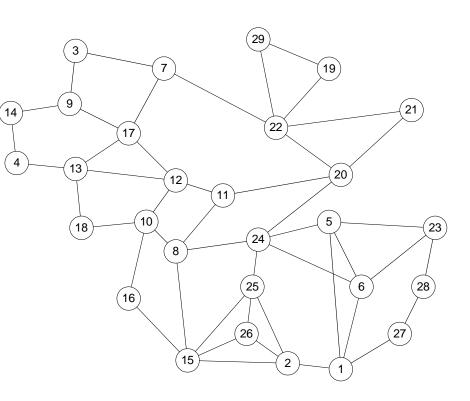

Minimal Wavelength Assignment in Survivable Mesh Networks

Richard S. Barr Mark W. Lewis Southern Methodist University

©1999,2000 Richard Barr, Mark W. Lewis

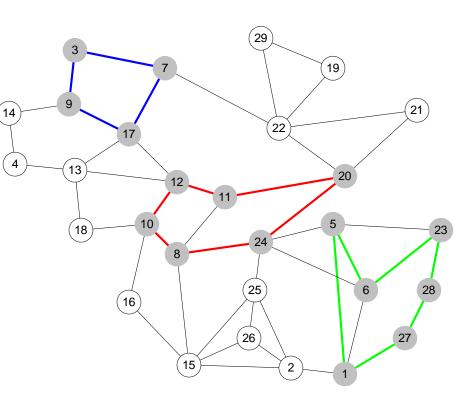
Telecommunications Networks

- Exponential growth in services demand
- Competitive forces on providers
- Creates pressure for greater efficiencies & backbone network capacity



Backbone Network Design

- Designing telecom networks involves:
 - Using existing, building new net links
 - Selecting equipment
 - Routing demand over given topology
- A wide range of optimization problems
 - Variety of topologies: rings, ATM, wireless
 - Linear, DXC, WDM, DWDM

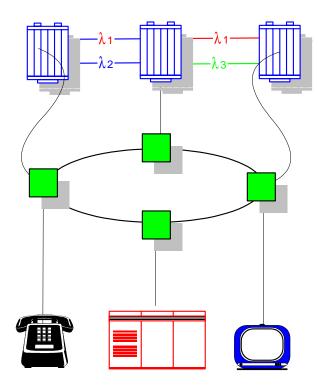

Network Design Problem

- Given:
 - Network of nodes, fiberoptic links
 - Demand matrix
 - Dedicated bandwidth between some or all pairs of nodes
- Required:
 - Link capacities
 - Demand routing
 - Equipment

Network Design Approaches

- Primary network topologies: *ring* and *mesh*
- SONET Ring designs
 - A series of (connected) rings
 - Automatic recovery from a single link failure
 - The industry standard

Network Design Approaches


- *Mesh topologies* use:
 - Point-to-point demand working paths
 - Alternate demand restoration paths for rerouting at link failure
- Typically require less spare bandwidth than ring designs

All-Optical Networks

- SONET's use of electronics limits capacity
- All-Optical Network (AON) technology
 - Uses Wave-Division Multiplexing (WDM)
 - Transmits multiple signals over an *existing* fiber line using different wavelengths (λ s)
 - Not limited by electronic circuitry
 - Can increase line capacity by 100X 10,000X
 - Provide same restorability protection as SONET

Network Transport Layers

All-Optical Layer

- Mesh designs prevalent
- (Dense) wave-division multiplexing
- High-level restoration

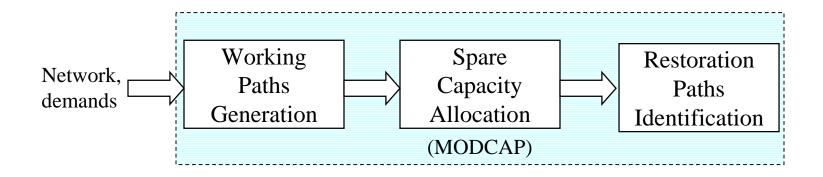
Sonet Layer

- High-speed protection
- Time-division multiplexing
- Time-slot grooming

Services Layer

Delivery of services to end user

(Source: T. Krause, Telephony, April 21, 1997)


Designing Mesh Networks

Survivable Mesh Networks

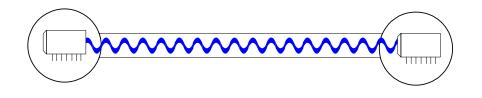
- Overlaying an all-optical mesh on a ring topology provides both quick recovery and lower cost
- A survivable mesh network requires:
 - Location of spare link capacities
 - Working and restoration paths for all demand

Problem Decomposition

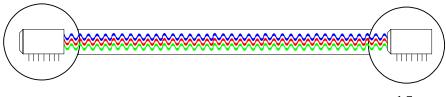
• Kennington & Lewis approach:

Minimum Modular Spare Capacity Allocation

- MODCAP (Modular Capacity) software by Kennington and Lewis
 - Determine the minimum spare capacity needed to recover from any single-link failure
 - Capacity is allocated in modular amounts
 - Our special case: multiples of base unit (OC-x)
 - Capacity is allocated on a link-by-link basis


Finding Restoration Paths

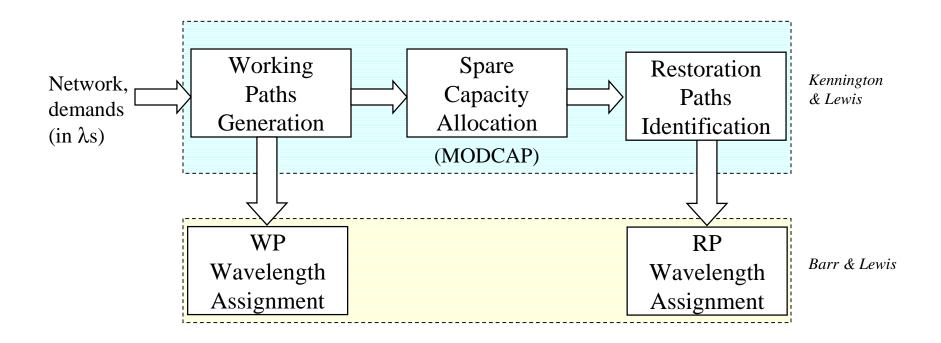
- Single Integral Path for Restoration (SPIR) software (Kennington & Lewis)
 - Determines a single restoration path for an OD pair affected by a link failure
 - Single restoration paths correspond to the "ring over mesh" topology
- Wavelength conflicts may be generated here
 - Paths are not necessarily diverse


Designing All-Optical Mesh Networks

All-Optical Networks Use WDM

- Historically:
 - Links consist of 1+
 fiber-optic cables
 - Each fiber carries one signal

- Wave-Division
 Multiplexing allows
 multiple signals per
 fiber line
 - Each signal is assigned a different frequency, light wavelength, color, or λ


WDM Can Complicate Design

- Traffic routed between an origin and destination uses a unique wavelength throughout its path
- How are wavelengths assigned to avoid conflicts over a link?

Survivable Mesh Network Wavelength Assignment Problems

- Given
 - Mesh network
 - Demands (in # of wavelengths per OD)
- Required
 - Wavelength assignments for the working and restoration paths
 - Total number of wavelengths minimized

Problem Decomposition

Wavelength Assignment Problem

- View wavelengths as colors
 - Each demand unit is assigned a color on its path
 - Path is a set of edges connecting O-D pair
- No edge can use the same color for its carried demands
- Simple cases = graph coloring problems
 - NP-hard
 - Efficient heuristics have been developed

Assumption

- No optical packet switching
 - Optical cross connects (OCXs) coming soon
 - Related problem: placement of OCXs and wavelength converters in a DWDM network
 - Every origin-destination pair views their working-path wavelength(s) as dedicated

Restoration Path Wavelength Assignment

- Restoration paths are assigned wavelengths from the set of available wavelengths
 - Failed link will free certain working-path wavelengths
- Edge failures considered independent
 - Restoration paths from different edge failures can use the same color on a link
 - No working path conflicts are allowed

Global Minimal Wavelength Model

• Restore demand, using one unique λ per restoration path, favoring smaller order λ .

$$\begin{array}{lll} \mbox{min} & \sum\limits_{e \,\in\, E} \; \sum\limits_{k \,\in\, C^e} \; \sum\limits_{\lambda \,\in\, A^k} \; \lambda \ f_k^{e\lambda} \end{array}$$

s.t.

$$\sum_{\lambda \in A^{k}} f_{k}^{e\lambda} = d_{k}^{e} \qquad \forall e \in E, \forall k \in C^{e}$$

$$f_k^{e\lambda} \in \{0, 1\}$$
 $\forall e \in E, \forall k \in C^e$

Global RP Wavelength Model

- $f_{k}^{e\lambda} = \{0,1\}$ assign λ to path k when e fails
- λ = wavelength number (1,2,...)
- Consider all RPs simultaneously

Minimize weighted sum of fs

s.t. Meet each demand, d^e_k Without color clashes

Serial Decomposition Algorithm

- Global model
 - Only small models could be solved with Cplex
 - Used 2000 seconds, Cplex 6
- Heuristic: solve for each edge failure separately, using a Serial Assignment model
 - Emphasizes wavelength re-use
 - Solves edges with largest number of RPs first

Serial Assignment Model

• For a given failed edge e, restore demands C^e using a unique λ , favoring λ which have been used previously.

$$\begin{array}{ll} \min & \sum_{k \in C^{e}} \sum_{\lambda \in A^{k}} \begin{cases} 0.5 \, f_{k}^{\lambda} & \text{if } \lambda \in \{\lambda : \forall_{i} \in k, \lambda \in L_{i}\} \\ & \lambda \, f_{k}^{\lambda} & \text{otherwise} \end{cases} \\\\ \text{s.t.} & \sum_{\substack{\lambda \in A^{k}}} f_{k}^{\lambda} = d_{k}^{e} & \forall k \in C^{e} \\ & \sum_{\substack{\lambda \in A^{k}}} f_{k}^{\lambda} \leq 1 & \forall i \in E \setminus \{e\}, \forall \lambda \in A^{k} \\ & \text{and } \lambda \in A^{k} & \\ & f_{k}^{\lambda} \in \{0, 1\} & \forall k \in C^{e} \end{cases} \end{array}$$

Global vs. Decomposition

- On small (10-node) problems
 - Decomposition was two orders of magnitude faster
 - Results were almost identical

Overall Results

- A typical 50-node problem with 200 demands and average node degree of 2.5
 - Working path assignment in ~50 sec (coloring heuristic)
 - Restoration path assignment in ~100 sec (serial decomposition heuristic)

600 MHz Alpha with 98 MB memory available, using CPLEX 6.01

• The corresponding global minimization model instance requires >98 MB memory

Conclusions

- DWDM creates challenging bandwidth management problems
- The global wavelength assignment model can produce large, challenging problem instances
- Decomposition of the survivable network wavelength assignment problem works well

Future Work

- Reducing wavelength conflicts created during restoration path discovery
- Combining working and restoration path wavelength assignment