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Abstract

Presented herein is a new class of network flow models, interval-flow
networks, in which the flow on an arc may be required to be either zero or
within a specified range. The addition of such conditional lower bounds
creates a mixed-integer program that captures such well-known restric-
tions as minimum load sizes, minimum class enrollments, and minimum
capacity utilization in telecommunications network spans.

This paper describes the mathematical properties of interval-flow net-
works as the basis for an efficient new heuristic approach that incorporates
the conditional bounds into the simplex pivoting process and exploits the
efficient, specialized pure-network simplex technologies. The algorithm
is applied to interval-flow transportation problems with a uniform condi-
tional lower bound and tested on problems with up to 5000 nodes and
10,000 arcs. Empirical comparisons with CPLEX demonstrate the ef-
fectiveness of this methodology, both in terms of solution quality and
processing time.
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From its origins as one of the first applications of linear programming [10,
9], the transportation problem and its brethren network models—assignment,
transshipment, generalized, and multicommodity—have found a broad range
of applications. Similarly, research into specialized network optimization tech-
niques have produced highly efficent algorithms and software that can effectively
address practical, ultra-large-scale problems (e.g., [1]). Despite their popularity
and widespread use, traditional models cannot address some situations with a
dominant network structure because of the requirement of non-network con-
straints.

This work introduces an important new class of such problems, motivated
by specific applications, that we call interval-flow transportation networks. In
an interval-flow network, each arc may have a conditional lower bound, which
restricts flow to be either zero or within a specified range. Depending on the
application, the minimum (conditional) flow level may vary or be uniform across
the designated arcs and typically reflects minimum utilization levels, such as
load sizes, class enrollments, or traffic capacity. While this enhancement creates
mixed-integer problems from the classical linear models, it also broadens their
range of applications and adds greater realism.

For these computationally challenging problems, this paper presents an ef-
fective new type of heuristic that incorporates the interval-flow constraints into
the simplex pivoting process and exploits the efficient, specialized simplex tech-
nologies that have been developed for pure networks. When embedded into a
tabu search framework, the algorithm quickly provides high-quality solutions
for interval-flow transportation networks.

The sections below formulate the uniform-bound interval-flow transportation
problem, describe its mathematical properties, and develop an interval-pivoting
algorithm for its solution. An implementation of this heuristic is detailed, and
statistically designed series of computational experiments demonstrate the effi-
ciency and quality of this approach.

1 Formulation and Properties

An interval-flow transportation problem with uniform lower bound, (UIFTP),
can be formulated as the following mixed-integer model.

(P ):

min
∑

(i,j)∈A

cijxij = z (1)

s.t.
∑

(i,j)∈A

xij −
∑

(k,i)∈A

xki = bi, ∀i ∈ N (2)

`yij ≤ xij ≤ ξyij , ∀(i, j) ∈ A (3)
0 ≤ yij ≤ 1, ∀(i, j) ∈ A (4)
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yij integer, ∀(i, j) ∈ A (5)

Each arc (i, j) ∈ A is defined such that i ∈ No and j ∈ Nd, where No ∩Nd = ∅,
No ∪ Nd = N , bi > 0 ∀i ∈ No, and bj < 0 ∀j ∈ Nd. The conditional lower
bound is ` and ξ =

∑
i∈No

bi is the total supply. In this model, ` is applied
to all members of A and the relaxation of (5) results in (P ), an uncapacitated
transportation problem.

The mixed-integer programming (MIP) nature of (P ) puts UIFTP in class
NP-hard. Constraints (1) and (2) form the embedded network model. Interval
flow transportation problem with uniform lower bound, as formulated in (P ),
have the following properties.

Property 1 For a given arc (i, j) in (P ), yij = 0 =⇒ xij = 0 and yij = 1 =⇒
` ≤ xij ≤ ξ.

Proof: This follows from (3).

Property 2 If (P ) is feasible, there exists an optimal solution that is a spanning
tree for N .

Proof: From (4) and (5), the optimal solution to a feasible (P ) will contain
yij ∈ { 0, 1}, ∀(i, j) ∈ A. Setting each yij to 0 or 1 reduces (P ) to a pure
network problem. We know that a pure network has a rooted spanning tree for
its basis and that the set of optimal solutions for a feasible linear program will
include a basic feasible solution [5]. Therefore, if an optimal solution for (P )
exists, there is an optimal spanning tree solution.

The feasible region of (P ) is given by (2) – (5). Because of (3), (4), and (5),
the disjunctive interval-flow constraints, the feasible region is a disjunction or
union of convex feasible subregions, as illustrated in Figure 1. The following
property is evident.

Property 3 The feasible region of (P ) is a disjunction of convex regions.

Property 4 The objective function for (P ) is discontinuous.

Proof: As a consequence of Property 3, the cost associated with arc (i, j) is 0
if xij = 0, is cijxij for xij ≥ `, and is undefined for 0 < xij < `.

These features of (P ) are derived from the special structure of pure interval-
flow networks and can be exploited for computational advantage. The algo-
rithms described in the upcoming sections are built around these mathematical
characteristics.

Property 5 (P ) is infeasible if there exists 0 <| bi |< ` for any i ∈ N .
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Figure 1: Nonconvex feasible region of UIFTP
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Figure 2: Nonconvex objective function for an UIFTP arc (i, j)
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Proof: Let i be a node ∈ No such that 0 < bi < `. For feasibility, xij , must
satisfy constraints (2) and (3). But, since

∑
j ∈ N, (i,j) ∈ A xij = bi, ∀i ∈ No,

there must be some (i, j) ∈ A such that 0 < xij < `. This will violate (3). An
analogous situation exists for any node i ∈ Nd with −` < bi < 0. Therefore
(P ) is infeasible if there exists 0 <| bi | < `.

The following sections describe a new heuristic algorithm for (P ) that ex-
ploit these properties, and compare an implementation of it with commercial-
grade optimization software. These computational experiments demonstrate the
strengths of the new approach on a broad-ranging suite of test problems.

2 Interval-Pivoting Algorithms

Presented below are a series of interval-pivoting algorithms (IPAs) for the UIFTP
that capitalize on the properties 1–5. They are similar in philosophy to the
adjacent-extreme-point heuristics proposed for fixed-charge [3, 4, 16, 17] and
more general problems [4, 13], but use a unique representation for solutions of
(P ) that can be readily manipulated by modified network simplex procedures.

Any feasible solution of (P ) will contain yij ∈ {0, 1}, ∀(i, j) ∈ A. Fixing each
yij to 0 or 1 reduces (P ) to a pure network problem. Constraint 4 ensures that
a feasible solution to this fixed network will have xij = 0 or ` ≤ xij ≤ ξ, ∀(i, j) ∈
A. A basic feasible solution to this fixed network will have m−1 basic variables
that are linearly independent. The remaining n + m− 1 variables are nonbasic.
Such a basic feasible solution can be represented by the set {B, L, Λ}, where
B is the set of xijs that are basic, L is the set of xijs that are nonbasic at 0,
and Λ is the set of xijs that are nonbasic at `. On the other hand, it is clear
that, given such a {B, L, Λ}, we can calculate xij ,∀(i, j) ∈ A. Similarly, we can
determine yij , ∀(i, j) ∈ A, based upon the xij values (e.g., if xij = 0, then the
corresponding yij = 0, and if xij ≥ `, then the corresponding yij = 1). Thus an
interval-feasible basic solution to (P ) can be represented by {B,L, Λ}, satisfies
the network constraints (2)–(4), and implicitly accounts for the feasibility of yijs.
We now offer formal definitions that form the foundation for the algorithms.

Definition 1 An interval-basic solution (IBS) for (P ) is a solution for which
n − m + 1 (nonbasic) variables xij are equal to either their lower bound (0)
or conditional lower bound (`), and the remaining m − 1 (basic) variables are
linearly independent. An IBS can be represented by the set {B, L, Λ}, where
B, L, Λ are the sets of variables that are interval-basic (or IF-basic), IF-nonbasic
at 0, and IF-nonbasic at `, respectively. (Note that a basic solution is an IBS
with Λ = ∅.)

Definition 2 A network-feasible interval-basic solution (NFIBS) is an IBS that
satisfies constraints (2)–(4).
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Definition 3 An interval-feasible interval-basic solution (IFIBS) is an IBS that
satisfies all constraints of (P ). Such a solution is said to be IF-feasible, as is
any arc (i, j) ∈ A satisfying constraints (3)–(5). All other IBSs and arcs are
termed IF-infeasible.

Definition 4 Two IBS’s, {B1, L1,Λ1} and {B2, L2, Λ2}, are said to be adjacent
if |B1 ∩ (L2 ∪ Λ2)|+ |(L1 ∩ Λ2) ∪ (L2 ∩ Λ1)| = 1.

Based on these definitions, we state another property of (P ) which is ex-
tremely important in the construction of IPAs.

Property 6 Depending on the status of yij, the corresponding xij variable can
be nonbasic at 0, or `.

Proof: This follows from Property 1 and the above definitions.
Just as the simplex method examines a series of adjacent basic feasible so-

lutions to identify an optimal one, the interval-pivoting algorithms examine a
succession of adjacent NFIBSs in their search for high-quality IF-feasible solu-
tions. Since an interval-basic solution can be represented as a spanning tree,
the algorithms can employ the data structures developed for network-simplex
methods. Modified network-simplex pivots are used to move between adjacent
NFIBSs, each time bringing a nonbasic arc into the solution and removing an
interval-basic.

For these algorithms, the sections below provide detailed descriptions based
on the following terms and the nomenclature of Ford and Fulkerson [6].

B : set of IF-basic arcs
L : set of IF-nonbasic arcs at flow of 0
Λ : set of IF-nonbasic arcs at flow of `

Bc : set of IF-nonbasic arcs, (L ∪ Λ)
P (i, j) : path from node i to node j in basis tree B [6]

Bbep(i, j) : set of IF-basic arcs in P (j, i)
W (P (i, j)) : set of forward arcs in P (i, j)
V (P (i, j)) : set of reverse arcs in P (i, j)

A+(i, j) : W (P (i, j)) ∪ (i, j)
A−(i, j) : V (P (i, j))

F : set of IF-feasible arcs
F c : set of IF-infeasible arcs

d(i, j) : max{0, min{xij , `− xij}}, for (i, j) ∈ A

d(S) :
∑

(i,j)∈S

d(i, j), for any nonempty set S ⊆ A
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f(S) : | S ∩ F c |
bmin : min

i∈N
{| bi |}

δ : possible flow change

Guiding the IPA search are three metrics: cij , the reduced cost of an arc (i, j),
computed using the dual variables of the current NFIBS; f(B), the number of
IF-infeasible arcs in a given NFIBS, B; and d(B), the integer feasibility of B
[15]. The d(B) values are determined from d(i, j), the distance from feasibility
for an IF-infeasible arc (i, j), defined as the smallest amount of flow change
(increase or decrease) required to reach an IF-feasible state. These metrics
assess improvement when evaluating the effects of a given change of IBS.

Because of discontinuities in the objective function and non-convexity of the
feasible region of (P ), evaluation of an IF-nonbasic arc involves the inspection of
its basis-equivalent path. Traversal of BEP is required (sometimes repeatedly)
to determine: the arc’s impact on d(B) and f(B), the flow-change possibilities,
and the corresponding arcs that would leave B. Evaluation complexity arises
from the fact that, for a given NFIBS and incoming arc, there may be many
adjacent NFIBSs to consider—expressed algorithmically as a variety of possible
flow-change/leaving-variable/leaving-variable-status combinations, each having
a different effect on the infeasibility metrics.

The four IPAs presented for the UIFTP may be summarized as follows.

IPA-1: A quick-exchange algorithm that seeks an IFIBS by starting from a
given NFIBS, and constructing a series of solutions with strictly improv-
ing f(B). Highly restrictive pivoting rules consider only a limited number
of exchange possibilities in order to streamline the search process. Termi-
nation occurs when an IFIBS is identified or when no improving nonbasics
exist.

IPA-2: A prioritized tabu-search algorithm for constructing an IFIBS from an
initial NFIBS. It explores a series of solutions created through moves that
consider all three improvement metrics (cij , f(B), and d(B)), combined
using user-supplied weights. Consecutive IFB’s need not strictly improve,
and cycling is avoided with short-term memory constructs. Termination
occurs when an IFIBS is identified or when no improving nonbasics exist.

IPA-3: An improvement algorithm that seeks to improve upon an existing
IFIBS via strategic oscillation, which permits IF-infeasibility for diversifi-
cation purposes [11], alternating with the application of IPA-1 and IPA-2.

IPA-4: A consolidated framework, combining the above IPAs into a general-
purpose algorithm for (P ).
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2.1 Initial NFIBS Construction

Algorithms IPA-1 and IPA-2 require an initial NFIBS. Since any basic feasible
solution to the embedded transportation problem will suffice (per definitions 1
and 2), an obvious choice is {B, L, Λ}—an optimal solution to (P ), the linear
relaxation of (P ), given by (1)–(4).

2.2 IPA-1: Quick-Exchange Algorithm

Algorithm IPA-1 (given in Figure 3) evaluates nonbasics for entry into the cur-
rent NFIBS using two criteria. An IF-nonbasic (p, q) ∈ L ∪ Λ is considered
eligible for pivoting into NFIBS basis B if, after pivoting with flow change δ to
form the new basis B′,

1. (p, q) remains IF-feasible, and

2. the number of infeasibilities on its BEP decreases [i.e., f(B′) < f(B)].

This narrow definition permits eligibility to be determined from a single trace
of the BEP, during which the flow change and leaving arc are also identified.
IF-nonbasics are placed in a circular list, from which arcs are drawn, evaluated,
and, if eligible, pivoted into the current NFIBS, until no pivot-eligible arcs
remain. Cycling is avoided by criterion 2, and some arcs can be eliminated from
consideration by use of the theorems below. [In this discussion, an increasing
(decreasing) arc is one whose flow increases (decreases) when a given pivot is
performed.]

Theorem 1 For arc (p, q) ∈ L, there is no flow change that meets the criteria
if there exists a decreasing-flow IF-infeasible arc in its BEP.

Proof: Suppose there exists an arc (i, j) ∈ A−(p, q)∩F c. For (p, q) with xpq = 0
to maintain IF-feasibility (criterion 1), δ ≥ ` or δ = 0. Suppose δ 6= 0. That
means, δ ≥ `. But we know that 0 < xij < ` ⇒ −δ < xij < ` − δ. Since
`− δ < 0, this implies that xij < 0. This is a contradiction to the fact that xij

is nonnegative. Therefore the assumption that δ 6= 0 is incorrect and δ = 0 so
that no flow change can occur.

Theorem 2 For arc (p, q) ∈ L, there is no flow change that meets the criteria
unless there exists an increasing IF-infeasible arc in its BEP.

Proof: By the hypothesis, there exists no arc (i, j) such that (i, j) ∈ A+(p, q)∩
F c. This implies that f(Bbep(p, q)) = 0. Therefore, the only infeasible arc in
Bbep(p, q) may be decreasing. By Theorem 1, no flow change occurs if there
exists a decreasing infeasible arc on the BEP of (p, q). So no flow change will
occur unless there exists an increasing IF-infeasible arc in Bbep(p, q).
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procedure IPA-1( it, (P ), x, B, L, Λ)

inputs: it, (P ), x, B, La

outputs: it,x, L, Λ, B

beginb

do while (f(A) > 0 and (C1 = {(i, j) ∈ Bc : IFratio(i, j, B,x, `) > 0}) 6= ∅)
select (p, q) ∈ C1

δ ← IFratio(p, q, B,x, `)
if ( (p, q) ∈ L and δ = ` ) then

L ← L− (p, q)
Λ ← Λ ∪ (p, q)
update Bbep(p, q) flows to reflect (p, q) status change

else
(r, s) ← argArc(δ)
call pivot(p, q, r, s, δ, B, Bc,x)
it = it + 1

endif
enddo

end

awhere {B, L} is an NFIBS.
bwhere argArc(δs) is the arc in Bbep(p, q) that determined the value of δs,

pivot(i, j, k, l, δ, B, Bc,x) is a procedure that performs a simplex pivot with flow change δ
to bring (i, j) into and remove (k, l) from the current NFIBS

Figure 3: Procedure IPA-1
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function IFratio(p, q, B, x, L, Λ, `)

inputs: p, q, x, B, L, Λ, `

begin
if((p, q) ∈ L)then

computea

κ1 ≡| A−(p, q) ∩ F ∩B1 |
κ2 ≡| A+(p, q) ∩ F c |
κ3 ≡| A−(p, q) ∩ F c |
δ5 ≡ min

(i,j)∈A−(p,q)∩F ∩B1

{xij}
δ6 ≡ min

(i,j)∈A−(p,q)∩F ∩B2

{xij}

δ ←




δ5, if κ1 > 0, κ2 > κ1, κ3 = 0 and (δ6 − δ5) ≥ `
`, if κ1 = 0, κ2 > 0, and κ3 = 0
0, otherwise

elseif((p, q) ∈ Λ)then
computeb

κ2 ≡| A+(p, q) ∩ F c |
κ3 ≡| A−(p, q) ∩ F c |
δ2 ≡ max

(i,j)∈A+(p,q)∩F c
{`− xij}

δ3 ≡ min
(i,j)∈A−(p,q)∩F c

{xij}
δ4 ≡ min

(i,j)∈A−(p,q)∩F
{xij − `}

δ ←





δ2, if κ2 > 0, κ3 = 0, and δ4 ≥ δ2

δ3, if κ3 > 0 and either:
κ2 = 0 and δ4 ≥ δ3, or
κ2 > 0 and δ4 = ξ

0, otherwise

endif
return δ

end

awhere B1, B2 are the sets of IF-basic arcs whose flow is in the range [`, 2`) and [2`, ξ),
respectively, if A−(p, q) ∩ F ∩B1 = ∅ then δ5 = ξ, and if A−(p, q) ∩ F ∩B2 = ∅, then δ6 = ξ

bwhere if A+(p, q) ∩ F c = ∅, then δ2 = `; if A−(p, q) ∩ F c = ∅, then δ3 = `; and if
A−(p, q) ∩ F = ∅, then δ4 = ξ

Figure 4: Function IFratio
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The tabu-search methodology involves a series of “solutions” to a given prob-
lem that are created by a series of “moves.” Within the interval-pivoting algo-
rithms, a solution is an NFIBS and a move is a transition from one basis to
another or a change in L - Λ set membership by a nonbasic arc. A move can
also be thought of as a mapping from one extreme point to another, based on
certain criteria.

Unlike the network simplex method which, for a given incoming arc, has
a unique flow change and (in the absence of degeneracy) leaving variable, the
interval-pivoting algorithms must consider a variety of flow-change and leaving-
variable possibilities for nonbasics in L or Λ. Each such pivot possibility cor-
responds to a potential move to a different convex interval-flow subregion that
may or may not be within the feasible region of the network constraints. Not all
possible moves are considered by each IPA. The subset included depends on the
goals of the algorithm and the attractiveness of each move for achieving these
goals.

The goal of IPA-1 is the rapid identification of an IFIBS in the neighborhood
of the initial NFIBS. Hence move selection was based on processing simplicity
and the likelihood of reducing the number of IF-infeasible arcs. Certain κ-δ
combinations were therefore considered attractive and included, while others
were deemed less so and omitted. For example, one excluded move was to
decrease flow on a member of Λ, which would maintain that arc’s IF-feasibility
only if the flow change could be exactly equal to `, a move that would, at the
same time, cause infeasibility on decreasing basic arcs with flows in the interval
(`, 2`). This restricted move set ensures that f(A), the number of IF-infeasible
arcs, strictly decreases with each pivot. Hence, cycling is automatically avoided
and a local optimum will be reached, but many potential routes to feasibility
are not explored.

2.3 IPA-2: Priority Search

IPA-2 (given in Figures 5–7) is a more flexible solution-improvement procedure
that can be adapted for various goals. It broadens the range of moves that
are considered, uses multiple criteria to evaluate moves, and incorporates tabu
search’s [8] short-term memory.

Unlike IPA-1, swapping infeasibilities (causing IF-infeasibility on some arcs
to eliminate it on others) is allowed, and strict improvement in f(A) is not
required. Potential moves are evaluated by a weighted sum of improvement in
f(B), improvement in d(B), and the reduced costs with respect to the current
NFIBS. Priorities are reflected in the weights chosen for the three evaluation
metrics. (The selection of weights is discussed in section 2.5.)

To evaluate the large number of possible moves for each nonbasic, the basis
equivalent path must be traversed multiple times. This is the result of needing
to know minimum and maximum flow values, and the number of basic arcs with
flow in certain ranges prior to assessing possible flow changes and their respective
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procedure IPA-2((P ), x, B, L, Λ, `, w)

inputs: (P ), x, B, L, `, w
outputs: x, L, Λ, B

begin
do while (f(A) > 0 and
(C2 = {(i, j) ∈ L ∪ Λ : IFpricer(i, j, B,x, L, Λ, `)) > 0 and t(i, j) ≥ τ 6= ∅)a

select (p, q) ∈ C2

δ ← IFpricer(p, q, B,x, L, Λ, `)
if( (p, q) ∈ L and δ = ` ) then

L ← L− (p, q)
Λ ← Λ ∪ (p, q)
update Bbep(p, q) flows to reflect (p, q) status change

else
(r, s) ← argArc(δ)
call pivot(p, q, r, s, δ, B, Bc,x)

endif
enddo

end

awhere t(i, j) is the number of immediately preceding, consecutive iterations that arc (i, j)
has been IF-nonbasic.

Figure 5: Procedure IPA-2
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function IFpricer(p, q, B, x, L, Λ, `)

inputs: p, q, B, x, L, Λ, `

begin
∆ ← pfs(i, j, w, B, x, `)
δbest ← δ0 ∈ ∆ such that ĉ(i, j, δ0,w) = maxδs∈∆{ĉ(i, j, δs,w), 0}
return δbest

enda

awhere

w1 ≡ weight for number-of-infeasibilities metric

w2 ≡ weight for distance-of-feasibilities metric

w3 ≡ weight for the reduced cost

w ≡ (w1, w2, w3)

g(i, j, δ) ≡ f(B)− f(B − argArc(δ) ∪ (i, j))

h(i, j, δ) ≡ d(B)− d(B − argArc(δ) ∪ (i, j))

ĉ(i, j, δ,w) ≡ w · (g(i, j, δ), h(i, j, δ), c̄ij)

Figure 6: Function IFpricer

13



function pfs(p, q, B, x, `, ∆)

inputs: p, q, B, x, `, ∆

begin
compute
κ2(p, q) ≡| A+(p, q) ∩ F c |
κ3(p, q) ≡| A−(p, q) ∩ F c |
δ1(p, q) ≡ min

(i,j)∈A+(p,q)∩F c
{`− xij}

δ2(p, q) ≡ max
(i,j)∈A+(p,q)∩F c

{`− xij}
δ3(p, q) ≡ min

(i,j)∈A−(p,q)∩F c
{`− xij}

δ4(p, q) ≡ min
(i,j)∈A−(p,q)∩F

{xij − `}
δ5(p, q) ≡ min

(i,j)∈A−(p,q)∩F ∩B1

{xij}

∆ ←





{δ1, δ2}, if κ3(p, q) > 0, κ2(p, q) > 0, and δ3(p, q) > δ2(p, q)
{δ1}, if κ3(p, q) > 0, κ2(p, q) > 0, and δ3(p, q) ≤ δ2(p, q)
{δ3, δ4}, if κ3(p, q) > 0, κ2(p, q) = 0, and δ3(p, q) > δ4(p, q)
{δ3}, if κ3(p, q) > 0, κ2(p, q) = 0, and δ3(p, q) ≤ δ4(p, q)
{δ1, δ2, δ4, δ5}, if κ3(p, q) = 0, κ2(p, q) > 0 and δ3 < 2`
{δ1, δ2, δ3, δ4, δ5}, if κ3(p, q) = 0, κ2(p, q) > 0 and δ3 ≥ 2`
∅, otherwise

return ∆
end

Figure 7: Function pfs
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effects on the evaluation criteria. These move possibilities are inherent in the
κ-δ combinations computed and evaluated in Figure 7.

Short-term memory is instituted through the concept of the tenure, t(i, j),
of a nonbasic arc (i, j), defined as the number of continuous previous iterations
that the arc has remained nonbasic.1 Arcs are restricted from basis entry if their
tenure does not exceed a user-supplied parameter, τ . When an arc leaves the
basis, its tabu status is set and it must remain nonbasic for at least τ iterations.
This tabu status helps avoid cycling and drives the search away from recently
explored neighborhoods.

Although not shown in the pseudo-code, it is helpful to employ a candidate
list mechanism [14] when implementing IPA-2. In this heuristic, an entering
arc is chosen from a list of nonbasics that are deemed attractive by the desig-
nated strategy. The list of candidates can be initiated by scanning nonbasics
in blocks of m2 arcs, and retaining the m1 best. For each iteration of IPA-2,
all candidate arcs are examined using the move evaluation criteria and the best
of the attractive candidates, if any, is selected for pivoting and removed from
the list. Since the metrics for each nonbasic may change after each move, the
remaining candidates must be re-evaluated. The selection process is repeated
until no attractive candidate remains, at which point the list is refreshed using
the (m1,m2) rule.

2.4 IPA-3: Improvement Search

The IPA-3 improvement search begins with an initial IFIBS and applies strategic
oscillation [11, 7, 8] diversification to move away from IF-feasibility temporarily
in hopes of returning (via IPA-1 and IPA-2) to another region of the feasibil-
ity space that contains a better IFIBS.2 The primary idea is to allow feasible
and infeasible solutions to occur, so that the search is able to explore more of
the solution space and locate a better solution in the process. Since the feasi-
ble space for (P ) is disjoint, the strategic oscillation provides a diversification
mechanism that crosses a region of infeasibility in search of a better solution.
Termination of the process is controlled, in part, by IPA-gap, the difference be-
tween the objective function value of the initial relaxed problem, z∗

P
, and the

objective function value of the best-found IFIBS incumbent, zinc, expressed as

a percentage:
(zinc−z∗

P
)

z∗
P

· 100. This is the farthest the incumbent is from the

optimal solution. The gap is compared with the user-supplied parameter ε.
1Tenure can be easily maintained by initializing the start of tenure at 0, updating the

start when an arc leaves the basis, and computing t(i, j) from the current iteration number
as needed.

2There are a variety of longer term memory strategies in tabu search, such as those based
on frequency memory. We restrict ourselves to a particular variant of strategic oscillation
(see, e.g., sections 4.2 and 4.7 of [8]) that is straightforward, for the purpose of determining
the basic merit of our approach without resorting to a sophisticated guidance process at the
metaheuristic level.

15



procedure IPA-3(it, (P ), x, B, L, Λ, w, ε, θ, α, η, γ, IPA-Gap)

inputs: it, (P ), x, B, L, Λ, w, ε, θ, α, η, IPA-Gap
outputs: it,x, L, Λ, B
begin

initialize att = 0, citr = 0
do while (IPA-Gap > ε and att < η and citr < γ) a

f(B) ← diverse(it, (P ), x, B, L, Λ, θ, α)
call IPA-1((P ), x, B, L, Λ)
if (F c 6= ∅) call IPA-2((P ), x, B, L, Λ, w)
if (F c 6= ∅) then

att = att + 1
else

update IPA-Gap
if (IPA-Gap > ε) citr = citr + 1

endif
enddo

end

awhere IPA-Gap is the maximum optimality gap, att is the number of unsuccessful at-
tempts to find a feasible solution to (P ), and citr is the number of consecutive non-improving
iterations

Figure 8: Procedure IPA-3: Improvement Search

Improvement search works as follows: Using a special ratio test, the problem
is driven into an infeasible region. Then, IPA-1 and IPA-2 are applied to move
back into a feasible region. If this succeeds, then the objective function value is
computed. If this is better than zinc, it is saved. This process is repeated using a
parameter that can be adjusted. The procedure terminates when either: (1) the
IPA-gap is smaller than ε, (2) no improvement has been made in η consecutive
iterations, or (3) γ iterations have been performed. The IPA-3 algorithm is
defined in Figure 8.

2.5 IPA-4: Consolidated Algorithm for UIFTP

The IPA-4 procedure is given in Figure 10. An initial IFIBS is sought by first
optimizing (P ) then, if necessary, applying IPA-1 and possibly IPA-2. (If this
process fails, the algorithm terminates without finding an IF-feasible solution.3)

3This condition did not occur in any of our tests.
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function diverse (it, (P ), x, B, L, Λ, θ, α)
inputs: it, (P ), x, B, L, Λ, θ, α

begin
initialize itt = 0
do while ( itt < α and f(B) < θ) a

select (p, q) ∈ Bc

call simpivot(p, q, B, Bc,x)
update B,Bc,x
compute f(B)
it = it + 1
itt = itt + 1

enddo
return f(B)

end

awhere simpivot(p, q, B, Bc,x) performs a network simplex pivot to bring (p, q) ∈ Bc into
the current basic solution B, and itt is the number of pivots performed.

Figure 9: Procedure diverse

IPA-3 is then applied to improve on the initial solution.
The modified ratio test is based on IF-feasibility. The pricing procedure is

based on the metrics, f(B), d(i, j), and cij , as discussed earlier. The number
of infeasibilities affected by the incoming nonbasic is measured by traversing
the basis equivalent path (BEP) of this nonbasic. The change in distance from
feasibility due to the possible incoming nonbasic is also computed by traversing
the BEP of this nonbasic, computing the possible flow change. Lastly, the
reduced cost is evaluated to ensure that the best solution on that hyperplane is
obtained.

The following strategy was employed in our use of IPA-4 and choice of asso-
ciated parameters. For IPA-2, the initial NFIBS may not be an IFIBS, in which
case priority is given to driving the problem closer to feasibility. Since the ap-
plication of IPA-2 immediately follows IPA-1, whose single criterion is reducing
f(A), preference should be given to the distance-from-feasibility metric, then to
the reduced cost. By reflecting this relationship in the weights, w, feasibility
is the overriding choice factor and the reduced costs break ties and lead to the
best solution on the selected hyperplane. The short-term memory works well in
avoiding cycling.
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procedure IPA-4(it, (P ), w, ε, θ, α, η, β, x, L, Λ, B)
inputs: it, (P ), w, ε, θ, α, η, β
outputs: it,x, L, Λ, B

begin
initialize it = 0
do while ( it < β)a

call purenet(it, (P ),x, L)b

if ( F c = ∅) then
report optimal solution

else
call IPA-1(it, (P ),x, B, L, Λ)
if (F c 6= ∅) call IPA-2(it, (P ), x, B, L, Λ, w)
if ( F c 6= ∅) then

Stop; (P ) may be infeasible
else

compute IPA-Gap
if ( IPA-Gap > ε) call IPA-3(it, (P ), x, B, L, Λ, w,
ε, θ, α, η, γ, IPA-Gap)

endif
endif

enddo
end

awhere it is the total number of pivots performed in purenet( ), IPA-1( ), IPA-2( ), and
IPA-3( ), combined.

bwhere purenet(it, (P ),x, L) is a procedure that optimizes (P ) and updates it,x, L .

Figure 10: Procedure IPA-4
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3 Experimental Design

To test the efficacy of the IPA approach, an empirical experiment was under-
taken to (1) compare an IPA-4 implementation with a commercial-grade soft-
ware system and (2) identify factors that affected performance. Details of the
testing and an analysis of the results are presented below.

3.1 Software Tested

To assess the effectiveness of the interval-pivoting algorithms, all were imple-
mented in Fortran-77, and the IPA-4 consolidated algorithm was used for
benchmarking. This IPA-NET software uses the data structures of [2] and the
NETFLO2 [18] routines for solving the initial network relaxation and executing
pivots. IPA-NET was compared with CPLEX, Version 4.0, an exact branch-
and-cut code for identifying optimal and ε-optimal solutions.

Hence, this testing compares an exact, general-purpose optimizer with a
special-purpose heuristic-based code, giving IPA-NET a natural advantage. How-
ever, the comparison highlights any practical benefits from the use of either soft-
ware package and provides insight into the solvability of uniform interval-flow
transportation problems. CPLEX was run with a limit of 20,000 subproblems
and default values for all other parameters. For IPA-NET, a modest amount of
preliminary testing on a small, diverse group of problems yielded settings for the
heuristic’s parameters that appeared to be robust and were used in all reported
results. These settings are: β = 10000, α = 100, γ = 5, τ = 2,m1 = 20,m2 =
7,w = (0, 100000, 1), and θ = f(B) + 1. Both codes were run with ε = 10−4.

3.2 Test Problems

Because interval-flow networks are a new problem class, no standard test sets of
UIFTP instances were available. This experiment used 69 randomly generated
problem instances created by the well-known, machine-independent NETGEN
program [12], modified to compute a uniform conditional lower bound for each.
NETGEN permits the designation of a variety of instance characteristics, thus
facilitating the creation of test sets to support an experimental design.

As determined by Property 5, bmin = mini∈N{|bi|} is an upper bound on
` for problem feasibility. Since NETGEN does not provide direct control of
the range nor distribution of the bi, bmin was determined a posteriori and `
computed as a user-defined percentage of (%bmin). To maintain integrality of
` = b(%bmin)(bmin)/100c, was used. Generated problems with bmin ≤ 7 were
not included in the testing because of the triviality of the resulting `s. Two test
sets were created for the experiment. Test set A is made up of smaller instances
that were expected to be solvable by both IPA-NET and CPLEX. Instances in
this set have from 50 to 250 nodes and from 100 to 2000 arcs. Set B consisted
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of larger problems, considered to be beyond the ready solvability of CPLEX on
our machine, with up to 5000 nodes and 10,000 arcs.

Test set A was designed not only to compare the two codes, but to permit
statistical analysis of any effects of problem characteristics on problem run-
times. The factors and levels used in the creation of test set A are given in
Table 1. The 64 problems in set A are described in Tables 2–5 and include an
instance of each combination of the six factors described in Table 1. The largest
problems had 100 network nodes, 2100 constraints, 2000 continuous variables,
and 2000 binary variables.

Test set B consisted of five larger problems, with 1000 to 5000 nodes, 2000
to 10,000 arcs (binary and continuous variables), 60% source nodes, a maximum
cost of 1000, an average supply of 2500 units, and a conditional lower bound of
75% of bmin. All of the NETGEN parameters needed to create these problems
are detailed in Table 6.4

3.3 Performance Measures

Performance of the two solution approaches is evaluated in terms of solution
time and solution quality. The times used are total program execution time,
excluding problem input and output of the results. Also reported are the number
of pivots (iterations) performed.

Solution quality is measured in two ways. First, the difference in values
between the IPA-NET heuristic’s best solution value and the CPLEX ε-optimal
value is expressed as a percentage of the CPLEX value. Secondly, the IPA gap
measures the heuristic’s closeness to optimality, based exclusively on internally
derived values: the difference between zinc, the value of the best IFIBS, and z∗

P
,

the value of the optimal solution to (P ), expressed as a percentage of z∗
P

. Bene-
fit/cost analyses consider a ratio of the percent of optimality to total execution
time.

4 Empirical Results and Statistical Analyses

All computer runs were made at Southern Methodist University on a DEC
AlphaServer 2100 with a 5/250 megahertz EV-5 processor, four megabytes of b-
cache, 256 megabytes of random-access memory, and running under the OSF/1
3.2g Unix operating system. All testing was performed on a lightly loaded
system under similar job mixes. IPA-NET was compiled with the DEC f77
compiler using the default optimization options. Reported IPA-NET times were
user execution times provided by the clock() system function.

4The modified NETGEN code and test problems are available from the author.
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Table 1: Test Set A Problem Factors and Levels

Factor Level 1 Level 2
Number of nodes 50 100
Number of arcs (nested within nodes)

In 50-node problems 250 500
In 100-node problems 1,000 2,000

Percent source nodes 50% 60%
Maximum cost 100 10,000
Average units of supply 250 2500
` as % of bmin 25% 75%

Table 2: Test Set A: Problems 1–16 (50 nodes, 250 arcs)

Prob. Random Total Supply Demand Total Max. Total %bmin

No. Seed Nodes Nodes Nodes Arcs Cost Supply

1 5375842 50 25 25 250 100 6250 25
2 7524825 50 30 20 250 100 7500 25
3 7463159 50 25 25 250 100 6250 75
4 2378495 50 30 20 250 100 7500 75
5 6304325 50 25 25 250 100 62500 25
6 4570849 50 30 20 250 100 75000 25
7 3574609 50 25 25 250 100 62500 75
8 2954567 50 30 20 250 100 75000 75
9 4234567 50 25 25 250 10000 6250 25

10 8545642 50 30 20 250 10000 7500 25
11 7342849 50 25 25 250 10000 6250 75
12 8714359 50 30 20 250 10000 7500 75
13 7374809 50 25 25 250 10000 62500 25
14 7314809 50 30 20 250 10000 75000 25
15 2352859 50 25 25 250 10000 62500 75
16 4234567 50 30 20 250 10000 75000 75
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Table 3: Test Set A: Problems 17–32 (50 nodes, 500 arcs)

Prob. Random Total Supply Demand Total Max. Total %bmin

No. Seed Nodes Nodes Nodes Arcs Cost Supply

17 2572438 50 25 25 500 100 6250 25
18 4934567 50 30 20 500 100 7500 25
19 1530567 50 25 25 500 100 6250 75
20 2314359 50 30 20 500 100 7500 75
21 9714359 50 25 25 500 100 62500 25
22 3310359 50 30 20 500 100 75000 25
23 4314359 50 25 25 500 100 62500 75
24 5273439 50 30 20 500 100 75000 75
25 5463759 50 25 25 500 10000 6250 25
26 9463159 50 30 20 500 10000 7500 25
27 3415129 50 25 25 500 10000 6250 75
28 7533759 50 30 20 500 10000 7500 75
29 4454567 50 25 25 500 10000 62500 25
30 4474325 50 30 20 500 10000 75000 25
31 88463259 50 25 25 500 10000 62500 75
32 1934567 50 30 20 500 10000 75000 75
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Table 4: Test Set A: Problems 33–48 (100 nodes, 1000 arcs)

Prob. Random Total Supply Demand Total Max. Total %bmin

No. Seed Nodes Nodes Nodes Arcs Cost Supply

33 1445642 100 50 50 1000 100 12500 25
34 4954567 100 60 40 1000 100 15000 25
35 1374809 100 50 50 1000 100 12500 75
36 7423474 100 60 40 1000 100 15000 75
37 4375842 100 50 50 1000 100 125000 25
38 6424025 100 60 40 1000 100 150000 25
39 8472649 100 50 50 1000 100 125000 75
40 4574849 100 60 40 1000 100 150000 75
41 1374809 100 50 50 1000 10000 12500 25
42 4574609 100 60 40 1000 10000 15000 25
43 1375849 100 50 50 1000 10000 12500 75
44 4025419 100 60 40 1000 10000 15000 75
45 5674609 100 50 50 1000 10000 125000 25
46 1570849 100 60 40 1000 10000 150000 25
47 5273439 100 50 50 1000 10000 125000 75
48 1534567 100 60 40 1000 10000 150000 75
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Table 5: Test Set A: Problems 49 - 64 (100 nodes, 2000 arcs)

Prob. Random Total Supply Demand Total Max. Total %bmin

No. Seed Nodes Nodes Nodes Arcs Cost Supply

49 1375805 100 50 50 2000 100 12500 25
50 5272438 100 60 40 2000 100 15000 25
51 1573408 100 50 50 2000 100 12500 75
52 1473504 100 60 40 2000 100 15000 75
53 1573504 100 50 50 2000 100 125000 25
54 2573458 100 60 40 2000 100 150000 25
55 1673504 100 50 50 2000 100 125000 75
56 8573604 100 60 40 2000 100 150000 75
57 1374829 100 50 50 2000 10000 12500 25
58 7714359 100 60 40 2000 10000 15000 25
59 4570829 100 50 50 2000 10000 12500 75
60 7530567 100 60 40 2000 10000 15000 75
61 1340507 100 50 50 2000 10000 125000 25
62 1454567 100 60 40 2000 10000 150000 25
63 2034560 100 50 50 2000 10000 125000 75
64 1375495 100 60 40 2000 10000 150000 75

Table 6: Test Set B

Prob. Random Total Supply Demand Total Max. Total %bmin

No. Seed Nodes Nodes Nodes Arcs Cost Supply

1 1229267 1000 600 400 2000 1000 1500000 75
2 1559267 2000 1200 800 4000 1000 3000000 75
3 1259267 3000 1800 1200 6000 1000 4500000 75
4 4449267 4000 2400 1600 8000 1000 6000000 75
5 7759267 5000 3000 2000 10000 1000 7500000 75
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Table 7: Empirical Results, Test Set A : 50 nodes, 250 arcs

Prob Final Objective Valuea Time, (Seconds) IPA
# IPA-NET CPLEX zdiff IPA-NET CPLEX Gap

1 104835 104287 0.52 0.03 1.73 0.54
2 159467 159467 0.00 0.00 1.83 0.00
3 1402550 1397310 0.37 0.03 1.02 0.49
4 169331 168230 0.65 0.03 0.37 0.69
5 1451459 1451459 0.00 0.00 1.30 0.00
6 1726064 1724055 0.11 0.03 1.75 0.16
7 1503007 1502514 0.03 0.03 1.92 0.06
8 1701889 1701430 0.02 0.03 4.18 0.04
9 17370455 17370455 0.00 0.00 0.80 0.00
10 16731250 16560583 1.03 0.00 4.72 1.19
11 11334279 10953984 3.47 0.00 8.12 4.02
12 17924424 17714746 * 1.18 0.01 126.95 1.64
13 158940430 158940430 0.00 0.00 0.60 0.00
14 126367221 126367221 0.00 0.00 0.27 0.00
15 131554052 131611472 * -0.04 0.03 104.95 0.55
16 141900938 140475167 1.01 0.00 24.72 1.26

awhere * indicates the instance for which CPLEX terminated at
20,000-subproblem limit

4.1 Test Set A: Computational Results and Analysis

Tables 7–10 give the codes’ observed performance metrics for the 64 problem
instances in Test Set A. Shown for each instance is the objective function value
of the best solutions found by each code, the difference in solution values as a
percentage of the CPLEX value (zdiff ), the IPA-gap, and the execution times for
each code. The better solution values and times are highlighted with boldface.
Those instances for which CPLEX terminated at the 20,000-subproblem limit
are indicated by an asterisk (*); all other CPLEX values were for solutions
known to be within 0.01% of optimality. These results are summarized in Table
11, which groups the observations by number of nodes, number of arcs, and size
of the conditional lower bound.

4.1.1 Solution Quality

Both codes found feasible solutions for all problems. In three cases, IPA-NET
found a solution that was superior to CPLEX’s, in 39 instances CPLEX iden-
tified the superior solution, and in 19 cases the solution quality was equivalent.
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Table 8: Empirical Results, Test Set A : 50 nodes, 500 arcs

Prob Final Objective Valuea Time, (Seconds) IPA
# IPA-NET CPLEX zdiff IPA-NET CPLEX Gap

17 114791 114791 0.00 0.00 1.75 0.00
18 12865632 12865632 0.00 0.00 2.67 0.00
19 84092 82152 2.36 0.00 2.13 2.38
20 116055 113905 * 1.88 0.00 142.98 2.23
21 776362 776362 0.00 0.00 2.20 0.00
22 1079541 1079463 0.00 0.01 0.57 0.02
23 712993 710078 0.41 0.04 4.73 0.54
24 969955 956428 1.41 0.01 3.42 1.52
25 6950544 6950544 0.00 0.01 0.67 0.00
26 9630721 9569913 0.63 0.01 2.63 0.66
27 6225013 6006418 3.63 0.00 3.35 3.65
28 8067529 7958239 1.37 0.03 56.40 1.81
29 88862250 88862250 0.00 0.00 2.53 0.00
30 95348544 95348544 0.00 0.00 3.23 0.00
31 84026784 78343260 * 7.25 0.00 207.00 8.49
32 94045378 93342978 0.75 0.03 4.20 0.79

awhere * indicates the instance for which CPLEX terminated at
20,000-subproblem limit
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Table 9: Empirical Results, Test Set A : 100 nodes, 1000 arcs

Prob Final Objective Valuea Time, (Seconds) IPA
# IPA-NET CPLEX zdiff IPA-NET CPLEX Gap

33 208140 208140 0.00 0.01 4.60 0.00
34 2180980 2178825 0.09 0.04 35.75 0.15
35 174468 171358 1.81 0.03 88.00 1.86
36 241702 241702 0.00 0.03 6.28 0.00
37 1999598 1999598 0.00 0.03 18.63 0.00
38 2383290 2382476 0.03 0.04 7.77 0.23
39 2116282 2057301 2.86 0.01 107.88 3.07
40 2377495 2356055 0.90 0.04 30.73 0.92
41 20750074 20750074 0.00 0.03 10.22 0.00
42 26891953 26885413 0.02 0.03 5.23 0.02
43 23847702 23745647 0.42 0.06 65.08 0.51
44 24906611 24732655 0.70 0.04 12.38 0.75
45 280747180 280726970 0.00 0.01 8.07 0.00
46 25484951 25454951 0.11 0.01 14.30 0.00
47 193395208 192854033 0.28 0.03 21.87 0.29
48 249363842 244673658 * 1.91 0.03 548.27 2.15

awhere * indicates the instance for which CPLEX terminated at
20,000-subproblem limit
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Table 10: Empirical Results, Test Set A : 100 nodes, 2000 arcs

Prob Final Objective Valuea Time, (Seconds) IPA
# IPA-NET CPLEX zdiff IPA-NET CPLEX Gap

49 123008 122924 0.06 0.03 14.37 0.06
50 92074 91926 * 0.16 0.06 688.18 0.18
51 133428 132931 0.37 0.06 322.50 0.53
52 141473 141533 * -0.04 0.08 379.15 0.59
53 1419263 1419263 0.00 0.03 24.98 0.00
54 1624880 1624880 0.00 0.01 4.37 0.00
55 1178636 1178198 0.03 0.11 83.20 0.04
56 1088035 1050060 3.61 0.03 93.23 3.68
57 11992891 11993608 -0.00 0.01 25.87 0.00
58 13153453 13153453 0.00 0.03 22.17 0.00
59 11083279 11023021 0.54 0.03 9.08 0.56
60 11764190 11591995 1.48 0.09 87.87 1.51
61 74762401 74658311 0.13 0.06 12.42 0.15
62 128020513 128020513 0.00 0.01 43.22 0.00
63 90764354 90438020 0.36 0.03 11.38 0.36
64 133952213 131158660 2.12 0.03 563.88 2.21

awhere * indicates the instance for which CPLEX terminated at
20,000-subproblem limit
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Table 11: Test Set A : Summary

% Average Average Time, Seconds
Nodes Arcs bmin % zdiff IPA-NET CPLEX Ratioa

50 250 25 0.20 0.00 1.62 216.00
50 250 75 0.83 0.02 34.02 1701.00
50 500 25 0.07 0.00 2.03 541.33
50 500 75 2.38 0.01 53.02 5302.00

100 1000 25 0.02 0.02 13.07 653.50
100 1000 75 1.10 0.02 110.06 5503.00
100 2000 25 0.04 0.03 104.44 3481.33
100 2000 75 1.05 0.05 193.78 3875.60

Grand Average 0.71 0.02 64.00 2659.17
aRatio of the total CPLEX time to total IPA time
for all eight problems in this group

Table 12: Summary of Iterations for Test Set A

Average Iterations Iterations per Second
Nodes Arcs % bmin IPA-NET CPLEX IPA-NET CPLEX

50 250 25 143.00 1497.50 19066.66 924.38
50 250 75 147.67 24822.87 7383.50 729.65
50 500 25 133.99 10724.12 →∞ 5282.81
50 500 75 126.37 12913.75 12637.50 243.56

100 1000 25 242.62 8466.75 12131.00 647.80
100 1000 75 237.57 22293.37 11878.50 202.55
100 2000 25 238.99 23020.12 7966.33 220.41
100 2000 75 233.75 6604.75 4675.00 34.07

Grand Average 187.99 13792.52 13933.58 1035.65
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Despite this expected strong showing by the CPLEX optimizer, the quality of
solutions derived by the IPA-4 heuristic was also high. As shown in Table 11,
the mean zdiff was only 0.71%.

The solution quality is also captured in the IPA-gap values, which expresses
the maximum optimality gap as a percentage of the initial relaxation’s value.
This gap in Table 14 is given as +0.00 to indicate a very small (< 0.0005)
number. Also shown is zinc, the objective function value of the solution found
by IPA-NET.

4.1.2 Factors Affecting Solution Quality

An analysis of variance of solution value differences was performed to identify
any contributing factors to the response variable zdiff . The factors tested were:
number of nodes, number of arcs (nested within nodes), percentage of source
nodes (a measure of problem rectangularity), average supply per source, maxi-
mum cost, and percentage of bmin used for ` (PCTUB).

The observations were processed by the ANOVA procedure of the SAS sta-
tistical analysis software (version 6.10). At the 5% significance level, the only
factor affecting zdiff in a statistically significant manner was PCTUB. The
Tukey’s significant difference (TSD) test showed that zdiff was significantly
higher at the PCTUB level of 75% (1.35% mean value) than at the 25% level
(0.09% mean value). The other factors, including problem dimensions, did not
appear to affect the quality of the IPA-NET-generated solutions.

4.1.3 Solution Time

In terms of execution speed, IPA-NET completely dominates CPLEX on Test
Set A, exhibiting dramatically smaller times on all 64 problems. Recorded times
ranged from 0.00 (too brief to be measured) to 0.11 seconds for the IPA-NET
heuristic and from 0.27 to 688.18 seconds for CPLEX (which terminated without
a proven-optimal solution in seven cases). Table 11 shows the mean solution
times and time ratios by problem group and overall. The total time required for
all problems was 4096.62 seconds for CPLEX and 1.53 seconds for IPA-NET (a
2677:1 ratio). Hence, on average, IPA-NET is three orders of magnitude faster
than CPLEX on these problems.

The large solution time disparities are due to the heuristic and specialized
nature of the IPA code. Given sufficient time, CPLEX will arrive at a guaranteed
(ε-) optimal solution, and uses general-purpose data structures and solution
techniques, not ones customized for network flow problems. The IPA-based
algorithms represent constraints (3)–(5) implicitly, while CPLEX, treating the
problem as a general MIP, includes them explicitly.

As a measure of the relative computational effort required for the two codes,
Table 12 gives the average number of iterations performed by each for the prob-
lem groups in Test Set A. For CPLEX, the iterations are the total number of
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simplex pivots executed by CPLEX in solving all subproblems, and the number
of pivots executed by IPA-NET in solving the initial relaxation and applying
the IPA-4 algorithm. These statistics show that an average of 84 times more
iterations were required to optimize (in most cases) a problem than the heuris-
tic needed to complete its search. The efficiency of the specialized approach is
further emphasized by the “iterations per second” statistic reported in Table
12 and computed as the ratio of the average iterations to average time in sec-
onds for each code for each problem group (shown as “→ ∞” for those groups
with unmeasurable times). While the time portion of this metric includes all
algorithmic operations, it generally reflects the number of pivots that can be se-
lected and executed in a given machine-second. The value of network-structure
exploitation and relative algorithmic simplicity is apparent from IPA-NET’s
ability to perform iterations an average of 13 times faster than CPLEX.

4.1.4 Factors Affecting Solution Time

An analysis of variance using execution time as the response variable was per-
formed to identify any problem characteristics that affected solution difficulty
in a statistically significant way. As before, all of the problem-generation char-
acteristics given in Table 1, plus computer code applied (CODE), were used
as factors. The 64 observations from Test Set A were processed by the SAS
ANOVA procedure using factorial designs with number of arcs nested within
number of nodes.

Based on a 5% significance level, the factors with significant effects were
CODE, number of nodes (NODES), and PCTUB. There were interaction effects
between CODE and NODES, and CODE and PCTUB, indicating that solution
time was affected by the particular combination of code used and number of
nodes, and by the combination of code used and the size of the conditional lower
bound. Surprisingly, the number of problem arcs did not have a significant effect
on solution time.

4.1.5 Quality-Time Tradeoff

The key justification for the use of inexact algorithms for problem-solving is in
the tradeoff between solution quality and time required to achieve that quality.
This type of benefit-cost analysis is particularly appropriate when the value of
a solution depends on its timeliness.

From the statistical analyses it was determined that the code used and size
of a problem’s conditional lower bound affected both solution time and solution
quality. Larger problems and problems with larger conditional lower bounds
took significantly longer and yielded significantly different solution values be-
tween the two codes. This reinforces the intuition that smaller problems and
problems with lower arc-usage requirements are easier to solve.

Evaluating the actual quality-time tradeoff involves a comparison of solution
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quality and time required to achieve that solution. This relationship can be cap-
tured, in part, by the ratio of two values: (1) the value of the best solution found
by a given code, expressed as a percentage of the best known solution value,
and (2) the time in seconds to execute the code that produced that solution.
This rate-of-progress metric can be viewed as the percentage (of optimality or
best) achieved per second of run time. Table 13 shows the average value of this
ratio for each code on each group of problems in Test Set A.

One interpretation of the grand means in Table 13 would be that, on average,
CPLEX achieves 15% of a problem’s optimal value in each second of run time.
During that same second, IPA-NET can find its near-optimal solution values
for 146 problems. While such averages and ratios can be misused, in this case
they justifiably underscore IPA-NET as being clearly superior in a benefit-cost
analysis.

4.2 Test Set B: Computational Results and Analysis

For the large-scale problems in test set B, IPA-NET maintained the high effi-
ciency exhibited in the smaller problems (see Table 14). As indicated by the
small IPA-gap’s (ranging from 0.000051 to 0.000447), the quality remained high,
even with PCTUB fixed at its more difficult level.

The solution times ranged from 0.24 seconds for a 1000-node, 2000-arc prob-
lem to 4.23 seconds for a 5000-node, 10,000-arc interval-flow network. Given
that the latter reflected a 20,000-variable, 15,000-constraint mixed-integer pro-
gram, the solution times are extremely fast. Hence, the interval-pivoting code
had strong performance, in terms of both solution time and solution quality for
both test sets.

5 Analysis of the Results and Conclusions

Compared with state-of-the-art MIP software, IPA-NET exhibits remarkable
performance in both time and solution quality. When evaluated strictly on
its own merits, the heuristic terminates quickly, often with times too brief to
record, and provides solutions whose values are typically within 1% of optimal.
On 64 problem instances with up to 2000 integer and 2000 continuous variables,
IPA-NET found solutions as good or better than CPLEX 39% of the time. For
these problems, CPLEX required over an hour of processing, while IPA-NET
used only 1.5 seconds.

Interval-pivoting algorithms are designed to exploit the mature and efficient
optimization technologies developed for network flow problems. They can be
embedded within metaheuristic solution strategies, such as tabu search and
strategic oscillation. And, unlike some heuristics, they are able to determine
both lower and upper bounds on the optimal solution value. Hence, this work
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Table 13: Cost-Benefit Analysis for Test Set A

% Best Known Solution/per Second
Nodes Arcs % mlb IPA-NET CPLEX

50 250 25 79840.00 61.72
50 250 75 4958.50 2.93
50 500 25 7267.63 49.26
50 500 75 9762.00 1.88

100 1000 25 4999.00 7.65
100 1000 75 4945.00 0.90
100 2000 25 3332.00 0.95
100 2000 75 1929.00 0.51

Grand Average 14635.39 15.72

Table 14: Empirical Results, Test Set B

Final Objective Time % Maximum
Prob. Function Value (Seconds) Optimality

No. Nodes Arcs IPA-NET IPA-NET IPA-gap

1 1000 2000 6247575167 0.24 +0.00
2 2000 4000 12352067311 0.51 +0.00
3 3000 6000 18230556071 3.76 +0.00
4 4000 8000 23818376116 3.62 +0.00
5 5000 10000 31158650317 4.23 +0.00
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contributes an efficient new modeling and solution technology to practitioner’s
network optimization “tool-box.”

Clearly, the IPA principles articulated above can be extended to other cat-
egories of interval-flow network problems. Our future research develops this
solution approach for more general IFNs.
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