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A B S T R A C T

Cellular networks are susceptible to being severely capacity-constrained during peak traffic hours or at special
events such as sports and concerts. Many other applications are emerging for LTE and 5G networks that inject
machine-to-machine (M2M) communications for Internet of Things (IoT) devices that sense the environment
and react to diurnal patterns observed. Both for users and devices, the high congestion levels frequently lead
to numerous retransmissions and severe battery depletion. However, there are frequently social cues that could
be gleaned from interactions from websites and social networks of shared interest to a particular region at a
particular time. Cellular network operators have sought to address these high levels of fluctuations and traffic
burstiness via the use of offloading to unlicensed bands, which may be instructed by these social cues. In this
paper, we leverage shared interest information in a given area to conserve power via the use of offloading
to the emerging Citizens Broadband Radio Service (CBRS). Our GreenLoading framework enables hierarchical
data delivery to significantly reduce power consumption and user fairness variation and includes a Broker
Priority Assignment (BPA) algorithm to select data brokers for users. With the use of in-field measurements
and web-based Google data across four diverse U.S. cities, we show an order of magnitude power savings via
GreenLoading over a 24-hour period, on average, and power savings up to 97% at peak traffic times. Finally,
we consider the role that a relaxation of wait times can play in the power efficiency of a GreenLoading network.

1. Introduction

While the focus of cellular congestion is frequently placed on the
frustration that users experience when they lack the ability to call, text,
or receive web-based information, there is a byproduct of excessive
re-transmissions in a congested state: severe battery expenditure. The
problem could be even more extreme for battery-limited devices as-
sociated with the emergence and potential explosive growth expected
for Internet of Things (IoT), Vehicle-to-Vehicle (V2V) and Machine-to-
Machine (M2M) based communication in LTE and 5G networks [1,2].
Such congestion is hard to alleviate since the data-intensive services
and scale of mobile devices has grown the global data traffic 18-fold
over the last 5 years and expected to reach 49 exabytes per month by
2021 [3].

One promising solution is to deploy traffic offloading, where cellular
traffic is moved to less-congested, often unlicensed spectrum [4]. The
primary objective of traffic offloading is to support more capacity-
hungry services while simultaneously preserving satisfactory Quality-
of-Service (QoS). Small cells, WiFi networks, and opportunistic com-
munications have recently emerged as the main cellular offloading
technologies [5]. While smaller cells have helped, simply offloading
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traffic from macro cells to small cells may not increase the transmission
rate, improve the user experience, or reduce power expenditure. Some
work has investigated this relationship between energy savings and
traffic offloading to small cells [4]. Other work has focused on the
switching times and performance improvements for cellular offloading
to WiFi [6]. The use of WiFi or even white space bands has also been
advocated for energy-efficient cellular offloading [7].

However, there remains a yet untapped spectrum resource for
cellular offloading: the Citizens Broadband Radio Service (CBRS) for
shared wireless access using the carrier frequencies of 3550–3700 MHz
(3.5 GHz Band). Unlike WiFi and white spaces, CBRS is expected to be
fully operational in the context of 5G. CBRS access will be managed
by a dynamic spectrum access system, conceptually similar to the
databases used to manage TV white space devices but at faster time
scales. The three tiers of access are: Incumbent Access (existing users
of 3650–3700 MHz), Priority Access (network operators may purchase
up to seven 10 MHz Priority Access Licenses (PALs) in a census track
from 3550–3650 MHz), and General Authorized Access (unallocated
bandwidth from the first two tiers). Hence, up to 150 MHz may be
available in a given area for opportunistic use [8].
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Nomenclature

𝑡 Time slot
𝑁 Set of users
𝑈 Regular users
𝐵 Selected data brokers
𝐹𝐶 Set of cellular channels
𝐹𝑠 Set of CBRS channels
𝑓𝑚 Max–min fairness ratio
𝑓𝑗 Jain fairness index
𝐺(𝑡) User access channel schedule
𝐷 User demand
𝑊 User tolerance time window
𝜂 Channel capacity
𝛾 Channel bandwidth
𝜎 Degree, number of connected neighbors
ℎ Background noise
𝑃𝑠 Standby power consumption
𝑃𝑡 Transmission power consumption
𝜆𝑠 Arrival rate of a queue

Acronym List

CBRS Citizens Broadband Radio Service
FIFO First-In First-Out
IoT Internet Of Things
M2M Machine to Machine
PALs Priority Access Licenses
QoS Quality of Service
SNR Signal-to-Noise Ratio

The time and place of network congestion can often stem from
mutually-shared environmental factors, causing a surge in data (e.g.,
roadway conditions, audio/video from live events, or emergency situ-
ations). These shared interests and the data redundancy thereof have
largely been overlooked when optimizing offloading strategies in terms
of capacity and power consumption [9]. In this paper, we leverage
shared interest information in a given area to conserve power via
the use of offloading to the emerging CBRS spectrum. To do so, we
use a data broker where mutual information can be broadcast to the
interested parties with the following hierarchical structure: consider
one extreme where all devices connect directly to the macro cell and
no data broker is needed. In this situation, the channel will be divided
for all users and the interference generated could cause poor data
rates over the network. Now, consider the other extreme where all
devices work through a data broker to receive their information. If the
amount of overlap in the shared interests is extremely high, there are
tremendous savings of the spectrum. However, if the amount of overlap
in the shared interests is extremely low, there could be severe delays
and greater power consumption in working through a data broker to
deliver unique content to individual users.

Hence, the crux of our work is establishing when it would be
beneficial to use a data broker based on the number of users in an
area, their mutual overlap of shared interests, the QoS response time
required for a given application, and the availability of spectrum for
offloading. These five factors are considered in our Broker Priority
Assignment (BPA) algorithm. With the use of crowdsourced Google
Maps measurements, we build a data transformation model that allows
analysis across four diverse U.S. cities. We show that GreenLoading
with shared interest data in a given area and the use of CBRS channels
can reduce the power consumed by an order of magnitude over a 24-h
period, on average. At peak traffic times, we find that our framework
can reduce power expended by 97%.

The main contributions of our work are as follows:

• We leverage Google Maps data to create a relationship between
the travel time and number vehicles over a 24-h period in four
major U.S. cities so that the commuting pattern of users on the
road can be characterized.

• We consider the data demand characteristics of these users in
these four cities and use it to motivate and analyze a GreenLoad-
ing data sharing framework, which uses our BPA algorithm to
quantify the power savings of our scheme.

• We perform measurement-driven numerical evaluations of var-
ious QoS scenarios and user distributions to show that CBRS
offloading can reduce the power consumption by up to 97%. We
further show that the power savings can be reduced by 95%
from a cellular-only configuration with a CBRS channel and the
GreenLoading framework. In dense urban areas, we show the
average power consumption over a 24-h period can be reduced
by over 10 times versus a cellular-only network.

• We perform measurement-based evaluation of user fairness to
show that CBRS offloading can improve the max–min ratio by 81%
and Jain fairness index by 64%.

• We show the role that the relaxation in user wait times plays
on the energy savings that one may experience using the Green-
Loading framework with a wide range of realistic scenarios in our
analysis.

The remainder of the paper proceeds as follows. In Section 2, we
motivate the use of shared interest demand profiles to construct the
GreenLoading framework, introduce our BPA algorithm, and analyti-
cally model the key aspects of their performance. We then consider
four major U.S. cities and quantify various QoS scenarios and the
energy savings that our GreenLoading framework offers in Section 3.
We discuss related work in Section 4. Finally, we draw conclusions in
Section 5.

2. GreenLoading framework

Cellular offloading refers to the mixed use of cellular data traffic
with various available unlicensed bands such as Bluetooth, WiFi, white
space, and CBRS networks. Cellular network operators are motivated to
leverage these unlicensed bands for greater capacity and higher QoS.
If offloading additionally provided power savings, there would be a
reduction in ongoing operating costs of the network and potentially a
solution in select rural infrastructures that have begun to depend on
solar power [10]. From the user perspective, if the offloading prevents
high levels of congestion and frequent re-transmissions, a higher level
of QoS may be possible with significantly reduced power savings,
extending the life of user and IoT devices. In this section, we discuss
the shared user interest information that may exist in a given area,
formulate the problem of energy-efficient cellular offloading, introduce
the GreenLoading network architecture, and explain the Broker Priority
Assignment (BPA) algorithm.

2.1. Shared interest data demands

Today, people live in intertwined social circles consisting of in-
person and online communities where digital content is commonly
exchanged. Frequently, the information being exchanged has a mutual
interest based on regional events at a particular moment in time.
For example, when traffic occurs on the roadways via unforeseen
circumstances or through normal peak commute times (especially in
dense urban areas), cellular users in a particular region will access
similar traffic data for construction or accident updates or alternate
route information as shown with Google Maps in Fig. 1. Even in
rural areas, natural disasters such as the recent hurricanes and wild
fires, have caused both physical and cellular congestion, where users
sought weather and navigation information such as with the Hurricane
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Fig. 1. Travel time variation on google maps.

Fig. 2. Hurricane Harvey evacuation (2017).

Harvey evacuation, as shown in Fig. 2. Special events occur across
sports, concerts, or theater that can attract a surge in demand that
ultimately prevents access to cellular networks. Here, data delivery
could be optimized if the mutual interest of that community event is
considered. These examples of shared interests is in contrast to the
individual interest that users uniquely possess.

More formally, for a group of users, we model the total demands
(𝐷𝑖(𝑡)) at a given point in time (𝑡) of each user (𝑖) as a mixture of shared
interests (𝐷𝑖(𝑡)[𝑆]) and individual interests (𝐷𝑖(𝑡)[𝐼]) data:

𝐷𝑖(𝑡) = 𝐷𝑖(𝑡)[𝑆] +𝐷𝑖(𝑡)[𝐼] (1)

While prior work leveraged the population diversity variation
among multiple area types [7], they have not included the shared
interest demand of users in a given area. The multiple transmission
rounds of shared interest data for users from an eNodeB can also result
in lack of fairness and potential starvation of users. Thus, how to
leverage the shared interest information in data offloading and organize
data sharing across multiple available frequency bands for a particular
group of users becomes the unique challenge for our GreenLoading
network design.

2.2. Energy-efficient cellular offloading problem

As it has previously been utilized in social networking for other
applications, the user data demand consists of a mixture of shared and
individual interests. Hence, when the users are requesting data, the
cellular eNodeB could recognize the common data being demanded and
apportion the users into small groups with an assigned data broker for
each group to broadcast the shared interest data. From the perspective
of Internet of Things (IoT), the eNodeB enables data and computing
power closer to the location where it is needed by the users as an edge
computing device. Edge computing refers to the enabling technologies
allowing computation to be performed at the edge of the network. In
particular, edge devices could circumvent end-to-end downstream data
on behalf of cloud services and upstream data on behalf of IoT services.
Here we define edge as any computing and network resources along the
path between data sources and central data centers. In terms of edge

computing device, the data can be processed at the edge for quicker
response time, more efficient processing, and reduced network conges-
tion. The data produced or required by users will scale exponentially,
making conventional central servers potentially unable to handle the
load. To alleviate this demand, processing could be performed at the
edge of the network [11]. We assume the system can adapt the channel
resource allocation according to the variation in traffic demand to
reduce power consumption. Generally, the 𝑁 users that are connected
to a particular eNodeB in a cellular network can have 𝑀 shared interest
groups. In our scenario, we assume that all 𝑁 users are equipped with
radios that are able to simultaneously transmit and receive over the
cellular and CBRS frequency bands with a log-normal path loss channel
model. Accordingly, a Shannon-based capacity of channel 𝜂 can be
given by:

𝜂 = 𝛾𝑙𝑜𝑔2(1 +
𝑃
ℎ
) (2)

Here, 𝛾 bit/s is the channel capacity, 𝑃 is the transmit power, and ℎ is
the background noise.

We assume that sufficient memory space exists to buffer traffic to
the users from each eNodeB. For this work, we consider only the po-
tential offloaded traffic to the CBRS band and the power consumption
thereof based on the network in which the traffic is served. Hence,
the traffic aggregated at the eNodeB could be distributed via cellular
or CBRS frequency bands in each mutual interest group. The traffic is
served in a first-in, first-out (FIFO) scheduling strategy.

We assume the coherence time is sufficiently large to allow a
constant channel capacity during any given time slot. Since the devices
are assumed to all have simultaneous transmission capability on the
cellular and CBRS frequency bands, the switching time is assumed
to be negligible in the system. We will introduce the calculation of
achieved channel capacity in Section 3. We further assume that the
traffic demand of a given user obeys a Poisson distribution, with the
vector noted as 𝐷(𝑡) = [𝐷1(𝑡), 𝐷2(𝑡),… , 𝐷𝑁 (𝑡)] and the sum demand rate
of 𝐷(𝑡) = 𝑠𝑢𝑚𝑁

𝑖=1𝐷(𝑖). The sum demand rate 𝐷(𝑡) is the total demand
generated from all 𝑁 users. To focus on the energy expenditure of
the choice of which band and which traffic to offload, we ignore the
sleeping energy and that a given operating radio will expend an equal
standby power per unit time, regardless of which frequency band is in
use.

Previous human factors research [12–14] shows that users have a
certain level of patience for a response. While the tolerance time of
users has been shown to vary across the traffic type (e.g., text, voice,
video), we assume an average value for the tolerated response time 𝑊
of all the users in the system to simplify the analysis. Since we assume
that the channel capacity is the maximum achievable per spectral
resource and that the resource is equally divided in time among users,
we could serve users faster with less response time by adding channel
capacity. However, the power consumption would increase according
to the amount of spectral resources allocated per unit time. Thus, if
users tolerate a relaxation in response time, less channel resources
(bandwidth and resulting energy) are necessary. Once users are in the
same group, each user will have peer-based comparison of their service.
The peer pressure is able to be modeled by fairness metrics. Here, we
employ two metrics to quantify the fairness in response time, the max–
min fairness ratio and Jain fairness index. The max–min fairness ratio
is:

𝑓𝑚 =
𝑚𝑎𝑥{𝑤𝑖}
𝑚𝑖𝑛{𝑤𝑖}

(3)

The max–min fairness ratio is achieved by an allocation if and only
if the allocation is feasible and an attempt to increase the allocation
of any flow necessarily results in the decrease in the allocation of
some other flow with an equal or smaller allocation. A max–min fair
allocation is achieved when bandwidth is allocated equally and in
infinitesimal increments to all flows until one is satisfied and then
among the remainder of the flows until all flows are satisfied or the
bandwidth is exhausted.

68



P. Cui, S. Chen and J. Camp Computer Communications 144 (2019) 66–75

Fig. 3. User response time.

Jain fairness index measures the variation of the allocation of the
resource [15]. Generally, the Jain fairness index measures the through-
put of the resource allocation. We convert the response time to average
throughput as:

𝑓𝑗 =
(
∑𝑛

1
1
𝑤𝑖
)2

𝑛
∑𝑛

1
1
𝑤2
𝑖

(4)

The Jain fairness index rates the fairness of a set of resources where
1
𝑤 is the average throughput, converted from the response time. The
result ranges from the best case of 1, when all users receive the same
allocation, to the worse case of 1

𝑛 , when only a single user gets all the
resources.

For broker nodes, the response time (𝑤𝑏(𝑡)) includes the common
data from the eNodeB to broker (𝑤𝑒𝑏(𝑡)[𝐶]) and individual data demand
of the broker (𝑤𝑒𝑏(𝑡)[𝐼]). Then, the broker response time is shown as
Fig. 3:

𝑤𝑏(𝑡) = 𝑤𝑒𝑏(𝑡)[𝐶] +𝑤𝑒𝑏(𝑡)[𝐼] (5)

For each general user, response time (𝑤𝑖(𝑡)) contains two parts: a
shared common data from broker transmission time (𝑤𝑏𝑖(𝑡)[𝐶]) and
unique data from the transmission time of the eNodeB (𝑤𝑒𝑖(𝑡)[𝐼]).

𝑤𝑖(𝑡) = 𝑚𝑎𝑥{(𝑤𝑏(𝑡) +𝑤𝑏𝑖(𝑡)[𝐶]), 𝑤𝑒𝑖(𝑡)[𝐼]} (6)

Here, via 𝑤𝑏(𝑡)[𝐶], we see that the response time from the eNodeB to
the data broker has a direct impact on all users. The greater the number
of available cellular or CBRS bands that are used by the data broker, the
less channel capacity is available for individual interests, as represented
by the wait time (𝑤𝑖(𝑡)[𝐼]). Hence, there is a trade-off between the
channel distribution for individual user interests and shared interests
via data brokers.

2.3. GreenLoading network architecture

To leverage the impact of shared interests to efficiently offload
cellular traffic to CBRS, we propose the GreenLoading network frame-
work and the BPA algorithm to form shared-interest user groups to be
serviced by the data brokers. To do so, we first formulate the wireless
network system as a discrete-time queuing system shown in Fig. 4. The
cellular and CBRS channels are represented as servers in the queuing
model. Multiple user groups may share the same CBRS channel, but we
assume there is no overlap of their service areas through power control
and spatial spectrum reuse. Thus, the queuing system has 𝑀 queues of
user groups and two layers to process the requests. Layer 1 exists from
the eNodeB to either users or brokers via cellular or CBRS channels (𝐹𝐶
+ 𝐹𝑠 servers in total). Layer 2 exists from the brokers to the users via
CBRS channels 𝐺 ∗ (𝑀,𝐹𝑠).

In GreenLoading, the matrix 𝑔𝑖,𝑗 (𝑡), 𝑖 ∈ (𝐹𝐶 + 𝐹𝑠), 𝑗 ∈ 𝑀 denotes the
wireless resource allocation for Layer 1 (data brokers and users con-
nected to the eNodeB directly) as shown below:

𝐺𝑖,𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

1 𝑖𝑓 𝐷𝑗 , 𝑖𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ
𝑟𝑎𝑑𝑖𝑜 𝑖 ∈ (𝐹𝐶 + 𝐹𝑠)

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(7)

Layer 2 (from the data brokers to users) has a similar resource associ-
ation representation as Eq. (7) with just 𝐹𝑠 (removing 𝐹𝐶 ).

Fig. 4. Greenloading system model.

To maintain the QoS, the queuing system restricts the expected
response time of the system 𝑤 to no more than the tolerance threshold
𝑊 :

𝐸[𝑤] ≤ 𝑊 (8)

In this work, we focus on analyzing the power savings for the Green-
Loading framework. To model the power consumption of the system,
we take the summation of the power consumed by each operating radio
when in two operating modes: standby and transmission. We assume
the on–off switching power consumption and the power consumed
when the device is asleep are comparable across both network types.
The value of 𝑃𝑖 denotes the total power consumption of the radio for
standby and transmission modes. In other words, when the radio is in
the sleeping state, 𝑃𝑖 = 0. Otherwise, 𝑃𝑖 is:

𝑃𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑃𝑠 ⋅ 𝑡 + 𝑃𝑡 ⋅ 𝜇
𝑁
∑

𝑗=1
𝐺𝑖,𝑗 (𝑡) ≥ 1

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

Here, 𝑃𝑠 is the standby power consumption of a radio, which has
a constant rate over time, 𝑃𝑡 is power consumption to transmit, and
𝜇 is the transmitted data, whose upper bound is the allocated channel
capacity of the radio. 𝑃𝑖(𝑡) is the power consumption of the radio during
each time slot.

Thus, to reduce the power consumption for GreenLoading, 𝑃𝑖 is
minimized subject to the QoS constraints. Specifically, the objective is
to minimize the power consumption:

𝑃 ∗(𝑡) = min {
(𝐹𝐶+𝐹𝑠)
∑

𝑖=1
𝑃𝑖(𝑡)} (10)

Here, 𝑃 ∗ represents the minimum operating power consumption re-
quired of the system for the response-time QoS. Our work focuses on
energy efficiency analysis, whereas previous work using game theory,
spectrum bidding, and economics has focused on policy, cost profit,
and user motivation [16]. Broker motivation and cost reimbursement
are implemented by counting the data retailed by the brokers, but the
exact details of the brokerage protocol are out of the scope of this work.

2.4. Broker priority assignment

Carriers typically provide a QoS agreement to customers. In our
work, the response time 𝑊 represents the duration of time from when
the user sends a request to when the server responds. With GreenLoad-
ing, the response time 𝑊 constraint has to be satisfied to maintain the
QoS. The channel quality in multiple cells varies throughout a single
time slot, which is mentioned as part of multi-user diversity in previous
works. Multi-user diversity is a form of diversity inherent in a wireless
network provided by independent time-varying channels across the
different users [17]. The diversity results from either interference inside
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or outside of the network or environmental variations. Some cells may
have idle CBRS channels, while the other cells may suffer from other
spectral activity. To address the channel capacity variation, we apply a
queuing model to estimate the QoS response time.

User density is one of the key points in wireless resource allocation.
As more users stay in or move into a cell, greater gains could result
from data sharing of common interests. Thus, the user distribution is a
critical aspect of GreenLoading. To identify the user mobility patterns,
we parse a data set from Google Maps regarding user density along
highways and other roadways. The experimental setup and results are
shown in Section 3. Our previous work formulated a multi-channel
system as an 𝑀∕𝑀∕𝑚 queuing system for network analysis [7,18].
However, WhiteCell used a single-layer approach to reduce the power
consumption through offloading cellular data to white space and WiFi
channels without the notion of shared interests. Other previous works
have also overlooked user shared interests for cellular offloading, es-
pecially for emerging CBRS spectral resources. To leverage the users
shared interests and CBRS channels for power savings, we first model
the queuing system with the aforementioned two layers and apply our
previous work on 𝑀∕𝑀∕𝑚 queuing theory to approach a solution for
the architecture of GreenLoading.

We label any channel allocation (cellular or CBRS) occurring on the
eNodeB to either the users directly or to a data broker as Layer 1 and
the channel allocation for the data broker to the user (CBRS) as Layer
2. Since CBRS channels could be used across both layers and there
exists dynamic assignment of channel bandwidth via the emerging
CBRS standardization, there could be variation of channel capacity in
the queuing model, contradicting the equal service capacity assumption
of the queuing system. Hence, a traditional 𝑀∕𝑀∕𝑚 queuing system
often used in previous multi-channel works is not directly applicable for
the GreenLoading system model. Channel switching can occur through
central channel control or a handover process [19].

For the case in which variation occurs either across CBRS channels
or between cellular and CBRS channels, we observe a heterogeneous
server queuing system when the maximum over minimum ratio is
greater or equal to 2 from Eq. (14). We apply the transformation model
in [20] to estimate the response time �̄�. In the transformation model,
the actual arrival rate for one specific server 𝜆𝑠 is defined as:

𝜆𝑠 = 𝐷𝑐𝑒𝑙𝑙∕(𝐹𝐶 + 𝐹𝑠) (11)

Here, 𝐷𝑐𝑒𝑙𝑙 is the traffic aggregated from the users in the cell, 𝐹𝑠
represents the set of CBRS channels assigned in the cell, and 𝐹𝐶 denotes
the cellular channels in the cell. In this work, the arrival rate 𝜆𝑠 is
defined in terms of the statistical average for a specific channel.

The other parameters are defined in Eq. (12) through (14).

𝜇𝑚𝑖𝑛 = min (𝜇1, 𝜇2,…𝜇(𝐹𝑠+1)) = �̄� (12)

𝜇𝑚𝑎𝑥 = max (𝜇1, 𝜇2,…𝜇(𝐹𝑠+1)) (13)

𝑘 = ⌊

𝜇𝑚𝑎𝑥
𝜇𝑚𝑖𝑛

⌋ (14)

When 𝑘 ≥ 2 the average response time of the heterogeneous
system [20] could be represented as:

�̄� = 1
1
3 �̄�(2𝑘 + 1) − 𝜆𝑠

(15)

Another interesting case occurs when only a single channel serves
the cell, either the cellular channel or part of a single CBRS channel.
This case can be simplified to a 𝑀∕𝑀∕1 queuing system that only has
one server in the model. When the traffic is able to be served by part of
a single CBRS channel, as in the latter scenario, the system converges to
a 𝑀∕𝑀∕1 queue. The response time �̄� can then be estimated from [21]:

�̄� = 1
𝜇+ −𝐷

(16)

Here, 𝜇+ represents the capacity of a single channel allocated in the
cell.

A third case may occur (which has similarities to the first case
discussed) when multiple channels are in use in the cell. However, the
key distinction is that the capacity of the channels is approximately
the same (i.e., when 𝑘 = 1). This scenario becomes a queuing system,
which has multiple equal capacity servers in the model. We label this
equal-capacity server case as a homogeneous 𝑀∕𝑀∕𝑚 system and is in
contrast to the first case, which is a heterogeneous 𝑀∕𝑀∕𝑚 system.

The average response time can be found through a search strat-
egy [21]:

�̄� = 1
𝜇∗ (1 +

𝑐(𝑚, 𝜌)
𝑚(1 − 𝜌)

) ≈ 1
𝜇∗

1
1 − 𝜌𝑚

(17)

where 𝜇∗ is the average capacity of channels in the 𝑀∕𝑀∕𝑚 queuing
system. A half-search strategy is applied to find the minimum value of
𝜇∗ to reduce the power consumed by transmission. Here, 𝜌 = 𝜆

𝑚𝜇∗ is
the traffic density, and 𝑐(𝑚, 𝜌) is the Erlang-C formula [21]. Through
the transformation model, we can further search the channel capacity
required for the response time constraints. We estimate the power
consumption jointly using the radio model of Eq. (9) and channel
capacity model of Eq. (2).

According to the queue-based QoS model and power consumption
model, we further analyze the GreenLoading system and propose our
greedy heuristic detailed in the BPA algorithm. In non-offloaded cellu-
lar systems, each user’s data demand is served by the eNodeB. In this
case, the power consumption includes both the standby power (𝑃𝑠 ∗
𝐷𝑖∕𝑟𝑐 , where 𝑟𝑐 is the transmission rate of the radio) and transmission
power (𝑃𝑡 ∗ 𝐷𝑖). The standby power consumption increases with the
transmission time, while the transmission power consumption increases
only according to the data transmitted. The power consumption of a
single user is represented as:

𝑃𝑖(𝑡) = 𝑃𝑠 ⋅
𝐷𝑖
𝑟𝑐

+ 𝑃𝑡 ⋅𝐷𝑖, 𝑖 ∈ 𝑁 (18)

With GreenLoading, the power consumption of each user’s demand
is satisfied across two layers: via the eNodeB directly or through a data
broker. The power consumption of each broker’s traffic to and from the
eNodeB would be the same as Eq. (18), since all the data is from the
eNodeB (and is synonymous with a user that is directly connected to
the eNodeB without the use of a data broker). However, each user of
a data broker has a power consumption from connections to both the
eNodeB and data broker. Hence, the power consumption is noted as:

𝑃𝑖(𝑡) = 𝑃𝑠 ⋅
𝐷𝑖𝐼
𝑟𝑐

+ 𝑃𝑡 ⋅𝐷𝑖𝐼 + 𝑃𝑠𝑂 ⋅
𝐷𝑖𝐶
𝑟𝑂

+ 𝑃𝑡𝑂 ⋅𝐷𝑖𝐶 , 𝑖 ∈ 𝑁 (19)

𝑃𝑠𝑂 is the standby power consumption of offloading radios in CBRS, and
𝑃𝑡𝑂 is the transmission power of offloading radios in CBRS. 𝐷𝑖𝐼 is the
individual traffic demand of user 𝑖, and 𝐷𝑖𝐶 is the shared interest traffic
demand of user 𝑖. 𝑃𝑠 is the standby power consumption of access point
radios in cellular or CBRS, and 𝑃𝑡 is the transmission power of access
point radios in cellular or CBRS. With the GreenLoading framework, the
power consumption savings can be represented for cellular offloading
by (from Eqs. (18) and (19)):

𝑃𝐺 = 𝑃𝑠 ⋅
∑𝑈 𝐷𝑖𝐶

𝑟𝑐
+ 𝑃𝑡 ⋅

𝑈
∑

𝐷𝑖𝐼 − 𝑃𝑠𝑂 ⋅
∑𝑈+𝐵 𝐷𝑖𝐶

𝑟𝑂

−𝑃𝑡𝑂 ⋅
𝑈
∑

𝐷𝑖𝐶 , 𝑖 ∈ 𝑁

(20)

Here, 𝐵 is the set of data brokers, and 𝑈 is the regular users in the
group. The total users of the cell can be represented by 𝑉 = 𝐵 + 𝑈 .
According to Eq. (20), the more Greenloading users, the more power
savings is achievable from the data broker layer. However, having more
Greenloading users requires more data brokers for offloading, which
will also increase the power consumption in the data broker layers.

To apply GreenLoading to the users with a hierarchical structure,
there are two questions that must be addressed: (i.) Which users should
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be assigned data brokers? and (ii.) To which data broker should Green-
loading users associate? To solve these questions, we identify the
most important vertices within a graph to the user graph, employing
centrality analysis. Centrality analysis has been widely used in various
areas, including pattern recognition, social networks, and software
defined networks [22–24]. As shown before, the channel capacity of
GreenLoading will be allocated to both brokers and regular users. For
the layer from the data broker to users, the spatial reuse of CBRS
channels enables the transmission power to be the highest allowable
by the FCC to reduce the transmission time for power saving.

In other words, the cover distance of the brokers is restricted
by the transmission power. As shown in Eq. (20), to achieve more
power savings, our target is to cover the users with less data brokers.
Centrality is an indicator of a node’s degree of connectivity for network
analysis. In the GreenLoading structure, we consider one-hop offloading
to restrict the delay for users. Thus, we choose the metric of degree to
identify which user is the best fit for a data broker. The degree is the
number of connected neighbors of the user with a certain transmission
power.

𝜎(𝑖) =
∑

𝑗
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, 𝑖, 𝑗 ∈ 𝑁, 𝑗 ≠ 𝑖 (21)

In the GreenLoading structure, reducing the response time of bro-
kers will benefit all users according to the transformation model. The
key point of power savings in each broker group is to alleviate the use
of the decentralized CBRS radios with the centralized cellular and CBRS
channels. To implement the division of the user groups and user-broker
association, we propose a Broker Priority Assignment (BPA) algorithm
to minimize power consumption in the system, as shown in Algorithm
1.

The input parameters to the BPA algorithm are the measurement-
based residual channel capacity, the crowdsourced user distributions,
the number of CBRS channels, and the capacity of cellular channels for
a given region. The more broker-covered users, the more power savings
could be realized for users in Greenloading. The user radios could save
power by communicating to closer brokers instead of the eNodeB. The
users must be sorted according to node degree, and a breadth-first
search is performed for users associating with a given eNodeB. The time
complexity would be 𝑂(𝑛𝑙𝑜𝑔𝑛) and 𝑂(𝑛 + 𝐸), where 𝑛 is the number of
total users, and 𝐸 is the total connections of the users. To turn off (or
disable) more cellular radios, the algorithm starts to replace the cell
radios that were directly providing access to users with data brokers.
The algorithm compares the three configurations of channel capacity
assignment in each cell and chooses the setup with the lowest power
consumption. The process is repeated until all traffic demand is served
or the channel resources have been completely allocated. Finally, BPA
outputs the power consumption and channel allocation of the system.

With the GreenLoading framework, a user’s response time will be
divided into two parts as shown in Eq. (6). Thus, the fairness metrics
defined in Eq. (3) and (4) will change with these two parts. Users who
associate with the same broker, share the same value of 𝑤𝑏(𝑡) which
will restrict the variation inside the group. Also, further reducing the
inter-group variation is the reduction in cellular traffic as the user is
offloaded. As a result, the two factors will lead to better fairness results
for Greenloading topologies.

3. Evaluation of GreenLoading framework

In this section, we introduce the experimental setup and evalua-
tion. In particular, we analyze the Broker Priority Assignment (BPA)
Algorithm in our GreenLoading framework and compare the power
consumption of BPA across various levels of cellular offloading in a
variety scenarios in four major U.S. cities.

Algorithm 1: Broker Priority Assignment (BPA)
Require:

𝑁 : Users
𝜎𝑓
𝑖,𝑗 : Connectivity of Users

𝐷: Traffic Demand
𝐹𝑠: CBRS Channels

1: Select or increase transmit power
2: if Users can be covered by brokers then
3: Calculate degree of each user
4: Rank users with connectivity degree ∑

𝑖,𝑗 𝜎𝑖,𝑗 , break ties according to
smaller index

5: Select brokers from users according to the ranking and remove
covered users

6: Repeat process until all users are covered by brokers or brokers reach
the upper bound

7: Rank brokers according to the user group size
8: end if
9: Repeat process for all users

10: Assign cellular and CBRS channel capacity to brokers
11: Calculate power consumption with Eq. (15), (16), and (17)
12: if channel allocation is feasible & unserved traffic demand exists then
13: List available options
14: if Single channel is chosen (𝑀∕𝑀∕1) then
15: Apply half-interval search to find minimum capacity for users
16: else if Homogeneous 𝑀∕𝑀∕𝑚 is chosen then
17: Allocate resources for cell
18: Find minimum capacity for users
19: else if Heterogeneous 𝑀∕𝑀∕𝑚∗ is chosen then
20: Add CBRS capacity to cell
21: Calculate power consumption with Eq. (15), (16), and (17)
22: end if
23: else
24: Get wait time of cell with all available resources
25: end if
26: Update system information
27: Calculate power consumption
Ensure:

Power consumption, resource allocation, and maximum wait time

3.1. Experimental setup and BPA run time

To evaluate the GreenLoading framework, we use crowdsourced
data from Google Maps across multiple variations of parameters. For
our analysis, all the users are covered by cellular service and have the
ability to access the CBRS frequency band. Previous work focused on
security, sensor networks, and social media networks having enabled
data sharing and exchange across distributed devices, applications, and
locations [25,26]. Other work has enabled data brokers to regular users
in a ratio of 1:3 or 1:4 [27,28]. Vehicular networks utilize cellular
networks and are expected to utilize CBRS networks as well. Since
vehicular nodes are frequently spatially clustered, one might expect
increased shared interests as opposed to other user groups [29]. Guided
by these prior works, we set the traffic demand per user as 0.5 Mbps
and assume 40% of the user demand will be shared among the total user
demand. Unless otherwise stated, we assume the tolerated response
time by users is 200 ms. We use a cellular channel bandwidth of
20 MHz and CBRS channel bandwidth of 40 MHz [30]. The transmit
power is set according to that specified by the FCC for both types of
channels. We set the noise level as -80 dBm for use in Eq. (2). The
user number is set to 2000 in the experimental setup unless otherwise
stated. In the simulation, the user traffic demands are modeled as the
total data payload. The throughput per second per session is stable for
each user and base station. The results are based on the summation
data of all users and base stations.

With the setup, we investigate the configuration of: (i.) cellular, (ii.)
cellular GreenLoading (shared interest only, no CBRS usage), (ii.) CBRS
and cellular (use of both bands but no shared interest consideration),
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and (iv.) CBRS and cellular GreenLoading. With multiple scenarios to
consider the power consumption performance, we analyze the user
density impact using in-field Google Maps traffic profiles. To convert
Google Maps data to the total population of vehicular users, we apply
the Department of Motor Vehicle (DMV) safety restrictions and estimate
the resulting number of users on the road according to the estimated
travel time. In our analysis, we assume each vehicle has only one
mobile user.

To understand the ability of the BPA algorithm to stabilize quickly
with shifting user demands and interests, we simulate the framework
on a Dell R730 server with Intel Xeon 2.6 GHz Dual 12 Core CPU with
320 GB of RAM. With the complexity discussed in 2.4, we measure the
simulation time in MATLAB with the Tic-Toc Technique. The run time
of dynamic random user demand varies between a minimum of 24.32 s
and a maximum of 27.92 s over 20 iterations with an average of 26.15
s.

3.2. Greenloading fairness characteristics

To ensure that the power savings observed in the following subsec-
tion are not at the expense of user starvation, we first establish the
fairness characteristics of GreenLoading. There are two predominant
metrics for doing so (as discussed in Section 2.2): max–min fairness
and Jain fairness index (see Figs. 5–7).

In Fig. 5(a), max–min fairness analysis across a range of user
density, focusing on 1500 to 2500 users, representing a macrocell
deployment. The users with cellular-only connectivity have the most
diversity in throughput. Users are fully competing for limited spectrum
resources in the cellular-only configuration. As shown in Fig. 5(a), the
cellular-only configuration has the poorest max–min ratio for the four
experimental scenarios. The Cellular with GreenLoading configuration
has improved the ratio by 53% on average (lowering the metric). In
GreenLoading, the shared data is distributed to the brokers first and
then received by the users. Both the competition reduction and the
second-layer broadcasting decrease the gap between the performance
among all users. The users who are located in these regions have worse
cellular performance, but the users who have better cellular access have
to wait on the first-layer transmission of shared data, thereby balancing
their total response time. The max–min fairness ratio is improved by
GreenLoading’s two layers of access, as all users have part of the wait
time cost of the broker, as represented in Fig. 6. Thus, the max–min
fairness is significantly improved when applying GreenLoading for the
cellular-only scenario. The scenario containing both cellular and CBRS
bands reduces the competition among users, allowing even better max–
min fairness among users due to additional resources and drastically
improving the performance of the users that were previously starved of
resources. The max–min fairness ratio improves by an average of 72%.
When GreenLoading is added to the scenario with both cellular and
CBRS bands, the improvement of the max–min fairness ratio continues
(now improved by 81% on average).

The results of the Jain fairness index is shown in Fig. 5(b). The Jain
fairness index is a representation of the distribution of a group of users’
throughput. The cellular scenario gets the lowest Jain fairness index
with the worst fairness out of all scenarios. GreenLoading improves
the Jain fairness index with cellular-only bands since the broker layer
reduces the competition and improves the second-layer throughput.
The additional resources of the CBRS bands with the cellular bands
improve the Jain fairness index compared to the cellular-only scenario.
GreenLoading with cellular and CBRS bands reaches the best Jain fair-
ness index result with an average improvement of 63% (corresponding
to an increase in the metric). Thus, with the GreenLoading framework,
the fairness among the users would improve as another feature of the
two-layer implementation.

Table 1
Number of users 24 h in urban areas.

Time 0 2 4 6 8 10 12 14 16 18 20 22
Austin 180 180 180 360 1620 960 1200 960 1440 1920 360 360
Detroit 120 120 120 180 720 480 720 540 720 960 180 120
NY 720 720 720 1080 1800 900 900 900 1080 1800 720 720
San Francisco 360 360 480 480 960 960 960 960 960 1080 480 360

3.3. Crowdsourced demand across four U.S. cities

We now investigate the user density variation on the four offloading
scenarios in terms of the total power consumption. In this particular
experiment, the user number varies from 1500 to 2500 as before.
The results from the user density variation are shown on Fig. 6(a).
We see that the power consumption will exponentially increase as
the user number increases to maintain the same QoS. Also, with an
increasing number of users, the data demand and standby power con-
sumption both increase linearly. However, if the users’ data demand
is served only by cellular channels, the transmit power required in-
creases exponentially. This rapid increase in the power consumption
is primarily due to the required increase in channel capacity to remain
below the QoS threshold, resulting in exponentially-increasing power
consumption to satisfy Eq. (2). Comparing the results across multiple
offloading configurations, with the GreenLoading framework applied
only to cellular channels with shared interests via data brokers, the
power savings achieved is 46.1%. Without shared interests and adding
CBRS channels to the cellular channel allows a power savings of 15%.
By adding the CBRS channels and using the Greenloading framework
(utilizing shared interests), the power savings is dramatic, reaching
a mere 2.9% that of the cellular-only configuration without shared
interest. This point occurs when the users scale to the greatest density.
The power gains would be even more significant with greater user scale
or when higher levels of demand are requested.

Since the 40% of shared interest information is an arbitrary choice,
we now consider a broader range of shared interest overlap in a given
user density. We expect the level of shared interest to greatly depend
on the event type causing cellular congestion (e.g., sports, concert, con-
struction, accident) and the environmental setting (e.g., home, office,
campus). Hence, we vary the user shared interest percentage of the
total data demand from 20% to 70% to investigate the impact on power
consumption. The results are presented on Fig. 6(b).

With the general experimental setup, since the total data demand of
users is held constant, the cellular and cellular with CBRS scenario power
consumption stays the same since the amount of transmitted remains
the same across all the variations of common interests. However, for the
GreenLoading framework which can capitalize on the shared interests,
even the cellular-only channels improve the power savings across all
the common interest configurations. With the use of cellular and CBRS
channels, as the shared common interests increases, greater power
savings are achieved. However, observe that when the shared interest
reaches a low point on the graph, there is an added overhead of using
the GreenLoading framework due to the extra standby power consump-
tion cost in the traffic being forwarded from the eNodeB through the
data brokers to get to the users (as opposed to the eNodeB directly
serving the users).

Further, we consider the impact of the QoS response time on power
consumption of GreenLoading. To do so, we set the response time
threshold from 200 ms to 700 ms with a 50-ms step size. The results
are shown in Fig. 6(c). With a decreasing QoS requirement, the power
consumption reduces exponentially. This can be explained by the lower
QoS response time required, needing less capacity for the users. Thus,
the power consumption reduces exponentially according to Eq. (2).

For the in-field analysis, we propose a data transformation model
from Google Maps to the user density across four major U.S. cities. To
estimate the number of users on the road, we record the driving time,
𝑡𝑐 , at the first minute of each hour from a certain residential area using
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Fig. 5. User fairness analysis.

Fig. 6. Power consumption based on: (a) number of users, (b) common interest level, and (c) QoS response time.

Fig. 7. Power consumption of various offloading schemes across four major U.S. cities.

Google Maps and distance 𝑑𝑐 from that residential area to a business
district. Using this Google Maps data and our transformation model,
we can observe how the diurnal patterns in major cities might impact
the GreenLoading power savings. Google Maps records traffic data to
estimate the drive time from one place to another. We did not find a
way to parse the number of users on the road at any point in time.
However, assuming drivers will maintain a safe driving distance from
one another, we refer to the Department of Motor Vehicle (DMV) safety
statistics and requirements to establish the user density on the road.
From this, we are able to estimate the total number of users according
to Google’s estimated travel time 𝑡𝑐 and travel distance 𝑑𝑐 .

To perform the transformation, the DMV has a two-second rule for
safe driving, meaning the driver needs at least a 2-s response time to
react to the vehicle directly in front of that vehicle. The average speed
of the vehicles on the road could be estimated from Google Maps data
according to 𝑣𝑎𝑣𝑔 = 𝑑𝑐

𝑡𝑐
. Then, a safe following distance is 𝑑𝑠 = 𝑣𝑎𝑣𝑔 ∗ 2.

Thus, the number of users in one direction is 𝑢 = 𝑑𝑐
𝑑𝑠

. Using a simplified
version of the previous equations, we can represent the total number

of users a particular stretch of road as:

𝑢 = 𝑡𝑐 (22)

This approximately estimates the total number of users on the road
to drive our user density variation according to real traffic patterns in
U.S. cities. Furthermore, as self-driving cars and other IoT technologies
enter the roadways, the vehicles will more strictly follow the safety
guidelines to keep a safe distance between one another. This transfor-
mation model can be adjusted according to future traffic patterns as
well. Specifically, we select the cities of Austin, Detroit, New York,
and San Francisco to investigate the potential power savings from
our GreenLoading framework. We list the user variation of each city
according to alphabetical order and then investigate the power savings
of each city with GreenLoading. Table 1 lists the number of users of a
2-h time slot of a given weekday.

First, we select an Austin commute that begins in an urban neigh-
borhood with the zip code of 78613 and ends in business area with the
zip code of 78759. In Texas, we observed that the population is widely-
distributed across large areas. Hence, people often must travel during

73



P. Cui, S. Chen and J. Camp Computer Communications 144 (2019) 66–75

the morning and afternoon peak commute times. Then, we investigate
a Detroit commute that begins in a suburb called Warren with a zip
code of 48208 and ends in a business area with a zip code of 48201.
In a Detroit metropolitan area, we observed that there are more users
in the afternoon, which might be due to the cold weather in winter
season. Next, we select a New York City commute that begins at an
apartment complex with a zip code of 10019 and ends in the Central
Park area with a zip code of 10028. New York has expensive rent and
limited land for residents. Hence, the users on the road seemed to have
similar characteristics during peak commute times like Texas. Though
the two metro areas have very different neighborhoods and population
densities, they have similar user variation on the road across a given
weekday. Lastly, for the San Francisco commute, we choose to begin
at an apartment complex with a zip code of 95054 to a company in
San Jose with a zip code of 95134. We observed that the San Francisco
traffic pattern seemed to have an increase in activity during all times
of the workday as opposed to the early morning or late evening.

As shown in Table 1, there exists a peak time in the morning and in
the afternoon when people start to work and go home after work for all
4 metro cities. Without a proper offloading protocol, the carrier has to
deploy enough resources for the peak time during the entire course of
the day to assure the QoS is satisfied, which can waste valuable network
resources. The GreenLoading framework offers a solution for all types
of areas and user densities.

With the experimental setup mentioned before, we investigate the
power consumption variation across time over a regular (non-holiday)
weekday. The results of the four U.S. cities are shown in Fig. 7(d). The
main variation across time over a day is the number of users at peak
commute times versus other times of the day. Through the analysis,
GreenLoading is able to significantly reduce the power consumption
for populated areas. In particular, leveraging shared interests, Green-
Loading uses only 38.1% of the original power consumed with the use
of only cellular channels. Without shared interests, using just cellular
and CBRS bands gets down to 8.4% compared to using only cellular
channels without shared interests. With the use of shared interests and
CBRS channels, the power savings of GreenLoading reaches 6.92% of
the original cellular-only configuration in the areas of greatest user
density across the four U.S. cities.

4. Related work

Various forms of multiple radio and multiple channel opportunistic
networking exist where devices can communicate with various ra-
dios, frequency bands, and/or channels [31]. While this simultaneous
use of multiple radios for communication offers the opportunity for
data sharing in small groups, previous works have focused on specific
applications such as IoT or self-driving cars [32]. An opportunistic
communication model for cellular traffic was proposed in [5]. More
to the point, energy consumption, bandwidth, and user experience
were considered in [33], and energy savings with respect to traf-
fic offloading to small cells was studied [4]. Many works employing
machine learning have been proposed for algorithms approaching in
various areas, however, these approaching need more specific domain
leveraging for wireless networks [34–36] . Other work has focused
on the switching times and performance improvements for cellular
offloading to WiFi [6]. Also, the taxonomy of various data offloading
models were considered in terms of various technical and economic
challenges [37]. In fact, white space and WiFi bands have been used
to reduce the energy efficiency of a cellular network and increase
the bandwidth [38]. These works lay a foundation for opportunistic
offloading of mobile systems. However, these works do not exploit
shared interests of users in a particular region or the mobility of such
users for energy-efficient cellular offloading, especially to the emerging
CBRS band.

Mobile social networking (MSN) refers to social networking where
individual users request similar data through their mobile devices [9,

39]. There has been work that has notified users of potential data
sharing content. Previous analysis of the social aspects exploited the
structural information present in the network, such as existence and
strength of communities, node centrality, network robustness to node
removal, and topological evolution over time. These technologies could
be applied to improve the wireless mobile communications. However,
these works have not focused on energy-efficient cellular offloading as
part of the work.

5. Conclusion

In this paper, we created the GreenLoading framework to efficiently
offload cellular network traffic to the emerging CBRS band via the
use of shared interest information and data brokers. To achieve this
goal, we developed a Broker Priority Assignment (BPA) algorithm to
select the shared-interest user groups for the data brokers to broadcast
traffic. With the use of in-field measurements and web-based Google
Maps data across four diverse U.S. cities in both dense and sparse areas,
we showed that, on average, an order of magnitude power savings via
GreenLoading to the CBRS band over a 24-h period and up to 97% at
peak traffic times. In addition, the fairness improves up to 81% with
the use of the max–min ratio and 64% with the use of the Jain fairness
index. Lastly, we considered the role that a relaxation of wait times
can play in the power efficiency of a GreenLoading network, showing
an exponential reduction in power. In the future, multi-layer hierarchy,
channel model, and more user experience will increase the application
of the framework.
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