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Abstract—The upcoming deployments of devices on the new
3.5 GHz, Citizens Broadband Radio Service (CBRS) is expected
to enable innovation by lowering the barrier to entry into LTE
and other technologies. With a three-tiered spectrum-sharing
solution, the CBRS band promises to allow coexistence of federal
incumbent users, priority licensees, and general users. While
there have been many works studying cellular traffic offloading to
unlicensed bands (e.g., Licensed Assisted Access) or minimizing
interference in Cognitive Radio Networks, there has been com-
paratively little work on maximizing spatial reuse of spectrum
in a shared spectrum CBRS network. Hence, the essence of this
work is to leverage listen-before-talk (LBT) schemes over a CBRS
network for increasing the spatial reuse at secondary (general)
users while minimizing the interference footprint on higher-tier
(incumbent) users. In this work, we propose LBT schemes that
allow opportunistic access to licensed, CBRS spectrum and test
our LBT schemes on a custom testbed with multiple software-
defined radios and a real-time signal analyzer. We find that
by allowing LBT spectrum sharing in a two carrier, two eNB
scenario, we see upwards of 50% user perceived throughput
(UPT) gains for both eNBs. Furthermore, we examine the use
of Q-learning to adapt the energy-detection threshold (EDT),
combating problematic topologies such as hidden and exposed
nodes. When adapting the EDT of opportunistically transmitting
nodes, we see up to 350% gains in average secondary node UPT
in certain difficult topologies with merely a 4% reduction in
primary node UPT.

I. INTRODUCTION

Additional spectrum availability and increased efficiency

in the use of existing resources are needed to accommodate

the rapidly increasing density and subsequent data demands of

wireless devices around the world. This need was recognized by

the President of the United States in 2010 when he called for an

additional 500 MHz of wireless spectrum to be made available

within ten years [1]. It was later a finding of the President’s

Council of Advisors on Science and Technology (PCAST) that

sharing the spectrum would be essential to meet the wireless

challenges that are currently seen [2]. This recommendation

was embraced by the Federal Communications Commission

(FCC) in a notice of proposed rulemaking where they suggest

a three-tiered, database-managed, spectrum-sharing scheme

for the 3550 – 3700 MHz band, which would become the

Citizens Broadband Radio Service (CBRS) [3]. Even before
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Fig. 1. Three-tiered spectrum sharing with central database management in
the CBRS band.

the presidential memorandum, these themes could be seen in

other spectrum policies such as in TV White Space where

unlicensed devices can utilize unused portions of ultra-high-

frequency (UHF) bands that were licensed for TV stations [4].

The CBRS band is quickly developing and will see deployment

in commercial devices soon with the launch of the Qualcomm

X20 LTE modem, which supports operations on that band [5].

In the standard CBRS architecture, there is a three-tiered

system managed by a dynamic database called the Spectrum

Access System (SAS). This is illustrated in Figure 1. The top

tier consists of incumbent users, the second tier consists of

Priority Access Licenses (PALs), and the bottom tier is for

General Authorized Access (GAA). It is expected that many

users will operate in a pseudo-unlicensed fashion on the GAA

tier, and in competitive markets, some carriers may choose to

purchase a PAL license to ensure a minimum QoS.

At the same time that the federal government is opening

up new bands for shared use, there is increasing congestion

on the unlicensed bands. For example, 802.11 Wi-Fi and

Bluetooth devices densely occupy the unlicensed 2.4 GHz

and 5 GHz industrial, scientific and medical (ISM) radio

bands. Cell providers are increasingly interested in using free,

unlicensed spectrum to supplement their licensed networks,

exacerbating this crowding. The idea of using unlicensed bands

to supplement licensed networks has been pushed to multiple

standards such as 3GPP’s licensed assisted access (LAA) [6],

LTE-U [7], and MulteFire [8].



It is clear that spectrum sharing will become more prevalent

in future medium access policies. The cornerstone of these

policies is the requirement for a way to manage the sharing.

This is traditionally done through contention-based protocols

such as a listen-before-talk (LBT) scheme like Carrier-Sense

Multiple Access (CSMA) for 802.11 devices. In these schemes,

the channel must be measured to be idle for a certain amount

of time before it is accessed. In this paper, we present and

compare two LTE-based LBT schemes for use in the CBRS

infrastructure. Specifically, we examine the trade-off between

GAA user gain and PAL user interference.

In the current release of the CBRS standard, there is no

formal mechanism for GAA users to access PAL allocated

channels. Rather, it is framed such that sharing could occur

without explanation for how it should be done. When it

comes to opportunistic random access, LBT schemes are a

proven method that can be used to allow GAA users to access

PAL spectrum opportunistically. Ideally, under such a scheme,

the secondary GAA nodes (SNs) gain additional spectrum

resources, increasing throughput, while the primary PAL nodes

(PNs) are unaffected. While it is impossible to achieve such

perfect coordination due to the inability for secondary nodes to

predict future PN packet arrival, the network operation would

then be similar to Wi-Fi.
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(b) Hidden terminal case where a PN user is impacted by SN
interference, despite PN being outside of SN sensing range.

Fig. 2. Example primary node (PN)–secondary node (SN) topologies where
an adaptive EDT could benefit the network.

If LBT is adopted, a statically-defined policy for all devices

will likely be vulnerable to poor performance in common

topologies that can arise such as hidden and exposed terminals,

shown in Figure 2 [9]. These situations are especially heinous

in tiered access topologies, where it is imperative that the PNs

and incumbents receive minimal impact from opportunistic

SNs. One of the most popular random access schemes,

Wi-Fi, has historically had problems with hidden/exposed

terminals. However, the Wi-Fi medium access control protocol,

CSMA/CA with RTS/CTS, effectively mitigated these issues by

using virtual carrier sensing, which has both transmitter/receiver

broadcast a handshake to alert other nodes of a pending

transmission.

In the CBRS tiered architecture, however, such a scheme

is not possible, as the primary node does not necessarily

engage in LBT behavior. Thus, if LBT is to be used for

opportunistic access, hidden and exposed terminals must be

dealt with in another way. To mitigate this issue, we propose a

novel reinforcement Q-learning technique to adapt an energy-

detection threshold (EDT) for secondary nodes in a shared

spectrum environment. We show that by using machine learning,

we can increase both SN and PN gains over LBT schemes that

use a static EDT.

In this paper, we enable additional sharing and improved

throughput by proposing listen-before-talk (LBT) schemes that

allow opportunistic access to licensed LTE spectrum and test

our LBT schemes on a custom testbed with multiple software-

defined radios and a real-time signal analyzer. In doing so,

we have the following five contributions: (i.) We design and

evaluate two LBT schemes to be used in CBRS networks

for PN-SN spectrum sharing. (ii.) We show that while one

scheme ends up having higher performance, both schemes

greatly improve SN UPT with a minor decrease in PN UPT.

(iii.) We find that the decreased PN UPT is a function of PN

traffic load and problematic network topologies between PN/SN

users. (iv.) To reduce the negative consequences of spectrum

sharing on the PN, we formulate a novel Q-learning algorithm

that adjusts SN opportunistic access via learning an optimal

EDT for carrier sensing. (v.) By using average and differential

PN buffer occupancy as the environmental observations, we

find the detriment to PN UPT from spectrum sharing can be

greatly reduced.

II. CBRS OVERVIEW

The CBRS band is a three-tiered, shared-spectrum platform

managed dynamically by the Spectrum Access System (SAS)

as shown in Figure 1. The incumbent users in the band include

Department of Defense (DoD) radar systems as well as Fixed

Satellite Service (FSS). To protect this tier, there will be an

Environmental Sensing Capability (ESC). ESC nodes will

monitor the band and notify the SAS in the case that an

incumbent becomes present. The SAS will then move lower-

tier users to unoccupied channels.

In the next tier, users may purchase spectrum in 10

MHz chunks via an auction to become PALs. Unlike other

traditionally licensed bands, purchasing a channel does not

tie the licensee to a specific frequency. Instead, the SAS

can dynamically assign the PAL to any channel in the band.

Additionally, the license is only valid for three years and is

for a census tract (a geographic area that is roughly sized

according to a fixed populous) as opposed to longer terms and

larger areas seen in other bands. In a given census tract, only

7 PAL licenses will be issued, guaranteeing that a minimum

of 80 MHz of the band is always available for GAA use.

The bottom tier is designed to be similar to an unlicensed

band to enable a low-cost, flexible solution for a large group

of potential applications. The SAS may assign GAA users to

any channel in the full 150 MHz band as long as they do not

interfere with a user of higher priority.



All devices are managed by the SAS, which is the true

innovation of this band. It is motivated by the TV White Space

database system, but it is designed to be more dynamic. The

primary functions of the SAS include determining available fre-

quencies and assigning them to devices, determining maximum

power levels for devices, enforcing exclusion zones, protecting

PALs from GAA users, and facilitating coordination between

GAA users. While dynamic, it is an explicit goal of the SAS

not to micromanage the spectrum, leaving such fine-grained

tuning to the operators.

One of the main advantages of the CBRS band is the low

barrier to entry leading to many possible use cases. The GAA

tier can be accessed in an almost unlicensed-like fashion

at no cost by registering with the SAS. This creates many

opportunities for neutral host or private LTE networks. For

example, an arena could deploy a neutral-host infrastructure

on 3.5 GHz using the GAA tier. Enterprise campuses could

deploy private LTE networks that cover their entire campus. In

addition, existing cell providers could augment their networks

by utilizing this band as a GAA user. In select, competitive

markets, users may choose to purchase a priority license to

reduce interference and guarantee a minimum quality of service.

It is also possible to use the CBRS band for a fixed-wireless,

infrastructure-type deployment.

Two major organizations are devoted to developing standards

on the CBRS band. The first is the Wireless Innovation Forum

(WInnForum). The WInnForum is developing standards for

certifying devices and developing a SAS protocol and is not

tied to any specific wireless technology. The other major

organization is the CBRS Alliance. The CBRS Alliance is

developing standards for operating LTE on the CBRS band,

which they recently have named OnGo [10].

The CBRS Alliance imposes additional structure to be

able to facilitate coordination amongst GAA users. In [11],

a coexistence group (CxG) is created which is managed by

a coexistence manager (CxM). Multiple GAAs can be a part

of a CxG, and the SAS will allocate a pool of spectrum to

the CxG instead of to individual CBSDs. The CxM can then

enable more fine-grained sharing among the members of its

group.

III. LISTEN BEFORE TALK

Although the CBRS band allows for spectrum sharing

between multiple tiers, there is currently no mechanism to

facilitate this sharing. It could be possible for GAA users to

take advantage of spectrum holes in the PAL spectrum. To do

this, the GAA users need to be able to sense the spectrum. Wi-

Fi, one of the more popular random access schemes available,

has used LBT for sharing the spectrum between multiple users

to great success. In fact, a version of LBT is essential in any

shared-spectrum environment and is legally required in many

countries for operation on an unlicensed band.

LBT has even been adopted in some LTE standards, for

example 3GPP’s LAA specification. The LBT scheme used in

LAA is as follows. Whenever a device needs to transmit, it

needs an initial clear-channel assessment (CAA). It must sense

that the channel is idle for at least 34 µs. If so, it can transmit

for the length of one transmit opportunity (TxOP). If there

is additional traffic to send, an exponential random backoff

mechanism is used, similar to Wi-Fi [12].

However, in the context of CBRS Alliance LTE devices, this

mechanism may not be ideal. Given the existence of CxMs

in CBRS, it is possible to tailor the LBT scheme specifically

for LTE devices. Although there could be many ways for

performing LBT, we develop and compare the performance

of two schemes that seem to be the natural choices: sensing

at the end (Scheme 1) or the beginning (Scheme 2) of a

subframe. These are shown in Figure 3, and each is evaluated

below. Similar schemes have also been considered for LTE/Wi-

fi coexistence in [13]. For the developed LBT schemes, we

consider only the downlink, assuming that devices are operating

similarly to LAA in Release 13 of LTE where the CBRS carrier

is considered as a supplemental downlink carrier [12].

LBT Scheme 1:

LBT Scheme 2:

Contention

Duration

Transmission

Duration

CCA Time (40µs)

CCA Time (~70µs)

LTE Subframe (1 ms)

t

Fig. 3. Comparison of two proposed LBT schemes for CBRS.

A. LBT Scheme 1: Subframe Puncturing

In LBT Scheme 1, an entire subframe functions as a

contention window. However, only the last 40 µs in a subframe

is used for the CCA. If the channel is determined to be idle,

the next subframe is used for transmission. Using this scheme

has an advantage of not altering the structure of a subframe.

However, it results in, at most, a 50% transmission duty cycle.

Moreover, the scheme could measure the channel to be idle

during the contention window only for the primary node to

start transmitting on the next subframe, leading to a collision.

As this is a tiered access system, collisions with the PN need

to be avoided at all costs.

B. LBT Scheme 2: Symbol Puncturing

In LBT Scheme 2, the potential transmitter always senses in

the first symbol of every subframe. If successful, we transmit

in the remaining 13 symbols of the subframe. This has the

advantage of sensing at the time that a PN would come in,

reducing the likelihood of a collision, given synchronization

of subframe boundaries between PN and SN. This scheme

sacrifices a single symbol out of each subframe. However, the

first symbol in LTE is typically used for the control channel, so

this scheme may require altering the subframe structure, though

this omission of the control channel may be inconsequential

in cases where cross-carrier scheduling is used.



C. LBT Scheme Comparison

There are apparent differences between the LBT schemes by

construction. Given that the best-case duty cycle for Scheme

1 and Scheme 2 are 50% and 92%, respectively, Scheme 2 is

preferable. However, there is a tradeoff between performance

and implementation complexity between the two schemes. With

Scheme 1, we do not require any modification to a subframe

structure.

To evaluate the performance of these LBT schemes in

a CBRS-like framework, we first simulate their operation

in various scenarios. In Figure 4, we show each scenario

considered to help understand the effect of the LBT scheme

on both the PN and SN. For a baseline, we consider in

Figure 4a, Scenario 1, where two operators are operating on

their carriers without any sharing. They operate in an “On/Off”

mode, meaning they are only transmitting if there are connected

UEs with traffic. In Figure 4b, Scenario 2, we test the result

when both operators engage in mutual sharing onto each other’s

carrier. In Figure 4c, Scenario 3, we consider the case that a

single operator is on its carrier and performs LBT on another

carrier that is entirely unoccupied. This case represents an

upper bound on gains for an SN. In Figure 4d, Scenario 4, we

share on a single component carrier to see the realistic gains

for Op. 2 when sharing and the effect it has on the PN, Op 1.

For the sake of comparing the performance of each LBT

scheme, we considered the scenarios with no sharing (Sce-

nario 1) and sharing with a PN (Scenario 4) from Figures 4a

and 4d as before and after cases. We report the change in the

user-perceived throughput (UPT) for operator 1 (Op. 1) and

operator 2 (Op. 2). In this figure, UPT is given by

1

N

N
∑

i=1

1

Ptotal





Pserved
∑

j=1

M · rij
tij

+
bi

tserving,i



 (1)

where N is the number of UEs served by the eNB, and i indexes

the UEs. Ptotal is the total number of packets, elaborated by

Ptotal = Pserved + Pserving, where Pserved and Pserving are

the number of packets served and being served, respectively. M

is the number of bits per packet, rij is the ratio of successfully

transmitted bits over all bits in the packet to UE i for packet

j, and tij is the time taken to send the same packet. bi is the

number of bits sent to UE i as a partial packet still in flight,

and tserving,i is the time spent by the packet.

We simulated our spectrum-sharing scheme using MATLAB

by reusing the 3GPP LAA evaluation assumptions for an indoor

scenario [14]. Figure 5 shows this topology, and the rest of

the simulation settings are as follows:

• Two operators with four small cells each in a single floor

building (Figure 5)

• 18 dBm TX power

• 10 randomly distributed UEs per operator

• -72 dBm EDT

• 20 MHz system bandwidth

• 10 drops simulated

• 20,000 subframes per simulation

Figure 6 shows the simulation results. For each test, we

show the mean, median, 5th, and 95th percentile to illustrate

Op. 1

Op. 2

Carrier 1 Carrier 2

On/Off

On/Off

f

(a) Scenario 1 – No Sharing

Op. 1

Op. 2

Carrier 1 Carrier 2

On/Off LBT

On/OffLBT

f

(b) Scenario 2 – Mutual Sharing

Op. 1

Op. 2

Carrier 1 Carrier 2

On/OffLBT

f

(c) Scenario 3 – Sharing without PN

Op. 1

Op. 2

Carrier 1 Carrier 2

On/Off

On/OffLBT

f

(d) Scenario 4 – Sharing with PN

Fig. 4. Simulation scenarios considered.

Fig. 5. 3GPP indoor scenario for LAA coexistence evaluations with two
operators and four nodes per operator [14].

the variance across all simulations. In Figure 6a, we see a

maximum increase in UPT for the SN of 40%. However, for

the same case, there can be a 10% reduction in UPT for the PN.

In Figure 6b, we see a nearly 80% increase in performance for

the SN with a similar drop in performance for the PN. Overall,

LBT Scheme 2 performed significantly better for both the PN

and SN. So, in the next subsection, we select LBT Scheme

2 for use in additional simulations to determine the possible

spectrum-sharing gain.

D. Simulations with Static EDT

Figure 7 shows the results for simulating LBT Scheme 2

across different spectrum sharing scenarios for two different

traffic arrival rates to see the effect on UPT. In Figure 7a, the

average traffic arrival rate was 0.5 MB/s for PNs and SNs. The

first cluster of results is the Scenario 1 baseline from Figure 4a,

where both operators are on their carriers without sharing the

spectrum. The second cluster of results shows Scenario 2 from

Figure 4b, where each operator mutually shares its primary

spectrum with the other operator. Here, we can see that each

operator experiences an increase in the mean UPT by about

25%.

To see a (coarse) upper bound on maximum achievable

spectrum sharing gain, the third cluster shows Scenario 3 from

Figure 4c. Here, we can see that an operator can achieve a

maximum of 133% gain when adopting a spectrum sharing

scheme.
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(b) UPT change when 1 Op. shares using symbol puncturing LBT
(Scheme 2).

Fig. 6. Performance of each LBT scheme for different traffic loads.

The simulation is repeated for the case of a higher-traffic

arrival rate of 1.05 MB/s in Figure 7b. Similar to the results for

the slower traffic rate, when each operator engages in a mutual

sharing as in Scenario 2, each operator sees an improvement

in UPT. For the higher traffic case, the gains are doubled with

approximately 50% increase in UPT for both operators.

We then use LBT Scheme 2 and consider the performance

for various EDTs. In Figure 8a, we show the results when

we consider different EDTs for Scenario 2 from Figure 4b.

Here, we see that there is an “optimal” EDT around -52 dBm.

These results highlight that for different scenarios, there may

be different “ideal” EDTs.

In Figure 8b, we plot the UPT vs. EDT for Scenario 4 from

Figure 4d. In this figure we can see the effect of a higher EDT.

Here, a higher EDT at Op. 2 implies more frequency of channel

access at the expense of increased downlink interference at Op.

1. As the EDT becomes larger, UPT of Op. 1 decreases, and

UPT of Op. 2 increases.

It is worth noting that the UPT decreases for the PN are

significantly smaller in the low-traffic load case and more

significant in the high-traffic load case for both schemes. Ideally,

in situations where the PN has a high-traffic load, the SN

would behave more passively when on the PN’s carrier. In the

next section, we will explore the use of machine learning in

adjusting SN EDT to improve LBT performance in hidden and

traffic-heavy node scenarios. Using our algorithm, we show that

scenario-specific, poor-LBT performance can be significantly

reduced.

5%

50%

95%

(a) UPT for spectrum-sharing scenarios when both operators use a
relatively slow average traffic arrival rate of 0.50 MB/s.

5%

50%

95%

(b) UPT for spectrum-sharing scenarios when both operators use a
relatively fast average traffic arrival rate of 1.05 MB/s.

Fig. 7. Performance of LBT for two different average traffic arrival rates.

E. Shared-Spectrum Testbed

To further evaluate the LBT schemes outlined so far, we

developed a shared-spectrum testbed shown in Figure 9. The

testbed consists of the following:

• 4 USRP SDRs with the possibility of including more for

larger tests with many nodes and UEs.

• Ideal ethernet backhaul via python/UDP for statistics

• Real-time spectrum analyzer

The nodes of the testbed can be arranged to emulate various

topologies such as hidden/exposed nodes with additional

possibilities of including mobility. This allows us to see how

well the LBT schemes behave under real channel conditions

where there may be many reflections, etc. that change quickly.

We modified the National Instruments LTE Application

Framework to implement our LBT schemes. Figure 10 shows an

example result from the real-time signal analyzer spectrogram.

Here, we use LBT Scheme 1 where the SN uses a subframe for

contention and a subframe for transmission. We show Scenario

2, where each operator can engage in spectrum sharing. In

this case, Op. 2 is under heavy load while Op. 1 is not. Op. 2

augments its services by aggregating onto Op. 1’s spectrum

while Op. 1 has no traffic. For this demo, we restrict each

operator only to occupy half of each 20-MHz carrier so that we

can easily distinguish between the operators on the spectrogram.

In this figure, red is a higher power, and green is a lower power.

We can see that Op. 2 is using Carrier 1 with a 50% duty cycle.

We can also see that when Op. 1 begins using its spectrum,



(a) Mutual sharing on 2 carriers, Scenario 2.

(b) Sharing on 1 carrier, Scenario 4.

Fig. 8. Median UPT vs EDT for tests with a 20 MHz system bandwidth and
a traffic arrival rate of 1.05 MB/s.

Fig. 9. Photograph of the shared-spectrum testbed. Four USRPs connected to
host PCs running LabVIEW Communications with a real-time signal analyzer.

Op. 2 detects this and waits for the carrier to become available

again before transmitting.

In this testbed, the SN synchronizes with the timing of

the PN of a channel. Using the existing LTE synchronization

signals, the SN detects the subframe boundaries, measures the

energy in the channel at the appropriate time, and then if the

PN is decided to be absent based on the EDT, transmits to

its users during the available TXOP. This result highlights the

feasibility for the SN to sync to a PN for performing LBT in

real-time.

IV. REINFORCEMENT LEARNING

While LBT schemes have been successfully implemented in

802.11 standards to great effect, certain network situations can

result in poor performance. While other applications of LBT

Fig. 10. Real-time signal analyzer spectrogram for LBT Scheme 1, Scenario
2 from the testbed.

may have ways of reducing network problems in topologies

that include hidden and exposed terminals such as the collision

avoidance in CSMA, similar schemes are not applicable when

applying LBT to LTE technology. In this section, we build a

machine learning framework that dynamically adjusts the EDT

of the SN to enable more efficient spectrum sharing in the

PN’s carrier.

A. Reinforcement Learning Primer

Before we detail our algorithm, we first introduce the

general reinforcement-learning strategy. Roughly speaking,

reinforcement learning addresses the general problem of

learning from interaction to achieve a goal. The learner and

decision maker is called the agent. Everything outside the agent

that the agent interacts with is called the environment.

Agents interact with the environment via actions. For each

action, α, that the agent executes, it influences the state of the

environment and receives an evaluative feedback, or reward,

r. This reward is used to learn/adapt its subsequent actions,

should it encounter the same state in a subsequent time slot.

We define periodic time intervals, t = 0, T, 2T, ..., in which

each agent represents its observation, o, of the surrounding

environment at time t as a state s ∈ S, where S designates a

finite set of environmental states. In summary, at each step t:

The agent:

• Executes action αt

• Receives observation αt of st
• Receives reward rt

The environment:

• Receives action αt

• Emits observation ot+1 of st+1

• Emits scalar reward rt+1

At each time step, the agent implements a mapping from

states to probabilities of selecting each possible action. This

mapping is called the agent’s policy πt, where πt(s, α) is the

probability that αt = α if st = s. Reinforcement learning

methods specify how the agent changes its policy as a result

of its experience. The agent’s goal is to maximize the total

amount of reward it receives over the long term.



One popular reinforcement-learning algorithm is Q-

learning [15]. This model-free learning strategy can be used

to learn an optimal decision policy for any Markov decision

process. We adopt Q-learning with the objective to minimize

interference at an incumbent or PN due to spectrum sharing

with an opportunistic SN. In this scenario, each SN acts as an

agent adapting its action in response to the reward obtained

for its previous action.

B. Target Improvement Areas

Our objective is to use reinforcement learning to assist

the SN in harvesting unused bandwidth from the PN in

an optimal fashion. Specifically, we leverage Q-learning to

dynamically adjust the SN’s EDT to maximize network UPT

while subsequently minimizing the impact on PN UPT. We

identify two scenarios in which EDT adjustment can mitigate

poor LBT performance:

a) Hidden Terminals: In a hidden terminal topology

illustrated in Figure 2b, a UE served by the primary node

potentially sees a significant interference if a secondary node

transmits at the same time. If the queue size at the PN increases,

a possible reason is because of interference from a (hidden)

SN. In this scenario, the network would benefit if the SN had

a more conservative EDT.

b) Load Adaptation: The SN node opportunistically

adapts to fluctuations in offered traffic at PNs. If the PN

traffic load is low, it may be able to use lower modulation and

coding schemes (MCS) while maintaining a similar quality

of service. By using more robust coding, higher interference

can be tolerated without an increase in packet loss. Thus, the

SN EDT can be reduced, allowing for more aggressive SN

behavior, depending on the distance of the PN. Alternatively, if

the PN traffic load is high, the SN EDT should be increased to

prevent interference, even if the PN is further away, allowing

higher PN MCS schemes to be used.

With these scenarios in mind, we now present our Q-learning

algorithm along with scenario-specific results.

C. Q-Learning Algorithm Description

In designing the reinforcement-learning algorithm, our objec-

tive is to determine a policy (sequence of state/action pairs) by

which the agent (SN eNB) adapts its EDT based on observations

taken during the latest epoch to maximize long-term rewards.

In our setup, we assume that the PN shares transmit buffer

occupancy/queue length information with the overarching

CBRS network architecture, making this information available

to the SN. In turn, the SN uses this information as the

environmental observation for the reinforcement learning. This

assumption is based on the CxG structure that is present in

the CBRS Alliance. The buffer occupancy and queue length

information could be shared through this mechanism if added

to the CBRS standard. Since the CBRS standard is still new

with no commercial deployments, this could be feasible.

The basic Q-learning implementation is as follows. Let epoch

m, with duration T , refer to time interval mT ≤ t < (m+1)T.
The epoch duration, T , needs to be long enough (e.g., 10s - 100s

of sub-frames) to avoid adapting to short-lived flows. At time

t = mT , the agent chooses an action which maximizes its Q-

table. At time t = (m+1)T , the agent receives the observation

of the environment state from its last action, receives associated

reward, updates the Q-table, and then chooses an action αm+1

for epoch m+ 1. Figure 11 depicts this iterative process.

Initialize Q(s,α), Ɐ s ϵ S, Ɐ α ϵ A

Collect reward, r(sm,αm)

Q(sm,αm) = (1-θ) x Q(sm,αm) + θ x r(sm,αm)

Set αm+1 = arg max Q(sm+1,α)

Observe state sm+1 for Q-step m+1

α ϵ A

Fig. 11. Overview of Q-learning algorithm.

Given state space S, the environment lies in one of two states

s ∈ {1, 2} defined in Table I. Here, Lm is the instantaneous

PN transmit queue size at the end of epoch m, and γ1 is a

threshold used to differentiate high and low traffic loads. γ1
selection can be used to adjust the relative weight between

PN and SN users. We define these states such that there are

binary light/heavy traffic conditions to reduce variables in our

performance evaluation. However, this definition can easily be

extended to multiple states if it is necessary to define more

nuanced packet load conditions by defining multiple thresholds.

TABLE I
STATES FOR THE Q-LEARNING

State Average Primary
Node Queue Size

Comment

1 0 ≤ Lm < γ1 Primary node traffic load is light
2 Lm ≥ γ1 Primary node traffic load is heavy

The agent is rewarded or punished according to the intuitive

guidelines listed in Table II. In general, a positive reward is

given if the PN’s state improves or if a higher EDT threshold

is chosen at the SN without a negative impact on the PN.

Consequently, a negative reward is given in cases where the

PN transitions to a worse state or if the SN chooses a low

EDT value without any benefits.

More specifically, we define numerical rewards according

to the state transition and the average buffer occupancy over

the previous epoch, Bm. Table III shows the detailed reward

scheme used by our Q-learning algorithm. Here, γ2 ∈ (0, 1)
is the buffer occupancy threshold, γ3 is the action threshold

(EDT setting threshold in dBm), and γ4 is the scalar reward

value. Each is a tunable parameter that can help control the

Q-learning to better tailor it for various goals and constraints.

Zm can be considered as a soft reward when outcomes are

between actionable thresholds.



TABLE II
REWARD INTUITION

Reward Conditions

Positive
• The state remains in 1, and the last action was to

choose a high EDT value (e.g. -62 dBm).
• The state changes from 2 to 1 following the last

epoch.

Negative • The state remains in 1, and the last action was to
choose low EDT value (e.g. -77 dBm).

• The state changes from 1 to 2 following the last
epoch, and the buffer occupancy is large.

TABLE III
REWARDS FOR THE Q-LEARNING

(sm, sm+1) Reward r(sm, αm)
(1, 1) • γ4, if Bm ≤ γ2 and αm ≥ γ3

• −γ4, if Bm ≤ γ2 and αm < γ3
• Zm, otherwise

(1, 2) • γ4, if Bm ≤ γ2 and αm ≥ γ3
• −γ4, if Bm ≤ γ2 and αm < γ3
• −γ4, if Bm > γ2

(2, 1) • 0, if Bm ≤ γ2
• γ4, otherwise

(2, 2) • 0, if Bm ≤ γ2
• Zm, otherwise

As mentioned earlier, the selection of γ1 plays an important

role in how the learning algorithm behaves between the

thresholded values, with higher values allowing the SN to

be more responsive to changes in the PN queue length. These

threshold values need to be tuned experimentally for different

deployments, as there is no absolute rule for how they should be

set. In general, each threshold contributes in one way or another

to how quickly the algorithm adapts to changes. Depending

on the specific situation, more or less rapid responses could

be advantageous.

The agent updates the Q-table after each action according to

Equation 2. Here, θ ∈ (0, 1) is a discount factor that is used to

control the importance of the reward, r(sm, αm), in terms of

updating the Q-function. Larger θ values will prioritize longer-

term reward, while a lower θ applies more weight to the next

iteration reward.

Q(sm, αm) = θQ(sm, αm) + (1− θ)r(sm, αm) (2)

The next action is chosen at each epoch according to the

probability distribution in Equation 3.

P (αm+1) =

{

1− ǫ, argmaxα∈A Q(sm+1, α)

ǫ, rand(α ∈ A)
(3)

Here, ǫ ∈ [0, 1] is an exploration parameter, allowing for

occasional random actions to be taken. In general, allowing

for exploration prevents the learning algorithm from getting

locked into suboptimal operation by filling in more of the Q-

table than would occur otherwise. Furthermore, the exploration

probability can be reduced over time as more iterations of the

algorithm have occurred.

D. Simulations with Adaptive EDT

To evaluate the performance of the adaptive EDT, we perform

system simulation in MATLAB. We examine several distinct

scenarios to examine how the performance of LBT compares

with and without the Q-learning based adaptive EDT.

1) Hidden Node – Mitigating Interference: For the first

simulation, we consider the topology shown in Figure 12. All

of the PN UEs are placed equidistant from the PN and SN

so that if the SN is transmitting, the SINR that they would

receive would be approximately 0 dB. This emulates a hidden-

node case, where the distance between the PN and SN is far

greater than the distance between the SN and the PN UEs. In

Figure 13, we compare PN UPT with a fixed, -62 dBm EDT

to the adaptive EDT using Q-learning. In this figure, the upper

bound on PN transmission is the situation in which there is

no secondary user; thus, the PN can transmit interference free.

We can see that when using a fixed EDT, the PN UPT drops

drastically as expected in a hidden node scenario. However,

by allowing the EDT to increase in response to the detection

of increasing buffer occupancy at the PN, the penalty received

by the PN is greatly reduced.

PN

240 meters

SN

Fig. 12. Hidden node test topology where the PN UEs are equidistant from
the PN and SN.

Fig. 13. PN performance when its UEs are hidden terminals to the SN. An
adaptive EDT in the SN allows the SN to reduce its interference to the PN.

2) Adapting to PN Load: In the next set of simulations,

we have four nodes with two operators in a shared-carrier

topology, as shown in Figure 14. In this scenario, the PN

load is effectively doubled, as each SN needs to defer to two

different PNs. The UE distribution for each node is randomized

in proximity around each node. We present the simulation

results in Figure 15. We can see that there is not a significant

change in the PN UPT for any scheme, as they all approach

the upper bound. For the case with no secondary node and

the case with a -72 dBm fixed EDT, this is to be expected,



as the SNs will be able to sense the PN and defer for nearly

every PN transmission. However, when using an adaptive EDT,

the SN UPT is increased by a factor of four. This is because

the reinforcement learning can adaptively shrink when buffer

occupancy remains low at the PN, by taking advantage of

momentarily light traffic loads and/or transmissions to UEs

located further away from the SN.

PN

240 meters

SN

SN PN

240 meters

Fig. 14. Four node topology.

(a) PN UPT for the case where the SN adapts to PN load.

(b) SN UPT for the case where the SN adapts to PN load.

Fig. 15. Performance of PN and SN with adaptive versus fixed EDTs.

3) Effects of Q-Learning Parameters: In the next set of

simulations, we have two nodes with two operators, a subset

of the scenario in Figure 14. We perform the simulation with

two different γ1 settings for the Q-learning. Figure 16 shows

these simulation results. In Figure 16a, we show the UPT of

the PN. In the case of a fixed EDT of -62 dBm, our highest

considered EDT, we see the lowest performance for the PN

as the SN will not as readily defer to the PN. Inversely, for a

fixed EDT of -72 dBm, our lowest considered EDT, the SN

will defer heavily to the PN, resulting in a performance similar

to the case where there is no secondary node. When using an

adaptive EDT, by changing the value of γ1, we can balance

the performance of the SN and PN. In Figure 16b, we can see

the complementary performance of the SN.

(a) PN UPT with differing γ1 values.

(b) SN UPT with differing γ1 values.

Fig. 16. Spectrum sharing with different Lm threshold values.

4) Multi-Node Scenario: In our final set of simulations, we

use the LAA indoor scenario as outlined previously (shown in

Figure 5). Figure 17 shows the benefit of Q-learning for the

case where Op. 1 has at first a low, 0.125 MB/s average traffic

arrival rate and then a high, 1.05 MB/s one while the SN traffic

is kept high at 1.05 MB/s. For the low-traffic case, there is only

about a 5% gain in UPT when using Q-learning because the

SNs were already exploiting the many spectrum holes created

by the limited traffic activity at PNs. However, when Op. 1

has a higher traffic load, the SN significantly benefits from

Q-learning where the adaptive EDT leads to a median UPT

improvement of over 30%.

V. RELATED WORK

Adopting machine learning to wireless systems has been

considered in previous works with promising results. In [16],

the authors use Q-learning for dynamically choosing the

channel for cells as opposed to static assignments. In [17],

a decentralized Q-learning scheme is used for reducing the

interference seen by 802.22, PN users. Although Q-learning has

been considered for power allocations and channel assignments,

it has not been used, to the best of the authors’ knowledge,

for adapting a dynamic EDT for SNs in a shared spectrum

environment.
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Fig. 17. Change in UPT for Op. 1 and Op. 2 when Op. 1 has a 0.125 MB/s
(Low) and a 1.05 MB/s (High) average traffic arrival rates while Op. 2 always
has a 1.05 MB/s traffic arrival rate.

Overall, CBRS is still an emerging standard, but we can learn

from similar experiences on other bands. When considering

the coexistence of GAA users, there are many similarities to

unlicensed bands which has been studied extensively. Notably,

there is substantial work that has been done for the coexistence

of LTE and Wi-Fi nodes in unlicensed bands for LAA [12],

[13], [18], [19] with [20] using reinforcement learning to alter

the duty cycle of the LTE nodes. However, for CBRS, we

only consider the case of LTE nodes coexisting with another

LTE node that has a higher priority, which is a new area.

There has not yet been extensive studies for CBRS-specific

performance improvements; so far, there are only initial proof

of concept demonstrations reported. In [21], a field trial of

CBRS devices (CBSDs) working with the SAS was shown

where they suggest improvements to the SAS protocol based

on their results, and recently Verizon has deployed a CBRS

network in Florida [22].

VI. CONCLUSIONS

In this paper, we examined the challenges of using LBT for

PAL/GAA spectrum sharing in CBRS networks by evaluating

two different LBT schemes and showing that they can be used

to greatly improve SN UPT with a minor decrease in PN UPT.

To reduce the negative consequences of spectrum sharing on

the PN, we presented a novel, Q-learning algorithm that adjusts

SN opportunistic access via learning an optimal EDT for carrier

sensing. We showed that by using average and differential PN

buffer occupancy as the environmental observations, the SN can

improve their throughput by up to 350% with only marginal

losses to the PN UPT (4%). In future work, we can extend

the intelligence globally from the local learning framework

presented in this work, to jointly optimize within and across

different shared-spectrum deployments, and examine how this

work can scale to situations with multiple SNs.
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