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Abstract

Interval-flow networks are a special class of network models that can
include minimum-flow requirements on some or all active arcs in a feasi-
ble solution. While this extension expresses constraints often encountered
in practice, the resulting NP-hard problems are challenging to solve by
standard means. This work describes a heuristic that explores adjacent
extreme-point solutions to quickly find high-quality feasible solutions to
large-scale instances of this problem class. Computer software implement-
ing this approach is tested on problems with up to 40,000 nodes and 1
million arcs, giving solution speeds over 400 times faster than a leading
commercial optimizer.

1 Introduction

This paper describes solution methods for interval-flow transshipment networks,
a relatively new class of network flow models in which disjunctive constraints
restrict each arc’s flow to be either zero or within a stated interval. As de-
tailed below, the traditional pure network formulation is extended by including
conditional lower bounds to require minimum flow levels on arcs with activity.

The addition of minimum-use activity levels expands the applicability of the
popular network-flow models to include quantity discounts, economic viability
thresholds, lot-sizing considerations, and demand triggers for technology deci-
sions. A familiar examples would be minimum class sizes for a college course
to be offered (see Figure 1) and minimum purchase amounts to receive a lower
price. Figure 2 depicts a software licensing model that provides quantity dis-
counts for bulk purchases and costs of delaying and expediting license renewals
to take advantage of the lower prices.

Interval-flow modeling enhances logistics networks [9, 18] such as trucking,
shipping, or road toll planning [10] by requiring a minimum shipment size for

∗Department of Engineering Management, Information, and Systems, Lyle School of En-
gineering, Southern Methodist University, Dallas, TX 75275, USA, barr@smu.edu

†Oncor Electric Delivery, Dallas, TX, USA, robert.jones@oncor.com

1



Figure 1: Interval-flow class assignments with minimum enrollment levels
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transport to occur. Production planning often involves minimum lot sizes based
on line configurations or the physical characteristics of the equipment. This is
common in the manufacturing of low-quantity or specialized parts, such as mili-
tary aircraft connectors, where a minimum order quantity is needed to justify a
production run [16]. Interval-flow arcs can add realism to waste-water treatment
system models (such as found in Jarvis et al [13, 17]) to refine the location and
plant capabilities. The design of wireless data networks to support smart-grid
electrical distribution systems are readily modeled as in Figure 3 with minimum
and maximum equipment usage levels and concentrator selection [7].

The addition of conditional lower bounds and their associated logical con-
straints to a linear network model creates a disjunctive program [3, 4, 19] that
can be solved via mixed integer programming methods. The heuristic methods
developed herein build on the highly efficient algorithms developed for pure net-
work problems [5, 8, 11] to make large-scale instances of interval-flow networks
readily solvable.

The following sections mathematically define the interval-flow transshipment
problem and describe the heuristic approach to solving the problem. A computer
code based on these methods is tested on a set of randomly generated trans-
shipment problems and compared with state-of-the-art commercial software to
demonstrate the effectiveness of the approach.

2 Problem Definition

The interval-flow transshipment network problem (IFN) can be defined for a
directed graph with sets of nodes N and arcs A as:
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Figure 2: Interval-flow network for coordinating software license renewals and
quantity discounts
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IFN: min
∑

(i,j)∈A

cijxij = z (1)

s.t.
∑

(i,k)∈A

xik −
∑

(k,j)∈A

xkj = bk,∀k ∈ N (2)

`ijyij ≤ xij ≤ υijyij , ∀(i, j) ∈ A (3)
0 ≤ yij ≤ 1, ∀(i, j) ∈ A (4)

yij integer, ∀(i, j) ∈ A (5)

where, for each arc (i, j) ∈ A, xij is the arc flow, yij ∈ {0, 1} the activity-
indicator variable, cij the unit cost of flow, `ij the conditional lower bound,
and υij the upper bound. For each node i ∈ N there is a requirement bi,
positive if supply, negative if demand, and zero if a pure transshipment node.
Requirements and all bounds are assumed to be integer-valued constants and
that the total supply, ξ, is equal to the total demand. To simplify exposition,
the development given here is for the uncapacitated case, where all υij = ξ.

The objective is to minimize total cost z, subject to node balance constraints
(2) and flow bounds (4)–(5). Nonzero flow activity on an arc is enabled by
yij = 1, which also enforces the conditional lower bound in (4). (Such a pairing
of xij and yij variables is sometimes referred to in modeling languages as a
“semi-continuous variable.”) Note that if arc (i, j) has `ij = 0 or 1, it is the
equivalent of a pure network arc, whose flows are nonnegative integers.
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Figure 3: Interval-flow sensor network with minimum usage levels and equip-
ment choices
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3 Interval-Pivoting Heuristics

The algorithmic approach taken is based on the extreme-point search method
developed by Walker [20] and expanded by Apte and Barr[2] for interval-flow
transportation problems to exploit the underlying network structure. As can
be noted from the IFN formulation above, by fixing all yij values to some com-
bination of zeros and ones (i.e., setting the arcs’ active/inactive status) a pure
network problem results. Hence, the optimal solution to IFN lies at an extreme
point of a related transshipment problem whose basis is a spanning tree of the
nodes. Note that when some yij is fixed to 1, then `ij ≤ xij ≤ υij and arc (i, j)
can be nonbasic at either `ij or υij .

With this property, a heuristic can be built on existing primal network sim-
plex technology to exploit the solution’s structure, including spanning-tree so-
lution representation and streamlined execution of simplex steps—such as piv-
oting and pricing—via specialized data structures. The heuristics described
herein extend the interval-pivoting heuristics for transportation problems [2] to
transshipment problems and explore a series of adjacent-extreme-point search
methods to capitalize on the mathematical structure of IFN solutions.
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3.1 Overview

The interval-pivoting algorithm for IFN consists of three steps.

1. Relax the integrality constraints (5) of IFN and solve as a pure network.
If the resulting solution is feasible to IFN, then the problem is solved and
the solution is optimal.

2. Seek an interval-feasible solution [one satisfying the interval-flow restric-
tions (3)–(5)] by pivoting in non-basic arcs that affect the flow on the
interval-infeasible arcs (interval-pivoting). The goal is to move an interval-
infeasible arc to be non-basic with a flow of 0 or `.1

(a) H1: Escalate costs on IF-infeasible flow arcs and re-optimize

(b) H2: Use interval-pivoting to reduce the number of IF-infeasible arcs

(c) H3: Use interval-pivoting to minimize total distance to feasibility
(infeasible flow distance from nearest bound)

3. H4: Once a feasible solution is found, seek an improved solution via strate-
gic oscillation [12], temporarily relaxing the interval-flow constraints, find-
ing an improved solution, and re-applying step 2 to move back to interval
feasibility.

The interval-pivoting method is demonstrated in Figure 4 where the current
flow level for each arc is shown by • on its respective axis. Assume that arcs
x1, x2, and x3 are active and form the basis-equivalent path (representation)
of xin, a potential incoming arc. In the case where the flow on xin is increased
by amount A, this will also increase flow on x1 and x2 and decrease x3 by A.
However, since xin must have a minimum flow of ` (indicated by point B) to
join the basis and be interval-feasible, the flow on x2 would be increased past
its upper bound υ2; hence xin is blocked from joining the basis. If υ2 had been
at point B, xin would be pivoted into the basis at level ` and x2 would leave
the basis at its upper bound.

The components that make up the problem definition and the heuristic to
solve it are shown in Table 1. For this formulation, it is assumed that all network
information such as A, N , b, the total supply available, and the conditional
lower bound values for each arc are given.Let P be the set of all arcs that have
the flow xij > `ij . These are the arcs that have a feasible flow and could be
part of a final feasible solution. Let L be the set of arcs where xij = `ij . These
arcs are currently feasible but any flow decrease must equal `ij to maintain
feasibility. Let ZE be the set of all arcs where xij = 0 and `ij > 0. These arcs
are currently feasible but any flow increase must be greater than or equal to `ij

to maintain feasibility. Let IF be the set of all arcs 0 < xij < `ij . These arcs
are currently infeasible and must be driven into one of the other sets to create

1Note that when some yij is fixed to 1, then `ij ≤ xij ≤ υij and arc (i, j) can be nonbasic
at either `ij or υij . The heuristic, therefore, seeks to make each arc’s flow be either 0, within
the flow interval, or “nonbasic” at `ij or υij .
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Figure 4: Solution tree with incoming arc, effect on interval-flow arc flows

Table 1: Interval-Flow Network Component Definitions
Component Type Definition
X variable vector containing all xijs
C constant vector containing all cijs
Cm variable vector containing modified cm

ij s
LB constant vector containing all `ijs
P ⊂ A variable set of all arcs with xij > `ij

L ⊂ A variable set of all arcs with xij = `ij and `ij > 0
IF ⊂ A variable set of all arcs with 0 < xij < `ij

ZE ⊂ A variable set of all arcs with xij = 0 and `ij > 0
T ⊂ A variable set of all arcs that form a network tree
b constant vector with supply or demand for each node in N

a feasible solution. A feasible solution requires IF = ∅. Set T contains those
arcs that make up a spanning-tree extreme-point solution for IFN or one of its
relaxations.

The heuristic requires an initial solution to begin but that solution does
not need to be interval-feasible. The approach to generate an initial solution is
solve IFN with constraint (5) relaxed. With this relaxation, IFN now becomes
a standard minimum cost flow network formulation and the standard approach
described by Bradley et al. [8] with enhancements to the spanning tree labeling
described in [5] and the candidate list approach described in [15] can be used to
efficiently solve this problem. This approach is used repeatedly in the heuristic
and will be noted as SOLVE in the heuristic description. SOLVE always returns
set T , the objective function value z, and the flows xij for every arc (i, j) in A.

The solution to the relaxed problem provides a lower bound to the solution
of IFN. It is not expected that the solution to the relaxed problem is also a
feasible solution to IFN but if it is, the solution is optimal and the heuristic
terminates.
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Table 2: Modified Cost Values for Force Zero Algorithm
Arc Flow Previous Cost Value Modified Cost Value
`ij ≤ xij ≤ ξ cm

ij cij

0 < xij < `ij cm
ij αcm

ij

xij = 0 and `ij > 0 cm
ij cm

ij + cij if cm
ij ≤ βcij

otherwise unchanged

Figure 5: Force Zero(A,N, T , X, C, LB, feasloop) Algorithm

Input: A,N, T , X, C, LB, feasloop
Output: IF, T , X, z

subfeas ← 0
Cm ← C
(IF,Cm) ← IFEAS(IF,Cm,C,X,LB, A)
while IF 6= ∅ and subfeas ≤ feasloop do

(T, z,X) ← SOLV E(A,N,X,Cm)
(IF,Cm) ← IFEAS(IF,Cm,C,X,LB, A)
subfeas ← subfeas + 1

end while
Return (IF, T,X, z)

The overall heuristic consists of three main algorithms that approach the
interval-flow network problem in different ways. When grouped together, the
heuristic algorithm is effective in solving IFN. The following sections describe
the three main methods.

3.2 Method H1: Force Zero Algorithm

The force zero algorithm—shown in Figures 5-6—attempts to solve the prob-
lem described in equations 6 - 8. The problem defined by FZ is identical to
the standard minimum cost flow network problem. What makes this solve an
interval-flow problem is the modified cost value for each arc shown as cm

ij .

FZ: min
∑

(i,j)∈A

cm
ij xij = z (6)

s.t.
∑

(i,k)∈A

xik −
∑

(k,j)∈A

xkj = bk, ∀k ∈ N (7)

0 ≤ xij ≤ ξ, ∀(i, j) ∈ A (8)

Once an initial solution is found, the flow on each arc is examined to determine
if the flow is interval-feasible. The cost on each arc is temporarily modified as
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Figure 6: IFEAS(IF,Cm,C,X,LB, A) Algorithm

Input: IF,Cm,C,X,LB, A
Output: IF , Cm

for all arc(i, j) ∈ A do
if 0 < xij < `ij then

arc(i, j) ∈ IF
cm
ij ← αcm

ij

end if
if xij ≥ `ij then

cm
ij ← cij

end if
if xij = 0 and `ij > 0 and cm

ij ≤ βcij then
cm
ij ← cm

ij + cij

end if
end for
Return (IF , Cm)

shown in Table 2 with all modified costs cm
ij initialized to cij . The cost value is

unchanged for any arc that has a flow in the feasible range. The cost of an arc
that is infeasible is increased by a factor of α each time the IFEAS routine is
executed. As the cost is increased with each loop iteration, the arc is eventually
driven out of the solution if possible forcing the flow on the infeasible arc to
zero. Any arc that currently has a flow of zero but has a conditional lower
bound value that is greater than zero also has a cost penalty applied. The value
of β is set to allow these arcs to have flow but are penalized because it is possible
that any flow put on these arcs could be infeasible. Using these arcs is therefore
discouraged but not prohibited.

The values of α = 3 and β = 3 are determined by experimentation to give the
best results overall. The loop counter feasloop is set to a value of 200 although
most problems take less than 10 iterations to find a feasible solution. The IFEAS
routine that populates set IF and calculates the modified cost values is shown
in Figure 6.

3.3 Method H2: Exchange Algorithm

The purpose of the exchange algorithm (given in Figure 7) is to move arcs that
are in set IF to either the L or the ZE sets by adjusting network flows. The
exchange algorithm accomplishes this by interval-pivoting steps that seek to
solve problem EX:
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Figure 7: Exchange(A, IF , L, ZE, T , X, z, tarcs) Algorithm

Input: A, IF , L, ZE,T , X, z, tarcs
Output: IF , L, ZE, T , X, z

loopcount ← 0
candidate ← CANDLISTIF(IF, L, ZE, A)
{Find an arc that could change flow of an infeasible arc}
while candidate 6= 0 and loopcount ≤ tarcs and IF 6= ∅ do

(IF, L, ZE, z,X, f lowchange) ← SOLVEIF(A, IF, L, ZE,X, z)
if flowchange = 0 then

loopcount ← loopcount + 1
tabu levelpq ← tabutime

else
loopcount = 0

end if
candidate ← CANDLISTIF(IF, L, ZE, A)

end while
Return (IF , L, ZE, T , X, z)

EX: min Card(IF ) (9)

s.t.
∑

(i,k)∈A

xik −
∑

(k,j)∈A

xkj = bk, ∀k ∈ N (10)

0 ≤ xij ≤ ξ, ∀(i, j) ∈ A (11)

The constraints (10)–(11) are identical to those in the minimum cost flow net-
work problem. The objective function in equation 9 is to minimize the cardi-
nality of set IF .

A modified version of SOLVE was created to solve EX. It starts by examining
all arcs that are not currently a member of the set T . For each arc (i, j) 6∈ T
considered, the basis equivalent path (BEP) is traced to determine if the flow on
arc (p, q) ∈ IF would be affected if arc (i, j) is included in T . If arc (i, j) would
not affect an arc in IF it is skipped and removed from further consideration.
Otherwise, it is maintain in a candidate list for further examination and possible
inclusion into T .

Once an arc (i, j) is selected for testing, the algorithm determines if an
increase in the flow on (i, j) would increase or decrease the flow on (p, q). If
the flow on (p, q) decreases then the amount of flow change in the BEP must
be xpq moving (p, q) into set ZE. But, if the flow on (p, q) increases then the
amount of flow change in the BEP must be `pq − xpq moving (p, q) into set L.
This operation is to strictly decrease the cardinality of IF so no other arc in
the BEP can enter IF when (p, q) leaves IF . If all of these conditions are met,
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the flows on the BEP are updated, (i, j) becomes an element in T , (p.q) leaves
T and IF and becomes an element of either L or Z.

To avoid cycling at various stages, elementary techniques from the Tabu
Search literature [12] are employed. Therefore, if any of the above conditions are
violated, a tabu value is assigned to (i, j) to prevent (i, j) from being considered
again for at least tabutime inclusion attempts. The value of tabutime = 4 is
determined by experimentation to give the overall best results for arc selection
while minimizing cycling. The algorithm repeatedly checks arcs until either
IF = ∅, there are no arcs that can be found that affect the remaining arcs
in IF , or the overall loop counter in the algorithm expires. The loop counter
expiration value is determined by experimentation. The loop counter expires
when the total number of consecutive failed update attempts exceeds the total
number of arcs in the network.

The exchange algorithm is shown in Figure 7. The routine CANDLISTIF
finds arcs to populate the candidate list based on the previously described rules.
The routine SOLVEIF is a modified version of SOLVE that uses all of the
same tree management routines as SOLVE with the modified flow change rules
previously described. SOLVEIF returns the variable flowchange as either 0,
xpq, or `pq−xpq. A value of 0 indicates that the flow in the BEP could not change
enough to drive (p, q) out of IF . The constant tarcs is set to the total number
of arcs in the network and is used as part of the loop termination conditions.

3.4 Method H3: Minimize Distance to Feasibility Algo-
rithm

The purpose of the minimize distance algorithm is to minimize the sum of the
distance to feasibility as defined by equation 12. The distance to feasibility for
any arc (p, q) ∈ IF is min(xpq, `pq−xpq) and indicates the smallest flow change
on arc (p, q) required to move the arc out of set IF .

DM: min
∑

(i,j)∈IF

min(xij , `ij − xij) (12)

s.t.
∑

(i,k)∈A

xik −
∑

(k,j)∈A

xkj = bk, ∀k ∈ N (13)

0 ≤ xij ≤ ξ, ∀(i, j) ∈ A (14)

The constraints shown in equations 13 and 14 are identical to those in the
minimum cost flow network problem.

The problem defined by DM can be solved using algorithms similar to those
used in solving the MCFN. A modified version of SOLVE was created to solve
DM. It starts by examining all arcs that are not currently a member of the
set T . For each arc (i, j) 6∈ T considered, the basic equivalent path (BEP) is
traced to determine if the flow on arc (p, q) ∈ IF would be affected if arc (i, j)
is included in T . If arc (i, j) would not affect an arc in IF it is skipped and
removed from further consideration. Otherwise, it is maintain in a candidate

10



list for further examination and possible inclusion into T . This is identical to
the approach used in the exchange algorithm.

The main difference between the exchange algorithm and the distance min-
imization algorithm is the determination as to when an arc should be pivoted
into the tree. Once an arc (i, j) is selected for testing, the algorithm allows
an arc to enter the tree and flows to change provided that the sum of the
distance to feasibilities for the entire problem strictly decreases. This could
cause the cardinality of IF to increase or decrease as arcs enter the tree. As
the algorithm continues to strictly decrease the distance to feasibility, the flow
on all arcs in IF are adjusted until a feasible solution is found indicated by∑

(p,q)∈IF min(xpq, `pq − xpq) = 0 or there are no other arcs to test. Enforcing
the strictly decreasing requirement helps prevent cycling.

If any of the conditions are violated, a tabu value is assigned to (i, j) to
prevent it from being considered for at least tabutime inclusion attempts. The
value of tabutime = 4 was determined by experimentation to give the overall
best results for arc selection while minimizing cycling.

The minimize distance to feasibility algorithm is shown in Figure 8. The
routine CANDLISTIF is the same routine used in the exchange algorithm. The
routine SOLVEIF2 is a modified version of SOLVE that uses all of the same tree
management routines as SOLVE with the modified flow change rules previously
described. SOLVEIF2 returns the variable flowchange to indicate the amount
of flow change in the current BEP. A value of 0 indicates that the flow in the
BEP could not change and a pivot is not performed. The constant tarcs is
set to the total number of arcs in the network and is used as part of the loop
termination conditions.

3.5 Method H4: Objective Function Improvement Algo-
rithm

Once a feasible solution is found, the objective function improvement algorithm
attempts to find better feasible solutions through the use of strategic oscillation
and repeated application of the feasibility routines previously described.

The algorithm starts by relaxing the constraints 3 and 5 as previously de-
scribed. The algorithm selects each arc (i, j) 6∈ T and determines if adding
flow to arc (i, j) would decrease the objective function in equation 1. Each
arc is tested only once so that the relaxed solution does not move too far from
feasibility. The routine that performs this operation is called SOLVEIMP and
is similar to the SOLVE routine previously described except that SOLVEIMP
does not solve the relaxed problem to optimality. The exchange algorithm, the
distance minimization algorithm, and the force zero algorithm are executed to
bring the solution back to feasibility. If the resulting feasible solution is better
than the previous incumbent, it is set as the new incumbent and the process is
repeated.

The improvement algorithm is shown in Figure 9. This algorithm terminates
when the loop counter expires, the routine SOLVEIMP does not find a relaxed
solution that is better than the current incumbent, or if a cycle is detected. The
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Figure 8: Distance Minimization(A, IF , L, ZE,T , X, z, tarcs) Algorithm

Input: A, IF , L, ZE, T , X, z, tarcs
Output: IF , L, ZE, T , X, z

loopcount ← 0
candidate ← CANDLISTIF(IF, L, ZE, A)
{Find an arc that could change flow of an infeasible arc}
while candidate 6= 0 and loopcount ≤ tarcs and

∑
(i,j)∈IF min(xij , `ij −

xij) 6= 0 do
(IF, L, ZE, z,X, f lowchange) ← SOLVEIF2(A, IF, L, ZE,X, z)
if flowchange = 0 then

loopcount ← loopcount + 1
tabu levelpq ← tabutime

else
loopcount = 0

end if
candidate ← CANDLISTIF(IF, L, ZE, A)

end while
Return (IF , L, ZE, T , X, z)

constant improveloop = 10 was determined by experimentation. It is found that
in general, the best improvements, if any, where found in the first few cycles of
the improvement loop.

3.6 The Interval-Pivoting Algorithm

The previous sections describe a collection of methods used to solve IFN us-
ing different approaches. The complete Interval-Pivoting heuristic, IFNET, is
shown in Figure 10. The INITIALSOL routine provides an initial solution to
the relaxed problem using the Big-M methodology.

4 Computational Experiments

This section describes an experimental design for comparing the effectiveness
of an IFNET implementation with a commercial state-of-the-art solver. The
experiments are designed to test the quality of solution and the time needed
to find the solution. The software used and the problem set descriptions are
detailed in the following sections.
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Figure 9: Improvement(A, IF , L, ZE, T X, C, z, tarcs, incumbent) Algorithm

Input: A, IF , L, ZE, T , X, C, z, tarcs, incumbent
Output: IF , L, ZE, T , X, z, incumbent

loopcount ← 0
(T, z,X) ← SOLVEIMP(T,X, z)
if IF 6= ∅ then

while loopcount ≤ improveloop and z < incumbent do
(IF , L, ZE, X, z) ← Exchange(A, IF , L, ZE, X, z, tarcs)
if IF = ∅ and z < incumbent then

incumbent ← z
else

(IF , L, ZE, X, z) ← Distance Minimization(A, IF , L, ZE, X, z,
tarcs)
if IF = ∅ and z < incumbent then

incumbent ← z
else

(IF, T,X, z) ← Force Zero(A,N, T , X, C, LB, feasloop)
if IF = ∅ and z < incumbent then

incumbent ← z
end if

end if
end if
if Cycle Detected then

BREAK
end if
loopcount ← loopcount + 1
(T, z,X) ← SOLVEIMP(T,X, z)
if IF = ∅ and z < incumbent then

incumbent ← z
BREAK

end if
end while

end if
Return (IF , L, ZE, T , X, z, incumbent)
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Figure 10: IFNET(A, N , LB, C) Algorithm

Input: A, N , LB, C
Output: incumbent

incumbent ← 0
(T, z) ← INITIALSOL(A,N)
(T, z,X) ← SOLV E(A,N,X,C)
(IF,Cm) ← IFEAS(IF,Cm,C,X,LB, A)
if IF = ∅ then

incumbent ← z
BREAK

end if
(IF, T,X, z) ← Force Zero(A,N, T , X, C, LB, feasloop)
if IF = ∅ then

incumbent ← z
else

(IF , L, ZE, X, z) ← Exchange(A, IF , L, ZE, X, z, tarcs)
if IF = ∅ then

incumbent ← z
else

(IF , L, ZE, X, z) ← Distance Minimization(A, IF , L, ZE, X, z, tarcs)
if IF = ∅ then

incumbent ← z
end if

end if
end if
(IF , L, ZE, T , X, z, incumbent) ← Improvement(A, IF , L, ZE, T X, C,
z, tarcs, incumbent)
Return (incumbent)
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4.1 Solution Codes

The commercial software used for comparison purposes is CPLEX version 10.0
from IBM. In testing, each code is given a solution time limit of 7200 seconds for
each problem. Reported solution times are in CPU seconds for the solution pro-
cess and do not include input, output, problem-generation, or report-generation
time.

An additional routine outside of the timing parameters checks the final
CPLEX solution for infeasible arcs. This is inserted after CPLEX returned
a results that violated the conditional lower bound constraints.

The IFNET code is written in ANSI C and compiled using gcc with op-
timization option -O3. The SOLVE routine is based on the NETSTAR code
developed by Barr [1, 6]. The solution tree data structure is maintained using
the Extended Threaded Index method of [5]. Additional structures of length
|A| store the original problem data plus reduced costs, tabu number, flow, set
T flag for each arc, augmented by forward-star and backward-star structures.

4.2 Problem Set Generation

A series of benchmark problems for testing interval-flow transshipment prob-
lems are generated using a two step process that required a slightly modified
version of NETGEN [14] and a post-generation utility. NETGEN is a machine-
independent program for the generation of random feasible network problems
with pre-defined characteristics, including size, arc density, cost and requirement
ranges, and number of transshipment source and sink nodes.

For interval-flow networks, the challenge is to create large-scale test problems
that are feasible with respect to the conditional lower bounds. NETGEN creates
pure network problems starting with a skeleton solution, which ensures feasible
routing of supplies to demand nodes, then adds arcs randomly while to ensure a
connected network. Since all lower bounds are assumed to be zero, the random
addition of conditional lower bound constraints throughout the network could
result in an infeasible problem.

Our process avoids this by only adding these constraints to non-skeletal arcs,
thus preserving feasibility. (A statistical analysis determined that IFNET did
not favor the skeleton arcs in finding feasible solutions.) There is user control
over the percentage of arcs that have a conditional lower bound along with the
minimum and maximum values of those bounds.

4.3 Problem Set Definition

Problem set A is designed to compare the solution time and quality of IFNET
and CPLEX. An analysis of variance determines whether significant differences
between the two codes exist in terms of run-time or final solution values.

The six test set factors and their levels are shown in Table 3. These factors
are chosen after preliminary test results showed possible variations between
the two codes when adjusting these factors. The test problem parameters are
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Table 3: Test Set A: Problem Factors and Levels
Factor Level 1 Level 2
Number of nodes 5,000 10,000
Number of arcs (nested within nodes)

In 5,000-node problems 50,000 100,000
In 10,000-node problems 50,000 100,000

Percent source nodes 2% 5%
Percent demand nodes 2% 5%
Percent arcs with clb 25% 50%
Range of clb 50 to 100 100 to 200

shown in Tables 4 and 5. Each problem’s total supply is fixed at 100,000 and
the variable cost for each arc ranged from 0 to 50.2

4.4 Computational Results

All computer runs for both codes are performed on a single UNIX-based machine
located at Southern Methodist University: a Dell PE 2650 with dual Intel Xeon
processors running at 3.2 GHz with 4 gigabytes of random access memory. All
tests are performed at similar times with similar system loading.

Tables 6 - 9 list the codes’ performance for the specified test problems. Each
table shows the best solution for each code; z∆, the difference between the
IFNET and the CPLEX solutions divided by the best solution; the execution
time of IFNET, the solution time for CPLEX, and the time multiple that is the
ratio of CPLEX time to IFNET time.3 CPLEX did not find a feasible solution
for all problems and boldface solution values indicate that an infeasible solution
is returned.

IFNET finds a feasible solution for every test problem and CPLEX fails to
find a feasible solution to 17.2% of them. As shown in Tables 6 - 9, the 64 test
problems can be organized by factor and level into 16 groups of four problems
each. Figure 11 shows the percentage of feasible solutions for each test group
that each code finds and the time required. It shows that IFNET found solutions
for 100% of all test groups with times substantially faster than CPLEX. The
results from CPLEX show that eight different test groups contained at least one
test problem that CPLEX could not solve within the time limit specified. The
times shown are average times for each test group.

The average z∆ value was 0.00049, meaning that the solutions found by
the two codes were extremely close in value. The average solution times were

2Preliminary testing showed that changing the variable cost range did not affect the solution
quality or solution time. Preliminary testing also showed that fixing the total supply and
varying the number of source nodes had the same effect as varying the total supply but
keeping the number of source nodes fixed. This experimental design varies the number of
source nodes as a factor.

3The time for CPLEX only includes the solution time as provided by the CPLEX timing
parameter.
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Table 4: Test Set A: Problem 1-8 Definitions
Test Number Number Source Sink % CLB CLB CLB
# of Nodes of Arcs Nodes Nodes Arcs Min Max
1a 5,000 50,000 2% 2% 25% 50 100
1b 5,000 50,000 2% 2% 50% 50 100
1c 5,000 50,000 2% 2% 25% 100 200
1d 5,000 50,000 2% 2% 50% 100 200
2a 10,000 50,000 2% 2% 25% 50 100
2b 10,000 50,000 2% 2% 50% 50 100
2c 10,000 50,000 2% 2% 25% 100 200
2d 10,000 50,000 2% 2% 50% 100 200
3a 5,000 100,000 2% 2% 25% 50 100
3b 5,000 100,000 2% 2% 50% 50 100
3c 5,000 100,000 2% 2% 25% 100 200
3d 5,000 100,000 2% 2% 50% 100 200
4a 10,000 100,000 2% 2% 25% 50 100
4b 10,000 100,000 2% 2% 50% 50 100
4c 10,000 100,000 2% 2% 25% 100 200
4d 10,000 100,000 2% 2% 50% 100 200
5a 5,000 50,000 5% 2% 25% 50 100
5b 5,000 50,000 5% 2% 50% 50 100
5c 5,000 50,000 5% 2% 25% 100 200
5d 5,000 50,000 5% 2% 50% 100 200
6a 10,000 50,000 5% 2% 25% 50 100
6b 10,000 50,000 5% 2% 50% 50 100
6c 10,000 50,000 5% 2% 25% 100 200
6d 10,000 50,000 5% 2% 50% 100 200
7a 5,000 100,000 5% 2% 25% 50 100
7b 5,000 100,000 5% 2% 50% 50 100
7c 5,000 100,000 5% 2% 25% 100 200
7d 5,000 100,000 5% 2% 50% 100 200
8a 10,000 100,000 5% 2% 25% 50 100
8b 10,000 100,000 5% 2% 50% 50 100
8c 10,000 100,000 5% 2% 25% 100 200
8d 10,000 100,000 5% 2% 50% 100 200
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Table 5: Test Set A: Problem 9-16 Definitions
Test Number Number Source Sink % CLB CLB CLB
# of Nodes of Arcs Nodes Nodes Arcs Min Max
9a 5,000 50,000 2% 5% 25% 50 100
9b 5,000 50,000 2% 5% 50% 50 100
9c 5,000 50,000 2% 5% 25% 100 200
9d 5,000 50,000 2% 5% 50% 100 200
10a 10,000 50,000 2% 5% 25% 50 100
10b 10,000 50,000 2% 5% 50% 50 100
10c 10,000 50,000 2% 5% 25% 100 200
10d 10,000 50,000 2% 5% 50% 100 200
11a 5,000 100,000 2% 5% 25% 50 100
11b 5,000 100,000 2% 5% 50% 50 100
11c 5,000 100,000 2% 5% 25% 100 200
11d 5,000 100,000 2% 5% 50% 100 200
12a 10,000 100,000 2% 5% 25% 50 100
12b 10,000 100,000 2% 5% 50% 50 100
12c 10,000 100,000 2% 5% 25% 100 200
12d 10,000 100,000 2% 5% 50% 100 200
13a 5,000 50,000 5% 5% 25% 50 100
13b 5,000 50,000 5% 5% 50% 50 100
13c 5,000 50,000 5% 5% 25% 100 200
13d 5,000 50,000 5% 5% 50% 100 200
14a 10,000 50,000 5% 5% 25% 50 100
14b 10,000 50,000 5% 5% 50% 50 100
14c 10,000 50,000 5% 5% 25% 100 200
14d 10,000 50,000 5% 5% 50% 100 200
15a 5,000 100,000 5% 5% 25% 50 100
15b 5,000 100,000 5% 5% 50% 50 100
15c 5,000 100,000 5% 5% 25% 100 200
15d 5,000 100,000 5% 5% 50% 100 200
16a 10,000 100,000 5% 5% 25% 50 100
16b 10,000 100,000 5% 5% 50% 50 100
16c 10,000 100,000 5% 5% 25% 100 200
16d 10,000 100,000 5% 5% 50% 100 200
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Table 6: Empirical Results: 5,000 nodes, 50,000 arcs
Prob Final Objective Value Time, (Seconds) Time
# IFNET CPLEX z∆ IFNET CPLEX Multiple
1a 2,842,530 2,842,530 0.0000 1.0 2.01 2.01
1b 2,845,713 2,844,871 0.0003 1.0 55.47 55.47
1c 2,843,523 2,842,538 0.0003 1.0 2.72 2.72
1d 2,854,087 2,846,294 0.0027 7.0 68.44 9.78
5a 2,845,254 2,844,277 0.0003 1.0 2.59 2.59
5b 2,852,427 2,847,437 0.0018 6.0 327.07 54.51
5c 2,859,129 2,854,210 0.0017 3.0 44.43 14.81
5d 2,903,090 2,871,747 0.0109 4.0 7,306.21 1,826.55
9a 3,139,780 3,137,985 0.0006 1.0 4.19 4.19
9b 3,155,629 3,145,132 0.0033 5.0 162.37 3.27
9c 3,148,602 3,142,321 0.0020 5.0 24.83 4.97
9d 3,187,297 3,158,699 0.0091 3.0 562.77 187.59
13a 2,409,963 2,408,044 0.0008 1.0 31.07 31.07
13b 2,430,406 2,419,552 0.0045 3.0 7,296.85 2,432.28
13c 2,429,500 2,423,287 0.0026 1.0 971.97 971.97
13d 2,498,761 2,460,795 0.0154 2.0 7,265.46 3,632.73

Boldface

indicates that an infeasible solution is returned

Table 7: Empirical Results: 10,000 nodes, 50,000 arcs
Prob Final Objective Value Time, (Seconds) Time
# IFNET CPLEX z∆ IFNET CPLEX Multiple
2a 5,527,735 5,527,328 0.0002 3.0 5.78 1.93
2b 5,563,667 5,544,184 0.0067 9.0 1,096.54 121.84
2c 5,530,289 5,529,420 0.0007 14.0 30.28 2.16
2d 5,670,711 5,584,685 0.0261 9.0 7,248.77 805.42
6a 4,450,433 4,448,363 0.0005 3.0 16.62 5.54
6b 4,520,343 4,483,040 0.0083 6.0 7,272.46 1,212.08
6c 4,469,606 4,464,982 0.0010 2.0 30.85 15.43
6d 4,735,590 4,611,682 0.0269 13.0 7,246.24 557.40
10a 5,081,454 5,076,958 0.0009 2.0 4.19 2.10
10b 5,138,118 5,109,163 0.0057 5.0 162.37 32.47
10c 5,097,934 5,087,033 0.0021 2.0 24.83 12.42
10d 5,364,896 5,218,763 0.0280 8.0 562.77 70.35
14a 4,546,788 4,544,516 0.0005 3.0 64.49 21.50
14b 4,671,573 4,600,026 0.0156 11.0 7,242.06 658.37
14c 4,583,220 4,564,462 0.0041 3.0 484.29 161.43
14d 5,048,887 4,820,087 0.0468 8.0 7,223.42 902.93
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Table 8: Empirical Results: 5,000 nodes, 100,000 arcs
Prob Final Objective Value Time, (Seconds) Time
# IFNET CPLEX z∆ IFNET CPLEX Multiple
3a 1,828,313 1,826,769 0.0008 3.0 22.05 7.35
3b 1,831,667 1,828,620 0.0017 10.0 101.64 10.16
3c 1,836,415 1,831,473 0.0027 14.0 422.69 30.19
3d 1,848,919 1,836,218 0.0069 5.0 669.15 133.83
7a 1,510,774 1,510,414 0.0002 2.0 14.28 7.14
7b 1,518,295 1,514,705 0.0024 10.0 1,595.54 159.55
7c 1,518,705 1,515,548 0.0021 7.0 152.76 21.82
7d 1,551,475 1,532,385 0.0125 6.0 7,346.09 1,224.35
11a 1,660,313 1,659,650 0.0004 3.0 20.31 6.77
11b 1,664,416 1,661,668 0.0017 2.0 510.16 255.08
11c 1,667,578 1,664,049 0.0021 7.0 456.65 65.24
11d 1,699,788 1,679,575 0.0120 6.0 7,327.32 1,221.22
15a 1,486,097 1,484,687 0.0009 5.0 79.02 15.80
15b 1,498,415 1,490,120 0.0056 6.0 7,318.88 1,219.81
15c 1,497,159 1,489,071 0.0054 3.0 902.40 300.80
15d 1,544,898 1,513,453 0.0208 6.0 7,369.32 1,228.22

Table 9: Empirical Results: 10,000 nodes, 100,000 arcs
Prob Final Objective Value Time, (Seconds) Time
# IFNET CPLEX z∆ IFNET CPLEX Multiple
4a 3,019,560 3,017,350 0.0007 12.0 215,21 17.93
4b 3,041,750 3,027,042 0.0049 14.0 7,324.39 523.17
4c 3,028,933 3,024,811 0.0014 8.0 479.99 60.00
4d 3,117,512 3,059,584 0.0189 13.0 7,356.66 565.90
8a 2,191,788 2,190,132 0.0008 1.0 101.05 101.05
8b 2,221,209 2,206,196 0.0068 3.0 7,300.09 2,433.36
8c 2,238,187 2,212,035 0.0181 2.0 190.88 95.44
8d 2,394,119 2,284,831 0.0478 3.0 7,278.26 2,426.09
12a 2,964,529 2,959,156 0.0018 6.0 161.21 26.87
12b 3,011,434 2,975,091 0.0122 13.0 7,318.48 562.96
12c 3,006,934 2,981,226 0.0086 4.0 7,252.20 1,813.05
12d 3,191,883 3,076,985 0.0373 16.0 7,336.92 458.56
16a 2,570,734 2,554,133 0.0065 12.0 7,256.26 604.69
16b 2,637,668 2,974,412 -0.1277 11.0 7,503.13 682.10
16c 2,670,466 2,621,752 0.0186 9.0 7,238.00 804.22
16d 2,967,564 3,958,349 -0.3339 20.0 7,277.4 363.87

20



Figure 11: Percent of Feasible Solutions per Code Type
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2,833 seconds for CPLEX and 6.06 seconds for IFNET, a ratio of 488.6. Hence,
in aggregate, IFNET found comparable solutions nearly 500 times faster than
CPLEX and was more successful in identifying feasible solutions.

4.5 Analysis of Results

A statistical analysis of the test results determines which factors, if any, affect
solution time and solution quality. A second analysis identifies those factors
related to differences in solution values returned by the two codes.

4.5.1 Analysis of Solution Time

An analysis of variance identifies those factors that affect the solution time.
The factors considered are the code type (IFNET or CPLEX) the total number
of arcs, the total number of nodes, the percent of arcs with conditional lower
bounds, the number of source nodes, and the number of sink nodes.

All 64 observations for each code type are evaluated using the ANOVA pro-
cedure with SAS version 9.1 for UNIX with the significance level of 5%. The
results show that there is a significant difference in the amount of time each code
takes to solve the problems with a mean time of 3009.9 seconds for CPLEX and
a mean time of 6.1 seconds for IFNET.

There is no significant difference in the solve time due to levels of the number
of arcs. All other factors showed significant effects for solution time including
interactions of code type with total nodes, code type with percent conditional
lower bound arcs, code type with number of sink nodes, percent conditional
lower bound arcs with number of source nodes, code type with the number
of source nodes, and a third order interaction of the number of source nodes,
number of sink nodes, and the total number of nodes.
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4.5.2 Analysis of Solution Quality Due to Code Type

An analysis of variance was performed to determine which factors affect the
solution quality. The factors considered are the code type (IFNET or CPLEX)
the total number of arcs, the total number of nodes, the percent of arcs with
conditional lower bounds, the number of source nodes, and the number of sink
nodes. It is expected that the solutions will vary due to problem-size differences.
The important factors for this analysis is to determine if the solutions vary due
to the code type or any interaction effects with the code type.

Only the 53 observations for which CPLEX returns a feasible solution are
used for this analysis. The analysis of variance indicates that there is no sig-
nificant difference between the CPLEX solution values and the IFNET solution
values. A Tukey grouping analysis shows the IFNET and CPLEX are in the
same group. There are no significant interaction effects between code type and
any other factor.

4.5.3 Analysis of Solution Quality Variation

Another analysis explores the effect of any factors on z∆, the difference between
the solutions of the two codes taken as a percentage of the best solution. The
factors considered are the total number of arcs, the total number of nodes, the
percent of arcs with conditional lower bounds, the range of the conditional lower
bound, the average supply per source node, the number of source nodes, and
the number of sink nodes. Again only the 53 observations for which CPLEX
returns a feasible solution are used.

This analysis shows that while the number of arcs, source nodes, and sink
nodes has no statistically significant effect on solution quality metric z∆, all
other factors do. A Tukey analysis of nodes identified a significant difference
due to the total number of nodes, with the larger-node problems showing a
higher variation.

4.6 Additional Test Sets

An additional problem set B was created to explore the limits of both codes.
This test set consists of 16 test problems using the same parameters of tests 1d-
16d but increases the percentage of arcs with conditional lower bounds from 50%
to 75%. IFNET is able to solve every problem in this test set with an average
solution time of 30.3 seconds. CPLEX is only able to solve three problems with
an average solution time of 7,353.6 seconds (with a 7200-second time limit)
and hence does not provide a sufficient number of data points for a statistical
comparison.

Finally, problem set C probes the size limitations of the IFNET code: eight
problems, with all combinations of 20,000 and 40,000 nodes, 500,000 and 1,000,000
arcs, and the percentage of arcs with conditional lower bounds at 25% and 50%.
The total supply is fixed at 200,000, the number of source and sink nodes is
fixed at 5% of the total nodes, and the range of the conditional lower bounds is
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Table 10: Test Set C: Large Problem Results
Test Number Number % CLB Final Objective Time
# of Nodes of Arcs Arcs Value (Seconds)
1 20,000 500,000 25% 63,733,825 52.0
2 20,000 500,000 50% 63,760,333 36.0
3 20,000 1,000,000 25% 49,715,107 115.0
4 20,000 1,000,000 50% 49,729,141 68.0
5 40,000 500,000 25% 80,903,551 126.0
6 40,000 500,000 50% 80,966,762 140.0
7 40,000 1,000,000 25% 61,875,969 203.0
8 40,000 1,000,000 50% 61,923,193 151.0

set to be between 50 and 100 for all runs. IFNET found a feasible solution for
all problems with an average time of 68 seconds for problems with 20,000 nodes
and an average of 155 seconds for problems with 40,000 nodes. The results of
these test runs are shown in Table 10. CPLEX did not find a valid solution for
any of these test problems in 14,400 seconds.

5 Conclusions

This research has produced a new, fast, and effective heuristic and optimization
code, IFNET, for solving interval-flow transshipment problems. Comparisons
between IFNET and CPLEX, a state-of-the-art commercial optimizer show that
IFNET is extremely fast and provides solutions comparable quality. On problem
sets as large as 10,000 nodes and 100,000 arcs, IFNET finds high-quality feasible
solution to all problems, including challenging instances with conditional lower
bound arc densities up to 75%—for which CPLEX solves less than 20% of the
instances.

On problem sizes beyond the capability of CPLEX with up to 40,000 nodes
and 1 million arcs, the IFNET code quickly produced high-quality feasible so-
lutions. Hence this new technology renders readily solvable the large-scale in-
stances of this important problem class that are encountered practice.
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