099 32729682
140 5000 500 500 25000 1 100 250000 500 500 0 100 1 500 75357001 27183831
141 5000 500 500 25000 1 100 250000 500 500 0 100 1 2500 10072459 19963286
142 5000 500 500 25000 1 100 250000 500 500 0 100 1 5000 55728492 20243457
143 5000 500 500 25000 1 100 250000 500 500 0 0 1 1000 593043 18586777
144 5000 500 500 25000 1 10 250000 500 500 0 100 1 1000 94236572 2504591
145 5000 500 500 25000 1 1000 250000 500 500 0 100 1 1000 94882955 215956138
146 5000 500 500 25000 1 10000 250000 500 500 0 100 1 1000 48489922 2253113811
147 5000 500 50025000 -100 -1 250000 500 500 0 100 1 1000 75578374 -427908373
148 5000 500 500 25000 -50 49 250000 500 500 0 100 1 1000 44821152 -92965318
149 5000 500 500 25000 101 200 250000 500 500 0 100 1 1000 45224103 86051224
150 5000 500 500 250001001 1100 250000 500 500 0 100 1 1000 63491741 619314919

Table 1. NETGEN Problem Suite (Klingman and Mote, 1987)

NETGEN
Problem

Number

101
104
106
110
115
116
117
121
122
126
130
134
138
142
144
147
150

Mean

NETFLO

672.94
569.45
308.40
363.59
486.53
473.47
249.05
668.34
629.91
357.32
411.14
71.32
1163.80
479.12
662.07
2436.37
855.85

638.75

1-Processor

Times
PARNET PPNET

65.30
67.55
39.61
39.98
76.38
65.01
3941
88.48
79.91
52.38
54.97
64.94
134.30
80.39
85.22
164.16
84.93

75.47

na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na
na

na

3-Processor

Times
PARNET PPNET

58.97 26.38
65.33 25.13
29.98 14.01
28.19 13.99
50.11 22.89
65.99 25.30
24.54 12.14
81.62 35.23
72.28 32.84
31.63 16.82
32.26 16.35
23.94 15.42
101.33 47.52
48.21 25.66
71.03 32.44
116.40 64.42
71.62 34.49
57.26 27.12

3-Processor

Speedups
PARNET PPNET

otk ek ek ek N bt ek ek ek ek () ek e ek o ek
—ARANNAWIION—OANONPRAWO -
NN 0N W= B UNNDUNWOOOON
NWWWWH— AW WNJIRAANW\O o

O O~JW—= OO\ 00— \O DN DN W —
N SR R N S R D S N N N

,_
N
[N
[NSIEN)
O B
S o

na = not available

Table II. Solution Times and Speedups on Problem Set A

Our code was also compared with the multiprocessor code PARNET whose published
three-processor times, shown in Table II, were also obtained on a Rev. A Symmetry (see Pe-
ters, 1990). (Because of its design, this code requires a minimum of two processors to oper-
ate.) Although the PARNET times included input and output operations, while ours did not,
our testing of its binary problem-input method and abbreviated output report indicated that
the input/output times were negligible in comparison with solution times. A comparison of

three-processor times shows PPNET to be roughly twice as fast as PARNET.
4.2 Problem Set B: More Medium-Scale Problems

Problem set B consists of all 50 problems in the test suite, which were solved on a “Rev.
B” machine by PPNET and NETSTAR. In all NETSTAR runs, the pricing strategy m,=40,
m,=10 was employed. For all problems and all numbers of processors, the pricing strategy
m,=20, m,=5, m,=100 was implemented in the PPNET runs. Problems 137 and 138 re-
quired a 50% larger M value for feasibility.

Three PPNET runs using one to ten processors and three NETSTAR runs were made on
each problem. The NETSTAR average times, the PPNET average speedups, and summary
statistics are shown in Table III. Figure 4 summarizes this data with the high, low, and mean
speedups across all set B problems. In general, the code's times continue to improve as proc-

essors are added, with a mean speedup of 4.44 on ten processors.
4.3 Problem Set C: Million-Variable Problems

The large-scale test set consists of five additional problems, each having one million arcs
and from 10,000 to 50,000 nodes, randomly generated with NETGEN and the parameters in
Table IV. Each problem was solved with PPNET using 5, 10, 15, and 19 processors and with
NETSTAR. The same pricing strategies used on Set B were employed on this set.

To see the processor effect on this problem set, Figure 5 graphs the speedups versus
number of processors for all instances tested, and Table IV shows both the serial solution
times and the best parallel time and corresponding speedup. For these problems, the mean
best speedup was 8.26, with an overall best of 14.41 and a minimum best of 4.75. On problem
4, a 50,000-node transshipment problem, solution time was reduced from over ten hours to
just 42 minutes with the application of parallelism. Even the 20,000-constraint transporta-
tion problem 3, which exhibited the smallest speedup, resulted in a reduction of solution time
from approximately 41 to 8.7 minutes, and million-arc problem 1 was solved in under five
minutes with the application of parallelism.

On three of the five problems, the addition of processors improved solution time without
exception. On problem 5 speedup continued to improve through 15 processors and then lev-

eled off. On problem 4 however, the effect of additional processors topped out at ten, with

in

7

OSSNSO HOAN SN — N O OONOTFT NN OOORNGENTFTOOORNN [OORNN O AN~ — <+ O

LT EATHOQIOOANINANANTOHRARNORARLOINNANNANRNOQL L — — 0T

TNt TN AN Ot Ot oONaNnt At T AN O en st cnen <t <t <t <t en <t <F cnenen
—

PVONNAAT AN —ANNNTONOO—=FTANDN G OOORNOODTNTFTANANN—N— O 0O 00\Y

AL ATRNAOT O OT =R =M= RIS A— o

I EToRS o VoY SNy oo FtFonen st <t <t <F <t - Fenenen

5.02 4.98 491

4.90

P=

6

Speedup
P

4.68

TN AIONOOSNO— NN — O OFTYO— AN —R0OTTRONIT TN~ OR0— AN~
=N NRENAOAGE = RRANRINAANO =IOV OOATHORNAGRARANMORRX =Y A=W
Bt Nt Nt RNt Ot Ittt O TNt <t < < F Fun <t <F e
TNANNT OO —=ON =0T NNOON AL — 000 — AN N N\O GO S IO 00 (N 00 <F [
A= O VRASHARS=—=INAMRE AL VNSNS I M =R RNSE NGRS T AE— g
cnANcnNenennAldNNnaAanN~cnNN<tFAANN N AN AANNNAIA A SE W eN N onenononononon <t onenon
SPANONON NN — OIS 00— 000N N IS0 —10 O AN 00 WA S 0N IS 1 €N L OY 00 — 10 00 1= 00 N0 T 1)
TN OO —= = NOONCOMRAN0NPO=ARANANRINATTOL AN =M
R L E S S E S N E S E o F S E o S Y E e S O F S o E S o S E o L F o S R R T o S E o S R S E e o N S N E S E N S F S E S I E S IS FS TS TN

4.24
17

347

2.51

1.77

Seconds

89.82

Prob.
No

Mean

Table I1I. Serial Times, Parallel Speedups for Problem Set B

Speedup, S(P)

3 4 5 6 7 8 9 10
Number of Processors, P

Figure 4. Test set B high, low, and mean speedups

Problem Problem
Characteristic' 1 2 3 4 5
Type’ TP TS TP TS TP
Nodes 10,000 20,000 20,000 50,000 50,000
Sources 5,000 4,000 10,000 10,000 25,000
Sinks 5,000 4,000 10,000 10,000 25,000
Arcs 1,000,00 1,000,00 1,000,00 1,000,00 1,000,00
0 0 0 0 0
Supply 2,500,00 2,500,00 10,000,0 10,000,0 2,500,00
0 0 00 00 0
Cost range 1-100 1-100 1-100 1-10,000 1-100
Capacity range 1-1000 1-1000 1-1000 1-500 1-1000
% Capacitated 100 100 0 100 100
Seed 1350246 7557837 1350246 6349174 1345045
0 4 0 1 1
NETSTAR Time 1448.14 3629.13 2489.89 37166.6 9113.21
(sec)
Best Parallel Time 298.76 573.76 526.12 2586.05 834.58

(sec)
Best Speedup

S(19)=4.96 S19)=6.22 S(19)=4.75 S(10)=14.41 S(15)=10.95

Table I'V. Problem Set C Specifications and Test Results

the superlinear results up through ten processors. The sources of this behavior are explored

in Section 5.
4.4 Comparisonswith Other Parallel Codes

Of the other codes, Peters' (1990) PARNET is the most similar in design to PPNET. Un-
like our generic processes, his are assigned specific tasks: one process for pivoting with the
rest for pricing. A minimum of two processors are required to operate, hence the code cannot
execute serially. As indicated earlier, PPNET solved Problem Set A twice as fast as PAR-
NET.

Miller, Pekny, and Thompson (1990) efficiently solve completely dense uncapacitated
transportation problems through parallel pricing alone. By focusing on problems with a high
ratio of arcs to nodes, the required pricing effort is emphasized over pivoting, which favors
their code and machine design. Their relative speedups on a 14-processor BBN Butterfly
ranged from about 3 on two 1000-node 250,000-arc problems to about 7 on 6000-node, 9-
million-arc problems.

The Bertsekas and Castafion (1990) code is not competitive with the other approaches.
Based on results from the two small NETGEN problems reported, although the serial times
seem slow, the best speedup obtained was S(4)=1.82, with an average speedup of 1.72 for
two to four processors.

The massively parallel codes of Li and Zenios (1991) and Nielsen and Zenios (1991) for
transportation problems were tested on equivalents to problems 1, 3, and 5 from Problem Set
C (the random number generator and seed values differed, but identical problem specifica-
tions were used). Their reported results and the comparable PPNET times are shown in Table
V. Surprisingly, PPNET—running on a relatively inexpensive Sequent Symmetry (under
$100,000 used)—was highly competitive with all massively parallel codes. PPNET out-
performed the €-relaxation approach with 32,768 processors and the QPP code, and was 36%
slower than the EPP code with 16,384 processors on problem 5 but over twice as fast on

problem 1.
4.5 Summary of Computational Testing

The computational testing clearly underscores the effectiveness of parallelism in solving
medium- and large-scale transportation and transshipment problems with our approach. The
code is both flexible and efficient; its implementation runs slightly slower than the best serial
code when using one processor, but is capable of substantial speedups as parallel computing
units are added. It also appears to be the fastest available parallel code for pure network prob-

lems.

11

Code PPNET Li and Zenios Nielsen and Zenios
Algorithm Primal Sim- €-Relaxation QPP EPP
plex
Computer Sequent CM-2 CM-2 CM-2 CM-2
S81B
Processors 20 32,768 65,536 16,384 16,384
Memory 32MB 1,000MB 2,000MB 512MB 512MB
List price $0.6M $2.5M $5M $1.25M $1.25M
Time (sec):
Problem 1 298.76 760.45 447.32! 2,850.18 726.42
Problem 3 526.12 956.26 562.51" n.a. n.a.
Problem 5 834.58 890.76 523.97! 1,018.32 613.34

1Estimated, not observed.

Table V. Comparative Results, Problem Set C

Speedup, S(P)

20

181

16

14-

[
(\9]
|

+

b2

rob3

e

gr

6 8 10 12 14 16 18 20
Number of Processors, P

Figure 5. Test set C speedups by problem

5. AN EMPIRICAL STUDY OF THE ALGORITHM'STEMPORAL BEHAVIOR

Superlinear results were encountered in each of the problem sets and, because the notion
of superlinearity is controversial, we felt that an explanation for this behavior was required.
To this end, we performed a micro-analysis of the code's performance, the behavior of indi-
vidual algorithm steps, and the nature of the basis over the solution time. We were particu-
larly interested in how the addition of processors would affect the various solution stages,
and wished to answer such questions as: What are the sources of speedup? How is superlin-
ear speedup possible?

The study uncovered three key speedup factors that resulted in occasional superlinearity;
in addition, the statistics gathered provide insight into the temporal nature of network bases
that has not been explored previously in the literature. Below we describe the data collection

process, example statistics, and the model of algorithm behavior that emerged.
5.1 The Data Collection Process

Before undertaking the study, several measures of algorithm behavior were identified. In
some cases intermediate calculations were required—whose inclusion in the code would af-
fect its behavior—therefore the data was collected in stages. The first stage consisted of exe-
cuting the program and recording each pertinent event and its time of occurrence (the over-
head involved in this operation is negligible). Using this data, time-dependent statistics—
such as the number of microseconds spent waiting for access to the monitor—were com-
puted after the fact. In addition to logging events, the incoming arc for each pivot was re-
corded, permitting a second serial execution with the same pivot sequence to collect data re-
garding basis structure and pivot characteristics.

This process was applied to a variety of problems, all of which yielded similar results.
While our findings are based on an analysis of a large number of problems, in the sections
below we illustrate those findings with data collected during runs with one through ten proc-
essors on NETGEN problem 108, whose behavior was representative of all problems exam-

ined.
5.2 Temporal Basis Structure

One part of the study focused on the evolution of the network basis structure. With
PPNET, an initial basis is constructed by connecting all problem nodes to an added root node
with artificial arcs whose flow and orientation accommodate the node requirements. Hence,
initially, the basis tree is wide and shallow. This structure is amenable to very fast pivoting
since the paths to be traced are short and the number of duals to be updated is minimal.

As the basis evolves though pivoting, a more “mature” topology should develop

whereby the basis tree becomes narrower and more vertical, thus increasing both the ex-

1D

pected length of the basis-equivalent paths and the expected size of the updated subtree. We
hypothesized that, as aresult, pivoting should require increased processing over time, at least
up to a point, and that the structure and parallel solution times are related.

Several metrics are used to characterize the basis topology. One such measure is the
mean cardinality of the basistree. As before, the cardinality, S(i), of node i is the number of
nodes in the subtree of which i is the root. The average of the cardinalities of all nnodes is an
indicator of the “slenderness” of the basis tree. The code's initial basis has the smallest possi-
ble mean cardinality, 2 — !4, indicating a “wide” or “bushy’ basis tree, while the most slender
basis possible has a mean cardinality of ™.

Another statistic descriptive of the basis tree structure is the number of singleton sub-
trees, an indicator of the tree's “width” or “bushiness.” The possible values range from the
initial basis' maximum of n —1singleton subtrees, indicating a wide tree, to a minimum of 1
for the most narrow tree possible.

Both the mean cardinality and the number of singleton subtrees in the basis tree were re-
corded before each pivot. The resulting data was partitioned into intervals of 1000 pivots and
averaged over these intervals so as to give a representative view of the basis structure over
time. These statistics for the one-processor case are shown as Avg Card and 1-Trees, respec-
tively, in Figure 6. The multiprocessor statistics are not presented, as they are virtually iden-
tical: the average correlation between the one-processor case and the nine multiprocessor
cases is 0.9924 for mean cardinality and 0.9996 for number of singleton subtrees (see Barr
and Hickman, 1990, for details).

Table VI shows, for problem 108, the number of pivots executed as a function of the
number of processors. This can be used with Figure 6 to identify the work avoided by de-
creasing the number of pivots executed. For example, the vertical dashed line reflects the
12,925 pivots executed for ten processors and the corresponding final mean cardinality (72)
and number of singleton subtrees (2,186).

The statistics clearly indicate that as the number of pivots increases the mean cardinality
increases and the number of singleton subtrees decreases, until a plateau is reached, regard-
less of the number of processors. The similarity of values across different number of proces-
sors implies that thestructureof the basisat a given pivot number isrelatively independent of
the number of processors used.

Another important inference to be made from this data concerns the increasing difficulty
of pivots. The data indicate that the basis tree evolves from a wide, shallow shape to a more
narrow, elongated form. With an increasing mean cardinality, the expected number of duals
to be updated each pivot should increase as well. The expected length of the basis-equivalent
path should also increase along with the effort required to perform the ratio test, flow up-
dates, and subtree rerooting. Because of this evolving nature, later pivotsarehypothesized to
be more difficult to perform than early pivots, as explored in the next section.

1

5.3 Evolving Characteristics of the Pivot Steps

The effect that the evolution of the basis tree has on the relative difficulty of pivots may
be described in terms of the three basic steps in pivoting: (a) the simultaneous identification
of the basis-equivalent path and the application of the ratio test, (b) the updating of arcs in the
basis-equivalent path, and (c) the updating of a subset of the duals.

5.3.1 Ratio Test

Pivot step (a) consists of identifying the basis-equivalent path (BEP) by tracing the basis
tree from the endpoints of the incoming arc, and simultaneously performing the ratio test on
each arc encountered. This comprises roughly 17% of the total pivot time with difficulty de-
pending primarily on the length of the path. Degeneracy also plays a role since, once a de-
generate pivot has been identified, the only remaining work is path tracing.

To measure the effort required to perform this step, the length of the BEP for each pivot
was averaged over 1000-pivot intervals and the percentage of degenerate pivots in each in-
terval computed. These values are shown for the serial case in Figure 6 as BE Path Length
and Degenerate Pivots, respectively. As before, these same statistics for the parallel cases
are nearly the same; the mean correlation between the serial and parallel instances is 0.9872
for the average path lengths and 0.9725 for the percentage of degenerate pivots.

In all cases of one through ten processors, the length of the BEP increases, then plateaus,
with the number of pivots, indicating increasing tracing and ratio-test effort. Running coun-
ter to this trend is the increasing number of degenerate pivots and the corresponding decrease
in pivot effort. Although PPNET contains specialized degeneracy logic, it saved only 3.05
seconds out of 165.57, with only 4616 degenerate pivots in the serial run. However, we shall

shortly see that any savings gained because of degeneracy is far outweighed by other factors.
5.3.2 Path Update

The second portion of the pivot, the basis-equivalent path updates, accounts for approxi-
mately 23% of total pivot time. The effort required for these updates again depends on the
BEP length; hence the above analysis leads us to the same conclusion: since the BEP length
generally increases with the number of executed pivots, the amount of work per pivot also

increases.
5.3.3 Dual Update

The most time-consuming portion of the pivot is the dual update, accounting for roughly
60% of total pivot time. If the blocking arc for a pivot is removed from the basis, two subtrees
result, and the duals for the nodes in one of these subtrees must be updated. The update step

consists of adding a constant to the node potentials associated with the smaller subtree, as de-

14

1-Trees and Time (in Milliseconds)

6000 400
Degenerate Pivots
Time (ms
= 350
5000
300
4000
250
3000 200
1-Trees 150
2000
BE Path Length -100
Avg Card
1000 Updated Nodes
=50
07 T 0
0 25 30
Pivot Interval
(Thousands)

Figure 6. Evolving basis statistics, serial case

Other Variables

Number of

Pivots Executed

Solution time

Processors (seconds)
1 21,378 165.597
2 19,622 87.239
3 17,781 56.846
4 16,136 44.290
5 15,048 35.094
6 14,745 31.372
7 13,853 26.044
8 13,761 24.932
9 13,216 21.532
10 12,925 20.230

Table VI. Problem 108 Statistics

termined from the cardinality function. Obviously the amount of work performed depends
on the size of the updated subtree.

For our example, the number of nodes in the updated subtree was recorded for each pivot
and averaged over 1000-pivot intervals. This statistic is shown as Updated Nodesin Figure 6
for the one-processor run; the average correlation between parallel and serial instances is
0.9927. The data indicates that the average size of the updated subtree grows with the
number of pivots, then levels off. Again the effect of the maturing basis is seen as the pivots

become more difficult as the basis evolves.
5.3.4 The Combined Effect

Although all our data, except for the number of degenerate pivots, indicates that pivots
become more difficult as the basis matures, the composite effect is revealed in the time re-
quired to perform a pivot as the number of pivots increases. The total time spent performing
pivots—summed over 1000-pivot intervals—are shown, in milliseconds, as Time (ms) in
Figure 6 for the serial case. The mean correlation between the serial times and corresponding
parallel times is 0.9907, indicating a strong linear relationship between the one-processor
case and each of the multiprocessor cases (see Barr and Hickman, 1990, for detailed statis-
tics).

The increase in the time required to perform a pivot as the number of pivots increases
clearly illustrates the effects of the maturing basis. Generally speaking, the mean pivot time
increases with pivot number, up to a point, irrespective of the number of processors in-
volved. As with the average cardinality and number of singleton subtrees, the mean pivot
times show an independence of algorithm behavior and the number of processors.

In contrast, the total number of pivots performed differs with the number of processors.
The ten-processor solution required 8,453 fewer pivots than the one-processor case, and 145
seconds were required to execute those “extra” pivots. Since the structure of the basis is rela-

tively independent of the number of processors, how can such a reduction be obtained?
5.4 Comparison of the Pricing Effort in the One- and Ten-Processor Runs

To answer this question, let us compare the number of arcs which are priced before each
pivot in the one-and ten-processor runs. Our data indicated that, on average, it takes .00015
seconds to price all arcs leaving one node. If we examine the 11001-12000 pivot interval, in
the ten-processor case it took 4.330 seconds to execute these 1000 pivots. Therefore one pro-
cess can price 29 nodes during each pivot. Since nodes are priced in groups of 20, we may
conservatively estimate that one process actually prices 20 nodes during each pivot. If we
again underestimate the pricing effort and assume that two processes are constantly execut-
ing the pivot tasks, the remaining eight processors price 160 nodes during each pivot, com-

pared with the 20 (or more if a candidate cannot be identified from 20 nodes) priced in the se-

1R

rial case. Further analysis revealed that, beginning with the 6001-7000 pivot interval, more
arcs were priced per pivot in the ten-processor run than in the one-processor run. Prior to this
point, pivots are executed so quickly on the immature basis that there is insufficient time for a
pricing process to complete its assigned work during only one pivot.

Clearly, if more arcs are examined in the process of identifying a candidate for basis en-
try, the likelihood of finding a more attractive candidate is increased. We have demonstrated
that, given our pricing strategy, if a sufficient number of pricing processes are engaged, once
the basis reaches a certain level of maturity more arcs will be priced than in serial execution.
Testing also showed that an increased pricing effort reduces the total pivots required to reach
optimality, a phenomenon observed in other empirical studies on serial machines (see
Glover, et al., 1974, and Mulvey, 1978).

To quantify the importance of being able to price more arcs after the basis has begun to
mature, a hybrid code was developed which ran with only one processor for the first Vpivots,
after which ten processors were utilized. With v = 6000, an average of 13,308 total pivots
were performed, over 8000 less than the pure one-processor run, and almost equivalent to the
pure ten-processor run. This indicates that the increased pricing effort is most significant

when the basis is mature.
5.5 Pricing ver sus Pivoting Effect

The pricing strategy has a large effect on the performance of the algorithm. In the serial
case, this strategy determines the amount of time spent pricing and thereby also determines
the amount of time spent pivoting. The reduced cost of the entering arc is partially a function
of the pricing effort, or the number of nonbasics considered. While increased pricing effort is
likely to produce a more attractive candidate, spending too much time in the pricing phase
may result in excessive solution times.

In the parallel case, the same tradeoff applies, and the number of arcs to be priced in order
to identify a sufficiently attractive entering arc must be determined. Unlike the serial case,
however, during execution with p processors, there are at least p-2 active pricing processes
during each pivot (one process is executing the pivot and one may be executing the delegated
dual update). Our goal is to use these p-2 processes to price some targeted minimum number
of arcs during each pivot, so that when the pivot is complete, one or more attractive candi-
dates have been identified, and the next pivot can begin without any delay. In this manner,
the time spent pricing in a serial run is obtained virtually “"free" in parallel, given enough
processors.

To ascertain the performance of our strategy, we determined what fraction of the total so-
lution time that a pivot was actually in progress. Since only one pivot is in progress at a given
time, we may measure the total elapsed time spent in the pivot operation and compare this to

the solution time, adjusting for the parallel dual update. The percent of solution time during

1R

which a pivot is in progress is shown as Active Pivoting in Figure 7. Note that when four or
more processors are used, a pivot is in progress over 85% of the time, compared to only 35%
of the time in the serial case.

The remaining portion of solution time may be attributed to two things. First, at times a
candidate may not be available at the end of a pivot, perhaps because (a) the pivot was very
short in duration, as when the basis is immature, (b) changes in the dual variables caused can-
didates to no longer be attractive, (c) the few attractive arcs have not yet been located, or (d)
the solution is optimal. Therefore a new pivot may not begin immediately and all processes
would engage in pricing, a scenario analogous to the serial case in which pricing time exacts
areal-time cost. Second, even when an attractive candidate is available at the end of a pivot, a
minimal amount of monitor overhead is incurred.

It is clear from Figure 7 that, given enough processors, a majority of the pricing effort is
obtained “free,” that is, the pricing is done during pivots, not between pivots. This means that
solution time is driven primarily by the total pivot time and so the pivot becomes the “bottle-
neck” operation. Therefore, to reduce solution time, we need to reduce total pivot time. One

method for achieving this is the parallel dual update.
5.6 Effect of the Parallel Dual Update

Our study of the algorithm also examined the effect of decomposing the dual update.
Since roughly 60% of pivot time is spent in the dual update, a division of this work between
two processors could cut the dual update time in half, thereby achieving a 30% reduction in
pivot time (disregarding any overhead).

In Figure 7, Parallel Dual Update shows the percentage of the total dual update time in
which two processors were actually performing the dual update as a function of the number
of processors. This data indicates that, given a sufficient number of processors, the time

spent in the dual update portion of the pivot can be reduced by nearly 40%.
5.7. Conclusions from the Statistical Study

Our analysis revealed three sources of speedup: (1) a large portion of the pricing is per-
formed concurrently with pivot execution and therefore is “free;” (2) better basis-entry can-
didates reduce the total number of pivots; and (3) the parallel dual update reduces individual-
pivot time. Specifically, our testing revealed that when four or more processors are em-
ployed, a pivot is in progress over 85% of the solution time—that is, most of the pricing is
done simultaneously with pivoting. With little time spent exclusively on pricing, parallel so-
lution time is determined primarily by the pivot operation. (This is in contrast to the serial
case wherein pricing alone comprises over 60% of the solution time.) Hence, in parallel set-

tings, any reduction in pivot time will reduce the overall solution time.

17

% Solution Time with Active Pivoting

100%
T e S S e i
Active pivoting
e i
JO0 0 =TT T eesessooooooooooooooooooooooooonnoonoooiood i
OO0/ 7777777777y sooooonoonoonnnnnonnnnnnnonn i
e i
AO% g 77777 T -
Parallel dual update
30% 2 e
B
0
O% I I I I I I I I I

4 5 6 7 8 9 10
Number of Processors

— 4
[\
(')

Figure 7. Pivoting effort and parallel dual update times

% Dual Update Time with Parallel Update

One way to reduce pivot time is to perform fewer pivots. By employing more processors
in the pricing operation, a more exhaustive search for the entering arc can be made prior to
each pivot. In this manner, progress toward optimality is accelerated and the number of re-
quired pivots—and solution time—is reduced.

Another means of reducing total pivot time is to decompose the work associated with the
pivot operation itself so that it can be performed by multiple processors. In our implementa-
tion, the most time-consuming portion of the pivot, updating the dual variables, can be exe-

cuted by two processors. This results in as much as a 25% reduction in pivot time.
6. IN SUMMARY

Although the speed of serial processors is increasing rapidly, the newest systems config-
ure multiples of these computing elements for even higher-speed parallel processing. This
study demonstrates the applicability of such parallelism to the solution of large-scale net-
work problems. Results were obtained on relatively slow processors that compare favorably
with massively parallel implementations by others. The resultant parallel code appears to be
the state-of-the-art for the pure network problem, and we conjecture that its performance on
faster MIMD systems would be even more impressive.

The occasional superlinear results of our computational testing spurred an investigation
into their sources. A detailed analysis, based on microsecond-level timing of events and
post-execution replay of the solution process revealed heretofore unknown temporal charac-
teristics of network bases that were the same in both serial and parallel cases, and were acci-
dentally exploited by the application of parallelism. Specifically, the structure of the net-
work basis at a particular point in time is primarily influenced by the number of pivots exe-
cuted up to that point, independent of the number of processors used. By utilizing a sufficient
number of processors, the pricing effort not only becomes “free” but produces more attrac-
tive candidates for basis entry and fewer pivots required to reach optimality. This effort de-
creases the number of mature, more difficult pivots, resulting in a lower overall solution
time. This unexpected finding was another example of a common byproduct of parallel em-
pirical testing: insight into the nature and behavior of algorithms (Barr and Hickman,
1993Db).

REFERENCES

Ahuja, R.K., T.L. Magnanti, and J.B. Orlin. 1993. Network Flows: Theory, Algorithms, Ap-
plications, Prentice-Hall, Englewood Cliffs, New Jersey.

1

Amini, M. and R.S. Barr. 1990. Applications of Network Reoptimization. In Proceedings of
the 21st Annual Conference of the Southwest Decision Sciences | nstitute, Decision Sci-
ences Institute, Atlanta, 77-79.

Aronson, J. 1989. A Survey of Dynamic Network Flows. Annalsof Oper ationsResearch 20,
1-66.

Balas, E., D. Miller, J. Pekny, and P. Toth. 1989. A Parallel Shortest Path Algorithm for the
Assignment Problem. Management Science Report MSRR 552, Carnegie Mellon Uni-

versity, Pittsburgh, Pennsylvania.

Barr, R.S., F. Glover, and D. Klingman. 1979. Enhancements of Spanning Tree Labeling
Procedures for Network Optimization. INFOR 17, 16-34.

Barr, R.S. and B. L. Hickman. 1990. A New Parallel Network Simplex Algorithm and Im-
plementation for Large Time-Critical Problems. Technical Report 89-CS-90, Depart-
ment of Computer Science and Engineering, Southern Methodist University, Dallas,

Texas.

Barr, R.S. and B. L. Hickman. 1993a. Reporting Computational Experiments with Parallel
Algorithms: Issues, Measures, and Experts' Opinion. ORSA Journal on Computing 5, 2-
18.

Barr, R.S. and B. L. Hickman. 1993b. Using Parallel Empirical Testing to Advance Algo-
rithmic Research. ORSA Journal on Computing 5, 29-32.

Bertsekas, D.P. 1991. Linear Networ k Optimization. MIT Press, Cambridge, Massachusetts.

Bertsekas, D. P.and D. A. Castafion. 1990. Parallel Asynchronous Primal-Dual Methods for
the Minimum Cost Flow Problem. LIDS Report P-1998, Massachusetts Institute of
Technology, Cambridge, Massachusetts.

Bertsekas, D., D. Castafon, J. Eckstein, and S. Zenios. 1991. Parallel Computing in Net-
work Optimization. Report 91-09-02, Department of Decision Sciences, The Wharton
School, University of Pennsylvania, Philadelphia, Pennsylvania (forthcoming in Hand-
book of Operations Research).

Chalmet, D.G., R.L. Francis, and P.B. Saunders. 1982. Network Models for Building
Evacuation. Management Science 28, 86-105.

Dubois, M., C. Scheurich, and F. Briggs. 1988. Synchronization, Coherence, and Event Or-
dering in Multiprocessors. |EEE Computer 21, 9-21.

Ford, L. R., Jr., and D. R. Fulkerson. 1957. A Primal-Dual Algorithm for the Capacitated
Hitchcock Problem. Naval Research Logistics Quarterly 4, 47-54.

Flynn, M. J. 1966. Very High-Speed Computing Systems. Proceedings of the |[EEE 54,
1901-19009.

10

Glover, F., D. Karney, D. Klingman, and A. Napier. 1974. A Computational Study on Start
Procedures, Basis Change Criteria, and Solution Algorithms for Transportation Prob-
lems. Management Science 20, 793-813.

Glover, F., D. Klingman, and N. V. Phillips. 1989. A Modelling/Solution Approach for Opti-
mal Deployment of a Weapons Arsenal. Annals of Operations Research 20, 159-177.

Glover, F., D. Klingman, and N.V. Phillips. 1992. Network Models in Optimization and
Their Applicationsin Practice, John Wiley and Sons, New York.

Hoare, C. A. R. 1974. Monitors: An Operating System Structuring Concept. Communica-
tions of the ACM 17, 549-557.

Kennington, J. L. and R. V. Helgason. 1980. Algorithms for Network Programming. John
Wiley and Sons, New York.
Klingman, D., A. Napier, and J. Stutz. 1974. NETGEN: A Program for Generating Large

Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Prob-
lems. Management Science 20, 814-821.

Klingman, D. and J. Mote. 1987. Computational Analysis of Large-Scale Pure Networks.
Presented at the Joint National Meeting of ORSA/TIMS, New Orleans.

Li, X. and S. A. Zenios. 1991. Data-level Parallel Solution of Min-cost Network Flow Prob-
lems Using €-Relaxations. Report 91-05-04, Department of Decision Sciences, The

Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania.

Lusk, E. L. and R. A. Overbeek. 1985. Use of Monitors in FORTRAN: a Tutorial on the Bar-
rier, Self-Scheduling Do-Loop, and Askfor Monitors. In Kowalik, J.S., ed., Parallel
MIMD Computation: The HEP Supercomputer and its Applications, The MIT Press.

Miller, D. L., J. F. Pekny, and G. L. Thompson. 1990. Solution of Large Dense Transporta-
tion Problems Using a Parallel Primal Algorithm. Operations Research Letters9, 319-
324.

Mulvey, J. M. 1978. Pivot Strategies for Primal-Simplex Network Codes. Journal of the As-
sociation for Computing Machinery 25, 266-270.

Murty, K.G. 1992. Network Programming. Prentice-Hall, Englewood Cliffs, New Jersey.

Nielsen, S. S. and S. A. Zenios. 1991. Proximal Minimizations with D-Functions and the
Massively Parallel Solution of Linear Network Programs. Report 91-06-05, Department
of Decision Sciences, The Wharton School, University of Pennsylvania, Philadelphia,

Pennsylvania.

Nielsen, S. S. and S. A. Zenios. 1992. Solving Linear Stochastic Programs Using Massively
Parallel Proximal Algorithms. Report 92-01-05, Department of Decision Sciences, The

Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania.

2N

Osterhaug, Anita, 1992. Guide to Parallel Programming on Sequent Computer Systems.
Prentice-Hall, Englewood Cliffs, New Jersey.

Peters, J. 1990. The Network Simplex Method on a Multiprocessor. Networks20, 845-859.

Zenios, S. A. and M. C. Pinar. 1992. Parallel Block-Partitioning of Truncated Newton for
Nonlinear Network Optimization. S AM Journal on Scientific and Statistical Computing
13, 1173-1193.

21

ADDITIONAL TABLES OF SUPPORTING DATA

Pivot Number of Processors

1 2 3 4 5 6 7 8 9 10
Interval
1-1000 2 2 2 2 2 2 2 2 2 2
-2000 2 2 2 2 2 2 2 2 2 2
-3000 2 2 2 2 2 2 2 2 2 2
-4000 2 3 2 2 2 2 2 2 2 2
-5000 3 3 3 3 3 3 3 3 3 3
-6000 4 4 4 4 4 4 4 5 4 4
-7000 6 6 6 6 6 6 6 6 6 6
-8000 7 8 9 8 8 9 8 8 8 8
-9000 11 12 12 13 13 14 13 13 12 12
-10000 | 16 16 19 19 18 19 18 20 19 21
-11000 | 28 25 27 24 34 27 32 28 28 30
-12000 | 42 40 52 66 58 43 46 45 48 51
-13000 | 60 76 75 83 78 65 65 73 66 70
-14000 | 78 80 80 82 75 71
-15000 | 74 84 83 77 72
-16000 75 77 82 77
-17000 72 78 76
-18000 72 76
-19000 73

Table VII. Average Cardinality Over Pivot Intervd

Pivot Number of Processors

1 2 3 4 7 8 9 10
Interval
1-1000 |4633 4638 4634 4636 4630 4634 4630 |4633 4629 4632
-2000 |3975 3976 3972 3965 3964 3974 3961 3967 3967 3975
-3000 3477 3470 3456 3462 3446 3469 3457 3470 3473 3481
-4000 3122 3093 3093 3075 3088 3092 3091 3105 3111 3114
-5000 2838 2816 2794 2802 2808 2804 2823 2836 2838 2837
-6000 2641 2617 2595 2630 2595 2610 2612 2631 2629 2633
-7000 2512 2490 2493 2497 2468 2509 2503 2516 2509 2525
-8000 2436 2396 2381 2386 2383 2408 2424 2431 2424 2437
-9000 2350 2355 2325 2314 2331 2345 2359 2363 2366 2365
-10000 2322 2292 2298 2295 2295 2323 2348 2330 2328 2337
-11000 2321 2248 2263 2251 2275 2313 2317 2311 2322 2317
-12000 2301 2250 2240 2247 2246 2295 2293 2272 2278 2284
-13000 |2294 2235 2227 2253 2242 2273 2283 2276 2286 2280
-14000 |2287 2242 2220 2256 2263 2277
-15000 |2295 2250 2235 2262 2279
-16000 2250 2243 2269 2287
-17000 2272 2263 2279
-18000 2279 2277
-19000 2279

Table VIII. Average Number of Singleton Subtrees Per Intervd

29

Pivot Number of Processors Overall
1 2 3 4 5 6 7 8 9 10
Interval Mean
1-1000| 4 4 4 4 4 4 4 4 4 4 4.0
-2000 4 4 4 4 4 4 4 4 4 4 4.0
-3000 5 5 5 5 5 5 5 5 5 5 5.0
-4000 6 6 5 6 6 5 6 6 5 5 5.6
-5000 7 7 7 7 7 7 7 7 7 7 7.0
-6000 9 9 9 9 9 10 10 10 10 10 9.5
-7000 | 13 12 13 12 13 13 12 13 12 13 12.6
-8000 | 17 19 19 18 17 20 18 16 17 17 17.8
-9000 | 25 26 25 28 32 30 27 27 27 25 25.0
-10000| 37 35 42 40 40 40 37 44 39 43 39.7
-11000| 58 56 61 58 62 51 58 53 54 53 56.4
-12000| 74 75 83 88 93 62 69 66 68 69 7477
-13000| 93 110 115 122 126 98 95 106 98 103 106.6
-14000|119 113 119 128 115 101 115.8
-15000| 106 115 125 121 107 114.8
-16000 105 114 117 112 112.0
-17000 95 108 113 105.3
-18000 93 102 97.5
-19000 94 94.0
Table IX. Average Basis Equivalent Path Length Over Interval
Pivot Number of Processors
1 2 3 4 5 6 7 8 9 10
Interval
1-1000 7 5 9 4 5 7 11 9 9 13
-2000 25 26 21 31 27 18 20 23 22 19
-3000 33 33 37 38 36 40 35 36 33 29
-4000 | 42 41 50 42 36 46 35 41 42 46
-5000 35 41 36 43 35 38 45 35 39 37
-6000 | 49 48 50 43 47 55 54 47 51 52
-7000 55 66 67 61 60 58 52 59 62 53
-8000 | 79 67 78 72 79 69 78 67 69 54
-9000 | 101 98 87 115 104 120 81 89 87 78
-10000 | 125 103 131 134 109 114 117 120 109 102
-11000| 161 170 196 152 175 176 166 172 147 138
-12000 | 217 220 249 229 276 180 201 183 173 179
-13000 | 251 294 332 297 331 307 236 260 234 248
-14000 | 277 338 341 313 277 234
-15000 | 270 282 297 270 273
-16000 243 293 269 268
-17000 228 271 311
-18000 280 285
-19000 259

Table X. Number of Degenerate Pivots Over Pivot Interval

2R

Pivot

umber of Processors

1 2 3 4 5 6 7 8 9 10
Interval
1-1000 1 1 1 1 1 1 1 1 1 1
-2000 2 2 2 1 1 1 1 1 1 2
-3000 2 2 2 2 2 2 2 2 2 2
-4000 3 3 3 3 3 3 3 3 3 3
-5000 6 5 6 5 6 6 6 6 6 7
-6000 12 9 11 11 10 11 12 13 14 12
-7000 23 18 20 16 21 21 19 20 19 22
-8000 37 52 49 39 42 50 41 38 39 45
-9000 83 85 89 106 133 108 102 108 104 90
-10000 | 145 181 222 185 199 206 194 254 211 257
-11000 | 408 330 376 363 456 320 408 366 390 400
-12000 | 551 605 564 747 633 503 556 536 564 556
-13000 | 723 815 792 819 868 711 724 803 789 823
-14000 | 884 846 862 839 855 810
-15000 | 831 876 857 878 754
-16000 802 835 869 821
-17000 750 800 858
-18000 779 823
-19000 820
Table XI. Average Nodes in Updated Subtree Over Interval
Pivot umber of Processors
1 2 3 4 5 6 7 8 9 10
Interval
1-1000 | 0.293 | 0.300| 0.242] 0.271 | 0.256| 0.264| 0.218, 0.210 0.209| 0.212
-2000 0.311] 0.305| 0.255| 0.271] 0.254| 0253 0.217| 0.221| 0.214| 0.233
-3000 0.332] 0.335| 0283 0.297| 0.276| 0273 0.260| 0.251| 0.256| 0.287
-4000 0.363| 0.366| 0319, 0.332] 0.332| 0307, 0.323] 0333 0322, 0.349
-5000 0421 0416 0370, 0.383| 0.392| 0395 0400 0.402| 0405 0.429
-6000 0.511] 0.499| 0482, 0494 0484| 0535 0539 0545 0563 0.551
-7000 0.670 | 0.653 | 0.636, 0.588| 0.664| 0.693| 0.665| 0.691| 0.661| 0.729
-8000 0.829 | 0998 0929 0904| 0.899| 1.043| 0.949| 0.866 6 0.897| 0.947
-9000 1.221) 1377 1298 1459 1.750| 1.523 | 1.491| 1.439| 1460, 1.343
-10000 1.730 | 2.043| 2221 2.088 2206 2.143| 2.099 2407, 2.172| 2.436
-11000 | 3.255| 3.196| 3.269| 3.150| 3.667| 2.798| 3.394 2987 3.139| 3.179
-12000 | 4.162 | 4.674 4306 5.117| 4962 3.688| 4.227 3946 4.070| 4.082
-13000 | 5.160 | 6.256 | 5.742| 6.011 | 6.542| 5.168| 5.445| 5720 5459, 5.748
-14000 | 6.402 | 6.323 | 6.090| 6.159| 6342 5.482
-15000 | 6.008| 6.513 6.263| 6.205| 5.736
-16000 6.107| 6.016| 6.144 6.216
-17000 5.740 | 5.705| 5.984
-18000 5.284| 5.661
-19000 5.384

Table XII. Total Real Time Per Interval

2R

