
 

Radiation Anomaly Detection Using an Adversarial 

Autoencoder 
 

 

Charles Sayre, Eric C. Larson  

Department of Computer Science 

Southern Methodist University 

Dallas, Texas 

{sayrec, eclarson}@smu.edu 

Gabs DiLiegro, Joseph Camp  

Department of Electrical and Computer 

Engineering 

Southern Methodist University 

Dallas, Texas 

{gdiliegro, camp}@smu.edu 

Bruce Gnade  

Department of Materials Science and 

Engineering 

Univertsity of Texas 

Dallas, Texas 

gnade@utdallas.edu 

Abstract— Scintillators are the primary devices used for 

radiation detection, especially at national borders and other ports 

of entry. Reducing the size of these detectors for placement on 

mobile devices such as drones can allow for better detection and 

localization of radiation sources. Detection of radiation with 

supervised machine learning can be a challenge when looking for 

previously unobserved radiation sources. Therefore, anomaly 

detection methods are investigated. In this work we employ 

adversarial autoencoders trained to classify spectra from 

radioactive sources as either background or anomalous. This 

allows the model to detect anomalies regardless of radiation source 

and outperform supervised methods on newly encountered 

sources. 

I. INTRODUCTION AND MOTIVATION 

Radiation detection in high traffic areas such as ports and 
border crossings is a key area of national security according to 
the Department of Homeland Security (DHS). At present 
scintillators exist in large static forms at ports-of-entry [1] or as 
bulky handheld devices [2]. These scintillators are capable of 
providing the energy spectra of radiation in an area, which is 
important for characterizing sources of harmful radiation as 
different sources emit different energies. While there has been 
some effort in radiation detection using machine learning 
methods, these have generally only used supervised methods 
such as multilayer perceptrons [3], linear models, and support 
vector machines [4]. However, supervised learning methods 
require training examples of the radiation types they are 
expected to classify. This makes them inappropriate for 
applications that do not have calibration examples for training 
or in applications where exact types of radiation are not known. 
It is therefore desirable to create a radiation detection system that 
is small enough to mount to a mobile system and that utilizes the 
latest developments in anomaly detection to accurately detect 
radiation sources without specific calibration.  

Some work has been carried out using unsupervised methods 
including the use of Autoencoders [5][6]. In this work, we build 
from and improve upon these previous works by proposing the 
use of an Adversarial Autoencoder (AAE)[7] in the detection of 
radioactive material. AAEs are state-of-the-art anomaly 

detection models across many fields ranging from machine fault 
detection [8] to video anomaly detection [9] to medical image 
detection [10].  

AAEs are well matched for the radiation detection problem 
as anomalies can come from a wide variety of radiation sources. 
While traditional supervised classes require positive and 
negative examples for training, AAEs are generative models that 
only require baseline observations. This is advantageous in 
radiation detection as it allows the model to be agnostic to any 
particular radiation source. In this work, we show that AAEs are 
excellent models for detecting anomalous radiation spectra 
using custom scintillators. These scintillators are based on 
CsI(TI), and therefore lower cost than many other currently 
available sensors. Scintillator detectors has lower resolution 
compared to solid state detectors, therefore this provides a 
challenging use case for our AAE models.  

II. DATA 

We collect data for use in the design and evaluation of our 
AAE models. Using our custom detectors, radiation spectra 
were collected from background and from three radioactive 
sources: Co60, Mn54, and Cs137. Each source was profiled at three 
distances, 0 cm, 15 cm, and 30 cm for one hour per distance, 
with 3 hours of background radiation recorded. This data was 
further divided into 5-second time windows, yielding 2049, 
2043, 2086, and 2064 windows collected for Co60, Mn54, Cs137, 
and background, respectfully. We note that our AAE model does 
not require samples of radiation sources for training. However, 
we compare the AAE model to supervised methods that do 
require calibration examples. Hence, we split our data as 
follows: Each of the sources and the background were divided 
into 80-20 training-testing splits and were constructed into files 
that contained half radiative data (stratified across distances) and 
half background data. Training and testing data come from 
contiguous time segments in the data collection. Thus, a training 
set consisted of all radiation sources at varying intensity and 
background examples. During the data collection process, the 
facility was relatively uncontrolled, with personnel entering and 
leaving the area periodically. This ingress and egress did not 
appear to influence the collected data in any impactful way.  



III. METHODOLOGY 

A. AAE Architecture 
The AAE model consists of three neural networks: Encoder, 

Decoder, and Discriminator, as shown in Figure I. The encoder 
acts to compress the input radiation spectra into a reduced 
dimensionality latent space, which the decoder uses to recover 
the original input. Like in other autoencoders the encoder-
decoder pair train together to create a latent space of reduced 
dimensionality, that is also performant for reconstructing 
samples. The model is trained only on what is meant to be 
regular behavior, in our case background radiation. Mean 
Squared Error is used as the loss function for measuring the 
fidelity of reconstruction. Binary Cross Entropy is used to 
measure the correctness of the discriminator’s prediction. Where 
AAEs differ from other autoencoders is in the use of a 
discriminator which is trained on the latent space representation 
of the input data and data that are generated from a normal 
distribution. The encoder is trained to “fool” the discriminator 
while the discriminator trains to differentiate the differences 
between encoded and generated data. In this way, the adversarial 
losses of the encoder and discriminator ensure that the latent 
space is sufficiently normally distributed. Therefore, points that 
are encoded into the latent space that depart from a normal 
distribution are considered anomalies.  

B. Testing Methods 

Testing falls into two main categories, comparative and 

real-time. Comparative results will focus on showcasing the 

viability of the AAE model at detecting radiation versus some 

baseline classifiers. Real-time results show the model working 

on a distributed system making predictions to illustrate the 

potential of this model working in an environment 

representative of the real world. With the goal of this project 

being to mount this onto drones it is vital to understand how the 

model performs detecting radiation in real time.  

For our comparative tests the AAE is compared to six 

supervised training models: K-Nearest Neighbors (KNN), 

Support Vector Classifier (SVC), Random Forest Classifier 

(RFC), XGBoost Classifier (XGB) [11], CatBoost Classifier 

(CBC) [12], and Multilayer Perceptron (MLP). The baseline 

models were trained using only the Co60 training set which 

consists of 3291 samples (1640 with radiation present and 1651 

background).  This was done to better illustrate one of the 

advantages of using an unsupervised method like the AAE to 

accomplish radiation detection. Since the baseline models are 

only trained on one of the radiation sources, they may not 

generalize to the detection of different radiation samples. 

Real-time results take a multitude of forms to try to recreate 

the applications that this system will have in the real-world. 

Firstly, we need to create a software system that can take 

readings directly from the detector, process it into the format 

required for the model, make a prediction, and then return that 

prediction. Secondly, since this system is going to be mounted 

to a series of drones, it needs to generate output that will be 

useful to the piloting of those drones. Thirdly, the system 

should be responsive enough for the done network to make 

decisions quickly. Finally, the system needs to have outputs that 

are stable and reproducible so that for a given output of the 

model we know that the environment it is in is similar to other 

environments for the same output.  

IV. RESULTS 

A. Comparative Results  

We report the F-beta score, which is the weighted geometric 

mean of the precision and recall in Table I. A beta value of 2 

was chosen (emphasizing recall over precision) as identifying 

possible threats is more important than correctly identifying 

non-threats in a defensive context. The results illustrate that a 

Supervised model trained only on Co60 can outperform the 

AAE on that same source. In this case MLP, SVC, and RFC are 

superior to AAE. However, the supervised models perform 

worse when tested on Mn54 and Cs137, two sources that the 

models have never seen before.   

TABLE I. F-BETA SCORE BY RADIOACTIVE SOURCE 

Model Cobalt-60 Manganese-54 Cesium-137 

KNN 0.839637 0.646417 0.720604 

SVC 0.97263 0.752661 0.810398 

RFC 0.960784 0.680412 0.67596 

XGB 0.871743 0.612565 0.632306 

CBC 0.904573 0.649014 0.666842 

MLP 0.976563 0.706605 0.775951 

AAE 0.931085 0.798507 0.83958 

 

Table II shows the accuracy of the models by the strength of 

the radioactive source, in terms of gamma rays per centimeter 

squared, which is the half-life adjusted kilo Becquerel count 

divided by the distance from the source squared. These show 

another advantage of the AAE model—it can more reliably 

detect a radioactive source when the source is very weak. This 

advantage is most prominent for radioactive sources upon 

which the supervised classifiers were not trained upon. The 

ultimate goal is to place these detectors into a mobile swarm 

that can work together to pinpoint the location of a potential 

radioactive source. Having a model that can more reliably 

detect the presence of radiation from a weaker source would be 

advantageous to the success of the process. One of the main 

drawbacks to using an AAE is that it requires large amounts of 

background data to reduce false positives. It has the least 

FIGURE I. THE OVERALL ADVERSARIAL AUTOENCODER MODEL 

 

 
 



accuracy on background radiation classification. This is likely 

because the model is trained to create a latent space of the 

training data so when the testing data has even subtle 

differences from baseline, the model might classify it 

incorrectly. The solution to this problem is simply more 

examples of background spectra for the AAE to train on. At 

present, it only has roughly half of the training data that the 

other models have, which was done for the robustness of the 

experiments, but more varied samples of background radiation 

will only improve the model’s classification. Moreover, we 

note that averaging the baseline samples over time is effective 

at reducing false positives because the detections tend to be 

spurious, not sustained over time.  

B. Real-time Results 

Ultimately, we intend to create a fully automated system 

that can detect and locate a radioactive source by a network of 

mobile agents in a reliable manner. As such, it then becomes a 

requirement to build out and test the basic infrastructure of that 

network. For the case of this paper the model was deployed onto 

an Intel UP Xtreme Series computer where it was loaded in a 

single instance on a locally hosted API. API calls were made to 

it via another instance on the same board that was handling the 

processing of data from the detector. The decision to put the 

model into an API instance comes down to two factors. First, if 

the model needs to run on the board located on the mobile 

device, we wanted to ensure that the model is only loaded once 

even if the system has access to multiple scintillators on the 

device. Secondly, it may become necessary to run the API on a 

basestation that is also controlling the agents remotely.  

The first real-time test was done to show that there is a link 

between the distance from the source to the detector and the 

error value produced by the reconstruction of the spectra. 

Figure II shows an experiment where a source of Cs137 was 

moved 2.5 centimeters away from the detector every 10 

minutes. As expected, the reconstruction error decreased as the 

source moved farther away from the detector. This is intuitive 

from a physics perspective and a modeling perspective. A 

source that is farther away should result in fewer gamma rays 

contacting the detector and because of that the closer the 

resulting spectrum should be to a background spectrum, where 

there is a minimal amount of gamma rays contacting the 

detector. Additionally, we see in the probability output of the 

discriminator that there is a decrease in accuracy as the source 

moves away. While the output of the discriminator becomes 

progressively worse, it is worth noting that when presented with 

a background environment with no radioactive sources nearby 

it rarely identifies a false positive. This in and of itself could be 

FIGURE II. ERROR OF RECONSTRUCTION AND PROBABILTY OF RADIATION OF SOURCE MOVING 2.5CM EVERY 10 MINUTES 

 

TABLE II. ACCURACY BY RADIATIVE SOURCE AND STRENGTH, Γ-RAYS/CM
2 

Model Cobalt-60 Manganese-54 Cesium-137 Background 

γ-rays /cm2 6.56 x 104 23.2 5.8 1.66 x 104 5.9 1.5 3.62 x 104 12.8 3.2 0 

KNN 1.000 0.993 0.439 1.000 0.727 0.050 1.000 0.893 0.144 0.990 

SVC 1.000 0.993 0.906 1.000 0.986 0.137 1.000 0.943 0.388 1.000 

RFC 1.000 0.993 0.835 1.000 0.835 0.072 0.985 0.879 0.043 1.000 

XGB 0.993 0.993 0.554 1.000 0.604 0.065 0.985 0.700 0.072 1.000 

CBC 0.993 0.993 0.669 1.000 0.755 0.029 0.985 0.857 0.022 1.000 

MLP 1.000 0.993 0.921 1.000 0.842 0.151 1.000 0.936 0.281 0.998 

AAE 1.000 0.993 0.784 1.000 0.899 0.396 0.985 0.893 0.583 0.877 

 



useful in an operational environment, as if the system ever 

identifies radiation, it is likely that there is a radioactive source 

in the vicinity. Therefore, the outputs of both the discriminator 

and the reconstruction can be used in tandem to help identify 

the presence of radiation as well as the relative position of the 

source to the detector. 

The second real-time test was determining a sufficient time 

resolution to make predictions on. All of the previous 

comparative and real-time tests were conducted on 5-second 

aggregated channel counts. However, because the use case of 

this model requires it to be mounted on a mobile agent that may 

be moving at a significant speed, we needed to create a way to 

make predictions in a significantly shorter amount of time. The 

method proposed here is to use an overlapping window such 

that a new prediction is made every second. To accommodate 

this, after creating a 5-second buffer and making a prediction, 

the oldest second of data is removed and the newest is added to 

make the next prediction. Figure III shows the results of this 

process. For both tests a source was moved along a straight line 

with the closest distance being 0 cm, representative of the 

highest values of reconstruction error, and 30 cm being the 

furthest, corresponding to the lowest reconstruction error. 

While for each test the sources were moved in a slightly 

different speed, the general pattern of the movement was 

maintained to the best of our abilities. As is shown, using a 4 

second overlap allows us to have a better resolution on the 

movement of the source as it moves near the detector. Being 

able to make predictions using this overlapping methodology 

may also allow for the system to make predictions in an 

environment that is rapidly changing.  

 The final real-time test that we wanted to create is an 

experiment to show the model predicting on a consistent series 

of values. We utilized a small locomotive, attached a 

radioactive source to it, and then placed the detector offset from 

the center of a circular track so that the source would move 

closer to and farther away from the detector in a regular pattern. 

The track was approximately 50 cm in diameter and the detector 

was offset such that the closest point between it and the track 

was around 10 cm. In Figure IV a sample still frame from the 

recorded video of the live test is shown. In this frame you can 

clearly see the setup described above as well as the consistent 

output we expected to see as a result of the source moving in a 

regular pattern around the track. As the source moves closer to 

the detector there are clear peaks with error values around 2.5 

occurring every 50 to 70 seconds. Also included in Figure IV is 

a link to the original video of the live demonstration. This video 

is of the locomotive running for 10 minutes around the track 

and is sped up to four times real speed for the sake of brevity. 

The AAE model was not trained with background from that 

specific geographic location, not did it have access to training 

samples of the radiation type. Thus, the results from this test 

help show the efficacy of our model and the repeatability of the 

model when given similar inputs. This gives us confidence that 

the model will be able to work in real-world conditions. 

FIGURE III. EFFECTS OF DATA OVERLAP IN RADIATION DETECTION 

 

FIGURE IV.  FRAME FROM LIVE DEMONSTRATION ON A MODEL TRAIN 

 



V. CONCLUSIONS 

Unsupervised anomaly detection is a well-matched 

technique for radiation detection as there are many varied 

sources of radiation with numerous different signatures. The 

AAE trained in this project leverages this by learning to create 

a normally distributed latent space of background radiation and 

marking radiation as anomalous because it lies outside of that 

distribution. Through this process we have shown that the AAE 

is a viable alternative to supervised models, especially in 

situations where a supervised model is tested on radiation 

sources that that are previously unseen. Additionally, training 

the AAE is simpler than training a supervised model because 

obtaining radioactive sources can be challenging. Because the 

end goal of this project is to mount this on a mobile agent 

swarm, we also needed to show that the system can quickly and 

accurately make detections while a source is moving relative to 

a detector. We have shown that the reconstruction and 

discriminator can be used in tandem to detect a source and its 

relative position. Also, we can augment the input data to 

increase the temporal resolution of the output without 

sacrificing that accuracy. Finally, the model, when presented 

with similar environments, does produce consistent results as 

illustrated in the test with the model locomotive. Ultimately, 

this work shows that AAEs are well matched to the problem of 

radiation anomaly detection. 

VI. FUTURE WORK 

In the immediate future we hope to be able to work with new 

and varied sources for detection. At present we have only been 

able to work with only the small single microcurie sources of 

Cobalt, Manganese, and Cesium which are not necessarily 

indicative of the types of radiation that may be encountered in 

the field. Various radioactive sources will need to be detected 

and can be more intense. Additionally, because the sources we 

have been working with are so small we are unable to quantify 

the model output in response to a strong source. Also, we want 

to test our AAE against other unsupervised classifiers. Finally, 

we need to create the software infrastructure to make a fully 

autonomous agent system. For now, we have only been able to 

run off of a single Intel UP Xtreme board which runs the API 

locally, however in the end project we will need to have 

multiple boards communicating to a base station that is running 

both the software to control the agents as well as the API for 

making radiation predictions.  
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