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ABSTRACT

Accompanying the increasing availability of parallel computing technology is a corre-

sponding growth of research into the development, implementation, and testing of parallel

algorithms. This paper examines issues involved in reporting on the empirical testing of

parallel mathematical programming algorithms, both optimizing and heuristic. We examine

the appropriateness of various performance metrics and explore the effects of testing

variability, machine influences, testing biases, and the effects of tuning parameters. Some

of these difficulties were explored further in a survey sent to leading computational

mathematical programming researchers for their reactions and suggestions. A summary of

the survey and proposals for conscientious reporting are presented.
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Algorithm development is at the heart of mathematical programming research, wherein

more efficient algorithms are prized. As an indicator of algorithmic performance, efficiency

reflects the level of resources (central processor time, iterations, bytes of primary storage)

required to obtain a solution of given quality (percent optimality, accuracy)[18,25]. A variety

of measures and summary statistics has been devised to reflect efficiency and compare

algorithms.

The efficiency of an algorithm relative to others has traditionally been determined by (1)

theoretical, order analysis and (2) empirical testing of algorithmic implementations, or

codes. While both approaches have merit, computational testing is increasingly an impera-

tive for publication. This is due, in part, to the occasional failure of order analysis to predict

accurately the behavior of an algorithm’s implementation on problems of practical interest.

For example, while the simplex method has daunting worst-case behavior, its efficiency as

an optimizer for a wide variety of industrial applications is well-documented[43,46].

One technological advance that holds great promise for solving difficult problems is

application-level parallel processing, whereby the power of multiple processing elements

can be brought to bear on a single problem. If the work associated with an algorithm can be

properly subdivided and scheduled on separate processors for simultaneous execution,

opportunities for dramatic reductions in solution times arise. As with traditional single-proc-

essor (serial) machines, solution efficiencies are directly tied to how well the algorithmic

steps match the architecture of the underlying machine. Therefore, with the evolution in

computing machinery comes a corresponding evolution in algorithms and their implemen-

tations.

This paper addresses complications that arise when reporting on implementations of

parallel algorithms. Several common metrics of the efficiency of parallel implementations

result in measurement and comparison difficulties stemming from limitations imposed by

machine designs, differences in machine architectures, the stochastic nature of some parallel

algorithms, and inherent opportunities for the introduction of biases. Of particular concern

is speedup, a widely used measure for describing the efficiency achieved over serial

processing by the use of multiple processors. In addition to documenting problems of

traditional reporting of parallel experimentation, we also present the results of a survey of

leading mathematical programming researchers regarding their views on the topic, and close

with proposed guidelines for conscientious reporting. We begin with an overview of parallel

processing as it relates to mathematical programming research.
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1. BACKGROUND

1.1. What Is Parallel Processing?

Parallel processingis the simultaneous manipulation of data by multiple computing

elements working to complete a common body of work. While most computers have some

degree of parallelism, as with overlapped input-output and calculation, only recently have

systems become commercially available that allow an applications programmer to control

several processing units. A parallel programmer might, for example, minimize a function

f(x) for 0 ≤ x ≤ 10, by using one processor to examine the interval for 0≤ x < 5, a second to

simultaneously evaluate 5≤ x ≤ 10, with the final result determined (in serial) upon com-

pletion of the previous tasks. The objective would be to complete the work in roughly half

of the time required by a single processor.

Why use parallel processing to perform a task or solve a given problem? The most

prevalent reasons are:

• Absolute speed:the reduction of real (“wall clock”) time, considering all technological

options. Although application-dependent, parallel processing is generally acknow-

ledged to provide this capability, as evidenced by the multiprocessor design of all

state-of-the-art supercomputers.

• Relative speed and cost:improvement in real time, subject to a practical constraint

such as cost or limited computing options. The expectation is that an ensemble of

relatively inexpensive slow processors can complete the work more quickly than a

faster cost-equivalent serial machine, or in the same time at a lower cost. Such “cheap

thrills” have been achieved by some applications, such as database transaction proc-

essing, but are not always attainable. While some writers believe that the range of

applicability is a narrow one[7,19], most commercial parallel systems are designed

with this result in mind.

• Scalable computing:having  the ability to  improve  performance with additional

processing elements. A flexible design permits a computing system to grow in terms

of processing power, in the same manner that additional disk drives increase storage

capacity. An application that exploits any number of parallel computing units can use

incremental system upgrades to speed up processing.

If real-time reduction is not important, traditional serial processing is usually easier and

more cost effective. Hence the motivation for parallel machines springs from the need to

solve existing problems faster or to make tractable larger and more difficult ones.
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1.2. Types of Parallel Computers

Parallel computers are as varied in design as they are many, hence classification schemes

have proven useful in describing specific machines. One widely employed method of

categorizing computer architectures was introduced by Flynn[16], and is based on the

concepts of an instruction stream and a data stream. An instruction stream is a sequence of

instructions carried out by a computer (that is, program steps), while a data stream is the set

of data on which an instruction stream is executed. This taxonomy delineates machine types
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by the number and type of simultaneously executing streams, as follows (see also Figure 1

from [29]).

• Single-instruction, single-data (SISD), the traditional serial, uniprocessor computer,

that executes one series of instructions on a single set of data (for example, the IBM

Personal Computer, Cray-1, Vax 780, and Sun IPC);

• Single-instruction, multiple-data (SIMD), a parallel machine design wherein all proc-

essors execute the same instruction in lockstep, and apply it to different pieces of data

(for example, the Thinking Machines’ CM-2 and CM-5, and DAP);

• Multiple-instruction, single-data (MISD), which applies multiple operations simulta-

neously to a single data stream (no general-purpose MISD computers are available

today); and

• Multiple-instruction, multiple-data (MIMD), the most widely employed parallel ma-

chine architecture; each such computing system contains multiple, independently

executing processors which can operate on different datasets (including—but not

limited to—the Cray Y-MP, IBM 3090 series, Vax 9000, Sequent Symmetry 2000,

BBN Butterfly, Encore 90, Convex C-2, CM-5, Intel iPSC and Paragon, Teradata

DBC/1012, NCR System 3600, Pyramid, Alliant FX, Myrias, nCUBE/2, MasPar

MP-1, and Silicon Graphics).

Processors in SIMD and MIMD parallel computers communicate either via a common

shared memory accessed through a central switch, or by messages passed through an

interconnection network in adistributedsystem. Shared-memory multiprocessors are called

tightly coupledif the time required to access a particular memory location is the same for

all processors, as opposed to being proximity dependent orloosely coupled(see Figure 2).

Computer systems are termedmassively parallelif they contain 1,000 or more processors.

Each architecture has its own advantages and disadvantages. Shared memory systems

are simpler to program than distributed ones, since processors can share code and data, and

can communicate via the globally accessible memory. Since distributed systems have no

central switch, they can accommodate a larger number of processors, but at the expense of

slower communication and more elaborate programming.

Of the many varieties of parallel machines, the dominant category appears to be tightly

coupled MIMD. We estimate the installed base (number of commercial machines installed

and operating at customer sites) for distributed SIMD and MIMD systems to be around

1,000. This compares with the over 10,000 shared-memory multiprocessors installed by

IBM and over 4,000 by Sequent Computer Systems alone—although the proportion of sites

using the parallel capability is anyone’s guess.
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In addition to these advanced machine designs, software systems have emerged that

permit parallel programming across independent computers connected by a local area

network[10,40]. Because of the widespread use of networked workstations in the engineering

and scientific communities, coupled with their heavy computational needs and limited

budgets, this truly distributed approach to parallel processing may prove to be a popular one.

1.3. Parallel Algorithm Research and Computational Testing

If increased speed in solving a given problem is the goal of parallelism, what are the

sources of speed? The first source is the machine used, its architecture, and the speed of each

of its operations, including integer and floating-point arithmetic, memory moves, and

communications. Second, speed comes from the solution algorithm and its effectiveness for

the problem. Third, speed depends on the algorithm’s implementation, or code. A code is a

program which maps the algorithm’s steps and data requirements onto a given machine, and

its speed depends on the compatibility of the mapping and the efficiency of the coding itself.

What is sought then, for a problem, is not only a quick machine, but an efficient solution

algorithm and an implementation whose steps and data needs match the machine’s charac-

teristics. Algorithm research is directed at the design and implementation of problem

solution methods with these qualities. In a parallel setting, this means seeking efficient

algorithms with steps that can be executed simultaneously. Hence, by designing algorithms

to exploit the new machine architectures, researchers seek to answer the question: Can

parallel computing lead to the solution of new problems and faster solutions of current

problems?

Researchers need and want empirical evidence of an algorithm’s efficiency, and perform-

ance of a code can be evidence of the effectiveness of the underlying algorithm. Order

analysis is not always a good predictor of performance since it typically ignores the variety

of machine operations involved in an implementation, and is often concerned with worst-

case behavior that may not be representative of behavior on problems of practical interest.

Computational experience summarizes all operations, in a given setting on a specific

problem set. While the appropriateness of a test set may be questioned, computational testing

gets to the heart of the matter. Is not the reason for building algorithms the solution of

problems?

2. FOCUS: PARALLEL MATHEMATICAL PROGRAMMING

ALGORITHMS AND CODES

The focus of this paper is on the empirical testing of parallel optimization and mathe-

matical programming algorithms. Traditional methods in this area tend to have different

characteristics than those explored in the parallel processing literature. Examples of the
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“embarrassingly parallel” mathematical applications typically cited in this literature are:

wave mechanics, fluid dynamics, and finite-element applications[21]; SIMD applications in

the survey [24] included image processing, neural network training, and satellite orbit

collision detection. In each case, the algorithm is highly parallelizeable (over 99.9% of the

operations) and the problems easily decomposable, often linearly in terms of a single

parameter.

In contrast, traditional mathematical programming optimization algorithms often have a

strong serial component and the problems addressed are not decomposable in a simple

manner. The problems attacked can have alternate optima, the ease or difficulty of their

solution is not always predictable in terms of problem dimensions or other descriptive

factors, and there are an enormous number of paths to an optimal solution. Hence much

creativity is required in parallelizing traditional methods, and new algorithms must be

developed and previously rejected ones reexamined in light of these new computing

paradigms.

2.1. Examples of Parallel Mathematical Programming Applications

To provide a flavor of the research on parallel optimization algorithms, we next summa-

rize research in two application areas (see [50] for an early survey). Compare the charac-

teristics of these algorithms with the typical parallel applications described previously.
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2.1.1. Parallel Network Simplex

Numerous authors have built parallel implementations of the network simplex algorithm

on shared-memory MIMD machines[3,11,35,42]. Strategies employed in these codes included

simultaneous pricing and pivoting, parallel pricing of different arc sets, and, in [3,11],

decomposition of the pivot operation. Problems with as many as 50,000 nodes and one

million arcs were solved in 12.2 minutes, and times were reduced to as little as one-sixteenth

of serial using 19 processors[3].

In the implementation of Miller, Pekny, and Thompson[35], only the pricing operation is

performed in parallel, so that the addition of processors results in a larger number of arcs

considered for an incoming variable. Upon completion of the pricing step, all processors

synchronize and perform the same pivot in local memory.

In contrast, the other codes assign simplex tasks to different processors. For example, in

the authors’ implementation[3], tasks are assigned on a self-scheduled, or “as available,”

basis. With all data in shared memory, some processors may be pricing variables, while

others are performing different portions of the pivot operation (see Figure 3). When a

processor completes its assignment, it selects another from a task list; when no tasks remain,

the procedure terminates[32].

While the self-scheduled approach is highly efficient in terms of machine utilization, it

results in stochastic code performance. Since key decisions—such as choice of incoming

variable—are timing dependent, microsecond timing differences from one run to the next

can yield divergent results (that is, number of pivots, solution time, alternate optimal

solution). Hence, a program containing such timing-dependent logic—known as arace

condition—may have good load balancing among the processors, but it is often accompanied

by significant variability in run-time behavior.

2.1.2. Parallel Branch-and-Bound

A branch-and-bound algorithm for (mixed) integer programming lends itself well to

parallelism. Since hundreds or thousands of linear programming relaxations are typically

solved to identify the optimal integer solution, an obvious parallelization approach is to

assign different parts of the search tree to separate processors. Tightly coupled MIMD

implementations[6,9,34,49]have been highly successful, but reporting difficulties arise for

the same reasons described above: the codes exhibit significant stochastic behavior, where

race conditions and inherent system variability can result in differing numbers of sub-

problems examined from run to run.

Since program decisions are made in real time and the discovery of a strong bound can

eliminate from consideration a large number of subproblems, theorder of discovery of

“good” bounds can greatly affect the proportion of the search tree explored. This can result
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in “anomalies” where a parallel algorithm usingp2 processors can take more time than one

usingp1 < p2 processors, or can achieve speed improvements greater thanp2/p1
[30]. Our

experience with shared-memory MIMD branch-and-bound codes is that significant variation

in parallel execution times can result from the minute timing differences present even in

dedicated machine environments.

Also of interest is the difficulty of identifying a reasonable one-processor base case for

comparison purposes. Simply executing one processor’s portion of a parallel code will yield

a different order of tree traversal than the parallel case, potentially making the two results

not comparable. On the other hand, simply directing a serial code to examine the tree in the

same order as the parallel code does causes it to miss subproblem reoptimization opportu-

nities, thereby increasing its run time. (See the related discussion in section 3.2.3.)

2.1.3. Distributed-Memory Network Algorithms

Some algorithms and problems are easily divisible, orscalable, and can more readily

take advantage of distributed systems. On loosely coupled parallel systems, whether SIMD

or MIMD, massive or non-massive, programmers must be concerned with the communica-

tion between processors and typically must contend with relatively small local processor

memories (although the latter may change in future computer designs).

Different algorithmic approaches have been used to capitalize on this architecture.

Notably, relaxation and row-action methods have been applied to nonlinear[24] and linear

network models[31,38]and stochastic programming problems with network recourse[39,48].

In the SIMD codes developed for those applications and implemented on massively parallel

machines, each network node is assigned a processor to manage supply and demand, and

each arc is represented by two processors, one at the arc’s head and the other at its tail, to

handle computation of the arc flows and duals. Efficient organization of data within the

machine is crucial, since information must be passed between processors via the intercon-

nection network, and communication speed between adjacent processors is much faster than

nonadjacent message-passing and global broadcasting.

Unlike the previous applications, the synchronous nature of SIMD machines leads to

uniform timing of events across different executions. Because of the extremely limited

nature of individual processors and their memories in current systems, the impact of

parallelism relative to a serial implementation has been difficult to determine. A linear

problem with 50,000 nodes and one million arcs was solved in under 15 minutes on a

32,768-processor system[31].
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2.2. Reporting Of Computational Testing

Much work has been accomplished in constructing a set of guidelines for reporting on

computational experimentation, particularly in the area of mathematical programming.

Following a series of early articles[17,26], the classic work by Crowder, Dembo, and

Mulvey[13] provides reporting guidelines for computational experiments that have been

adopted by a number of scholarly journals. Unfortunately, these recommendations were

written before parallel processing systems became generally available and, therefore, did

not address multi-processing issues. A recent follow-up report by Jackson, Boggs, Nash,

and Powell[25] extended the topics covered in [13]. Relevant to this paper are its sections

on choosing performance measures and reporting of computational tests on machines with

advanced architectures.

In its discussion of performance measures for evaluating mathematical programming

software, Jackson et al. state that an efficiency measure should reflect computational effort

and solution quality. “(A)uthors [should] state clearly what is being tested, what performance

criteria are being considered, and what performance measure is being used to draw inferences

about these criteria. ... (R)eferees should bear in mind that performance measures are

summary statistics and, as much as possible, should conform to all of the accepted rules

regarding the use thereof.”

In the sections that follow, we explore parallel performance measures and attempt to

determine some acceptable rules for their use. Because of the differences in metrics used to

describe shared-memory and distributed-memory applications, we devote a separate section

to each category.

3. REPORTING EXPERIMENTS ON SHARED-MEMORY PARALLEL

COMPUTERS

Of interest are measures of the improvement over traditional serial computing achieved

by the use of multiple processors. The measures are influenced by the type of machine

studied, since the architectures of parallel systems are quite varied. We will address metrics

for the most prevalent class of commercial parallel design, tightly coupled MIMD.

3.1. What Is “Time?”

Since the rationale for parallelism is time-based, it is reasonable that a performance or

efficiency measure be temporal as well. With single-processor systems, a common perform-

ance measure is theCPU timeto solve a problem; this is the time the processor spends

executing instructions in the algorithmic portion of the program being tested, and typically

excludes the time for input of problem data, output of results, and system overhead activities
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such as virtual memory paging and job swapping. CPU time for a job is maintained by the

operating system software, since many jobs may be sharing the same processor; the

programmer uses this to compute that portion pertaining to the algorithm under study.

In the parallel case, time is not a sum of CPU times on each processor nor the largest

across all. Since the objective of parallelism is real-time reduction, time must include any

processor waiting resulting from an unbalanced workload and any overhead activity time.

Hence the most prudent choice for measuring a parallel code’s performance is thereal (wall

clock) timeto solve a particular problem. Since this conservative measure includes all system

paging, job swapping overhead, it is preferable that timings be made on a dedicated or

lightly-loaded machine.

3.2. What Is “Speedup?”

The most common measure of the performance of an MIMD parallel implementation is

speedup. Based on a definition of time, speedup is the ratio of serial to parallel times to solve

a particular problem on a given machine. However, using different assumptions, researchers

have employed several definitions for speedup in their reporting.

3.2.1. Speedup Definitions

Definition 1: Speedup. Thespeedup, S(p), achieved by a parallel algorithm running onp

processors is defined as:

S(p) =

Time to solve a problem with the fastest serial code
on a specific parallel computer

Time to solve the same problem with the parallel code
using p processors on the same computer

.

For example, assume the fastest serial time is 100 seconds for a specific problem on a

parallel machine, and a parallel algorithm solves the same problem in 20 seconds on the

same machine using six processors. The speedup from this experiment would beS(6) =

100/20 = 5.Linear speedup, with S(p)=p, is considered an ideal application of parallelism,

althoughsuperlinearresults, withS(p)>p, are possible in some instances[2,3]. (See discus-

sion in section 3.2.3.)

Definition 2: Relative Speedup. Some researchers userelative speedupin their reporting,

defined as:

RS(p) =
Time to solve a problem with the parallel code on one processor

Time to solve the same problem with the parallel code on p processors
.
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This should be used in cases where the uniprocessor version of the parallel code

dominates all other serial implementations. Unfortunately, some papers interpret relative

speedup as speedup when the serial case is not dominant, leading to erroneous claims of

efficiency.

Definition 3: Absolute Speedup. The use ofabsolute speeduphas also been proposed[44]

to compare algorithms:

AS(p) =
Fastest serial time on any serial computer

Time to execute the parallel code on p processors of a parallel computer
.

The rationale forAS(p) reflects the primary objective of parallel processing: real-time

reduction. While this definition goes to the heart of the matter, it restricts research to those

individuals with access to the fastest serial machine and cannot be determined until all

relevant serial algorithms have been tested on all high-end systems, since “fastest” may be

dependent on a particular combination of algorithm and machine for each problem tested.

3.2.2. Related Metrics

Another measure of the performance of a parallel implementation isefficiency, the

fraction of linear speedup attained:

E(p) = S
p

whereS = S(p), RS(p), or AS(p). This is speedup normalized by the number of processors,

andE(p)=1 for linear speedup. Note that, sinceE(p)’s value is a function of the definitions

used for speedup and time, this normalized speedup is susceptible to all of the same reporting

concerns and difficulties as the other performance metrics detailed in this report.

Incremental efficiencyhas also been used in reporting, defined as:

IE(p) =
(p −1) ℘ (Time for the parallel code on p− 1 processors)

(p) ℘ (Time for the parallel code on p processors)

wherep > 1. This value shows the fraction of time improvement from adding another

processor, and will be 1 for linear speedup. This variant of relative speedup has been used

where one-processor times are unavailable[42].

Section 5 describes additional speedup and efficiency measures used as performance

metrics for distributed-memory systems.
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3.2.3. Is Superlinear Speedup Possible?

Although superlinear speedup—withS(p)>p—has been reported[3,34], its existence is

still debated. Those that say that it is not possible note that if a particular problem can be

solved in timet on p processors, then simulating the parallel code on one processor will

yield a serial time ofpt. Hence speedup is at most linear.

The other side of the argument is based on the belief that it is unfair to choose the “best”

serial code, and tuning strategy, for each problem instance. That is, the best serial case should

be chosen prior to particular problem instances. In this situation, superlinear speedup is

possible. For example, with a parallel branch-and-bound code, one processor may find a

good bound early in the solution process and communicate it to other processors for

truncation of their search domain, possibly resulting in superlinear speedup.

It should also be noted that emulating a parallel environment on a serial machine is a

difficult, and perhaps impossible, task. A naive approach would be to execute the parallel

code as a set of interacting processes on a single processor, letting the operating system

allocate time and other system resources. While such an arrangement would approximate a

true parallel execution, it does not, for example, ensure the same ordering of events or

replicate interprocess communication delays and resource contentions.

3.3. Issues In Reporting the Results of Parallel Testing

As with serial software, but even more so in parallel testing, performance measures

abound, and a researcher must choose a small subset of measures to summarize succinctly

the experimentation to draw conclusions about the underlying algorithm. The number of

reported measures are limited by publication space restrictions, and the potentially large

number of values forp.

Hence researchers must (1) select appropriate measures, and (2) use the measures in an

objective way to accurately reflect the behavior of the algorithm. Although easily stated,

these are surprisingly complicated tasks, especially when studying the behavior of parallel

codes.

3.3.1. Choosing a Measure for Parallel Implementations

Jackson et al. recommend that “...when comparing a parallel algorithm with a scalar

method, it is preferable to compare the parallel method not only with its scalar specialization,

but also with the best scalar methods. In addition to reporting absolute speed-ups, times

normalized by the number of processors are desirable.” The authors clearly preferS(p) over

RS(p), and encourage the use ofE(p). (This would avoid instances such as [42] in which a

parallel network code was compared with a slow serial code[28], yielding spectacular
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“results.” Further analysis in [3]—this time using an efficient serial code—showed there

was an average 3-processor speedup of only 1.4.)

But “gray areas” in reporting may result from ambiguity in the definitions of time and

speedup. What portion of the system overhead time (for example, for process creation and

termination) should be included in the serial and parallel results? If real time is used for the

parallel algorithm, should this also be used for the serial, even though we have more accurate

serial data available regarding the processor time spent executing algorithmic steps?

A more slippery question turns out to be: What constitutes the base, serial case? Since

most implementations have “tuning” parameters, such as multipricing options, reinversion

frequency, and tolerances—each of which influences a problem’s solution time—how

should these be set? It is widely known that, in many cases, experimentation to determine

good values for the parameters can result in a significant reduction in execution times. If a

researcher wishes to use the best possible serial time, how much testing with different

strategies(parameter sets) should be performed? Further, does each code and strategy

combination create a new algorithm to be considered separately?

Determining the parallel time involves the same question, further complicated by the fact

that the value of individual strategies varies withp, the number of processors. A strategy

that works well for a givenp does not necessarily work well for a different number of

processors. Should testing of numerous strategies be performed for each instance ofp to be

reported, and how extensive should such testing be? Or should a fixed strategy be used for

all values ofp? Should prescribed strategy formulas that vary withp be used instead?

Complicating matters further is the stochastic nature of some parallel algorithms. Many

iterative procedures not only have multiple paths to a problem’s solution, but the path chosen

may be non-deterministic, due to timing-dependent decisions (race conditions) in the

algorithm design. For example,  multiple  executions of  our  parallel network simplex

codes[3,5,22] typically yield different solution times and number of pivots when applied to

the same problem with the same strategy, under virtually identical operating conditions. In

some cases, differences of thousands of pivots and 15% time variations were observed. This

is due not only to alternate optima, but to slight differences in timings of events, resulting

in different incoming variables, tie-breaking choices, and, therefore, a different sequence of

extreme points traversed.

So how is this to be tested and reported? Should multiple runs be performed for each

combination of code, problem, strategy, and number-of-processors? Should all resultant

timings be reported or summarized in statistics? If a researcher wishes to determine speedup,

should the best, worst, or average times be used? (Averages would require a new definition

of speedup). Some researchers always use the best times, arguing that these show the actual
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capability of the code; is this reasonable? We attempt to answer these questions in the

sections that follow.

3.3.2. Potential Sources of Bias in Reporting Parallel Results

As is evident from the previous discussion, many choices must be made in the design

and reporting of experiments with parallel codes. This being a relatively new area of

research, there are few generally accepted answers to the questions posed. Analysis of data

variation is central to statistically designed experimentation[1,27,33], but in dealing with

speedup there is variation in the components needed to compute this statistic, which is a

different issue.

Also, since speedup is a ratio of serial to parallel time, we have the following observation:

Observation: The longer the serial time, the greater the parallel speedup, and vice versa.

Evidence:From inspection of theS(p), RS(p), andAS(p) definitions.❚

So while fast single-processor times highlight the strength of the serial code, they can

produce unimpressive parallel speedups. Conversely, a slow serial time can yield seemingly

spectacular parallel results. Hence it is a simple matter to influence (inadvertently or

deliberately) the outcome of an experiment employing speedup as a performance measure

through the choice of serial and parallel strategies. An advantageous set of strategies can,

therefore, positively skew the research findings (of course a disadvantageous set would have

the opposite effect).

This has motivational implications for the level of effort expended in exploring alternate

strategies. Nominal serial testing may be rewarded with strong parallel results, while a more

thorough search for the best one-processor strategy could only downgrade the parallel

findings.

3.3.3. An Example of Difficulties in Interpreting Reported Speedup

As noted previously, [35] reports on computational experimentation with a parallel

network simplex code. The machine employed was a BBN Butterfly, a loosely coupled

MIMD system, in which each of the 14 processors has its own “local” memory and can also

access other processors’ “remote” memories via a switching network.

In the code, only the pricing step was parallelized: each processor priced the arcs in its

local memory and communicated the best candidate found to the others. All processors then

executed the same pivot. To determine the serial times, one processor was used for

computation, and the arc data was distributed across all processor memories. Hence most

data was accessed remotely in serial testing.
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On the Butterfly, remote data access takes 20 times longer than local. Hence, on average,

pricing an arc in the serial tests was much slower than in the parallel runs—since local

memory was used only a fraction of the time.

The reporting difficulty is: What portion of the (relative) speedup comes from the

application of parallelism, and what portion is due to the use of slower memory accesses in

the serial case? While [35] did not address this specific issue and simply reported speedups,

the implementation was described in sufficient detail to permit identification of the ambi-

guity. Empirical testing would be required for a definitive answer.

3.4. How Should We Approach These Issues?

The preceding sections illustrate some of the difficulties that are encountered when

attempting to objectively summarize experimentation with parallel codes. While we made

what we considered reasonable decisions for our research papers, we also sought the insight

of others in the research community in hopes of finding clear-cut answers or, at least, a

consensus on some of the issues.

4. A SURVEY OF EXPERTS

To get a “sense of the community,” we invited a group of computationally oriented

mathematical programming researchers to participate in a survey. The design objectives for

the survey were: (1) to address definitional issues regarding the speedup of parallel algorithm

implementations, (2) to help identify a consensus regarding the usefulness of speedup as a

measure for reporting parallel performance, and (3) to elicit a high response rate.

To meet these objectives, we constructed a series of simple examples, accompanied by

six short-answer questions. Each multiple-choice question included a user-definable re-

sponse. Comments were welcomed on each question and on the survey as a whole, and

respondents could remain anonymous. Commonly used speedup definitions were included

for terminological consistency.

The survey was sent to 41 researchers, and 23 completed forms were returned (see

acknowledgments), a strong 56% response rate. Our selections are not included in the totals,

but in the accompanying discussion. The following sections explore each question, and

summarize and comment on the participants’ responses. Also included are selected, unat-

tributed comments from consenting respondents.

4.1. Question 1: Effects of Tuning Parameters

The first survey question is shown in Figure 4. The issue involved is: How should times

from different strategies be used in computing speedup? Code B represents a competing

algorithm that is, for the most part, dominated by Code A.
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Implicit in the choice to be made are several fundamental questions: Does a change in

strategy form a different algorithm? Should the same strategy be used for both serial and

parallel times? Should only the best times across all tested strategies be used? Should we

average the speedups, or something else?

4.1.1. Survey Results

The distribution of answers is depicted in Figure 5. Of the “Other” responses, 58% wanted

to include the entire table of times, 34% computed speedup for each code and strategy

combination and included all values or the range, and 6% proposed a different calculation.

Question 1.Two optimization codes, A and B, are used to solve the same problem on the

same parallel machine and identify the same optimal solution. Each code has a “tuning”

parameter which is determined for each run using a “strategy” that fixes the parameter

based on problem size and/or number of processors. Runs are made using four different

strategies, giving the following results.

Code A A A B
Strategy W X Y Z
Serial Solution Time 100 90 200 150
Parallel Solution Time

(with two processors)
60 70 50 100

The authors of code A wish to report speedups. What value for two-processor speedup

should be reported? (Please mark your choice.)

(a)
100
60

= 1.67 Strategy W (Both cases “good”)

(b)
90
50

= 1.8 Use the best individual times.

(c)
90
70

= 1.29 Strategy X (Fixed strategy with best serial)

(d)
200
50

= 4.0 Strategy Y (Best two-processor time)

(e)

100
60

+ 90
70

+ 200
50

3
= 2.32 Average speedup across all A strategies tested.

(f) Other: Rationale:

Figure 4. Question 1: The Effects of Tuning Parameters
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Selected comments: (1) “The single number cannot capture all of the relevant informa-

tion.” (2) “The strategies perform differently enough to suggest three codes: AW, AX, and

AY.” (3) “There really isn’t an appropriate summary of this data.” (4) “[Use (e) and] report

the standard deviation also.” (5) “Reporting raw data as well as speedup is important.”

4.1.2. Commentary

The leading selection was “Other,” with a majority of those respondents wanting to

include all data in reports.S(2) was the dominant summary measure [choice (b)], comparing

the best individual parallel and serial times across all codes and strategies, and the remaining

responses varied widely.

While we sympathize with the desire for all of the raw data, the sheer volume of such

data generated by conscientious experimentation can become overwhelming. For example,

a small test bed might consist of 50 representative test problems, to be examined on 1 to 20

processors, with, say, 20 reasonable strategies in each case. This results in 20,000 combi-

nations to test for a single code, ignoring the fact that multiple instances of each combination

may be required due to variations in timings or demands of a rigorous experimental

design[1,27]. Even with only 4 values forp, and an exploration of 10 strategies, 2,000

problems must be run. And if the problems are substantial enough to demand the application

of parallel processing, the total processing time (especially the search for the best serial case)

makes the testing, much less the reporting, impractical.

From our viewpoint, an algorithm definition includes the strategy; the two notions should

not be separated in reported results. Hence, we concur with comment (2), and believe that

the times for a given code and strategy should be kept together. The strategy may be dynamic

with the number of processors or problem characteristics, but must be rule-based and

documented in the experimentation reports.

The difficulty then becomes: How to identify good code and strategy combinations?

Conscientious researchers will work diligently to find a combination that has both strong

serial and robust parallel performance across a wide range of problems. For all of these

13%

4%
39%

43%

e

db

Other a,c
0%

Figure 5. Question 1 Responses
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reasons, we would have picked responses (a) or (c) or, in the absence of other test problems,

would have devised a hybrid strategy from X and Y that would have yielded the experts’

leading choice, (b).

4.2. Question 2: Definition of Speedup

Figure 6 depicts the survey’s second question which concerns the proper definition and

calculation of speedup. Serial code B, which only has a single strategy Z, has the fastest

serial time on the problem from question 1. Code A’s parallel times vary with strategy. What

is the speedup of code A?

4.2.1. Survey Results

The response percentages are given in Figure 7. Most of the “Other” responses had the

same answer as on question 1, and for the same reasons.

Question 2.Here we have the same scenario, but different results. In this instance, B is

a serial code.

Code A A B
Strategy W Y Z
Serial Solution Time 100 90 80
Parallel Solution Time

(with two processors)
60 70 N.A.

The authors of code A wish to report speedups. What value for two-processor speedup

should be reported? (Please mark your choice.)

(a)
100
60

= 1.67

(b)
90
70

= 1.29

(c)
90
60

= 1.5

(d)
80
60

= 1.33

(e)
80
70

= 1.14

(f) Other: Rationale:

Figure 6. Question 2: Basic Definition of Speedup
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Selected comments: (1) “Present the table. The single number, speedup, cannot capture

all of the relevant information. In this case it would be better to report the details. In the text

of the paper, one could mention a range 90-200 of serial times and 50-70 of parallel times.”

(2) “More problems should be tested here.”

4.2.2. Commentary

This question highlights the main objective of parallel processing, namely, reduction of

the real time required to solve a given problem. Here, a serial code exists which runs faster

than the one-processor parallel code, hence better speedups could be reported by ignoring

the existence of B. However, that would certainly be misleading, since code B should be

used for the serial time.

The majority of respondents selecting a speedup metric chose one based on serial code

B [(d) or (e)], with which we concur. We also feel that, if at all possible, results from a

well-known code, such as MINOS[37] or NETFLO[28], should be included in reports. Such

reference codes give the reader an awareness of the overall efficiency of all software being

tested, and is of particular value on new, relatively unfamiliar technology.

4.3. Question 3: Effect of Timing Variations on Speedup

The third question, shown in Figure 8, focuses on a single problem, code, and strategy

combination, illustrating the stochastic nature of both parallel and serial testing. Repeated

executions of this combination under identical system conditions show variability in both

the serial and parallel timings. Variation from the timing mechanism affects all values, and

the larger parallel variability is due to time dependencies in the algorithm. How is speedup

to be computed in this more realistic setting? (The italicized annotations in Figure 8 were

not on the survey itself.)

4%

38%

8%

8%

42%

e

d

c

a

Other
0%

b

Figure 7. Question 2 Responses
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4.3.1. Survey Results

Figure 9 shows the response percentages. Of the “Other” responses, 63% wanted some

measures that reflected variability, 25% suggested the ratio of means or medians, and 12%

wished to report the raw data.

Selected comments: (1) “The greater variance in the two-processor times is an important

part of the data.” (2) “Also, the standard deviation should be used [along with (e)].” (3) “For

Question 3.The times for code A using strategy Z dominate all other code and strategy

combinations. However, multiple executions of the same algorithm in the same circum-

stances gave different times. Differences in serial times are due to variability within the

computer’s timing mechanism, and the (larger) differences in parallel times are due to

timing-dependent choices (race conditions) in the algorithm. The following results come

from 14 runs of code A with strategy Z.

Serial Runs 2-Processor Runs
Solution times

(7 observations each)

98,99,100,100,

100,101,102

50,50,60,60,

60,70,70
Mean time 100 60
Min, Max time 98, 102 50, 70

What value for two-processor speedup should be reported for code A? (Please mark your

choice.)

(a)
100
60

= 1.67 Ratio of means

(b)
98
60

= 1.63 Best individual serial over mean parallel

(c)
100
50

= 2.0 Mean serial over best parallel

(d)
98
50

= 1.96 Best serial over best parallel

(e) Mean of




100
50

,
100
50

,
100
60

,
100
60

,
100
60

,
100
70

,
100
70





= 1.69

Mean of speedups with mean serial base case

(f) Mean of




98
50

,
98
50

,
98
60

,
98
60

,
98
70

,
98
70





= 1.66

Mean of speedups with best serial base case

(g) Other: Rationale:

Figure 8. Question 3: Effect of Timing Variation
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serial time, use the average—errors are due to timing anyway.” (4) “Should provide variance

measures since that is the purpose of the study.”

4.3.2. Comments

This question yielded the clearest consensus thus far, with 57% of the respondents

choosing (a), the ratio of mean times, and many indicated a desire for a supplementary

indicator of variability. On this question we differ with the respondents. We feel that (e) is

a similar, but slightly more correct, choice for the following reasons. The serial variation is

due to random measurement error, and hence should be averaged to form the base case, per

responses (a), (c), and (e). With this base, speedup can be computed for each two-processor

time and averaged to give the mean speedup ratio, instead of the ratio of mean times which

does not follow any of the standard speedup definitions. This would also permit reporting

speedup variability measures such as the standard deviation and range. We note that the

harmonic—not the arithmetic—mean of the ratios should be taken (see [27], p. 188, for a

full discussion), and is:

x
..

=
7(100)

50+50+60+60+60+70+70
= 1.667.

The situation underscores the difficulty in reporting all of the raw data, and leads to the

question: How many instances of each combination of problem, code, strategy, and number

of processors should be run? The testing of five instances of one code on 50 problems, with

10 strategies, and four processor settings, involves 10,000 runs; practicalities will likely

force compromises on such an experimental design.

4.4. Question 4: Degree of Effort on Serial Case

Because of the crucial role of the serial time in computing speedup, the level of effort

expended to identify a “best” value is a significant factor in reporting. Respondents

expressed the importance of such experimentation on a scale of 1 to 10 (see Figure 10).

56%

35%

9%

a

Other

e

b,c,d,f

0%

Figure 9. Question 3 Responses
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4.4.1. Survey Results

Of the 83% that gave a numerical answer, the “effort” statistics are: mean, 5.8; median

and mode, 5; standard deviation, 2.9; this distribution is shown in Figure 11. The 17%

nonrespondents said that the answer depended on the purpose of the experimentation.

Selected comments: (1) “[Expend] just as much effort as would be done for the parallel

code.” (2) “Use standard setting of parameters.” (3) “Be reasonable. Give arguments as to

why you made the choice. Realize that performance is highly problem-dependent and there

may not be a `best’ serial version.” (4) “In many cases it may be preferable to compare with

a `standard’ algorithm (e.g., MINOS for simplex).” (5) “Difficult to answer, depends on

reason for study.”

4.4.2. Comments

With a full range of values, and slightly left-skewed distribution, the responses indicate

that a reasonable amount of testing should be performed. We feel that our testing has been

in the exhausting, but not exhaustive, 8 to 9 range. Comment (1) seemed appropriate, but

1 2 3 4 5 6 7 8 9 10
Response
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Figure 11. Distribution of Responses to Question 4

Question 4.How much effort should be spent identifying the “best” serial time for a given

problem? (For example, with a simplex-based algorithm, how much testing should be

performed to identify the best pivot strategy?) Please express your answer on a scale from

1 to 10 where 1 = minimal testing and 10 = as exhaustive as possible.

Your answer: _______________

Figure 10. Question 4: Effort for Serial Case
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we are reminded that the best code and strategy combination tends to vary from problem to

problem and with number of processors used (that is, the fastest for two processors is not

necessarily fastest with six).

4.5. Question 5: Setting Strategies

The question posed in Figure 12 addresses the means by which strategies should be

determined for reporting purposes. Implicit is the issue of whether researchers should be

able to determine a unique strategy for each problem and processor combination and report

the results of the best that was found empirically.

4.5.1. Survey Results

The response percentages are given in Figure 13. Of the “Other” respondents, 43% said

“any,” 29% “(a) and (b),” 14% “all”, and 14% said that it depends on the research objective.

Selected comments: (1) “Report (a) and (b). The more the merrier.” (2) “[Rule-based,]

but part of the program.” (3) “More important is to explicitly state which of the above was

used.”

4.5.2. Comments

Respondents are closer to a consensus on this issue, with a strong majority preferring a

rule-based strategy, rather than individually tuned ones, and we agree. We note that results

can be easily biased if choice (a) is employed—simply choose a good multi-processor

strategy. In our experiments with the network simplex, a strategy that performed well in

parallel typically worked poorly serially; hence using such a fixed strategy could result in

dramatic speedups. Choice (b) seems the most fair, but leaves open the question of how to

devise the rule.

Question 5.The solution strategy used in a code can strongly affect execution times.

When reporting results of testing a code on a given problem with different numbers of

processors, the reported results should be based on a strategy which is:

(a) Fixed, invariant of the number of processors

(b) Rule-based, and can vary with the number of processors and problem

parameters

(c) The fastest of all tested for each number of processors

(d) Other:

Figure 12. Question 5: Setting Solution Strategy
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4.6. Question 6: Validity of Speedup as a Metric

The last question, shown in Figure 14, allows participants to summarize their feelings

about speedup’s current role as the leading performance measure for reporting parallel

testing.

4.6.1. Survey Results

The response percentages are shown in Figure 15. Suggested alternatives or additions

included measures of cost-effectiveness, efficiency, robustness, quality of solution, and

chance of catastrophic error.

Selected comments: (1) “I tend to be skeptical about one number measuring the goodness

of an algorithm.” (2) “No, but it is attractive to boil performance down to a single number,

so it will likely continue as the dominant measure.” (3) “[Use] a number of performance

measures, just as we learned when dealing with serial algorithms.” (4) “There must be a

better method. But I do not know it.”

4.6.2. Comments

A slight majority begrudgingly accepted speedup as the primary parallel performance

measure but, as revealed in the comments, would prefer a better one. Several indicated the

need for variation and cost-effectiveness to be represented in reportings.

Question 6.Should speedup be used as the primary measure of performance of a parallel

algorithm?

(a) Yes

(b) No, we should use:

Figure 14. Question 6: Efficacy of Speedup as Metric

62%

4%
30%

4%

b

a
Other

No answer

0%

c

Figure 13. Question 5 Responses

25



4.7. Overall Comments

The following quotations were selected from the general comments of consenting

respondents regarding the questionnaire or the reporting of parallel experimentation.

“Rating the effectiveness of a parallel algorithm by a single measure, speedup, seems

analagous to describing a probability distribution by reporting only its mean.”

“As a rule, authors of a code will present the data so as to make their code appear best.

That is human nature. More important is to explicitly state how they are reporting and how

testing was performed, i.e., acknowledge their biases.”

“The value of parallelism is an economic issue or real time speedup issue. ...Without the

cost of the parallel system the benefits of speedup are meaningless.”

“Also we should report the actual times—not only speedups—and on problem sizes

where speedup is of the essence.”

“After the initial excitement of actual implementation of conventional or new algorithms

on parallel machines, speedup factors are going to lose their allure. ... However, if we show

that what took an hour on a $10 million superframe now takes 15 minutes on a $500K

multicomputer, it will have a significant impact whatever the speedup factor is.”

“Rules to follow: 1) Avoid point samples, i.e., solve each problem instance several times

and solve many problem instances. 2) Summarize data in more than one way. Be willing to

report negative results.”

“More people should think of these important details.”

4.8. Survey Conclusions

The survey of leading researchers in computational mathematical programming in most

cases did not yield a clear consensus. The large number of “Other” responses may be due

in part to independent-thinking participants, ambiguities in the questions and answers, or

simply the lack of obvious or appealing solutions to the situations posed. Even so, a general

level of agreement was reached on the following.

57%

43%

Yes

No

Figure 15. Question 6 Responses
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• The use of speedup as a parallel performance measure is tolerable, but more than one

measure of parallelism effect is desirable in reporting computational results.

• Measures of variation and cost-effectiveness are important also.

• Report as much of the raw data as possible.

• A rule-based strategy should be used when reporting results.

We also feel from the survey and our parallel testing experiences that:

• No strong consensus exists regarding the method for summarizing a large body of data.

• While many survey participants wanted all raw data reported, this is clearly not feasible

when there are many combinations of problem, code, strategy, numbers of processors,

and numbers of repetitions. We must continue to work towards better numerical and

graphical methods for summarizing the data.

• Reference values from well-known codes are needed, particularly in the serial case.

• Experimental design procedures should be used in reporting to accommodate the

variability in timings and to add rigor to the process.

• Even more complications will arise when using speedup as the response variable in a

statistical experimental design.

• We should focus on the real time and cost required to solve difficult problems.

5. REPORTING ON DISTRIBUTED SYSTEMS TESTING

SIMD machines and distributed-memory MIMD machines are distinguished from shared

memory machines in that there is no main memory which is globally accessible by all

processors. To date, massively parallel systems have tended to have a large number of

low-power processors; for example, the SIMD CM-2 uses thousands of 1-bit processors,

with small local memories[23]. These characteristics complicate the computation of speedup

in a distributed memory environment.

Since speedup is typically computed as the ratio of the single-processor to the multiproc-

essor times to solve the same problem, to compute speedup on such a distributed memory

system the size of the problem must be restricted to one which will fit into the memory

associated with a single processor. This clearly places severe limitations on the magnitude

of problems on which speedup (in the traditional sense) may be reported. This restriction

has led researchers to revert to earlier simpler metrics, to derive new ones, and to formulate

alternative speedup models.
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5.1. Performance Metrics Used with Distributed Optimization

One metric reported is theMFLOPS(million floating-point operations per second, or

megaflops) rate. Typically the number of megaflops sustained by a program is given along

with the peak MFLOPS possible on that machine. This measure is an indicator of how well

a particular implementation of an algorithm exploits the architecture of the machine, but, as

Bertsekas, Castañon, Eckstein, and Zenios[8] note, it “...does not necessarily indicate

whether this is an efficient algorithm for solving problems. It is conceivable that an

alternative algorithm can solve the same problem faster, even if it executes at a lower

MFLOP rate.” (Note that, as technology progresses, the measure is shifting togigaflopsand

teraflops,refering to billions and trillions of operations per second, respectively.)

Another common metric is thereal timerequired to solve a given problem. It is valuable

in that it provides a fairly unambiguous account of the efficiency of an implementation of

an algorithm on a particular machine (assuming variability in timings is not an issue). Often

only one set of times is reported; that is, each problem is solved for only one value ofp, the

number of processors. For example, [38] reports times required to solve network problems

on a 16,384-processor CM-2 and [31] reports times required to solve similar problems on a

32,768-processor CM-2. This information is useful for comparative purposes to researchers

who are using the same machine, and to those interested in absolute speed. However, with

times for only one value ofp, researchers would be unable to extrapolate regarding the value

of additional processors.

To date, these have been the only performance measures used in reporting on SIMD

implementations of parallel optimization algorithms, besides algorithm-specific statistics

such as the number of major and minor iterations, and portion of time spent performing

certain steps. Some loosely coupled MIMD applications report relative speedup[45,49].

In the next section, we describe a series of performance metrics which have been proposed

for parallel testing. Some of these have been used for the comparison of computer systems,

and have been adopted for the comparison and testing of algorithms.

5.2. Additional Performance Measures for Distributed Algorithms

In some instances, times may be available for several different values ofp, but not for

p=1. Consider, for example, a 1,024-processor distributed-memory machine. Although a

problem may be too large to run on one processor, it may be solvable on, say, 64 processors.

It could then perhaps also be solved using 128 processors, then 256, 512, and 1,024. In [39],

times are reported for solving linear stochastic programs on a 32,768-processor CM-2 using

both 16,384 processors and 32,768 processors. In such cases traditional speedup cannot be

computed.
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We propose an alternate model to quantify the value of additional processors, termed

generalized incremental efficiency,computed as follows:

GIE(p,q) =
(p) ⋅ (Time to execute parallel code on p processors)
(q) ⋅ (Time to execute parallel code on q processors) .

This value shows the fraction of linear speedup which was attained by increasing the number

of processors fromp to q. A value of 1 indicates linear speedup. For example, [39] reports

that “...doubling the number of processors from 16K to 32K decreases the solution time by

a factor of almost 2.” In this caseGIE(16K,32K)would be close to 1, indicating near linear

speedup. (The concept of incremental efficiency was reported by Peters[42], but was limited

in that it only measured the value of adding one processor at a time. In terms of generalized

incremental efficiency, this may be expressed as:IE(p) = GIE(p-1,p).)

While generalized incremental efficiency does indicate the value of additional processing

elements, it does not allow one to fully utilize all memory available. (All processors would

be required to solve a problem which required all available memory. Therefore no compari-

sons could be made for different values ofp.) One model which addresses this issue isscaled

speedup[21,36,47]. In this model, problem size increases withp. If we assume that the largest

problem which may be stored in the memory associated with one processor is of sizen and

that storage is proportional ton, thenp processors should be able to solve a problem of size

np. Therefore the scaled speedup is defined as:

SS(p) =
Estimated time to solve problem of size np on1 processor
Actual time to solve problem of size np on p processors

.

This metric is attractive in that it allows for full utilization of the machine resourses while

quantifying the value of additional processors. Its major disadvantage is the uncertainty

inherent in the numerator. Accurate estimation of the solution time based on one (or more)

scaling factor(s) is impractical for many mathematical programming problems. For example,

given only the time required to solve a linear program withm constraints, it is difficult to

determine a precise estimate of the time to solve a linear program with 2mconstraints, since

there are many influencing factors and2mmay be outside the observed  experience range.

Furthermore, many mathematical programming problems are not easily scalable.

Closely related to scaled speedup isfixed time speedup[20]. The concept of fixed time

speedup is more closely associated with measuring the performance of computers than

algorithms, but deserves notice in the present context. As with scaled speedup, the compu-

tation of fixed time speedup requires that the one-processor time be estimated. The difference

between the two models lies in the size of the problem being solved. Scaled speedup is
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computed based on a problem size which is largest for the number of processors used. Fixed

time speedup is computed based on a problem size which is the largest that can be solved

in a particular amount of time. If we assume that the largest problem which may be stored

in the memory associated with one processor is of sizen, fixed time speedup is computed

as follows:

FTS(p) =
Estimated time to solve problem of size k on one processor

Actual time to solve problem of size k on p processors

wherek is the size of the largest problem which can be solved onp processors in no more

time than one processor can solve a problem of sizen. As with scaled speedup, fixed time

speedup shares the disadvantage of estimating the one-processor solution time. Furthermore,

the process of determiningk is imprecise at best.

Also closely related to scaled speedup is an efficiency measure termedscaleup. Accord-

ing to [14], “(s)caleup is defined as the ability of ann-times larger system to perform an

n-times larger job in the same elapsed time as the original system.” Therefore, this measure

allows for full utilization of system resources but, unlike scaled speedup, is not based on an

estimated one-processor time. It is computed as follows:

Scaleup(p,n) =
Time to solve size m problem on p processors

Time to solve size nm problem on np processors
.

Linear scaleup occurs whenscaleup(p,n)= 1. A form of scaleup is used in [39], which reports

that “...the time to solve a 1024 scenario problem on a 16K machine is almost the same as

that for solving a 2048 scenario problem on a 32K machine.” In this instancescaleup(16K,2)

is close to 1, hence nearly linear.

To help explain their results, authors may wish to include statistics such asfraction of

time spent in communicationandsynchronization-related idle time. While indispensable for

correct code operation, both communication and synchronization time are considered

overhead items, since no work, per se, is accomplished during that time. The inclusion of

this type of measure can provide insight into the sources of inefficiency in the code and

underlying algorithm.

5.3. Conclusions

Many of the newer performance metrics require an accurate model for estimating solution

times for problems of a given “size” and number of processors. We feel that such a

requirement is unrealistic within the domain of mathematical programming, where a large
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number of factors with undiscovered interrelationships determine problem solution diffi-

culty and computational effort for a given problem.

Researchers testing massively parallel and distributed algorithms are struggling to find

useful measures of the value of parallelism and the efficiency of their methods. For these

settings, only the basic metrics have been reported in the optimization literature. This is

likely due to the embryonic state of research in this area, the small number of standard test

problems for comparative testing, and the lack of a generally accepted summary measure.

We encourage researchers in this domain to:

• Compare their results with standard codes, on other platforms if necessary, to provide

a frame of reference for the timing data;

• Include system prices and address cost-effectiveness issues in solving problems of

practical interest; and

• Explore the newer performance metrics, and hopefully devise better ones.

6. REPORTING ON PARALLEL EXPERIMENTS WITH HEURISTIC CODES

The objective of heuristic methods is the identification of “high quality” feasible

solutions to problems more quickly than can be done with provably optimizing approaches.

This permits users to obtain solutions to problems that are known to be difficult (for example,

are NP-hard) or not easily described by traditional mathematical formulations (as with some

routing and scheduling problems). Key application areas for heuristics have been integer

programming, combinatorial, and graph theoretic models.

Many generalized approaches, ormeta-heuristics, have emerged, including:k-exchange,

simulated annealing, tabu search, genetic, neural network, GRASP, target analysis, ejection

chain, and beam search algorithms. All of these methods are highly amenable to parallel

exploitation.

Reporting on parallel implementations of heuristics has the same set of problems as with

optimizing codes: stochastic results from race conditions, determination of the proper base

case for speedup calculations, difficulty in summarizing a large body of data, and so on. In

addition, heuristics have special reporting problems of their own:

• Because of  the nature of  some heuristic algorithms, including—but not limited

to—those with a randomization component, serial and parallel executions are likely

to return different solutions.

• Bounds on the optimal solution value can be weak or nonexistent, hence the closeness

to optimality cannot be determined accurately.

• Many procedures have no standard termination rule, other than: stop when you run out

of money or patience.
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• Such arbitrariness permits the reporting of results using stopping rules based on

preprocessing of the problems. For example, if a heuristic code is run for 10,000

iterations, but the last improving solution was found at repetition 890, then one could

simply report timings based on the rule: stop after 900 iterations.

• As with optimizing codes, heuristics often have a large number of control parameters

to set. A given solution strategy may depend on a dozen or more decisions, such as

candidate list lengths, descent rate, number of training repetitions, tolerances, and

thresholds, plus a stopping rule. Since execution times are often heavily influenced by

tuning such values, researchers should document not only the parameter settings used

in the testing, but the robustness of those values.

Of primary interest in reporting on computational testing of heuristic-based codes are

descriptive measures of the tradeoff between time and solution quality. Does the code find

a “good” solution quickly? Given enough time, does the code find a high-quality solution?

For a benchmark problem, was the best known solution identified? Was a new best solution

found?

Perhaps the best descriptor of heuristic performance on a problem is a graph of the best

solution value found versus time. When variability results from parallelism, average and

interval values can be graphed as well. Related statistics include: time to first feasible

solution, time to best solution, and time ton iterations.

Example metrics that have been used in parallel heuristic testing[15,41] are: relative

speedup; percent of cases examined where best known solution was found; minimum,

average, and maximum times forn iterations and for various numbers of processors,p; and

a graph of the cumulative number of problems in the test set achieving a stated quality level,

versus time, for various values ofp.

7. SUMMARY AND GUIDELINES

In recent years, great strides have been made in harnessing the power of parallel

computers to solve mathematical programming problems. To assist authors, referees, and

editors, we offer the following guidelines for the reporting of computational experiments

with parallel codes, based on our experiences and a survey of experts in the field. They are

meant to augment previous reporting standards[13,26], and be considered as work-in-pro-

gress, to be refined and enhanced as experience, understanding, and insight grow.
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Parallel Reporting Guidelines

I. Thoroughly document the process

A. Describe the code being tested. This includes the algorithm on which it is based,

including any modifications; the overall design; the data structures used; and the

available tuning parameters.

B. Document the computing environment for the experimentation. Report all pertinent

characteristics of the machine used, including the manufacturer, model, types and

number of processors, inter-processor communication schemes, size of memories,

and configuration.

C. Describe the testing environment and methodology.

1. State how times were measured.

2. When reporting speedup, state how it was computed. In particular, indicate what

was used for the base (serial) case.

3. Report all values of tuning parameters.

II. Use a well-considered experimental design

A. Focus on the real time and cost required to solve difficult problems.

B. Try to identify those factors that contribute to the results presented, and their

effects. This includes the impacts of problem characteristics, tuning-parameter

strategy, and parallelism.

B. Provide points of reference. If possible, use well-known codes and problems to

determine reference values, particularly in the serial case, even if testing must be

performed on different machines (as required with some distributed systems).

C. Perform final, reported testing on a dedicated or lightly loaded system.

D. Employ statistical experimental design techniques. This powerful, often neglected,

methodology can highlight those factors that contributed to the results, as well as

those that did not.

III. Provide a comprehensive report of the results

A. For summary measures, use measures of central tendency, variability, and cost-ef-

fectiveness.

B. Use graphics where possible and when informative.

C. Provide as much detail as possible. If a journal will not publish all pertinent

data—perhaps due to space limitations—make them available in a research report.

D. Describe the sensitivity of the code to changes in the tuning strategy.

E.  Be courageous and include your “failures,” since they provide insight also.

Parallelism holds the promise of permitting operations researchers and computer scien-

tists to reach the previously unattainable: the routine solution of problems and the support
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of models that were too large or complex for previous generations of computers and

algorithms. By so doing we bring the benefits of the “OR-approach”[12] to a wider audience,

hopefully affecting and improving the lives of an increasingly larger portion of the world’s

populace. The accurate reporting  of  research  is central  to progress and the growing

understanding of how to capitalize on these new opportunities so that we might realize the

fruits of the promise.
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