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ABSTRACT

This pa per re ports on a new par al lel im ple men ta tion of the pri mal sim plex method for mini mum

cost net work flow prob lems, that de com poses both the piv ot ing and pric ing op era tions. The self-

 scheduling ap proach is both flexi ble and ef fi cient; its im ple men ta tion is close in speed to the best se -

rial code when us ing one proc es sor, and is ca pa ble of sub stan tial speed ups as par al lel com put ing

units are added. An in- depth com pu ta tional study of ran domly gen er ated trans por ta tion and trans -

ship ment prob lems veri fied the ef fec tive ness of this ap proach, with re sults on a 20- processor 80386-

 based sys tem that are com peti tive with—and oc ca sion ally su pe rior to—mas sively par al lel im ple -

men ta tions us ing tens of thou sands of proc es sors. A micro- analysis of the code's be hav ior iden ti fied

un ex pected sources of (the oc ca sion ally su per lin ear) speedup, in clud ing the evo lu tion ary to pol ogy

of the net work ba sis.
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The past two dec ades have seen dra matic ad vances in the de vel op ment and im ple men ta tion of

al go rithms for solv ing the minimum- cost net work flow prob lem.  Large- scale mod els that pre vi -

ously re quired days to op ti mize us ing gen eral lin ear pro gram ming meth ods now re quire only hours

with a special- purpose net work code. Even with such achieve ments, many ap pli ca tions re quire

more rapid re sults, since the value of a model's so lu tion may be ei ther short- lived—as with stock ar -

bi trage op por tu ni ties—or oth er wise time- sensitive—as with evacua tion mod els, air craft re rout ing;

mis sile tar get ing, or hu man in ter ac tion prob lems (see Ahuja, Mag nanti, and Or lin, 1993; Ar on son,

1989; Bert sekas, 1991; Glover, Kling man, and Phil lips, 1989, 1992; Murty, 1992). Large pure net -

work mod els also arise as sub prob lems in the con text of in te ger, non lin ear, re laxa tion, and sto chas tic 

op ti mi za tion al go rithms (see sur vey by Amini and Barr, 1990). In many cases, such as La gran gean

re laxa tion, al go rithms re quire that sub prob lems be solved se quen tially, hence time im prove ments

must come from faster so lu tions to in di vid ual prob lems. Such needs have led re search ers to ex plore

ad vances in com put ing tech nol ogy for new means of fur ther re duc ing the real time to op ti mize a pro -

gram.

One prom is ing ad vance is application- level par al lel proc ess ing, whereby the power of mul ti ple

proc es sors can be brought to bear on a sin gle prob lem. If the work as so ci ated with an al go rithm can

be prop erly sub di vided and sched uled to sepa rate proc es sors for si mul ta ne ous exe cu tion, op por tu ni -

ties for dra matic new model so lu tion times arise. As with tra di tional, se rial ma chines, so lu tion ef fi -

cien cies are di rectly tied to how well the al go rithmic steps match the ar chi tec ture of the un der ly ing

ma chine. There fore, with the evo lu tion in com put ing ma chin ery comes a cor re spond ing evo lu tion in 

al go rithms and their im ple men ta tions.

The ob jec tive of this re search was to de sign and im ple ment a new primal- simplex- based par al lel

al go rithm for ef fi ciently solv ing the minimum- cost, or pure, net work flow prob lem and test its per -

form ance on me dium- and large- scale prob lems. The re sults, ob tained on a shared- memory mul ti -

proc es sor, not only show that sub stan tial im prove ments in so lu tion time are in deed pos si ble but also

that such im prove ments are due in great meas ure to tem po ral char ac ter is tics of the ba sis to pol ogy.

The sec tions that fol low give a brief back ground on par al lel proc ess ing and net work flow prob -

lems; de scribe our par al lel al go rithm, its im ple men ta tion, and the re sults of com pu ta tional test ing;

and ana lyze the evo lu tion ary char ac ter is tics of the sim plex ba sis.

1. BACKGROUND

Par al lel proc ess ing is the si mul ta ne ous ma nipu la tion of data by mul ti ple com put ing ele ments

work ing to com plete a com mon body of work. The key ob jec tive of par al lel proc ess ing is the re duc -

tion of real (“wall clock”) time re quired to com plete the work. Hence the mo ti va tion for such new
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ma chine ar chi tec tures springs from the need to solve ex ist ing prob lems faster or to make trac ta ble

larger and more dif fi cult prob lems.

The most com mon meas ure of the ef fect of par al lel ism on the so lu tion of a given prob lem is

speedup, S(p). While sev eral defi ni tions of speedup have been pro posed (see Barr and Hick man,

1993a), we use: the ra tio of the prob lem's so lu tion time us ing the fast est se rial code to the time us ing

a par al lel code and p proc es sors on the same ma chine. (Some authors sim ply re port rela tive speedup, 

which com pares the par al lel code with it self us ing one proc es sor.) Lin ear speedup, with S(p)=p, is

con sid ered an ideal ap pli ca tion of par al lel ism, al though su per lin ear re sults, with S(p)>p, are pos si -

ble in some in stances.

1.2 Parallel Computer Architectures

While most com put ers have some de gree of par al lel ism, only re cently have sys tems be come

com mer cially avail able that al low an ap pli ca tions pro gram mer to con trol sev eral proc ess ing units.

Such par al lel com put ers are as var ied in de sign as they are many, but the two main cate go ries—as

de fined by Flynn (1966)—are: single- instruction, multiple- data (SIMD), a par al lel ma chine de sign

wherein all proc es sors exe cute the same in struc tion in lock step, and ap ply it to dif fer ent pieces of

data; and multiple- instruction, multiple- data (MIMD), a com put ing sys tem con tain ing mul ti ple, in -

de pend ently exe cut ing proc es sors which can op er ate on dif fer ent da ta sets.

Proc es sors in SIMD and MIMD par al lel com put ers com mu ni cate ei ther via a com mon shared

mem ory ac cessed through a cen tral switch, or by mes sages passed through an in ter con nec tion net -

work in a dis trib uted sys tem. Shared- memory mul ti proc es sors are called tightly cou pled if the time

re quired to ac cess a par ticu lar mem ory lo ca tion is the same for all proc es sors, as op posed to be ing

prox im ity de pend ent or loosely cou pled. Our re search was car ried out in a shared- memory MIMD

mul ti proc es sing en vi ron ment, the most preva lent com mer cial par al lel com puter ar chi tec ture. 

Since auto mat ic par al le li za tion of se rial pro grams is in the em bry onic stage of de vel op ment, im -

ple men ta tions of par al lel al go rithms must be coded for a par al lel proc ess ing en vi ron ment. Work

must be de com posed into a se ries of tasks which may be as signed to sepa rate proc es sors for si mul ta -

ne ous exe cu tion. Our par al lel net work al go rithm was im ple mented us ing both func tional and do -

main de com po si tion (see Os ter haug, 1992), with a pri ori tized, self- scheduled syn chro ni za tion and

work al lo ca tion scheme, as de scribed in Sec tion 3.

1.3 Previous  Parallel Research on Pure Network Problems

Two pre vious par al lel im ple men ta tions of the pri mal sim plex for pure net works have been re -

ported. Miller, Pekny, and Thomp son (1990) used a 14- processor BBN But ter fly Plus—a tightly

cou pled, het ero ge ne ous MIMD com puter—to solve large dense un ca paci tated trans por ta tion prob -

lems. They exe cute only the sim plex pric ing step in par al lel. Pe ters (1990) per formed in par al lel the
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pric ing step and parts of the pivot op era tion; de com po si tion of the pivot was deemed “not com peti -

tive.” His code was tested on a Se quent S81, hence di rect com pari sons are pos si ble with our im ple -

men ta tion and are de scribed be low.

Bert sekas and Cas tañon (1990) im ple mented Ford and Fulk er son's (1957) primal- dual method

for pure net works, based on ear lier ideas by Balas, et al. (1989) and their own work for as sign ment

prob lems. This was im ple mented and tested on an En core Multi max us ing one to four proc es sors.

Li and Zen ios (1991) im ple mented an ε-r elax ation net work al go rithm on a mas sively par al lel

Con nec tion Ma chine CM-2 with 16,384 proc es sors. Niel sen and Zen ios (1991) ap plied two dif fer -

ent al go rithms—quad ratic proxi mal point (QPP) and en tropy proxi mal point (EPP)—to large pure

net works on the loosely cou pled SIMD CM-2 with 32,768 proc es sors. In these last two pa pers, test

prob lems were used that are equiva lent to some we tested, so that com pari sons can be made.

 2.  SOLVING THE PURE NETWORK FLOW PROBLEM

2.1 Problem Statement

The mini mum cost net work flow prob lem, PN, may be for mu lated mathe mati cally as fol lows:

PN:                  Mini mize         
( , )i j A

ij ijc x
↔

∑
(1)

                        sub ject to:        
j i j A

ij
j j i A

ji ix x b
: ( , ) :( , )

,
↔ ↔

∑ ∑− = for all i N↔ ,
                        (2)

                                    0 ≤ ≤x uij ij , for all ( , ) ,i j A↔
(3)

where A is the set of all arcs and N is the set of all n nodes in the net work. As so ci ated with each arc

(i,j) is a vari able xij rep re sent ing the number of units of flow through the arc from node i to node j, and 

the con stants cij and uij  rep re sent ing, re spec tively, the cost per unit of flow and up per bound. As so ci -

ated with each node i is a dual vari able π i , the node po ten tial and bi, the re quire ment at node i, called

the sup ply at source node i if posi tive or de mand at sink node i if nega tive.

2.2  Primal Simplex Algorithm for Pure Networks

The most widely used method for solv ing PN is a spe ciali za tion of the pri mal sim plex al go rithm

which capi tal izes on the tri an gu lar ity prop erty of the prob lem's bases. In this set ting, a sim plex ba sis

cor re sponds to a span ning tree on the nodes. The set B de notes such a set of n −1ba sic arcs, and L and

U  re spec tively de note the sets of non ba sic arcs with flow at zero and their up per bounds. If the as -

sign ment of flows de noted by the trip let (B,L,U) sat is fies (2) and (3), it is termed a ba sic fea si ble so -
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lu tion. The re duced cost, c cij ij i j= + π − π , of each ba sic arc (i,j) must equal zero. A fea si -

ble ba sis is also an op ti mal ba sis if it is pos si ble to iden tify a set of  πi such that:

                        cij = 0,             for each arc (i,j) ∈ B,

(4)                               

                        cij ≥ 0,             for each arc (i,j) ∈ L, and

(5)

                        cij ≤ 0,             for each arc (i,j) ∈ U.

(6)

It is use ful to or gan ize a net work ba sis B as a rooted span ning tree, by se lect ing one node

r to be the root, with the re main der of the tree hang ing be low it. Each pair of nodes i and j ∈ N
has a unique con nect ing path in the ba sis tree, P(i,j); every node k such that i ∈ P(k,r) is called

a suc ces sor of i. The ba sis sub tree con tain ing node i and all of its suc ces sors is T(i).

The net work pri mal sim plex al go rithm pro ceeds as fol lows.

• Step 0: Ini tiali za tion. A ba sic fea si ble so lu tion, (B,L,U), is iden ti fied, pos si bly

con tain ing ar ti fi cial arcs, and a set of dual val ues, π, are de ter mined from (4).

• Step 1: Pric ing. A non ba sic arc (k,l) which vio lates (5) or (6) is se lected to be the

in com ing arc. If no such arc ex ists, the al go rithm ter mi nates with the cur rent ba sis

be ing op ti mal if it con tains no ar ti fi cial arcs with posi tive flow; oth er wise, the

prob lem is in fea si ble.

• Step 2: Ra tio test.  Add ing arc (k,l) to the ba sis forms a unique ba sis cy cle, con sist -

ing of (k,l) and P(k,l), the basis- equivalent path  of the in com ing arc. The al go -

rithm changes the flow in this cy cle by δ, the maxi mum pos si ble im prov ing

amount that does not vio late the bound con straints (3). This step iden ti fies a block -

ing or out go ing arc (p,q) which blocks fur ther change in flow.

• Step 3: Ba sis and dual up dates.  The flows in the basis- equivalent- path arcs are ad -

justed by ±δ, de pend ing on ori en ta tion.  If the in com ing arc is the block ing arc, it

re mains non ba sic, but changes L/U set mem ber ship. Oth er wise, a pivot is per -

formed whereby arc (k,l) be comes a mem ber of B, arc (p,q) be comes a mem ber of

L or U, and a sub set of the du als π are ad justed by a con stant. In ei ther case the al -

go rithm re turns to Step 1.

2.3  Implementing the Network Simplex Method

Our par al lel net work code was built from one of the fast est se rial net work codes, NET -

STAR, writ ten by Barr, which is a de scen dent of the ARC- II code of Barr, Glover, Kling man

(1979). We will use this code to il lus trate an ef fi cient im ple men ta tion of the net work sim plex 

al go rithm in the se rial en vi ron ment.
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The net work ba sis is rep re sented and main tained by the Ex tended Threaded In dex (XTI)

Method de scribed in Barr, Glover, and Kling man (1979). The ba sis data con sists of a set of

la bels as so ci ated with each prob lem node. For node i N r↔ − , the prede ces sor la bel, p(i),

iden ti fies the ba sic vari able (i,p(i)) or (p(i),i) whose flow is the la bel value x(i). The po ten tial

for node i is the la bel π(i).

Only a por tion of the node po ten tials must be up dated dur ing a pivot. Spe cifi cally, when

the block ing arc is re moved from the ba sis, two sub trees re sult and it is nec es sary to up date

the du als in only one of them. Four node la bels, or func tions, fa cili tate this time- consuming

pro cess. The car di nal ity, s(i), of node i ∈ N is the number of nodes in T(i) and is used to iden -

tify the smaller sub tree. The set of thread la bels, t(i), may be viewed as plac ing a top- to-

 bottom, left- to- right or der ing on the nodes and pro vides an ef fi cient means of iden ti fy ing all

nodes in T(i) when used with the car di nal ity func tion. The re verse thread func tion, t i( ), ex -

pe dites the up dat ing of the thread func tion and is de fined so that t t i i( ( )) = . Fi nally, the end-

 node la bel, e(i), iden ti fies the last node in T(i), when con sid ered in thread or der, and fa cili -

tates the up dat ing of the other la bels. These la bels are im por tant for par al le li za tion of the

pivot op era tion, and we later sta tis ti cally ana lyze the data struc tures to de scribe the evolv ing

ba sis to pol ogy in a par al lel set ting.

An ex am ple net work ba sis and as so ci ated la bels are shown in Fig ure 1. The flows are not

given and the du als re flect a cost of five for all ba sic arcs. For the non ba sic in com ing arc (k,l),

the basis- equivalent path is em pha sized. Note that, for the block ing arc (p,q), the po ten tials

must be up dated for ei ther those nodes in T(p), flagged with a “*”, or those not in T(p), un -

flagged.

3.  PARALLEL CODE DESIGN AND IMPLEMENTATION

3.1 Design Issues

Since pric ing and piv ot ing are the pri mary sim plex op era tions, their con cur rent exe cu -

tion would pro vide an ex cel lent ba sis for any par al le li za tion scheme. Un for tu nately the op -

era tions are not in de pend ent, since piv ot ing modi fies the du als used in the pric ing pro ce dure. 

In deal ing with this de pend ency, our de sign used a sin gle shared set of node po ten tials, rather 

than main tain mul ti ple da ta sets. Since the number of po ten tials which change at each pivot is

rela tively small (rang ing from 0.2% to 17% in our tests), the prob abil ity of se lect ing an in -

cor rectly priced can di date arc is low. And since all can di dates are re priced with cor rect du als

prior to in com ing arc se lec tion, the piv ot ing op era tion is not com pro mised. Our par al lel code 

si mul ta ne ously exe cutes the pric ing and piv ot ing steps.

Fur ther par al lel ism is achieved by de com pos ing each of these op era tions. In the pric ing

step, the arc data is par ti tioned for mul ti ple pric ing units. The in ten si fi ca tion of the pric ing
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Figure 1. Example Network Basis and Node Labels

Node Node La bel
i p(i) π(i) s(i) t(i) t i( ) e(i)
1 – 0 11 2 3 3
2 1 5 9 4 1 10
3 1 -5 1 1 10 3
4 2 0 4 6 2 7
5 2 10 4 8 7 10
6 4 5 2 11 4 11
7 4 5 1 5 11 7
8 5 5 1 9 5 8
9 5 15 1 10 8 9

10 5 15 1 3 9 10
11 6 0 1 7 6 11



ef fort with mul ti ple proc es sors should pro duce bet ter can di dates for ba sis en try and ac cel er -

ate prog ress to wards op ti mal ity.

De com po si tion of the pivot op era tion is more in volved. A pivot con sists of three steps:

the ra tio test, the ba sis up date, and the dual up date. Stud ies of our se rial code in di cated that

the to tal time spent piv ot ing dur ing the so lu tion of a prob lem is roughly di vided among these

steps as fol lows: ra tio test, 17%; ba sis up date, 23%; and dual up date, 60%. Clearly de com po -

si tion of the dual up date would have the great est po ten tial for re duc ing the real time spent

piv ot ing.

Our ap proach per mits di vi sion of the dual up date step into two tasks, each re set ting half

of the nodes in the ap pro pri ate (smaller) sub tree. The XTI data struc ture made this de com po -

si tion prac ti cal. For a given sub tree, say T(i), a first task up dates the s(i)/2 po ten tials found in

thread or der be gin ning at node i; the re main ing du als are up dated by a “dele gated” sec ond

task that starts at node e(i) and pro ceeds in reverse- thread or der. This was found to be bene fi -

cial if the sub tree was of suf fi cient size.

3.2  Parallel Network Simplex Implementation

An ele gant and ef fi cient means of syn chro niz ing par al lel pro cesses is via a pro gram ming

con struct called a moni tor (Hoare, 1974). A moni tor is a self- scheduled work al lo ca tion

scheme that con sists of: (1) a criti cal sec tion of code (i.e., one which can be exe cuted by only

one proc es sor at a time); (2) a shared work list, ac ces si ble only within the criti cal sec tion; and 

(3) a de lay queue for idle pro cesses. Ac cess to the criti cal sec tion is con trolled by an as so ci -

ated lock. Idle pro cesses en ter the com mon criti cal sec tion one- at- a- time and up date the

work list, se lect a task from the list, exit the sec tion, per form the task, and re turn for ad di -

tional work. If work is not avail able from the moni tor, the pro cess is placed in a de lay queue,

to be re leased when ad di tional tasks be come avail able. Ter mi na tion oc curs when all proc es -

sors are in the de lay queue. Note that this de sign per mits par tici pa tion of one or many proc es -

sors.

The steps of our monitor- based par al lel al go rithm for the net work sim plex are given in -

for mally in Fig ure 2. Note that this logic is exe cuted con cur rently by all pro cesses par tici pat -

ing in solv ing the prob lem, al though only one may be in the criti cal sec tion at a given point in

time. With only a sin gle pro cess, the pro ce dure al ter nates be tween pric ing and piv ot ing

tasks.

Such a self- scheduled ap proach is ef fec tive when the number and time re quire ments of

tasks vary widely or are un known, hence was par ticu larly ap ro pos for our net work sim plex

im ple men ta tion. Our de sign main tains both an im plicit work list of tasks and a can di date list

as shared da ta sets ac ces si ble only within a moni tor, with all prob lem and ba sis data in shared, 

glob ally ac ces si ble mem ory.
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al go rithm Par al lel_Net work_Sim plex
be gin
         New Du als = true {Boo lean, shared, global vari able}
         loop for ever
         En ter moni tor {Be gin criti cal sec tion}
         if last task was pric ing and fa vora bly priced arc was found then
                     Add arc to can di date list
         en dif
         if pre vious pivot is com plete then
                     if New Du als then
                     Re set arc pric ing list
                     New Du als = false
                     en dif
                     Re price can di date list
                     if fa vor able arc is found on can di date list then
                     As sign pivot as task, with most fa vor able arc as in com ing
                     New Du als = true
                     else
                     if un priced arc group re mains then
                     As sign arc group for pric ing as task
                     else
                     En ter de lay queue
                     if all pro cesses de layed then exit loop
                     en dif
                     en dif
         else      {pre vious pivot is in prog ress}
                     if par al lel dual up date was re quested by pivot task then
                     As sign dual up date as task
                     else
                     if un priced arc group re mains then
                     As sign arc group for pric ing as task
                     else
                     En ter de lay queue
                     if all pro cesses are de layed then exit loop
                     en dif
                     en dif
         en dif
         if work is avail able and a pro cess is de layed then
                     Re lease all pro cesses from the de lay queue
         en dif
         Exit moni tor {End criti cal sec tion}
         Per form as signed task
         end loop
         stop {So lu tion op ti mal or prob lem in fea si ble}

Figure 2. Algorithm for Parallel Network Simplex Monitor



Tasks sched uled by the moni tor are: (1) se lect an eli gi ble arc from the can di date list and

per form a pivot; (2) per form any dele gated por tion of the dual up date; and (3) price a group

of arcs and re turn the most pivot- eligible, if any, to the can di date list. Since, in this im ple -

men ta tion, piv ots can not be exe cuted con cur rently and only a por tion of each pivot may be

de com posed, this op era tion tends to be the bot tle neck in a par al lel en vi ron ment. Hence pri -

ori ties were es tab lished to mini mize the time be tween piv ots. Pivot exe cu tion is given the

high est pri or ity and, with pivot com ple tion de pend ing on up dated node po ten tials, sec on -

dary pri or ity is given to any dele gated dual up date task; pric ing is given the low est pri or ity.

A par al lel pure net work code, PPNET, im ple ment ing the above al go rithm was con -

structed from the NET STAR code's net work sim plex rou tines. Fig ure 3 il lus trates the par al -

lel network- simplex moni tor's op era tion and par tici pat ing pro cesses' data us age.

Per form ance of the code is strongly af fected by the pric ing and pivot de com po si tion

strate gies. Us ing a par al lel vari ant of the Mul vey (1978) can di date list ap proach, each pric -

ing task con sists of pric ing all arcs leav ing m1 nodes, and iden ti fy ing the most at trac tive one,

if any; such an arc re places any less at trac tive non ba sic on the m2-length can di date list. De -

com po si tion of the dual up date por tion of the pivot is per formed only if the sub tree to be up -

dated is of suf fi cient size to jus tify in cur ring the as so ci ated over head. This mini mum sub tree

size was a third user- specified pa rame ter, m3. Hence a pric ing and piv ot ing strat egy is speci -

fied by the trip let ( , , )m m m1 2 3 .

The other user- specified pa rame ter is the “Big-M” value as signed to ar ti fi cial arcs in the

all- artificial ini tial ba sis. Com pu ta tional test ing shows that the small est value for M that still

elimi nates all ar ti fi cials is su pe rior to a larger M value or “Phase I-II” ap proach. Our im ple -

men ta tion used M=4(max{cij  | (i,j) ∈ A}), so as to gradu ally drive ar ti fi cials from the ba sis as 

a natu ral by prod uct of the piv ot ing pro cess.

In the com pu ta tional test ing re ported be low, sub stan tial ef fort was in vested to de ter mine

rea son able val ues for the pric ing and pivot de com po si tion pa rame ters, a task com pli cated by

the fact that “good” val ues vary not only with prob lem char ac ter is tics but also with the

number of proc es sors used to solve a given prob lem. Rather than spec ify pa rame ter val ues

for each test prob lem in di vidu ally, they were com puted us ing sim ple rules or fixed to val ues

that were ob served to work rea sona bly well on a va ri ety of test prob lems. The rules are based

solely on the number of proc es sors and are there fore prob lem in de pend ent. Al though this ap -

proach yielded in fe rior re sults on some in di vid ual cases, it was used in or der to avoid tun ing

the code to each prob lem. Of course, dra mati cally bet ter times are pos si ble with such tun ing.

4.  COMPUTATIONAL TESTING

PPNET was tested on medium- and large- scale prob lems, as would be en coun tered in

prac ti cal ap pli ca tions. All prob lems were gen er ated us ing the most cur rent ver sion of the
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Figure 3. Parallel Network Simplex Monitor & Data Structures



NET GEN ran dom prob lem gen er ator by Kling man, Napier, and Stutz (1974). The medium-

 scale set con sists of 50 prob lems de fined in a NET GEN prob lem suite de signed by Kling man 

and Mote (1987), as de scribed in Ta ble I. (Al though this prob lem suite has been used by nu -

mer ous re search ers, it has not been pre vi ously docu mented in a tech ni cal re port or pub li ca -

tion.)

Test ing was per formed at South ern Meth od ist Uni ver sity on a Se quent Sym me try S81, a

tightly cou pled MIMD ma chine with 20 16- MHz In tel 80386 proc es sors and 32 mega bytes

of shara ble mem ory. Due to a sys tem up grade dur ing this re search proj ect, we were able to

test PPNET on both the Se quent Sym me try “Rev. A” and the up graded “Rev. B.” The pri -

mary dif fer ence be tween sys tems is in their mem ory up dat ing schemes for main tain ing

cache co her ency (see Dubois, Scheurich, and Briggs, 1988), that have the ef fect of in creas -

ing in di vid ual proc es sor through put from three to four mil lion in struc tions per sec ond. This

per mit ted com pu ta tional com pari sons with an ear lier pa per and to note the ef fect, if any, of

proc es sor speed on speedup.

4.1  Problem Set A: Medium-Scale Problems

Prob lem set A con sisted of 17 prob lems from the Kling man and Mote (1987) NET GEN

prob lem suite de scribed in Ta ble I, se lected for the avail abil ity of com pa ra ble par al lel re sults 

by Pe ters (see Ta ble II). The test set con sists of trans por ta tion and trans ship ment prob lems

typi cally hav ing 5000 nodes and 25,000 arcs, with a va ri ety of cost and ca paci ta tion ranges,

to tal sup ply, etc.

These prob lems were solved on a dedi cated Rev. A sys tem us ing one to ten proc es sors.

The real, or “wall clock” so lu tion times were re corded, ex clu sive of in put and out put time.

For all prob lems, PPNET used the pric ing strat egy m1=max{40/p,5}, m2=5, and m3=80/p,

where p is the number of par tici pat ing proc es sors. The re sult ing one- and three- processor re -

sults are shown in Ta ble II.

To pro vide bench marks with which to com pare our one- processor re sults, test set A was

also solved us ing the well- known se rial code NET FLO (Ken ning ton and Hel gason, 1980)

and NET STAR. The NET FLO times are in cluded in Ta ble II—as a point of ref er ence—and

are seven to eight times longer than the se rial PPNET code.

One- processor PPNET times were used in prob lem set A test ing as the best se rial case for 

the com pu ta tion of speed ups. (Test ing per formed on the Rev. A ma chine in di cated that

NET STAR and PPNET re sults were in dis tin guish able. Test ing on the up dated Rev. B ma -

chine in di cated that NET STAR was some what faster than the one- processor PPNET code,

hence NET STAR times were used for speedup com pu ta tion in all Rev. B test ing.)  The mean

speed ups from Ta ble II show that, on av er age, PPNET achieves near- linear  speedup on three 

proc es sors. The oc ca sional, and sur pris ing, su per lin ear  speed ups are ex plored in sec tion 5.
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  Prob. No.         No.              No.     No.           Arc Costs             Total                 Transshipment           %Hi        % Capacity Random Objective 

No. Nodes     Source           Sinks   Arcs         Min Max Supply Src           Sinks   Cost      Cap   Min Max No. Seed Function 
101 5000 2500 2500 25000 1 100 250000 0 0 0 100 1 1000 13502460 6191726 
102 5000 2500 2500 25000 1 100 2500000 0 0 0 100 1 1000 4281922 72337144 
103 5000 2500 2500 25000 1 100 6250000 0 0 0 100 1 1000 44820113 218947553 
104 5000 2500 2500 25000 -100 -1 250000 0 0 0 100 1 1000 13450451 -19100371 
105 5000 2500 2500 25000 101 200 250000 0 0 0 100 1 1000 14719436 31192578 
106 5000 2500 2500 12500 1 100 125000 0 0 0 100 1 1000 17365786 4314276 
107 5000 2500 2500 37500 1 100 375000 0 0 0 100 1 1000 19540113 7393769 
108 5000 2500 2500 50000 1 100 500000 0 0 0 100 1 1000 19560313 8405738 
109 5000 2500 2500 75000 1 100 750000 0 0 0 100 1 1000 2403509 9190300 
110 5000 2500 2500 12500 1 100 250000 0 0 0 100 1 1000 92480414 8975048 
111 5000 2500 2500 37500 1 100 250000 0 0 0 100 1 1000 4230140 4747532 
112 5000 2500 2500 50000 1 100 250000 0 0 0 100 1 1000 10032490 4012671 
113 5000 2500 2500 75000 1 100 250000 0 0 0 100 1 1000 17307474 2979725 
114 5000 500 4500 25000 1 100 250000 0 0 0 100 1 1000 4925114 5821181 
115 5000 1500 3500 25000 1 100 250000 0 0 0 100 1 1000 19842704 6353310 
116 5000 2500 2500 25000 1 100 250000 0 0 0 0 1 1000 88392060 5915426 
117 5000 2500 2500 12500 1 100 125000 0 0 0 0 1 1000 12904407 4420560 
118 5000 2500 2500 37500 1 100 375000 0 0 0 0 1 1000 11811811 7045842 
119 5000 2500 2500 50000 1 100 500000 0 0 0 0 1 1000 90023593 7724179 
120 5000 2500 2500 75000 1 100 750000 0 0 0 0 1 1000 93028922 8455200 
121 5000 50 50 25000 1 100 250000 50 50 0 100 1 1000 72707401 66366360 
122 5000 250 250 25000 1 100 250000 250 250 0 100 1 1000 93040771 30997529 
123 5000 500 500 25000 1 100 250000 500 500 0 100 1 1000 70220611 23388777 
124 5000 1000 1000 25000 1 100 250000 1000 1000 0 100 1 1000 52774811 17803443 
125 5000 1500 1500 25000 1 100 250000 1500 1500 0 100 1 1000 22492311 14119622 
126 5000 500 500 12500 1 100 125000 500 500 0 100 1 1000 35269337 18802218 
127 5000 500 500 37500 1 100 375000 500 500 0 100 1 1000 30140502 27674647 
128 5000 500 500 50000 1 100 500000 500 500 0 100 1 1000 49205455 30906194 
129 5000 500 500 75000 1 100 750000 500 500 0 100 1 1000 42958341 40905209 
130 5000 500 500 12500 1 100 250000 500 500 0 100 1 1000 25440925 38939608 
131 5000 500 500 37500 1 100 250000 500 500 0 100 1 1000 75294924 16752978 
132 5000 500 500 50000 1 100 250000 500 500 0 100 1 1000 4463965 13302951 
133 5000 500 500 75000 1 100 250000 500 500 0 100 1 1000 13390427 9830268 
134 1000 500 500 25000 1 100 250000 500 500 0 100 1 1000 95250971 3804874 
135 2500 500 500 25000 1 100 250000 500 500 0 100 1 1000 54830522 11729616 
136 7500 500 500 25000 1 100 250000 500 500 0 100 1 1000 520593 33318101 
137 10000 500 500 25000 1 100 250000 500 500 0 100 1 1000 52900925 46426030 
138 5000 500 500 25000 1 100 250000 500 500 0 100 1 50 22603395 60710879 
139 5000 500 500 25000 1 100 250000 500 500 0 100 1 250 55253099 32729682 
140 5000 500 500 25000 1 100 250000 500 500 0 100 1 500 75357001 27183831 
141 5000 500 500 25000 1 100 250000 500 500 0 100 1 2500 10072459 19963286 
142 5000 500 500 25000 1 100 250000 500 500 0 100 1 5000 55728492 20243457 
143 5000 500 500 25000 1 100 250000 500 500 0 0 1 1000 593043 18586777 
144 5000 500 500 25000 1 10 250000 500 500 0 100 1 1000 94236572 2504591 
145 5000 500 500 25000 1 1000 250000 500 500 0 100 1 1000 94882955 215956138 
146 5000 500 500 25000 1 10000 250000 500 500 0 100 1 1000 48489922 2253113811 
147 5000 500 500 25000 -100 -1 250000 500 500 0 100 1 1000 75578374 -427908373 
148 5000 500 500 25000 -50 49 250000 500 500 0 100 1 1000 44821152 -92965318 
149 5000 500 500 25000 101 200 250000 500 500 0 100 1 1000 45224103 86051224 
150 5000 500 500 25000 1001 1100 250000 500 500 0 100 1 1000 63491741 619314919 

 
Table I. NETGEN Problem Suite (Klingman and Mote,  1987) 



NET GEN

Prob lem

Num ber

1- Processor

Times

3- Processor

Times

3- Processor

Speed ups
NET FLO PAR NET PPNET PAR NET PPNET PAR NET PPNET

101 672.94 na 65.30 58.97 26.38 1.11 2.48
104 569.45 na 67.55 65.33 25.13 1.03 2.69
106 308.40 na 39.61 29.98 14.01 1.32 2.83
110 363.59 na 39.98 28.19 13.99 1.42 2.86
115 486.53 na 76.38 50.11 22.89 1.52 3.34
116 473.47 na 65.01 65.99 25.30 0.99 2.57
117 249.05 na 39.41 24.54 12.14 1.61 3.25
121 668.34 na 88.48 81.62 35.23 1.08 2.51
122 629.91 na 79.91 72.28 32.84 1.11 2.43
126 357.32 na 52.38 31.63 16.82 1.66 3.11
130 411.14 na 54.97 32.26 16.35 1.70 3.36
134 71.32 na 64.94 23.94 15.42 2.71 4.21
138 1163.80 na 134.30 101.33 47.52 1.33 2.83
142 479.12 na 80.39 48.21 25.66 1.67 3.13
144 662.07 na 85.22 71.03 32.44 1.20 2.63
147 2436.37 na 164.16 116.40 64.42 1.41 2.55
150 855.85 na 84.93 71.62 34.49 1.19 2.46

Mean 638.75 na 75.47 57.26 27.12 1.41 2.90

na = not avail able

Table II. Solution Times and Speedups on Problem Set A



Our code was also com pared with the mul ti proc es sor code PAR NET whose pub lished

three- processor times, shown in Ta ble II, were also ob tained on a Rev. A Sym me try (see Pe -

ters, 1990). (Be cause of its de sign, this code re quires a mini mum of two proc es sors to op er -

ate.) Al though the PAR NET times in cluded in put and out put op era tions, while ours did not,

our test ing of its bi nary problem- input method and ab bre vi ated out put re port in di cated that

the in put/out put times were neg li gible in com pari son with so lu tion times. A com pari son of

three- processor times shows PPNET to be roughly twice as fast as PAR NET.

4.2  Problem Set B: More Medium-Scale Problems

Prob lem set B con sists of all 50 prob lems in the test suite, which were solved on a “Rev.

B” ma chine by PPNET and NET STAR. In all NET STAR runs, the pric ing strat egy m1=40, 

m2=10 was em ployed.  For all prob lems and all num bers of proc es sors, the pric ing strat egy 

m1=20, m2=5, m3=100 was im ple mented in the PPNET runs.  Prob lems 137 and 138 re -

quired a 50% larger M value for fea si bil ity.

Three PPNET runs us ing one to ten proc es sors and three NET STAR runs were made on

each prob lem. The NET STAR av er age times, the PPNET av er age speed ups, and sum mary

sta tis tics are shown in Ta ble III. Fig ure 4 sum ma rizes this data with the high, low, and mean

speed ups  across all set B prob lems. In gen eral, the code's times con tinue to im prove as proc -

es sors are added, with a mean speedup of 4.44 on ten proc es sors.

4.3  Problem Set C: Million-Variable Problems

The large- scale test set con sists of five ad di tional prob lems, each hav ing one mil lion arcs 

and from 10,000 to 50,000 nodes, ran domly gen er ated with NET GEN and the pa rame ters in

Ta ble IV. Each prob lem was solved with PPNET us ing 5, 10, 15, and 19 proc es sors and with

NET STAR. The same pric ing strate gies used on Set B were em ployed on this set.

To see the proc es sor ef fect on this prob lem set, Fig ure 5 graphs the speed ups ver sus

number of proc es sors for all in stances tested, and Ta ble IV shows both the se rial so lu tion

times and the best par al lel time and cor re spond ing speedup. For these prob lems, the mean

best speedup was 8.26, with an over all best of 14.41 and a mini mum best of 4.75. On prob lem 

4, a 50,000- node trans ship ment prob lem, so lu tion time was re duced from over ten hours to

just 42 min utes with the ap pli ca tion of par al lel ism. Even the 20,000- constraint trans por ta -

tion prob lem 3, which ex hib ited the small est speedup, re sulted in a re duc tion of so lu tion time 

from ap proxi mately 41 to 8.7 min utes, and million- arc prob lem 1 was solved in un der five

min utes with the ap pli ca tion of par al lel ism.

On three of the five prob lems, the ad di tion of proc es sors im proved so lu tion time with out

ex cep tion.  On prob lem 5 speedup con tin ued to im prove through 15 proc es sors and then lev -

eled off.  On prob lem 4 how ever, the ef fect of ad di tional proc es sors topped out at ten, with
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Prob.

No.

Sec onds

P=1

Speedup
P=2 P=3 P=4 P=5 P=6 P=7 P=8 P=9 P=10

101 55.08 1.80 2.40 3.54 5.14 4.86 5.12 5.05 4.78 4.61
102 72.13 1.56 1.98 2.95 4.75 4.52 4.51 4.40 4.33 3.96
103 88.39 1.64 2.19 3.12 4.45 4.49 4.50 4.47 4.23 3.97
104 56.92 1.97 2.39 3.73 5.32 4.89 5.27 5.11 5.09 4.97
105 56.11 1.81 2.30 3.64 4.88 4.67 5.04 4.86 4.69 4.41
106 32.40 1.70 2.72 3.63 3.73 3.80 3.39 3.13 2.94 2.75
107 75.89 1.93 2.20 2.83 5.50 4.26 5.62 5.63 5.42 5.27
108 131.96 1.60 2.53 2.97 5.30 4.08 6.17 6.33 6.83 7.12
109 166.29 2.28 2.69 3.05 4.27 3.47 5.66 6.72 7.57 7.78
110 33.25 1.67 2.72 3.95 4.06 4.33 3.70 3.55 3.20 3.04
111 76.76 1.97 2.19 2.93 5.41 4.41 5.60 5.95 5.68 5.48
112 102.19 2.05 2.51 3.01 5.13 3.48 5.82 6.22 6.43 6.62
113 149.63 2.19 2.94 3.10 4.93 3.70 6.49 7.86 8.02 8.37
114 111.22 3.31 5.30 7.13 8.88 7.85 11.11 12.69 14.11 14.23
115 63.89 2.20 3.15 3.51 6.21 4.99 6.53 6.68 6.42 6.31
116 54.53 1.79 2.15 3.28 4.86 4.61 5.01 4.89 4.73 4.55
117 32.79 1.77 2.94 4.30 4.57 4.63 4.25 4.05 3.65 3.26
118 69.87 1.79 2.14 2.87 4.90 3.85 5.62 5.29 5.44 5.26
119 106.14 1.59 2.43 2.77 5.24 3.78 5.48 5.74 6.10 6.20
120 148.91 1.84 2.71 2.99 4.36 3.57 5.86 6.58 7.17 7.42
121 73.27 1.54 2.38 3.47 3.71 3.60 3.49 3.29 3.03 2.86
122 67.00 1.64 2.33 3.64 4.12 4.22 4.31 4.24 4.06 3.74
123 79.18 1.62 2.53 3.53 4.47 4.34 4.46 4.65 4.41 4.25
124 90.64 1.49 2.07 2.97 3.69 3.52 4.02 3.65 3.84 3.78
125 123.63 1.59 2.36 3.08 3.65 3.57 3.73 3.81 3.52 3.53
126 44.17 1.76 2.81 3.50 3.69 3.64 3.43 3.32 3.19 2.86
127 109.84 1.54 1.96 3.05 4.64 4.26 4.98 5.11 5.00 4.98
128 140.49 1.59 1.80 2.49 4.29 3.48 4.68 5.03 4.83 4.80
129 217.53 1.64 1.92 2.37 4.41 2.91 4.74 5.33 5.37 5.69
130 45.93 1.71 2.86 3.51 3.48 3.91 3.51 3.17 3.06 2.96
131 97.05 1.61 2.08 3.18 4.66 4.20 5.35 5.18 5.36 5.27
132 119.47 1.72 2.15 2.90 4.84 3.85 4.91 5.52 5.30 5.53
133 159.52 1.80 2.24 2.71 4.54 3.57 5.29 6.05 6.10 6.27
134 53.14 2.51 3.84 4.72 6.28 5.47 7.09 8.27 8.49 8.94
135 55.79 1.79 2.23 2.85 4.63 3.67 4.70 5.11 4.86 5.50
136 104.45 1.69 3.27 4.55 4.84 4.88 4.82 4.65 4.40 3.96
137 143.60 2.03 3.75 5.03 5.21 5.19 4.64 4.61 4.34 4.20
138 113.71 1.68 2.53 3.76 3.84 3.78 3.55 3.41 3.23 2.99
139 96.14 1.45 2.25 3.34 4.29 3.96 4.06 3.96 3.74 3.63
140 84.36 1.51 2.19 3.66 4.39 4.27 4.27 4.23 4.12 3.81
141 66.00 1.75 2.43 3.89 4.67 4.48 4.76 4.66 4.72 4.46
142 67.27 1.76 2.61 3.94 4.88 4.83 5.10 4.77 4.52 4.40
143 52.72 1.80 2.65 3.72 4.89 4.55 4.79 4.49 4.71 4.19
144 70.71 1.58 2.33 3.42 4.11 4.26 4.21 4.43 4.22 4.15
145 76.10 1.64 2.27 3.30 4.06 3.74 4.13 4.10 4.11 3.86
146 75.20 1.57 2.18 3.48 4.48 4.48 4.54 4.62 4.30 4.22
147 137.91 1.43 2.32 4.12 5.31 5.30 5.14 4.74 4.48 4.27
148 91.14 1.25 2.06 3.38 4.29 4.49 4.07 3.81 3.70 3.41
149 78.13 1.69 2.37 3.34 4.17 4.03 3.97 3.97 3.88 3.94
150 72.42 1.69 2.35 3.07 3.50 3.45 3.63 3.67 3.46 3.49

Mean 89.82 1.77 2.51 3.47 4.24 4.68 4.90 5.02 4.98 4.91

Table III. Serial Times, Parallel Speedups for Problem Set B
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Figure 4. Test set B high, low, and mean speedups



Prob lem Prob lem
Char ac ter is tic1 1 2 3 4 5

Type2 TP TS TP TS TP
Nodes 10,000 20,000 20,000 50,000 50,000
Sources 5,000 4,000 10,000 10,000 25,000
Sinks 5,000 4,000 10,000 10,000 25,000
Arcs 1,000,00

0

1,000,00

0

1,000,00

0

1,000,00

0

1,000,00

0
Sup ply 2,500,00

0

2,500,00

0

10,000,0

00

10,000,0

00

2,500,00

0
Cost range 1- 100 1- 100 1- 100 1-10,000 1- 100
Ca pac ity range 1- 1000 1- 1000 1- 1000 1- 500 1- 1000
% Ca paci tated 100 100 0 100 100
Seed 1350246

0

7557837

4

1350246

0

6349174

1

1345045

1
NET STAR Time

(sec)

1448.14 3629.13 2489.89 37166.6 9113.21

Best Par al lel Time

(sec)

298.76 573.76 526.12 2586.05 834.58

Best Speedup S(19)=4.96 S(19)=6.22 S(19)=4.75 S(10)=14.41 S(15)=10.95

Table IV. Problem Set C Specifications and Test Results



the su per lin ear re sults up through ten proc es sors. The sources of this be hav ior are ex plored

in Sec tion 5.

4.4 Comparisons with Other Parallel Codes

Of the other codes, Pe ters' (1990) PAR NET is the most simi lar in de sign to PPNET. Un -

like our ge neric pro cesses, his are as signed spe cific tasks: one pro cess for piv ot ing with the

rest for pric ing. A mini mum of two proc es sors are re quired to op er ate, hence the code can not

exe cute se ri ally. As in di cated ear lier, PPNET solved Prob lem Set A twice as fast as PAR -

NET.

Miller, Pekny, and Thomp son (1990) ef fi ciently solve com pletely dense un ca paci tated

trans por ta tion prob lems through par al lel pric ing alone. By fo cus ing on prob lems with a high

ra tio of arcs to nodes, the re quired pric ing ef fort is em pha sized over piv ot ing, which fa vors

their code and ma chine de sign. Their rela tive speed ups on a 14- processor BBN But ter fly

ranged from about 3 on two 1000- node 250,000- arc prob lems to about 7 on 6000- node, 9-

 million- arc prob lems.

The Bert sekas and Cas tañon (1990) code is not com peti tive with the other ap proaches.

Based on re sults from the two small NET GEN prob lems re ported, al though the se rial times

seem slow, the best speedup ob tained was S(4)=1.82, with an av er age speedup of 1.72 for

two to four proc es sors.

The mas sively par al lel codes of Li and Zen ios (1991) and Niel sen and Zen ios (1991) for

trans por ta tion prob lems were tested on equiva lents to prob lems 1, 3, and 5 from Prob lem Set

C (the ran dom number gen er ator and seed val ues dif fered, but iden ti cal prob lem speci fi ca -

tions were used). Their re ported re sults and the com pa ra ble PPNET times are shown in Ta ble 

V. Sur pris ingly, PPNET—run ning on a rela tively in ex pen sive Se quent Sym me try (un der

$100,000 used)—was highly com peti tive with all mas sively par al lel codes. PPNET out-

 performed the ε-r elax ation ap proach with 32,768 proc es sors and the QPP code, and was 36% 

slower than the EPP code with 16,384 proc es sors on prob lem 5 but over twice as fast on

prob lem 1.

4.5 Summary of Computational Testing

The com pu ta tional test ing clearly un der scores the ef fec tive ness of par al lel ism in solv ing 

me dium- and large- scale trans por ta tion and trans ship ment prob lems with our ap proach. The

code is both flexi ble and ef fi cient; its im ple men ta tion runs slightly slower than the best se rial 

code when us ing one proc es sor, but is ca pa ble of sub stan tial speed ups as par al lel com put ing

units are added. It also ap pears to be the fast est avail able par al lel code for pure net work prob -

lems.
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Code PPNET Li and Zen ios Niel sen and Zen ios
Al go rithm Pri mal Sim -

plex

ε-R elax ation QPP EPP

Com puter Se quent

S81B

CM-2 CM-2 CM-2 CM-2

#  Proc es sors 20 32,768 65,536 16,384 16,384
Mem ory 32MB 1,000MB 2,000MB 512MB 512MB
List price $0.6M $2.5M $5M $1.25M $1.25M
Time (sec):

Prob lem 1 298.76 760.45 447.321 2,850.18 726.42
Prob lem 3 526.12 956.26 562.511 n.a. n.a.
Prob lem 5 834.58 890.76 523.971 1,018.32 613.34

1Es ti mated, not ob served.

Table V. Comparative Results, Problem Set C
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Figure 5. Test set C speedups by problem



5. AN EMPIRICAL STUDY OF THE ALGORITHM'S TEMPORAL BEHAVIOR

Su per lin ear re sults were en coun tered in each of the prob lem sets and, be cause the no tion

of su per line ar ity is con tro ver sial, we felt that an ex pla na tion for this be hav ior was re quired.

To this end, we per formed a micro- analysis of the code's per form ance, the be hav ior of in di -

vid ual al go rithm steps, and the na ture of the ba sis over the so lu tion time. We were par ticu -

larly in ter ested in how the ad di tion of proc es sors would af fect the vari ous so lu tion stages,

and wished to an swer such ques tions as: What are the sources of speedup? How is su per lin -

ear speedup pos si ble?

The study un cov ered three key speedup fac tors that re sulted in oc ca sional su per line ar ity; 

in ad di tion, the sta tis tics gath ered pro vide in sight into the tem po ral na ture of net work bases

that has not been ex plored pre vi ously in the lit era ture. Be low we de scribe the data col lec tion

pro cess, ex am ple sta tis tics, and the model of al go rithm be hav ior that emerged.

5.1 The Data Collection Process

Bef ore un der tak ing the study, sev eral meas ures of al go rithm be hav ior were iden ti fied. In 

some cases in ter me di ate cal cu la tions were re quired—whose in clu sion in the code would af -

fect its be hav ior—there fore the data was col lected in stages. The first stage con sisted of exe -

cut ing the pro gram and re cord ing each per ti nent event and its time of oc cur rence (the over -

head in volved in this op era tion is neg li gible). Us ing this data, time- dependent sta tis tics—

such as the number of mi cro sec onds spent wait ing for ac cess to the moni tor—were com -

puted af ter the fact. In ad di tion to log ging events, the in com ing arc for each pivot was re -

corded, per mit ting a sec ond se rial exe cu tion with the same pivot se quence to col lect data re -

gard ing ba sis struc ture and pivot char ac ter is tics.

This pro cess was ap plied to a va ri ety of prob lems, all of which yielded simi lar re sults.

While our find ings are based on an analy sis of a large number of prob lems, in the sec tions

be low we il lus trate those find ings with data col lected dur ing runs with one through ten proc -

es sors on NET GEN prob lem 108, whose be hav ior was rep re sen ta tive of all prob lems ex am -

ined.

 5.2 Temporal Basis Structure

One part of the study fo cused on the evo lu tion of the net work ba sis struc ture. With

PPNET, an ini tial ba sis is con structed by con nect ing all prob lem nodes to an added root node

with ar ti fi cial arcs whose flow and ori en ta tion ac com mo date the node re quire ments. Hence,

ini tially, the ba sis tree is wide and shal low. This struc ture is ame na ble to very fast piv ot ing

since the paths to be traced are short and the number of du als to be up dated is mini mal.

As the ba sis evolves though piv ot ing, a more “ma ture” to pol ogy should de velop

whereby the ba sis tree be comes nar rower and more ver ti cal, thus in creas ing both the ex -

12



pected length of the basis- equivalent paths and the ex pected size of the up dated sub tree. We

hy pothe sized that, as a re sult, piv ot ing should re quire in creased proc ess ing over time, at least 

up to a point, and that the struc ture and par al lel so lu tion times are re lated.

Sev eral met rics are used to char ac ter ize the ba sis to pol ogy. One such meas ure is the

mean car di nal ity of the ba sis tree. As bef ore, the car di nal ity, s(i), of node i is the number of

nodes in the sub tree of which i is the root. The av er age of the car di nali ties of all n nodes is an

in di ca tor of the “slen der ness” of the ba sis tree.  The code's ini tial ba sis has the small est pos si -

ble mean car di nal ity, 2 1− n, in di cat ing a “wide” or “bushy” ba sis tree, while the most slen der

ba sis pos si ble has a mean car di nal ity of ( )n+1
2.

An other sta tis tic de scrip tive of the ba sis tree struc ture is the number of sin gle ton sub -

trees, an in di ca tor of the tree's “width” or “bushi ness.” The pos si ble val ues range from the

ini tial ba sis' maxi mum of n −1 sin gle ton sub trees, in di cat ing a wide tree, to a mini mum of 1

for the most nar row tree pos si ble.

Both the mean car di nal ity and the number of sin gle ton sub trees in the ba sis tree were re -

corded bef ore each pivot. The re sult ing data was par ti tioned into in ter vals of 1000 piv ots and

av er aged over these in ter vals so as to give a rep re sen ta tive view of the ba sis struc ture over

time. These sta tis tics for the one- processor case are shown as Avg Card and 1- Trees, re spec -

tively, in Fig ure 6. The mul ti proc es sor sta tis tics are not pre sented, as they are vir tu ally iden -

ti cal: the av er age cor re la tion be tween the one- processor case and the nine mul ti proc es sor

cases is 0.9924 for mean car di nal ity and 0.9996 for number of sin gle ton sub trees (see Barr

and Hick man, 1990, for de tails).

Ta ble VI shows, for prob lem 108, the number of piv ots exe cuted as a func tion of the

number of proc es sors. This can be used with Fig ure 6 to iden tify the work avoided by de -

creas ing the number of piv ots exe cuted. For ex am ple, the ver ti cal dashed line re flects the

12,925 piv ots exe cuted for ten proc es sors and the cor re spond ing fi nal mean car di nal ity (72)

and number of sin gle ton sub trees (2,186).

The sta tis tics clearly in di cate that as the number of piv ots in creases the mean car di nal ity

in creases and the number of sin gle ton sub trees de creases, un til a pla teau is reached, re gard -

less of the number of proc es sors. The simi lar ity of val ues across dif fer ent number of proc es -

sors im plies that the struc ture of the ba sis at a given pivot number is rela tively in de pend ent of 

the number of proc es sors used. 

An other im por tant in fer ence to be made from this data con cerns the in creas ing dif fi culty

of piv ots. The data in di cate that the ba sis tree evolves from a wide, shal low shape to a more

nar row, elon gated form. With an in creas ing mean car di nal ity, the ex pected number of du als

to be up dated each pivot should in crease as well. The ex pected length of the basis- equivalent

path should also in crease along with the ef fort re quired to per form the ra tio test, flow up -

dates, and sub tree re root ing. Be cause of this evolv ing na ture, later piv ots are hy pothe sized to 

be more dif fi cult to per form than early piv ots, as ex plored in the next sec tion.
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5.3 Evolving Characteristics of the Pivot Steps

The ef fect that the evo lu tion of the ba sis tree has on the rela tive dif fi culty of piv ots may

be de scribed in terms of the three ba sic steps in piv ot ing: (a) the si mul ta ne ous iden ti fi ca tion

of the basis- equivalent path and the ap pli ca tion of the ra tio test, (b) the up dat ing of arcs in the

basis- equivalent path, and (c) the up dat ing of a sub set of the du als.

5.3.1 Ratio Test 

Pivot step (a) con sists of iden ti fy ing the basis- equivalent path (BEP) by trac ing the ba sis

tree from the end points of the in com ing arc, and si mul ta ne ously per form ing the ra tio test on

each arc en coun tered. This com prises roughly 17% of the to tal pivot time with dif fi culty de -

pend ing pri mar ily on the length of the path.  De gen er acy also plays a role since, once a de -

gen er ate pivot has been iden ti fied, the only re main ing work is path trac ing.

To meas ure the ef fort re quired to per form this step, the length of the BEP for each pivot

was av er aged over 1000- pivot in ter vals and the per cent age of de gen er ate piv ots in each in -

ter val com puted. These val ues are shown for the se rial case in Fig ure 6 as BE Path Length

and De gen er ate Piv ots, re spec tively. As bef ore, these same sta tis tics for the par al lel cases

are nearly the same; the mean cor re la tion be tween the se rial and par al lel in stances is 0.9872

for the av er age path lengths and 0.9725 for the per cent age of de gen er ate piv ots. 

In all cases of one through ten proc es sors, the length of the BEP in creases, then pla teaus,

with the number of piv ots, in di cat ing in creas ing trac ing and ratio- test ef fort. Run ning coun -

ter to this trend is the in creas ing number of de gen er ate piv ots and the cor re spond ing de crease 

in pivot ef fort. Al though PPNET con tains spe cial ized de gen er acy logic, it saved only 3.05

sec onds out of 165.57, with only 4616 de gen er ate piv ots in the se rial run. How ever, we shall

shortly see that any sav ings gained be cause of de gen er acy is far out weighed by other fac tors.

5.3.2 Path Update

The sec ond por tion of the pivot, the basis- equivalent path up dates, ac counts for ap proxi -

mately 23% of to tal pivot time. The ef fort re quired for these up dates again de pends on the

BEP length; hence the above analy sis leads us to the same con clu sion: since the BEP length

gen er ally  in creases with the number of exe cuted piv ots, the amount of work per pivot also

in creases.

5.3.3 Dual Update

The most time- consuming por tion of the pivot is the dual up date, ac count ing for roughly

60% of to tal pivot time. If the block ing arc for a pivot is re moved from the ba sis, two sub trees 

re sult, and the du als for the nodes in one of these sub trees must be up dated. The up date step

con sists of add ing a con stant to the node po ten tials as so ci ated with the smaller sub tree, as de -
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Num ber of

Proc es sors
Piv ots Exe cuted

So lu tion time

(sec onds)
1 21,378 165.597
2 19,622 87.239
3 17,781 56.846
4 16,136 44.290
5 15,048 35.094
6 14,745 31.372
7 13,853 26.044
8 13,761 24.932
9 13,216 21.532

10 12,925 20.230

Table VI. Problem 108 Statistics



ter mined from the car di nal ity func tion. Ob vi ously the amount of work per formed de pends

on the size of the up dated sub tree.

For our ex am ple, the number of nodes in the up dated sub tree was re corded for each pivot

and av er aged over 1000- pivot in ter vals. This sta tis tic is shown as Up dated Nodes in Fig ure 6

for the one- processor run; the av er age cor re la tion be tween par al lel and se rial in stances is

0.9927. The data in di cates that the av er age size of the up dated sub tree grows with the

number of piv ots, then lev els off. Again the ef fect of the ma tur ing ba sis is seen as the piv ots

be come more dif fi cult as the ba sis evolves.

5.3.4 The Combined Effect

Al though all our data, ex cept for the number of de gen er ate piv ots, in di cates that piv ots

be come more dif fi cult as the ba sis ma tures, the com pos ite ef fect is re vealed in the time re -

quired to per form a pivot as the number of piv ots in creases. The to tal time spent per form ing

piv ots—summed over 1000- pivot in ter vals—are shown, in mil li sec onds, as Time (ms) in

Fig ure 6 for the se rial case. The mean cor re la tion be tween the se rial times and cor re spond ing

par al lel times is 0.9907, in di cat ing a strong lin ear re la tion ship be tween the one- processor

case and each of the mul ti proc es sor cases (see Barr and Hick man, 1990, for de tailed sta tis -

tics).

The in crease in the time re quired to per form a pivot as the number of piv ots in creases

clearly il lus trates the ef fects of the ma tur ing ba sis. Gen er ally speak ing, the mean pivot time

in creases with pivot number, up to a point, ir re spec tive of the number of proc es sors in -

volved. As with the av er age car di nal ity and number of sin gle ton sub trees, the mean pivot

times show an in de pend ence of al go rithm be hav ior and the number of proc es sors. 

In con trast, the to tal number of piv ots per formed dif fers with the number of proc es sors.

The ten- processor so lu tion re quired 8,453 fewer piv ots than the one- processor case, and 145

sec onds were re quired to exe cute those “ex tra” piv ots. Since the struc ture of the ba sis is rela -

tively in de pend ent of the number of proc es sors, how can such a re duc tion be ob tained?

5.4 Comparison of the Pricing Effort in the One- and Ten-Processor Runs

To an swer this ques tion, let us com pare the number of arcs which are priced bef ore each

pivot in the one- and ten- processor runs. Our data in di cated that, on av er age, it takes .00015

sec onds to price all arcs leav ing one node. If we ex am ine the 11001- 12000 pivot in ter val, in

the ten- processor case it took 4.330 sec onds to exe cute these 1000 piv ots. There fore one pro -

cess can price 29 nodes dur ing each pivot. Since nodes are priced in groups of 20, we may

con ser va tively es ti mate that one pro cess ac tu ally prices 20 nodes dur ing each pivot. If we

again un der es ti mate the pric ing ef fort and as sume that two pro cesses are con stantly exe cut -

ing the pivot tasks, the re main ing eight proc es sors price 160 nodes dur ing each pivot, com -

pared with the 20 (or more if a can di date can not be iden ti fied from 20 nodes) priced in the se -
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rial case. Fur ther analy sis re vealed that, be gin ning with the 6001- 7000 pivot in ter val, more

arcs were priced per pivot in the ten- processor run than in the one- processor run. Prior to this

point, piv ots are exe cuted so quickly on the im ma ture ba sis that there is in suf fi cient time for a 

pric ing pro cess to com plete its as signed work dur ing only one pivot.

Clearly, if more arcs are ex am ined in the pro cess of iden ti fy ing a can di date for ba sis en -

try, the like li hood of find ing a more at trac tive can di date is in creased. We have dem on strated

that, given our pric ing strat egy, if a suf fi cient number of pric ing pro cesses are en gaged, once

the ba sis reaches a cer tain level of ma tur ity more arcs will be priced than in se rial exe cu tion.

Test ing also showed that an in creased pric ing ef fort re duces the to tal piv ots re quired to reach

op ti mal ity, a phe nome non ob served in other em piri cal stud ies on se rial ma chines (see

Glover, et al., 1974, and Mul vey, 1978).

To quan tify the im por tance of be ing able to price more arcs af ter the ba sis has be gun to

ma ture, a hy brid code was de vel oped which ran with only one proc es sor for the first v piv ots,

af ter which ten proc es sors were util ized. With v = 6000, an av er age of 13,308 to tal piv ots

were per formed, over 8000 less than the pure one- processor run, and al most equiva lent to the 

pure ten- processor run. This in di cates that the in creased pric ing ef fort is most sig nifi cant

when the ba sis is ma ture.

5.5 Pricing versus Pivoting Effect

The pric ing strat egy has a large ef fect on the per form ance of the al go rithm. In the se rial

case, this strat egy de ter mines the amount of time spent pric ing and thereby also de ter mines

the amount of time spent piv ot ing. The re duced cost of the en ter ing arc is par tially a func tion

of the pric ing ef fort, or the number of non ba sics con sid ered. While in creased pric ing ef fort is 

likely to pro duce a more at trac tive can di date, spend ing too much time in the pric ing phase

may re sult in ex ces sive so lu tion times.

In the par al lel case, the same trade off ap plies, and the number of arcs to be priced in or der 

to iden tify a suf fi ciently at trac tive en ter ing arc must be de ter mined. Un like the se rial case,

how ever, dur ing exe cu tion with p proc es sors, there are at least p-2 ac tive pric ing pro cesses

dur ing each pivot (one pro cess is exe cut ing the pivot and one may be exe cut ing the dele gated 

dual up date). Our goal is to use these p-2 pro cesses to price some tar geted mini mum number

of arcs dur ing each pivot, so that when the pivot is com plete, one or more at trac tive can di -

dates have been iden ti fied, and the next pivot can be gin with out any de lay.  In this man ner,

the time spent pric ing in a se rial run is ob tained vir tu ally ``free'' in par al lel, given enough

proc es sors.

To as cer tain the per form ance of our strat egy, we de ter mined what frac tion of the to tal so -

lu tion time that a pivot was ac tu ally in prog ress. Since only one pivot is in prog ress at a given

time, we may meas ure the to tal elapsed time spent in the pivot op era tion and com pare this to

the so lu tion time, ad just ing for the par al lel dual up date. The per cent of so lu tion time dur ing
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which a pivot is in prog ress is shown as Ac tive Piv ot ing in Fig ure 7. Note that when  four or

more proc es sors are used, a pivot is in prog ress over 85% of the time, com pared to only 35%

of the time in the se rial case.

The re main ing por tion of so lu tion time may be at trib uted to two things. First, at times a

can di date may not be avail able at the end of a pivot, per haps be cause (a) the pivot was very

short in du ra tion, as when the ba sis is im ma ture, (b) changes in the dual vari ables caused can -

di dates to no longer be at trac tive, (c) the few at trac tive arcs have not yet been lo cated, or (d)

the so lu tion is op ti mal. There fore a new pivot may not be gin im me di ate ly and all pro cesses

would en gage in pric ing, a sce nario analo gous to the se rial case in which pric ing time ex acts

a real- time cost. Sec ond, even when an at trac tive can di date is avail able at the end of a pivot, a 

mini mal amount of moni tor over head is in curred.

It is clear from Fig ure 7 that, given enough proc es sors, a ma jor ity of the pric ing ef fort is

ob tained “free,” that is, the pric ing is done dur ing piv ots, not be tween piv ots. This means that 

so lu tion time is driven pri mar ily by the to tal pivot time and so the pivot be comes the “bot tle -

neck” op era tion. There fore, to re duce so lu tion time, we need to re duce to tal pivot time. One

method for achiev ing this is the par al lel dual up date.

5.6 Effect of the Parallel Dual Update

Our study of the al go rithm also ex am ined the ef fect of de com pos ing the dual up date.

Since roughly 60% of pivot time is spent in the dual up date, a di vi sion of this work be tween

two proc es sors could cut the dual up date time in half, thereby achiev ing a 30% re duc tion in

pivot time (dis re gard ing any over head).

In Fig ure 7, Par al lel Dual Up date shows the per cent age of the to tal dual up date time in

which two proc es sors were ac tu ally per form ing the dual up date as a func tion of the number

of proc es sors. This data in di cates that, given a suf fi cient number of proc es sors, the time

spent in the dual up date por tion of the pivot can be re duced by nearly 40%.

5.7. Conclusions from the Statistical Study

Our analy sis re vealed three sources of speedup: (1) a large por tion of the pric ing is per -

formed con cur rently with pivot exe cu tion and there fore is “free;” (2) bet ter basis- entry can -

di dates re duce the to tal number of piv ots; and (3) the par al lel dual up date re duces individual-

 pivot time. Spe cifi cally, our test ing re vealed that when four or more proc es sors are em -

ployed, a pivot is in prog ress over 85% of the so lu tion time—that is, most of the pric ing is

done si mul ta ne ously with piv ot ing. With lit tle time spent ex clu sively on pric ing, par al lel so -

lu tion time is de ter mined pri mar ily by the pivot op era tion. (This is in con trast to the se rial

case wherein pric ing alone com prises over 60% of the so lu tion time.) Hence, in par al lel set -

tings, any re duc tion in pivot time will re duce the over all so lu tion time. 
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One way to re duce pivot time is to per form fewer piv ots. By em ploy ing more proc es sors

in the pric ing op era tion, a more ex haus tive search for the en ter ing arc can be made prior to

each pivot. In this man ner, prog ress to ward op ti mal ity is ac cel er ated and the number of re -

quired piv ots—and so lu tion time—is re duced. 

An other means of re duc ing to tal pivot time is to de com pose the work as so ci ated with the

pivot op era tion it self so that it can be per formed by mul ti ple proc es sors. In our im ple men ta -

tion, the most time- consuming por tion of the pivot, up dat ing the dual vari ables, can be exe -

cuted by two proc es sors. This re sults in as much as a 25% re duc tion in pivot time.

6. IN SUMMARY

Al though the speed of se rial proc es sors is in creas ing rap idly, the new est sys tems con fig -

ure mul ti ples of these com put ing ele ments for even higher- speed par al lel proc ess ing. This

study dem on strates the ap pli ca bil ity of such par al lel ism to the so lu tion of large- scale net -

work prob lems. Re sults were ob tained on rela tively slow proc es sors that com pare fa vora bly

with mas sively par al lel im ple men ta tions by oth ers. The re sul tant par al lel code ap pears to be

the state- of- the- art for the pure net work prob lem, and we con jec ture that its per form ance on

faster MIMD sys tems would be even more im pres sive. 

The oc ca sional su per lin ear re sults of our com pu ta tional test ing spurred an in ves ti ga tion

into their sources. A de tailed analy sis, based on microsecond- level tim ing of events and

post- execution re play of the so lu tion pro cess re vealed here to fore un known tem po ral char ac -

ter is tics of net work bases that were the same in both se rial and par al lel cases, and were ac ci -

den tally ex ploited by the ap pli ca tion of par al lel ism. Spe cifi cally, the struc ture of the net -

work ba sis at a par ticu lar point in time is pri mar ily in flu enced by the number of piv ots exe -

cuted up to that point, in de pend ent of the number of proc es sors used. By util iz ing a suf fi cient 

number of proc es sors, the pric ing ef fort not only be comes “free” but pro duces more at trac -

tive can di dates for ba sis en try and fewer piv ots re quired to reach op ti mal ity. This ef fort de -

creases the number of ma ture, more dif fi cult piv ots, re sult ing in a lower over all so lu tion

time. This un ex pected find ing was an other ex am ple of a com mon by prod uct of par al lel em -

piri cal test ing: in sight into the na ture and be hav ior of al go rithms (Barr and Hick man,

1993b).
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Pivot

In ter val

Num ber of Proc es sors
1 2 3 4 5 6 7 8 9 10

1- 1000 2 2 2 2 2 2 2 2 2 2
-2000 2 2 2 2 2 2 2 2 2 2
-3000 2 2 2 2 2 2 2 2 2 2
-4000 2 3 2 2 2 2 2 2 2 2
-5000 3 3 3 3 3 3 3 3 3 3
-6000 4 4 4 4 4 4 4 5 4 4
-7000 6 6 6 6 6 6 6 6 6 6
-8000 7 8 9 8 8 9 8 8 8 8
-9000 11 12 12 13 13 14 13 13 12 12

-10000 16 16 19 19 18 19 18 20 19 21
-11000 28 25 27 24 34 27 32 28 28 30
-12000 42 40 52 66 58 43 46 45 48 51
-13000 60 76 75 83 78 65 65 73 66 70
-14000 78 80 80 82 75 71
-15000 74 84 83 77 72
-16000 75 77 82 77
-17000 72 78 76
-18000 72 76
-19000 73

Table VII. Average Cardinality Over Pivot Interval

Pivot 

In ter val

Num ber of Proc es sors
1 2 3 4 5 6 7 8 9 10

1- 1000 4633 4638 4634 4636 4630 4634 4630 4633 4629 4632
-2000 3975 3976 3972 3965 3964 3974 3961 3967 3967 3975
-3000 3477 3470 3456 3462 3446 3469 3457 3470 3473 3481
-4000 3122 3093 3093 3075 3088 3092 3091 3105 3111 3114
-5000 2838 2816 2794 2802 2808 2804 2823 2836 2838 2837
-6000 2641 2617 2595 2630 2595 2610 2612 2631 2629 2633
-7000 2512 2490 2493 2497 2468 2509 2503 2516 2509 2525
-8000 2436 2396 2381 2386 2383 2408 2424 2431 2424 2437
-9000 2350 2355 2325 2314 2331 2345 2359 2363 2366 2365

-10000 2322 2292 2298 2295 2295 2323 2348 2330 2328 2337
-11000 2321 2248 2263 2251 2275 2313 2317 2311 2322 2317
-12000 2301 2250 2240 2247 2246 2295 2293 2272 2278 2284
-13000 2294 2235 2227 2253 2242 2273 2283 2276 2286 2280
-14000 2287 2242 2220 2256 2263 2277
-15000 2295 2250 2235 2262 2279
-16000 2250 2243 2269 2287
-17000 2272 2263 2279
-18000 2279 2277
-19000 2279

Table VIII. Average Number of Singleton Subtrees Per Interval

ADDITIONAL TABLES OF SUPPORTING DATA
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Pivot 

In ter val

Num ber of Proc es sors Over all

Mean
1 2 3 4 5 6 7 8 9 10

1- 1000 4 4 4 4 4 4 4 4 4 4 4.0
-2000 4 4 4 4 4 4 4 4 4 4 4.0
-3000 5 5 5 5 5 5 5 5 5 5 5.0
-4000 6 6 5 6 6 5 6 6 5 5 5.6
-5000 7 7 7 7 7 7 7 7 7 7 7.0
-6000 9 9 9 9 9 10 10 10 10 10 9.5
-7000 13 12 13 12 13 13 12 13 12 13 12.6
-8000 17 19 19 18 17 20 18 16 17 17 17.8
-9000 25 26 25 28 32 30 27 27 27 25 25.0

-10000 37 35 42 40 40 40 37 44 39 43 39.7
-11000 58 56 61 58 62 51 58 53 54 53 56.4
-12000 74 75 83 88 93 62 69 66 68 69 74.7
-13000 93 110 115 122 126 98 95 106 98 103 106.6
-14000 119 113 119 128 115 101 115.8
-15000 106 115 125 121 107 114.8
-16000 105 114 117 112 112.0
-17000 95 108 113 105.3
-18000 93 102 97.5
-19000 94 94.0

Table IX. Average Basis Equivalent Path Length Over Interval

Pivot 

In ter val

Num ber of Proc es sors
1 2 3 4 5 6 7 8 9 10

1- 1000 7 5 9 4 5 7 11 9 9 13
-2000 25 26 21 31 27 18 20 23 22 19
-3000 33 33 37 38 36 40 35 36 33 29
-4000 42 41 50 42 36 46 35 41 42 46
-5000 35 41 36 43 35 38 45 35 39 37
-6000 49 48 50 43 47 55 54 47 51 52
-7000 55 66 67 61 60 58 52 59 62 53
-8000 79 67 78 72 79 69 78 67 69 54
-9000 101 98 87 115 104 120 81 89 87 78

-10000 125 103 131 134 109 114 117 120 109 102
-11000 161 170 196 152 175 176 166 172 147 138
-12000 217 220 249 229 276 180 201 183 173 179
-13000 251 294 332 297 331 307 236 260 234 248
-14000 277 338 341 313 277 234
-15000 270 282 297 270 273
-16000 243 293 269 268
-17000 228 271 311
-18000 280 285
-19000 259

Table X. Number of Degenerate Pivots Over Pivot Interval
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Pivot 

In ter val

Num ber of Proc es sors
1 2 3 4 5 6 7 8 9 10

1- 1000 1 1 1 1 1 1 1 1 1 1
-2000 2 2 2 1 1 1 1 1 1 2
-3000 2 2 2 2 2 2 2 2 2 2
-4000 3 3 3 3 3 3 3 3 3 3
-5000 6 5 6 5 6 6 6 6 6 7
-6000 12 9 11 11 10 11 12 13 14 12
-7000 23 18 20 16 21 21 19 20 19 22
-8000 37 52 49 39 42 50 41 38 39 45
-9000 83 85 89 106 133 108 102 108 104 90

-10000 145 181 222 185 199 206 194 254 211 257
-11000 408 330 376 363 456 320 408 366 390 400
-12000 551 605 564 747 633 503 556 536 564 556
-13000 723 815 792 819 868 711 724 803 789 823
-14000 884 846 862 839 855 810
-15000 831 876 857 878 754
-16000 802 835 869 821
-17000 750 800 858
-18000 779 823
-19000 820

Table XI. Average Nodes in Updated Subtree Over Interval

Pivot 

In ter val

Num ber of Proc es sors
1 2 3 4 5 6 7 8 9 10

1- 1000 0.293 0.300 0.242 0.271 0.256 0.264 0.218 0.210 0.209 0.212
-2000 0.311 0.305 0.255 0.271 0.254 0.253 0.217 0.221 0.214 0.233
-3000 0.332 0.335 0.283 0.297 0.276 0.273 0.260 0.251 0.256 0.287
-4000 0.363 0.366 0.319 0.332 0.332 0.307 0.323 0.333 0.322 0.349
-5000 0.421 0.416 0.370 0.383 0.392 0.395 0.400 0.402 0.405 0.429
-6000 0.511 0.499 0.482 0.494 0.484 0.535 0.539 0.545 0.563 0.551
-7000 0.670 0.653 0.636 0.588 0.664 0.693 0.665 0.691 0.661 0.729
-8000 0.829 0.998 0.929 0.904 0.899 1.043 0.949 0.866 0.897 0.947
-9000 1.221 1.377 1.298 1.459 1.750 1.523 1.491 1.439 1.460 1.343

-10000 1.730 2.043 2.221 2.088 2.206 2.143 2.099 2.407 2.172 2.436
-11000 3.255 3.196 3.269 3.150 3.667 2.798 3.394 2.987 3.139 3.179
-12000 4.162 4.674 4.306 5.117 4.962 3.688 4.227 3.946 4.070 4.082
-13000 5.160 6.256 5.742 6.011 6.542 5.168 5.445 5.720 5.459 5.748
-14000 6.402 6.323 6.090 6.159 6.342 5.482
-15000 6.008 6.513 6.263 6.205 5.736
-16000 6.107 6.016 6.144 6.216
-17000 5.740 5.705 5.984
-18000 5.284 5.661
-19000 5.384

Table XII. Total Real Time Per Interval


