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Abstract—Existing rate adaptation protocols have advocated
training to establish the relationship between channel conditions
and the optimal modulation and coding scheme. However, wire-
less devices for outdoor and vehicular communications frequently
enter environments they have not yet encountered and therefore,
have insufficient training for rate adaptation decisions. In addi-
tion, protocols are often optimally tuned for indoor environments
but, when taken outdoors, perform poorly. In both cases, the
decision structure formed offline lacks the ability to acclimate
to a new situation on the fly. The diverse and ever-changing
environments of increasingly mobile wireless devices call for a
rate adaption scheme that can quickly adjust accordingly to
form a unique environment set established by the user. In this
paper, we propose an on-the-fly, in-situ training (FIT) mechanism
which addresses the challenges of making rate decisions with
unpredictable fluctuation and lack of repeatability of real wireless
channels. We design and conduct extensive experiments on
emulated and in-field wireless channels to evaluate the in-situ
training process, showing that the rate decision structure can be
updated as channel conditions change using existing traffic flows.

I. INTRODUCTION

Environmental variations make it challenging to achieve
high throughput over wireless networks, especially with in-
creasingly mobile and vehicular devices. To increase the
spectral efficiency when the channel quality improves and
maintain a robust connection when channel quality degrades,
wireless devices must detect changing channel conditions and
adapt their transmission rate accordingly.

One type of rate adaptation commonly used in practice is
based on packet losses due to its ease of implementation.
However, loss-based rate adaptation suffers from poor rate
decisions due to a confusion between collision-based and
channel-based losses [1]-[3]. A second type of rate adaptation
uses channel quality directly (i.e., SNR-based protocols) and
can distinguish between such losses. However, to perform
optimally, SNR-based schemes require a particular type of
wireless device to train in each environment in which it is
used [4]. If the training is done offline, even excessive levels of
training may not capture the relationship between SNR and the
optimal transmission rate in different environments. Further, if
a comprehensive decision structure were to be achieved for all
contexts, the training still will likely be hardware dependent
(i.e., the decision structure formed would be based on the
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device type). The notion of channel quality differs across
devices due to various factors from the RF front end, antennas,
and gain control mechanisms to the type of channel quality
metric and averaging thereof. All of these factors lead to a
distortion of the theoretical channel quality to transmission
rate relationship, upon which prior SNR-based protocols have
relied [5], [6].

Nonetheless, since mobile and vehicular nodes are now
equipped with a plethora of sensors, they can establish a
clearer notion of the environmental context with collected
sensor information [7], [8]. Context-awareness can leverage the
collected context information to facilitate the convergence of
optimal transmission parameters when the user is transitioning
across different environments. Context-aware rate adaptation
protocols are just beginning to form with the consideration of
vehicular or pedestrian speed, the direction of motion, and/or
channel type information [7], [9], [10].

However, most rate adaptation mechanisms are based on
a set of predefined decision structures, which map wireless
measurements, e.g., SNR, to the performance of transmission
rates for a finite set of environment types. New environments
would need a different SNR to rate mapping. These prede-
fined decision structures are not adaptable to new wireless
environments and not effective when new environments are
encountered, resulting in poor rate decisions, low throughput,
and lack of robustness. For example, despite a exhaustive level
of training on an SNR-based protocol in one environment, the
performance of the rate decisions and resulting throughput
could still be very poor if the environment of training is
different than the environment of operation. To collect enough
training data in the new environment to cover all possible
situations, there is a delay between training data collection
and deployment of the new decision structure with a stable
performance. In response to the aforementioned rate adaptation
challenges, a key question that we seek to address in this work
is the following: Since users have been shown to have a unique
set of environments [8], can the training for each user’s rate
decision structure be efficiently customized on the fly in the
environment of operation?

In particular, we investigate two challenges for in-situ
training based rate adaptation: 1) How can training data be
collected and leveraged across highly dynamic and diverse en-
vironments? 2) How can the rate adaptation decision structure
be modified according to newly-collected training data? In an
attempt to solve these challenges, we design, implement, and
evaluate an on-the-fly, in-situ training (FIT) framework. The
main contributions of this paper are summarized as follows:

e« We propose FIT, an on-the-fly, in-situ training based

rate adaptation framework where the decision structure is



adjusted according to the dynamic wireless conditions and
environments when new context information and resulting
transmission rate performance is observed.

o In contrast to offline training based adaptation methods,
the proposed method requires no additional overhead.
In this work, we directly use wireless performance and
context information from existing data transmissions (i.e.,
there is no need to generate additional overhead traffic to
train for rate decisions).

« We implement the proposed FIT framework on an off-
the-shelf platform and test its performance in the field
to demonstrate the significant impact of in-situ training
updates in rate selection performance.

The remainder of the paper is organized as follows. We
introduce our solutions to challenges for in-situ training and
the proposed FIT framework in Section II. In Section III, we
compare the performance of FIT with a purely SNR-based
method, the offline training based algorithm, and Minstrel with
emulated and in-field data and in-field experimental evaluation.
Finally, we conclude the paper in Section IV.

II. ADAPTATION FRAMEWORK

We first introduce the notation used in this work. Let set
A = {A;1,Ay,..., AL} represent the various attributes or
context information that are available in a particular system,
where L is the number of available context attributes. Let
M = {mq,ma,...,myr} represent the set of transmission
modes (i.e., modulation and coding schemes) available in a
given system, where M is the number of modes.

In this paper, the optimization metric of interest is the
measured throughput G. We use the notation G(m;) to denote
the throughput of the i-th transmission mode. The throughput
is calculated as:

lpayload (mi)

(1)
lpacket(mi)

where PER(m;) is the measured packet error rate, R(m;) is
the physical layer data rate, and lpayload(mi) and lpacket(mi)
are the size of the payload and the packet, respectively.

We consider a wireless node that has knowledge of the
following context information: channel type and vehicular
velocity, in addition to the measured SNR. We choose the
context information set A as:

A ={A; = channel type, As = velocity, A3 = SN R}.
(2)

Two different channel conditions are said to belong to the
same channel type if the performance (as measured by the
throughput) of the various modes exhibits similar behavior for
all values of the various attributes (the recognition of channel
types is discussed in [11]). The velocity refers to the relative
velocity between the transmitter and receiver nodes. In this
adaptation system, the transmitter needs to select the desired
mode based on the available context information. The objective
is to select a mode from M to maximize the throughput given

the context information 4. Formally, the problem is defined
as follows:

maXym,; e M Gce 0,8k (mz)

given A =cp, Ay = v, A3 = s, 3)

Let C = {c1,¢2,...,¢c}, V = {v1,v9,...,0v}, and S =
{s1, 82,...,85} represent, respectively, the sets of channel
types (A1), velocity (As), and SNR (Aj3) values in the training
set. We use G, v, .5, (m;) to denote the throughput of the i-th
mode m; with the context tuple {cg,v;, sg}.

We make the following remarks regarding the problem

formulated in (3):

o Although we use throughput as the indicator of link
performance, other metrics such as BER, PER, delay, or
jitter could also be used.

o To stay in focus, we consider only SNR, velocity, and
channel type as the context information in this paper.
However, different context information from the trans-
mitter side or the receiver side can also be used in the
proposed framework depending on the users’ need.

o The 802.11a/b/g and 802.11p systems use a single 20
MHz or 10 MHz channel. The 802.11n doubles the
channel width from 20 MHz to 40 MHz and offers a wide
range of rate options in addition to two MIMO modes,
the diversity-oriented single-stream (SS) mode and the
spatial multiplexing driven, double-stream (DS) mode.
FIT can equally treat each pair of rate and MIMO mode
combination as one rate adaptation option and be easily
integrated into advanced protocols.

In the following subsections, we first briefly review the
offline training based framework and then present our solutions
to the aforementioned two challenges for in-situ training in
rate adaptation. Based on the solutions, we propose an in-situ
training based rate adaptation framework, FIT.

A. Prior work

In prior work, we developed an offline training based rate
adaptation framework [10], [12]. In the offline training phase,
we consider that the training set includes the knowledge of
the optimal transmission mode to use for each combination
of context attributes. We use offline training to generate a
mapping from the set of context attributes to the optimal mode.

The established decision structure for rate adaptation
can suggest the potential optimal settings for the transmit-
ter/receiver pair according to the channel conditions. Among
classical learning methods, the decision tree is widely used
due to its low complexity and competitive performance on the
accuracy of prediction [13], [14]. Such algorithms typically use
training data to derive an empirical relationship between the
inputs (attributes) and the desired output (class). An example
of the resulting relationship is represented using a tree-like
classifier as shown in Fig. 1. During the rate adaptation phase,
this tree serves as a look-up table to decide the optimal
transmission mode for each context tuple {c¢,v;,sy}. For
instance, when the received SNR is in the range (15 dB, 32 dB]
and the velocity is higher than 45 kmph, mode 3 is suggested
as the optimal mode based on the decision structure in Fig. 1.
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Fig. 1. An example decision tree for rate adaptation.

Once the tree-based classifier is generated based on classical
tree building algorithms, e.g., C4.5, adapting its structure
requires repeating the entire training process with a new or
enlarged training set, which is time-consuming and difficult
to implement in practice. Even with high levels of training
(costly), new environments are still likely to be encountered,
motivating us to investigate in-situ training based framework
that can quickly find its context and adjust accordingly. In the
following subsections, we first present our solutions to two
main challenges for implementing in-situ training based rate
adaptation, and then we propose the on-the-fly, in-situ training
framework for rate adaptation (FIT).

B. Challenge 1: No Knowledge of Optimal Mode

The decision structure with the offline method models the
relationship between the context information and the optimal
mode. To derive the decision structure, an offline training
based method requires the knowledge of the best mode m*
in the training data which can be obtained as:

m* = arg max Gegvg s (M)
givenA, = ¢y, Ay = vj, Az = si,. 4)
The training data for the offline method is represented as
{ce,vj, 85, m"}. 3)

Due to the fluctuating wireless channel, we only know the
performance of a single mode or a random subset of modes for
each combination of the attributes values. In other words, there
is not enough time to sequentially try each rate for a given
channel condition before that channel condition changes. Thus,
a major challenge for in-situ training is that the optimal mode,
m*, is not available on the fly. Instead of using best mode
in the offline training based framework, we have to alter the
input and output of the decision structure for rate adaptation.
In this section, we introduce our approach to prepare training
data for in-situ training based rate adaptation, solving the first
challenge.

To address this challenge, we directly learn the relationship
between the context information and the throughput of each
mode. The training data includes collected context informa-
tion, the mode index, and the measured throughput which is
represented as:

{cfavjask;miaGcz,vj,sk (mz)} (6)

In the training phase, we measure the throughput G, ., s, (1)
that the system can achieve using mode m; in channel type c,
with SNR s, and velocity v;. With a trained decision structure,
the throughput for a given mode m; with a certain context tuple
{c¢,vj, s} can be predicted.

The decision tree can learn from continuous attributes;
however, it does not accept continuous values (through-
put) as the predicted labels, indicating we can not directly
use {cg, v, Sk, Mi, Gey o5, (M)} in the training process. To
tackle this issue, we introduce a quantization technique, which
is widely used in decision tree learning process when the
attribute is continuous [15]. With this strategy, the training
data will be,

{CZ7Uj7Skath[GC(,’Uj,Sk(mi)}}‘ (7)

Comparing (7) to (5), the new format of the training set
does not need the best mode, making in-situ training possible.

C. Challenge 2: Classifier’s Inability to Incrementally Retrain

The previously mentioned training methodology derives the
decision structure as a look-up table based on the training data
prepared offline and the decision structure will be embedded
in the rate adaptation framework. However, the look-up table
is static, and the entire training process must be restarted
from the beginning for a newly encountered environment. In
contrast, we develop an online version of the decision tree
based learning algorithm to retrain the classifier incrementally
according to the new set of encountered environment, thereby
solving the second challenge. Our algorithm is based on the
incremental learning algorithm in [16] and is able to efficiently
update the existing tree with new training data.

The decision structure resulting from our algorithm is rep-
resented as a binary tree. The general procedure is based on
Quinlan’s information gain ratio [17]. If the classifier can
predict the class label of new training data correctly, the data
will be added to the set of retained data related to the leaf node.
Further, the testing condition as well as the optimality of the
sub-tree involved in the classification of the new data, will
be modified based on the changed dataset using the attribute
selection metric. The order for checking the optimality of a
sub-tree is from the root node to its sub-trees. If the value for
one of the attributes is missing, the data will be passed down
the right branch that does not satisfy the testing condition.

The decision tree derived by the in-situ training process can
be adapted to newly-collected data efficiently by updating a
sub-tree. A sub-tree is usually much smaller than the whole
decision structure, making it possible to implement incremen-
tal in-situ training for rate adaptation.

D. FIT Framework

Based on the solutions to the two challenges, we introduce
our in-situ training framework for SNR-based rate selection.
Instead of directly deriving the mapping function for rate
adaptation by the offline training based algorithm as:

fofftine : {ce;vj, e} — m”, (8)

first, we derive the function below using online learning with
the proposed format of the training data in (7),

fFIT : {657 Vj, Sk, mL} — Q[GCZ,Uj,sk (mz)] (9)

Then, given the collected context information, (9) is able to
predict the throughput for all the modes. Subsequently, the best



mode m* is selected by comparing the predicted throughput
values of all modes as:

m* = H},?XfFIT(Cf’ Vj, Sky ). (10)

The framework of FIT is depicted in Fig. 2. With the
collected context information { A, A, ..., Ar}, FIT performs
rate adaptation as follows:

o Step 1: Initialize the decision tree 77

o Step 2: For new incoming data {4y, As,...,Ar} and
the mode index ¢ in M, i.e., m; € {my, ma,...,
myz}, the decision tree T' predicts the throughput values
of m; as G(m;);

o Step 3: Choose the mode m* with the highest predicted
throughput (10) to configure the transmitter;

e Step 4: Measure the throughput performance with
mode m* and prepare a new training data of
{Alv A27 s 7AL7 m*7 Q[G(m*)]}’

o Step 5: Update the decision structure 7' with the new
training data {A1, Aa,..., A, m*, Q[G(m*)]};

« Step 6: Go to Step 2.
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III. EXPERIMENTAL EVALUATION

In this section, after introducing the experimental setup
and its implementation, we first investigate the effects of the
proposed training data structure and quantization technique.
We then evaluate the FIT framework with emulated data and
test it with in-field mobility. We compare FIT with the static
offline training based method, a purely SNR-based method and
Minstrel.

A. Experimental Setup

To collect data for analyzing and comparing the perfor-
mance of rate adaptation frameworks, we first use repeatable
and controllable wireless channels, using the Azimuth ACE-
MX channel emulator [18]. We compare the link adaptation
frameworks in four standardized channel models specified
by International Telecommunication Union (ITU). We use
Channel 1, 2, 3 and 4 to represent the ITU Pedestrian A and B
and ITU Vehicular A and B channel model, respectively [19].
The emulator allows us to test the performance of all available
modes under each channel, SNR, and velocity combination
to determine the actual best mode via exhaustive search.
For an upper bound on rate adaptation performance, we use
prediction accuracy, the throughput improvement over a rate
adaptation method based only on SNR, and the throughput
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gap from maximum achievable found via exhaustive search as
performance metrics.

All experiments are conducted by using an off-the-shelf,
802.11-based Gateworks 2358 platform with Ubiquiti XR-2
radios. Our hardware supports the following eight modes for
link adaptation: 6, 9, 12, 18, 24, 36, 48 and 54 Mbps. In each
channel type, we collect the training data under 40 different
scenarios, which are combinations of eight attenuation values:
0, 6, 12, 18, 24, 30, 36, 42 dB and five velocities: 0, 30, 60,
90, 120 kmph. The testing data (i.e., the data used to test the
efficacy of the training) is collected with random velocities
and attenuation values that are distinct from the training data.

To implement FIT in hardware, we use a Linux laptop,
which runs the in-situ training based on the received training
data. We build a special version of the Atheros Linux wireless
driver - ath5k, in which the rate control module has been
redesigned to act as an agent between the training laptop and
the transmitting module. The driver is designed to pass the
performance data to the laptop and to update the tree structure.
We install the modified driver into the Gateworks 2358 board
as the transmitter node, essentially changing the functionality
of the kernel space. By comparison, the applications running in
the user space are impervious to this change. Fig. 3(a) shows
the above structure of the transmitter. Our system setup is
shown in Fig. 3(b). As the velocity is not a common parameter
for the wireless driver, we use code running in the user space
to feed the velocity from the GPS module to the kernel
space. This information is updated every second. Note that
the computer in Fig. 3(b) only functions as a controller of the
channel emulator to ensure the consistency of each experiment.
It does not exchange any information with the wireless nodes.

B. Effects of Training Data Structure and Quantization

To solve challenges for FIT-based rate adaptation, we
proposed a new training data structure and a quantization
technique. In this subsection, we evaluate the effects of the
new training data structure and the quantization technique.

In each context, we record the channel type, SNR, velocity,
and throughput for all eight modes. To investigate the effect of
the granularity of the quantization process on the performance
of the proposed framework, we quantize the throughput value
into Ng discrete values and vary Ng from 32 to 1000
with the following values 32, 63, 125, 250, 500, 1000. The
performance of FIT with respect to N¢ is demonstrated in
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TABLE I
THROUGHPUT PERFORMANCE COMPARED TO SNR-ONLY METHOD AND
THE MAXIMUM ACHIEVABLE THROUGHPUT WITH VARIOUS Nq. “I”
REPRESENTS IMPROVEMENT OVER SNR-ONLY METHOD, AND “G”
DENOTES GAP FROM MAXIMUM ACHIEVABLE THROUGHPUT.

Ng 32 63 125 | 250 | 500 | 1000
Channel 1 1 (%) -17 | -18 | -21 -14 | -13 -17
G (%) | 26 27 30 23 22 26

Channel 2 1 (%) | 433 | 430 | 461 | 434 | 407 | 415
G (%) | 22 23 17 19 28 28

Channel 3 1 (%) 172 | 140 | 168 | 161 | 157 165
TG | 22 28 24 26 30 23

Channel 4 1 (%) 171 | 177 | 164 | 168 | 161 160
G (%) | 28 25 33 32 35 33

Fig. 4. As Ng increases, the accuracy of rate prediction
first increases and then decreases. Increasing the granularity
of the quantization can help the decision tree distinguish
between roughly equivalent throughput values, but too many
class labels would result in a complex structure of the binary
decision tree. To achieve the best performance, we should find
a trade-off between the granularity of the quantization and the
complexity of the decision tree. We also compare FIT with an
SNR-only method, and the comparison with respect to Ng
are shown in Table I. We observe that the training based
rate adaptation framework with the proposed training data
structure consistently outperforms the SNR-only method with
varying Ng. On average, the training based framework with
format 2 obtains 148% relative improvement in throughput.
Since channel 1 is a slow-fading channel with a small delay
spread, the SNR-only method performs effectively in this
situation.

C. FIT Evaluation with Channel Emulator

In this subsection, we test the performance of FIT with
emulated data with two kinds of trials: (1) training and testing
in the same channel type, and (2) training and testing in
different channel types. We collect training and testing sets
in four different channel types.

The training data set contains 40 data points with velocities
no higher than 60 kmph. The testing data set contains 26 data
points with velocities higher than 60 kmph, new scenarios
never encountered in the training set. The results are shown
in Table II. With the offline-based method, the link adaptation
framework is embedded in the classifier derived from the train-
ing set and tested with the testing set. In contrast, FIT retrains
the link adaptation decision structure during the testing phase
after each testing point collected in one context. Comparing
the results between the offline-based method and FIT, we note
that with the adaptive decision structure (FIT) improves the
rate selection accuracy by 71% when training and testing in the
channel 3 and by up to 333% when training in channel 4 and
testing in channel 3. Similarly, FIT improves the throughput
performance by 39% when training and testing in the channel
3 and by up to 345% when training in channel 1 and testing
in channel 3. These results demonstrate the necessity and
effectiveness of in-situ training, which is performed on the
fly.

D. FIT Real-Time Performance Comparison

1) Robustness to Channel Transitions: The training sets for
different channel types represent the various characteristics of
the channel types. In other words, if the system is only trained
with the training set from one channel type, without FIT
training, the accuracy of the rate prediction will degrade when
the system encounters a different channel type. In contrast, if
FIT training is employed in such a case, the system will adapt
to the new environment and achieve better performance.

To show the performance improvement of the FIT training
over the offline training, we have created several scenarios on
the channel emulator which involve channel type transitions.
By using the channel emulator as the experimental setup
shown in Fig 3(b), we expose both online training and offline
training in the same channel-type transitions to show that the
former has a higher adaptability to the environment variation
than the latter. In this particular experiment, for each channel
transition, the system is only trained with the training set of
the first channel type so that it initially knows nothing about
its performance in the second channel type.

TABLE 11
PERFORMANCE OF FIT AND OFFLINE-BASED METHOD ON EMULATED DATA. “A” REPRESENTS THE ACCURACY OF RATE PREDICTION, “I” REPRESENTS
IMPROVEMENT OVER THE SNR-ONLY METHOD, AND “G” DENOTES GAP FROM MAXIMUM ACHIEVABLE THROUGHPUT.

Channel Training: 1 Training: 2 Training: 3 Training: 4
A%) T1(%) T G(%) | A(%) [ 1(%) [ G(%) | A(%) [ Il%) | G(%) | A(%) | I(%) | G(%)

Testing;: 1 Offline 0 -81 83 31 -46 53 12 -31 37 0 -55 58
) FIT 46 -24 29 62 -7 15 46 -28 33 65 -8 I5
Testing: 2 Offline 8 149 67 73 549 15 19 313 46 50 524 19
) FIT 62 384 37 73 585 IT 46 429 31 77 594 9
Testing: 3 Offline 0 171 74 27 648 29 38 593 34 15 721 22
crer FIT 62 762 18 69 842 10 65 822 12 65 769 17
Testing: 4 Offline 0 210 68 58 681 19 16 538 34 58 692 18
ce FIT 26 389 49 53 656 22 47 668 20 58 716 15
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Fig. 5. Performance with channel transitions.

Fig. 5 plots the per-second throughput obtained in one
transition using both training methods. The transition happens
at approximately second 35. It can be seen that the offline
training can (at most) achieve similar performance as the
online training before the transition. However, its performance
falls below that of the scheme with online training. Table III
shows that FIT training tends to provide throughput gains over
offline training when new environments are encountered.

TABLE III
THROUGHPUT COMPARISON FOR DIFFERENT CHANNEL TRANSITIONS
Transition Offline  In-situ  Improvement
Channel 1 to Channel 2 8245 9452 15%
Channel 2 to Channel 1 8992 13664 52%
Channel 3 to Channel 4 7736 7220 -7%
Channel 4 to Channel 3 6274 7932 26%

2) FIT Evaluation with In-Field Mobility: This set of ex-
periments evaluates the effectiveness of FIT by performing in-
field trials. For mobility, the experimental setup includes two
nodes located in different vehicles, which act as the transmitter
and the receiver, respectively. The receiver’s location is fixed,
and the transmitter equipped with FIT is driving along the
street. The antenna of each node is mounted on a car (2 meters
in height). The built-in GPS module can inform the transmitter
node of its velocity. As the receiver node is fixed, the velocity
is the relative speed between the transmitter and the receiver.

TABLE IV
THROUGHPUT COMPARISON FOR IN-FIELD EXPERIMENTS (MBPS)

Location | Offline  Minstrel  FIT
I 0.72 2.09 2.71
2 1.01 2.22 3.36

Location 1 is along the main street of the SMU campus,
and the street is surrounded by trees and buildings. Location
2 is a park area. The park playground and trees can cause
dramatic degradation of signal strength at certain locations. For
the offline training based framework, we train four decision
structures with training sets collected from the four broadly
used channel types defined by the International Telecommuni-
cation Union (ITU). We test their performance and select the
one with the highest measured throughput. Table IV shows the
average throughput comparison for different algorithms. The
channel types of the in-field propagation environments could

belong to another type that is beyond the four channel types
defined by ITU. Therefore, the offline training based frame-
work with predefined decision structures has worse throughput.
FIT updates the decision structures with in-situ training on the
fly to track the changing environment and always obtains the
best performance. At Location I, FIT obtains 30% and 276%
relative throughput improvement over Minstrel and the offline
training based framework, respectively. At Location 2, gains of
51% and 233% relative improvement are similarly achieved.

IV. CONCLUSION

In this paper, we discussed the two challenges posed when
training rate adaptation on the fly in the field when encoun-
tering new environments. We presented our solutions to these
challenges by introducing a new data structure for training
and applying an online adaptive decision structure. In the
future, we will explore the importance of other environment-
related context information and how users can share FIT-
based training to more effectively converge to optimality in
unencountered scenarios.
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