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Abstract—Drones frequently communicate with devices on the
ground, often carried in different ways by users. A user might
hold their device near their chest while flying a drone, walk
with their phone in their pocket, or walk facing away from
the drone while it is tracking them. Despite the proliferation of
drones and possibility of such scenarios, the prediction of user
orientation and the user equipment (UE) location on or near the
user’s body in Drone-to-Ground (D2G) channels has not received
adequate attention in literature. In scenarios where visibility is
no longer available to the drone – due to adversarial attacks
or harsh weather – the wireless signal can be used to detect
the user’s presence, their orientation, and even the location of
the device on or near their body. This is the objective of this
work. We study how the baseband I/Q samples, converted into
spectrogram images that span a relatively short period of time,
can be used to predict the on-body device location. We leverage
Convolutional Neural Networks (CNNs) to classify three different
use cases of holding a device operating at two different carrier
frequencies (2.5 GHz and 900 MHz). Specifically, we investigate
three on-body locations: near chest while facing the drone, in-
pocket while facing the drone, and near chest but facing away
from the drone. We show that, using only spectrogram images
as input, we can predict these use cases with an average overall
accuracy of 87% and 85% at 2.5 GHz and 900 MHz, respectively.
We also investigate the classification performance on a dataset
that belong to a hovering location that was not seen by the
model, and show that the CNN model was able to correctly
classify all images belonging to user orientation and 91% of
the images that belong to near-chest vs in-pocket for the same
orientation. Finally, we study the application of transfer learning
and CNNs on classifying the on-body location at a different
carrier frequency from the one on which they were trained, and
show that while one use case can be correctly predicted, more
complex models and hyper-parameter tuning is needed to achieve
this goal. This work could be useful for building real-time deep
learning models that help drones to make intelligent decisions
and adapt to changes in user postures and on-body locations in
air-to-ground (A2G) channels.

Index Terms—Air-to-Ground Channels, UAVs, Drones, Human
Body Effects, Deep Learning, Convolutional Neural Networks.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) has seen a
substantial increase in recent years. Drones are now being
used in structural health inspection [1], object tracking, en-
tertainment, delivery, and agriculture applications [2]. Drones
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and phones rely on their cameras, assisted by other sensors,
to obtain an understanding of the surrounding environment
and be able to track objects. For example, Google’s ARCore
Software Development Kit (SDK) uses Augmented Reality
(AR) to perform multiple tasks such as localization, depth
analysis, and motion tracking [3]. However, when visibility
is poor due to obstructions, poor lighting, or harsh weather,
object localization and/or tracking using a camera might no
longer be an option, and relying on a different method, such
as wireless signals, could be a good alternative.

A. Motivation: Impact of Human Body Blockage on Ranging

When performing ranging and localization using wireless
signals, the channel and surrounding environment can signifi-
cantly impact performance. For example, in Round Trip Time
(RTT) based ranging protocols, such as IEEE 802.11mc, the
time of arrival (ToA) of the line-of-sight (LOS) component
is critical to the accuracy of the ranging measurement. The
accuracy of the estimated ToA depends on the bandwidth
used and the nature of the multipath channel [4]. The richer
the channel in multipath reflections, the more unreliable and
inaccurate the ToA and RTT ranging are, respectively. This is
due to confusion in estimating the direct path due to multiple
reflected paths. Furthermore, when an object is blocking
the path between two devices that are performing ranging,
the direct path might be severely attenuated compared to
diffracted/reflected paths. This results in an incorrect multipath
component being identified as the direct path leading to
an erroneous ranging estimate. Therefore, when performing
ranging, it is desirable to know if the target is blocked or not
to better evaluate the reliability of the ranging measurement.

Fig. 1 shows the results of a ranging dataset that we captured
using the IEEE802.11mc ranging protocol with and without
the blockage of a human body along the path. Our experiments
were carefully designed and conducted in an anechoic chamber
with minimal reflections to emphasize the impact of human
body on RTT ranging error. A phone was placed on a fixed
platform while a person was holding the other phone and
performing RTT ranging. The ranging error is then calculated
as the difference between the true distance and what is reported
by the RTT ranging application. From the figure, we can see
that when a person holds the phone while facing away from the
other device, the ranging error significantly increases, reaching
up to 4 m in some instances. This confirms that the attenuation
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Fig. 1. Impact of a human body on ranging error in an anechoic chamber.

of the direct path and the reflections and diffraction caused
by the human body contribute to the uncertainty in ranging
measurements. This result is one example that motivates the
need for models that can accurately capture the orientation of
the user and location of the device on their body.

Since electromagnetic models that aim to describe such sce-
narios are cumbersome to derive, computationally expensive,
and difficult to integrate with UAV-based channels, it is desired
to leverage relatively simple and lightweight [5] deep learning
models to predict different user postures, orientations, and on-
body device locations, to enable drones to dynamically and
intelligently adapt to channel changes on the ground.

B. Contributions

In this work, we leverage an in-field dataset of UAV-
to-Ground channels that we collected and analyzed in [6]
and build (offline) CNN deep learning models to predict
the orientation of the user and the on-body location of the
communication device. We investigate the effectiveness of
using only spectrograms as an input to CNNs in achieving
this task. The hope is for this work to help researchers build
lightweight, real-time CNN-based models that can perform
UAV-to-User predictions to enable drones to make intelligent
decisions regarding their connectivity, energy consumption, or
path planning. For example, once the drone determines that the
user is facing away, it can better evaluate the reliability of its
ranging measurement before deciding to get closer or further
from them. Such decision, if successful, might result in better
energy consumption by leveraging a more appropriate power
level at the new drone hovering position. While other works,
such as [5], [12], [14], have extensively studied the use of
CNNs for wireless signal and channel classification, this work
– to the best of our knowledge – is the first to use only I/Q
samples and CNNs to predict the on-body device location in
UAV-to-Ground channels.

Our contributions can be described as follows:

• We propose a framework for investigating the use of
CNN-based models to classify UAV-to-Ground channels.
We build and validate the trained model (offline) against
a dataset that spans two different frequencies and many

Fig. 2. An illustration of the UAV Air-to-Ground experiments that we
conducted in [6]

hovering positions for three different use cases1 of a
person holding a device on the ground.

• We show that lightweight CNNs2 using only spectrogram
images as input, can predict the user orientation and
device location in drone-to-ground (D2G) channels with
reasonable accuracy (85% to 87%). We also demonstrate
the CNN model’s ability to predict the use case on
datasets that were not seen by the model (not included
in the training/validation phase) at the furthest drone
hovering locations.

• We explore transfer learning and test the ability of one
model, which was built for one carrier frequency, to
predict user orientation and device location at another
frequency. We show that while one use case was correctly
predicted, more hyper-parameter tuning and potentially
more complex models are needed to achieve this task
across all use cases.

• Finally, we provide access to the code and datasets used
in our study, enabling further exploration and experimen-
tation with UAV-to-Ground classification using CNNs.3.

The rest of the paper is organized as follows. In Section II
we describe the signal model. In Section III we briefly intro-
duce the experiments and data collection process. The data
preparation and processing is described in Section IV and the
deep learning CNN model training and validation is discussed
in Section V. Related work is discussed in Section VI and the
concluding remarks are presented in Section VII.

II. SIGNAL MODEL

We can describe the transmitted signal as x(t) =
m(t) cos(2πfct+ ϕo), where m(t) is the message signal,
fc, is the carrier frequency which is generated by the local
oscillator (2.5 GHz or 900 MHz) with a random phase offset
of ϕo. Due to reflections and scattering caused by the UAV
body [7], ground induced multipath reflections, and the human
body if it exists in the path of the signal, the received signal

1We use the terms use cases and on-body locations interchangeably
throughout this work.

2The work in [5] builds a real-time CNN model and compares computation
resources showing the lightweight nature of their CNN model. Our work uses
a simpler CNN architecture than [5]. Hence, our claim of the presented CNN
as lightweight seems valid.

3The code and dataset for the proposed framework can be found here:
http://muddi.lyle.smu.edu/Repository human.html



(a) (b) (c)
Fig. 3. Spectrogram of the received baseband I/Q samples from a hovering time of 1 second. Samples shown are from the three different use cases: (a)
Near-Chest Facing, (b) In-pocket Facing, and (c) Near-Chest Facing Away.

will be a combination of multiple paths. If, m(t) = 1, then the
received signal can be written as:

r(t) = ℜ{[
N(t)∑
n=0

αn(t)e
−jΦn(t)]ej2πfct} (1)

Here, N(t) is the number of multipath components, and the
phase term Φ is given by Φn(t) = 2πfcτn(t)−ϕDn

−ϕo. The
propagation delay of the nth component is denoted by τn, and
it is equal to dn(t)/c with dn(t) being the separation distance
in meters and c being the speed of light. αn(t) is the amplitude
of the nth multipath component, and ϕDn is the Doppler
shift. In terms of in-phase and quadrature components, we
can rewrite the received signal as [6]:

r(t) = rI(t) cos(2πfct) + rQ(t) sin(2πfct) (2)

Here, rI(t) =
∑N(t)

n=0 αn(t) cosΦn(t) and rQ(t) =∑N(t)
n=0 αn(t) sinΦn(t) are the in-phase and quadrature com-

ponents, respectively. We can see that the received signal will
vary over time. Fluctuations due to hovering, blockage caused
by the human body, and reflections from the ground will all
contribute to the time-varying nature of the signal.

III. EXPERIMENT SETUP AND PROCEDURE

Here, we briefly discuss the experiments that were carried
out to collect the datasets. For more details, we refer the reader
to [6]. We used two Universal Software Radio Peripherals
(USRP) E312s from Ettus Research™. The transmitting radio
and antenna are mounted on the UAV, while the receiver USRP
is held by the user on the ground. The transmitter and receiver
are sampling at 64k samples/s and measurements are recorded
for a period of 20 seconds per hovering position. In this work,
we assume channel reciprocity [8], and use the dataset as if it
were collected at the drone, not by the user on the ground.

We investigate three on-body locations: (i) Near chest and
facing (NCF) towards the Tx UAV, (ii) Near chest and facing
away (NCFA) from the Tx UAV, and (iii) In-pocket while
facing (IPF) the Tx UAV. For each use case, we perform drone-
to-ground experiments at carrier frequencies of 900 MHz and
2.5 GHz, totaling 6 experiment sets. In each experiment, three
altitudes and 5 horizontal distances are visited by the drone,

where it hovers for 20 seconds. The hovering positions are
shown in Fig. 2.

IV. DATA PRE-PROCESSING

The received I/Q baseband samples are processed as fol-
lows. Due to rapid fluctuations in the signal caused by
drone hovering, we apply a moving average with a length
of W = 10. We experimented with and without using a
moving average and observed better prediction results after
applying the moving average. The selection of a moving
average of a length of 10 was chosen after seeing about
10% increase in validation accuracy compared to not using a
moving average. In [5] the authors saw a similar improvement
(6%) in performance after using a smoothing filter. We also
tested the model’s performance with I only as input to the
spectrogram function, Q only, and the envelope (I+Q), and
there was little to no difference in results. Hence, we opted to
use only one component of the I/Q samples to consume less
computation time and resources.

The smoothed samples are then fed to the MATLAB func-
tion Spectrogram with a Hamming window and a Fast Fourier
Transform (FFT) of size N=1024. The function computes
the short-term Fourier Transform on the windowed data over
1 second and creates a spectrogram plot. The spectrogram is
then saved as a PNG file. The process is repeated for all 3
scenarios across all the hovering locations. The total number
of spectrogram images per frequency band is 3 (on-body
locations) x 5 (distances) x 3 (altitudes) x 20 (images/second
per hovering location) = 900 images. The total number of
images is 1800 images spanning 2.5 GHz and 900 MHz data.
A sample of the spectrogram of the three on-body locations
is shown in Fig. 3 and the data processing flow is shown in
Fig. 4. We can see from Fig. 3 that, to the naked eye, there
seems to be little to no difference between the spectrogram
images of the three use cases. Hence, we rely on CNNs due
to their proven ability to effectively extract discriminating
features from images [14], [15].

Since this work performs the classification offline (on a
previously collected dataset), we are able to label the images
according to the use-cases. In a real-time scenario of CNN-
based prediction of user-cases, the labeling of the images



Fig. 4. Our framework for processing the received baseband I/Q samples and
turning the problem into a deep learning CNN model based prediction.

can happen in a previous stage using sensors or cameras
prior to the wireless-based prediction stage. As previously
mentioned, in scenarios where vision is no longer available due
to adversarial attacks or harsh weather/environment, relying on
wireless signals to detect user orientation and device location
can be a good alternative.

V. CNN MODEL TRAINING AND VALIDATION FOR
AIR-TO-GROUND CHANNEL CLASSIFICATION

In this section, we describe the deep learning CNN model
we use. Throughout this work, we use Keras library with
TensorFlow (TF) [9].

A. CNN Model Description

Splitting the dataset: The only input to the CNN model is
the spectrogram images we described in the previous section.
The data was split into two subsets, one for training and one
for validation with a 80/20 split. This ratio was chosen after
experimenting with 70/30 and 85/15 and found out that the
former resulted in poor performance while the latter resulted
in overfitting.

Normalization: Images are normalized to have their values
between 0 and 1 instead of 0 to 255 which are the default
RGB channel range values.

CNN architecture: The neural network follows the se-
quential model mentioned here [9]. It comprises three con-
volutional blocks with a maxpooling layer in each one of
these blocks. At the end of these blocks there is a fully
connected (FC) layer that is activated by a ReLU function. It
is worth mentioning that we tried to use other activation layers
such as Sigmoid but the prediction performance significantly
deteriorated. Hence, ReLU was the activation layer of choice.
The CNN architecture we chose is similar to [9] due to its
validated performance in recognizing images. Further details
are available as comments in the code we shared.

The optimizer algorithm: we chose Adam as the op-
timizer algorithm due to its success in classification tasks
and computational efficiency [10]. The default values for the
Adam optimizer were chosen. The learning rate is α = 0.001;
the exponential decay rate of the first and second moment
estimates are β1 = 0.9, β2 = 0.999, respectively. The
numerical stability constant, ϵ, is set to default value of 10−7.

B. Training and Validation Accuracy

We use the holdout method with 80% of the data used
for training and 20% for validation. We use 40 epochs
for both training and validation. We evaluate the model’s
performance via an accuracy metric, which is defined as
the number of correct predictions across all three use-cases
divided by the number of all predictions. In other words,
Accuracy = NumberofCorrectPredictions

TotalNumberofPredictions . For example, if
we correctly classified the three use-cases 830 times, then,
Accuracy = 830

900 = 92.2%.
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Fig. 5. Training and validation accuracy of the 2.5 GHz dataset spanning the
three use cases.
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Fig. 6. Training and validation accuracy of the 900 MHz dataset spanning
the three use cases.

The prediction accuracy of the model on 2.5 GHz are shown
in Fig. 5. We can see that the 2.5 GHz prediction accuracy can
reach about 87% at the 39th epoch. In the 900 MHz dataset, the
validation prediction accuracy is about 85%. This can be seen
in Fig. 6. It is worth noting that after investigating the model’s
performance, we found that most of the false predictions come
from confusing the NCF with the IPF scenario or vice versa
and not with the NCFA test case. Note that the accuracy results
span the whole dataset, i.e., all three use cases and does not
address potential issues such as class imbalance or the weight
and impact of misclassifying specific use-cases.

C. Testing the Model on Unseen UAV Hovering Datasets

In the previous section, we trained the model and validated
its prediction performance over the entire dataset and across
the 3 use cases (NCF, NCFA, and IPF). Here, we will train the
model on a portion of the dataset and then test it on another
unseen portion of I/Q images. The unseen images belong to



I/Q samples from the three use cases when the drone was
hovering at the furthest distance of 80 m horizontal distance
and 30 m altitude (a distance of dx =

√
802 + 303=85.4 m).

This hovering position is denoted by the star in Fig. 2.
The purpose of this exercise it to address the validity of

predicting UAV A2G channels at new (and further) flying loca-
tions after a period of training in previous and closer hovering
locations. This investigation is useful for applications when the
drone had enough time to label some portion of the dataset
using knowledge obtained from cameras and sensors, but then
loses its vision due to adversarial conditions (attacks, weather,
etc.). The question we pose is this: if we had enough time to
train the drone at relatively close locations to understand the
user orientation and device location on/near their body, can
it still predict the orientation/location of the person/device at
further locations relying solely on the generated spectrogram
images that span a short time interval?

Prediction metric: We test the prediction performance of
the model on unseen spectrogram images belonging to each
scenario/test-case when the flying drone is hovering at 80 m
horizontal distance and 30 m altitude. We test the prediction
performance on 20 images at 2.5 GHz and 15 images at
900 MHz. While accuracy is a good performance metric, it
fails to address class imbalance issues and it does not provide
insight on the per-class/test-case prediction capability of the
model. For these reasons, we use Recall, Precision, and F1-
score as metrics to judge the prediction capability of the CNN
model. The prediction decision has to have a confidence score
of 50% or more to be considered. We then calculate Precision,
Recall, and the F1-score.

Precision is calculated as the number of times the model
correctly predicted the class/test-case divided by the total
number of times it made that prediction across all classes,
i.e., both correct and false predictions.

Recall is calculated as the number of times the model
correctly predicted the class divided by the total number of
tested images in that class.

F1-score combines both recall and precision according to
the formula F1 = 2 × Recall×Precision

(Recall+Precision) . It has both contri-
butions from recall and precision, i.e., it includes the number
of times we falsely predicted a certain class and the number
of times we falsely missed it.

The results of the 2.5 GHz and 900 MHz drone-to-ground
classifications are summarized in Table I and Table II, re-
spectively. We make the following observations: the near-
chest facing-away (NCFA) scenario was perfectly predicted
by the CNN model across all unseen images. This is evident
by the perfect recall, precision, and F1-score results. This
finding means if a UAV air-to-ground channel was trained on
I/Q samples at short distances with labels pertaining to the
orientation of the user, we can completely rely on the I/Q
baseband samples to accurately predict the orientation of the
user and determine whether they are facing or facing-away
from the drone at further distances.

When the person was facing the drone while the device was
placed near their chest (NCF) or in their pocket (IPF), the

TABLE I
CNN MODEL PREDICTION ACCURACY OF SPECIFIC USE-CASES ON

UNSEEN DATA AT 2.5 GHZ

Metric/Class Near Chest
Facing

Near Chest
Facing-away

In-pocket
Facing

Precision 0.94 1 0.86
Recall 0.85 1 0.95

F1-Score 0.89 1 0.90

TABLE II
CNN MODEL PREDICTION ACCURACY OF SPECIFIC USE-CASES ON

UNSEEN DATA AT 900 MHZ

Metric/Class Near Chest
Facing

Near Chest
Facing-away

In-pocket
Facing

Precision 0.88 1 1
Recall 1 1 0.87

F1-Score 0.93 1 0.93

model’s average F1-score was 0.91. This means, on average,
the predicted location of the device was correct 91% of the
time across the two frequencies. While these are the prediction
results at one hovering location, we expect to see similar
results at other hovering positions as long as the surrounding
environment remains the same.

D. Transfer Learning: Using a Dataset of One Frequency to
Predict A2G Channels at Other Frequencies

In this section we try to answer the following question: If
we train the CNN model to predict an A2G channel using a
labeled dataset from one frequency, can it accurately predict
the A2G channel at other frequencies? We believe that such a
question is worth investigating due to the potential of reducing
the training phase of multi-frequency channels.

In this investigation, we train the CNN model on a dataset
that belongs to one frequency (e.g., 2.5 GHz) and try to
classify unseen images that belong to the three use-cases at one
drone hovering location at another frequency (e.g., 900 MHz).

Training the model on 900 MHz to predict on-body
locations at 2.5 GHz: We followed the same training and vali-
dation procedure mentioned in sec V-B. Then, the model, after
reaching the 85% validation accuracy, was used to classify
the 2.5 GHz images that belonged to the three use-cases. We
note the following: in predicting the NCF (facing) use-case,
the model did very well resulting in correctly classifying the
15 images with an average confidence of 93%. In other words,
the recall was 100% with a confidence of 93%. On predicting
the class of NCFA (facing-away) images, it also correctly
predicted all images (recall of 100%) with a confidence of
almost 100%. However, when it was tasked to predict the class
of the IPF (in-pocket) use-cases, it failed. It only correctly
predicted 1 image with the rest of images being falsely
predicted as NCF with high confidence.

Training the model on 2.5 GHz to predict on-body
locations at 900 MHz: The results of this prediction were
worse than the previous one. The model was only able to
achieve a good recall of 93% on the NCFA class. Unfortu-
nately, it made the false prediction of NCFA on almost all
images resulting in a large number of false positives and poor
prediction performance for the other two on-body locations
(IPF and NCF).



From the above result, we conclude that for CNN-based
transfer learning to be successful in predicting the on-body
device location in A2G channels, further investigation is
required. This investigation includes studying the potential
need for more complex models and/or hyper-parameter tun-
ing, more sophisticated signal processing techniques, or more
measurements to find patterns and get better insight.

VI. RELATED WORK

The use of machine learning and deep learning methods to
predict and/or classify wireless channels has seen a significant
increase in recent years. For example, the work in [11] used
support vectors and neural networks to predict ground-to-UAV
channels in smart farming applications; it showed that these
methods can outperform ray tracing methods. However, only
the prediction of the received signal strength (RSS) or path
loss of user-free channels was studied. When it comes to using
deep learning models that leverage CNNs to predict or classify
wireless channels, the literature has shown that CNNs can
perform this task with great accuracy. For example, the work
in [5] deploys a lightweight CNN model on an SDR platform
and performs real-time classification of different WiFi signals
resulting in comparable accuracy to other methods that are
more resource-intensive. The work in [12] shows that it is
possible to train CNNs to distinguish between simulated LOS
and NLOS ultra-wideband channels. The work in [14] has
shown that using CNNs, combined with a Walsh-Hadamard
Transform (WHT), twelve emulated wireless channel classes –
that were determined by the Rician K-factor – were accurately
classified even in relatively low SNR regions. When wireless
channels involve humans performing certain activities, CNNs
have been shown to perform well in predicting those activities.
For example, the work in [13] shows that using CNNs along
with the transmission and reflection coefficients, six different
activities were predicted with an accuracy of more than 97%.
In [15], the authors show that using Mel-spectrogram and
CNNs, they were able to recognize coughs with an accuracy
of 98% outperforming other machine learning methods such
as K-means and support vector machines (SVMs).

While the above mentioned works offer great insight regard-
ing the ability of CNNs in learning and performing predictions
with impressive accuracy, none have investigated CNNs with
real UAV A2G channels that involve humans as part of the
channel. This study offers the first initial insight regarding
the use of spectrograms and CNNs to classify UAV A2G
channels at different drone hovering positions, frequencies,
and for various human use-cases of holding a device.

VII. CONCLUSION

In this work, we leveraged a previously collected dataset [6]
that spans different frequencies and use-cases of A2G chan-
nels, and built (offline) deep learning CNN models with
the objective of classifying these channels using only spec-
trogram images as an input. We showed that using light-
weight CNNs, we can classify three different use-cases of
holding a communication device with an accuracy of 85%

to 87%. We also tested the CNN model on unseen data
that belonged to the furthest UAV hovering position and
demonstrated that the CNN can still accurately predict the
orientation of the user and location of the device. Finally,
we investigated the use of transfer learning to classify the
channels at other frequencies and showed that more complex
hyper-parameter tuning and/or models are needed to achieve
this task. This work serves as a preliminary investigation to
open the door for the design and implementation of real-time
CNN models that can make drones communicate with users
on the ground more intelligently by dynamically adapting to
the changing environment around them. These design and
implementation efforts will involve studying computational
resources, ML model generalization to unseen scenarios, and
applying transfer learning to other frequencies.
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