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A B S T R A C T

Conducting in-field performance analysis for wireless carrier coverage and capacity is extremely costly in terms of
equipment, manpower, and time. At the same time, there is a growing number of opportunities for crowdsourcing
of network and sensor information via smart applications, firmware, and cellular standards. These facilities offer
carriers feedback about user-perceived wireless channel quality. Crowdsourcing provides the ability to rapidly
collect feedback with dense levels of penetration using client smartphones. However, mobile phones often fail
to capture the fidelity and high sampling rates of more-advanced equipment (e.g., a channel scanner) used
when drive testing for analysis of propagation characteristics. In this work, we quantify the impact of various
effects induced by mobile phones when interpreting signal quality such as averaging over multiple samples,
imprecise quantization, and non-uniform and/or less frequent channel sampling. To do so, we conduct extensive
in-field experiments across heterogeneous devices and environments to empirically characterize the path loss
via phone measurements on LTE networks. We find that mobile phones are comparable to advanced equipment
in inferred radio propagation, within 0.1 of the calculated path loss exponent by the channel scanner across
downtown, single-family, and multi-family residential areas. Lastly, we develop an intuition for the importance
crowdsourcing-based propagation prediction by evaluating the effect on coverage estimation when deploying
operational networks. For example, we find that even a prediction error of 0.4 for the path loss exponent would
cause a 40% redundancy in the covered area or coverage holes for 25% of the targeted area based on whether
the error was above or below the actual value, respectively.
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1. Introduction

Cellular network providers collect and analyze radio signal mea-
surements continuously to improve network performance and optimize
network configuration. Available methods to obtain the signal mea-
surements consist of drive testing, network-side-only tools, dedicated
testbeds, and crowdsourcing [1]. The former three methods are ex-
tremely resource intensive. For example, one common approach for cap-
turing radio signal measurements is to outfit a backpack with six mobile
phones running various applications and network protocols alongside
an expensive mobile channel scanner (see Fig. 1) for network engineers
to gather data on foot. Vehicles are often used for a greater number
of and potentially higher-powered and more costly devices, allowing
higher levels of mobility in a targeted region. In congested areas with
various technologies (e.g., LTE, GSM, UMTS, and TETRA) the problem
becomes worse: to get an acceptable quality of service, data collection
should be repeated multiple times per roll out of each technology to
appropriately configure the network [2]. Further complicating matters,
physical changes to the environment such as construction of new
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Nomenclature

𝛾𝑇 Path loss exponent from TSMW measure-
ments

𝑄 Qualipoc application
𝑇 Channel scanner, TSMW
𝑊 WiEye application
#𝐵 Number of buildings
#𝑇 Number of trees
𝛼 A constant from the transmitter power, an-

tenna heights and gains
𝛥𝛾 Path loss exponent range
𝛾 Path loss exponent
𝛾𝑄 Path loss exponent from Qualipoc measure-

ments
𝛾𝑊 Path loss exponent from WiEye measure-

ments
𝛾𝑊 ′ Path loss exponent from matched measure-

ment of WiEye
𝛾𝑄′ Path loss exponent of matched measure-

ment from Qualipoc
𝐵ℎ Average height of the buildings
𝑅𝐺𝐸 Ground elevation of the receiver
𝑇ℎ Average height of the trees
𝜎 Standard deviation of a Gaussian distribu-

tion
𝐵ℎ𝜎 Standard deviation of buildings’ height
𝐵𝑇𝑆𝐺𝐸 Ground elevation of the transmitter
𝐹 𝛾
𝑢 Percentage of a useful service area

𝑅𝐺𝐸𝜎
Standard deviation of the ground elevation

𝑇ℎ𝜎 Standard deviation of trees’ height
𝑥 Received signal level at distance d
𝑥0 Receiver threshold
△Q&T Path loss exponent offset between channel

scanner & Qualipoc measurements
△W&T Path loss exponent offset between WiEye &

Qualipoc measurements

Fig. 1. Typical Rohde & Schwarz backpack for walk/drive testing (left) and TSMW
channel scanner (right) [3].

buildings or highways can decrease the effectiveness of the obtained
data.

Crowdsourcing is an economical alternative to these resource-
intensive methods that has the additional benefit of considering the
in-situ performance at the end-user device. Consequently, many car-
riers are rolling out smart applications, firmware, and standardization
efforts to crowdsource perceived channel state by user equipment (UE).

Furthermore, LTE release 11 in 3GPP TS 37.320 [4] has developed a
Minimization of Drive Test (MDT) specification to monitor the network
Key Performance Indicators (KPIs) via crowdsourcing. In [5], the use
case scenarios for MDT are determined as follows: coverage opti-
mization, mobility optimization, capacity optimization, parametrization
for common channels, and Quality of Service (QoS) verification. The
coverage optimization topic contains some other use cases, such as
coverage mapping, detection of excessive interference, and overshoot
coverage detection.

While there is less control of the factors leading to a recorded channel
quality, there are many advantages to crowdsourcing this information
in terms of lessening the need for costly equipment, reduced in-field
man hours, rapid scalability of data sets, and penetration into restricted
physical locations. These advantages have sparked a number of works
where crowdsourcing has been utilized to identify network topology [6],
perform real-time network adaptation [7], characterize Internet traf-
fic [8], detect network events [9], fingerprint and georeference physical
locations [10], assess the quality of user experience [11], and study net-
work neutrality [12]. The bandwidth, latency, and throughput have pre-
viously been used as crowdsourced KPIs [13,14] to evaluate wide-area
wireless network performance [15] and in-context performance [16].

However, mobile phones possess a number of shortcomings when
compared to a channel scanner in reporting channel quality, such
as: (i) averaging over multiple samples, which can flatten channel
fluctuations [13] with manufacturer-specific methodologies to estimate
the received signal power [17], (ii) coarse quantization, which can
impose a unit step for minuscule changes, (iii) sampling at non-uniform
intervals when crowdsourcing information as opposed to long, consec-
utive testing periods recorded when drive testing, and (iv) clipping that
results from less sensitive receivers with fringe network connectivity.
The accuracy of the received signal reporting by mobile phones as
compared to a channel scanner was evaluated in [18], but the effect
of averaging, the impact on path loss calculation, and the resulting
coverage estimation impact was not considered. Hence, while a crowd-
sourcing framework for characterizing wireless environments would
have tremendous impact on drive testing costs, we believe that a first
step in doing so requires understanding the viability of mobile phones
to replace more advanced measurement equipment as channel modeling
probes.

In this work, we study the impact of various effects induced by user
equipment when sampling signal quality. These shortcomings include
averaging over multiple samples, imprecise quantization, and non-
uniform and/or less frequent channel sampling. We specifically inves-
tigate the accuracy of characterizing large-scale fading using crowd-
sourced data in the presence of the aforementioned phone measurement
shortcomings. To do so, we perform extensive in-field experimentation
to quantify the impact of each of these four effects when evaluating
the viability of mobile phones to characterize the path loss exponent, a
metric commonly used by carriers for deployment planning, frequency
allocation, and network adaptation. Our results indicate that the in-
ferred propagation parameters by smartphone measurements in GSM
and LTE networks is comparable to those obtained by the advanced
equipment that are frequently used by drive testers (e.g., channel
scanners). Finally, we analyze the impact of the path loss prediction
error on a carrier’s misinterpretation of coverage area and predicted
network throughput. In wireless networks, the percentage of coverage
area is determined by a region over which the signal level exceeds the
sensitivity level with a specified level of probability. This value is the
likelihood of coverage at the cell boundary and a function of the received
signal level. Therefore, an accurate network design will avoid possible
gaps in the network (overestimating propagation) or interference in
adjacent cells (underestimating propagation), which both affect the
network throughput [19]. In particular, our work makes the following
four contributions.

First, we set forth a framework to evaluate the impact of strictly
using mobile phones (as opposed to a channel scanner) in propagation
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Fig. 2. Pre-processing and post-processing of collected data by channel scanner and
mobile phones.

prediction. As depicted in Fig. 2, we consider how the averaging,
uniform and non-uniform downsampling over time and space, and
quantization of mobile phone channel quality samples at both the
firmware and API levels affect the path loss characterization. At the API
level, we have designed a freely-available Android application called
WiEye, which can help users globally analyze spectrum in an economical
manner. Additionally, WiEye functions as a crowdsourcing tool, which
has captured over 250 million signal quality measurements from over
60 thousand users worldwide (protected by an IRB). At the firmware
level, we capture signal quality directly from the hardware via a Rohde
& Schwarz tool called Qualipoc.

Second, we compare the perceived channel quality across the chan-
nel scanner, multiple mobile phone models, and various levels of the
software stack. To do so, we perform extensive local experiments
across downtown, single-family residential, and multi-family residential
regions and directly compare the received channel quality as reported by
the channel scanner to mobile phone firmware-level and API-level data,
where each mobile phone measurement considered has a corresponding
channel scanner measurement for comparison. We initially observe that
even over different sectors from the same base station in the same region
type there can be a 0.4 difference in inferred path loss exponent and
identify some of the geographical features that are responsible for this
variation. More generally, as compared with the path loss exponent
calculated for each region based on the channel scanner, we find that
the firmware level measurements had an average path loss exponent
estimation error of 0.06, 0.06, and 0.1 and API-level measurements had
an error of 0.12, 0.13, and 0.11 for the single-family, multi-family, and
downtown regions, respectively. This result considers the same number
of samples from each device for direct comparison. Each prediction
error occurred in the positive direction, meaning the value of the
predicted path loss exponent from the mobile phone was greater than
that predicted by the channel scanner data, an observation that can be
used for future MDT calibration. We also examine the range over which
each user-side device and software is able to receive cellular base station
transmissions (i.e., their sensitivities) to understand where clipping of
crowdsourced data might occur.

Third, we quantify the impact on inferring propagation characteris-
tics from the various calculations and imperfections that mobile phones
induce on received channel quality before reporting it to the user. To
do so, we consider numerous data sets from the channel scanner in the
aforementioned environmental contexts and impose these imperfections
to understand their role by evaluating against the root mean-squared
error of path loss prediction from the original channel scanner data set
in that region. Our results show that the path loss parameters obtained
by mobile phone samples are sufficiently comparable to the advanced
drive testing equipment, paving the way for crowdsourcing as a viable
solution for in-field performance analysis.

Fourth, considering the fact that any error in path loss estimation will
ultimately affect the coverage area estimation and Bit Error Rate (BER),
we build intuition about the prediction errors reported throughout the
previous sections of the paper as they relate to network planners and
operators by quantifying the impact on coverage estimation and user
BERs. Since we observe path loss exponents ranging from 2 to 4 from
our crowdsourcing platform, we consider a situation in which the actual
path loss exponent is 3, but errors in prediction range from −1 to +1. In
doing so, we allow a continuum of analysis about how much the network
holes (overestimating propagation) or redundancy (underestimating
propagation) might exist from the original targeted area. In particular,
a modest propagation overestimation error of −0.4 (13% error) from an
actual path loss exponent of 3 results in a quarter (25%) of the targeted
area having coverage holes in regions that were assumed to be covered.
Conversely, the same modest propagation underestimation error of +0.4
from actual path loss exponent of 3 would result in a 40% overlap in the
targeted coverage region. While the percentage of error is very small (-
/+13%), the impact on coverage estimation is large. In terms of user
BER, such a 0.4 prediction error frequently raises the BER by an order
of magnitude for many situations (e.g., predicting 2.1 but an actual path
loss exponent of 2.5, a relative error of only 16%, for an SNR of 15).
In other words, at locations where there was assumed to be moderate
to high SNR, the prediction errors can have a dramatic effect on user
performance. For example, some services like video streaming require
a specific throughput. Small variations in throughput will increase the
latency of live streams, especially at the cell boundaries.

The remainder of the paper is organized as follows. We discuss
related work in Section 2. In Section 3, we experimentally quantify
the channel quality reporting differences of mobile phones versus a
channel scanner. In Section 4, we analyze the role of mobile phone
imperfections in terms of path loss prediction. Section 5 relates path
loss prediction error to coverage estimation for operational networks.
Lastly, we conclude in Section 6.

2. Related work

The Minimization of Drive Tests (MDT) initiative in the 3GPP
standard has been created to exploit the ability of smartphones to
collect radio measurements in a wide range of geographical areas to
enhance coverage, mobility, capacity, and path loss prediction [20].
Also, a few measurement studies have used API-level measurements
to estimate different KPIs of cellular networks [13,14,21,22]. They
each measured KPIs in terms of throughput, received signal power,
and delay and involved regular users to provide measurements (i.e.,
crowdsourcing) across large geographical regions in some cases. In
contrast, we focus on characterizing the wireless channel using diverse
end-user devices at different levels of the software stack. Predicting the
cellular network coverage by using the crowdsourced data has been
studied in a few studies. For example, network coverage maps using
crowdsourced data is studied in [23]. However, the authors provided
the observed received signal level without a discussion of the differences
across end-user devices. In addition, another work used a similar idea of
using crowdsourced data along with interpolation techniques to predict
the coverage area [24]. Although, the impact of location inaccuracy
and data distribution of the interpolation techniques was investigated,
the impact of the imperfections of end-user devices was not explored.
In fact, [25] argued that [24] suffers from a lack of control and
repeatability of capturing data and piggy-backing mobile broadband
measurements onto public transport infrastructures.

Furthermore, others proposed the Bayesian Prediction method to
improve the coverage estimation obtained by drive testing and MDT
measurements, but the results were strictly based on advanced devices
as opposed to mobile phone measurements [26]. The provided X-map
accuracy from simulated data in [27] has been evaluated in terms
of position inaccuracy, UE inaccuracy, and number of measurements.
However, to analyze crowdsourced data, using in-field experimentation
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is important to distinguish between the performance of more advanced
equipment versus a mobile phone in channels similar to those experi-
enced by user devices. Furthermore, three major application scenarios
for spatial big data obtained by performing MDT in a wireless network
are depicted in [28]. Also, it has been shown that massive amounts of
data needs a high-performance processing platform and solutions to ob-
tain meaningful conclusions. Hence, [28,29] have focused on providing
a platform to deal with big data regarding different applications. To
estimate the channel quality, we are using RSRP as our metric from
the LTE standard. It was previously observed by [17] that the reported
value by a mobile phone in terms of RSRP is influenced by averaging
but did not consider the compounding effects. Similarly, [18] depicts
that the received signal power by commercial phones is comparable
to an advanced tool. While this is close in nature, we also consider
many of the spatial and temporal downsampling effects that would cause
imprecise estimation of the path loss estimation for a given environment
and develop a carrier-focused intuition of the network and user impact
of these errors.

3. In-field calibration of received signal power frommobile phones

The purpose of this study is to compare the ability of mobile phone
measurements, captured either at the API level or the firmware level,
to an advanced measurement tool in characterizing wireless channels
in terms of path loss. Before doing so, in this section, we compare and
calibrate the raw measurements provided by diverse mobile phones at
different levels of the software stack with data provided by a channel
scanner.

API-level phone data. At the API level, we modify our Android
application WiEye, which we designed to crowdsource measurements,
to log signal quality measurements at the highest sampling rate that the
operating system will allow (1 Hz). Since WiEye can be installed on any
Android-based phone, we can compare API-level measurements across a
wide array of devices. In our study, we use four different mobile phones:
(i.) Samsung S5, (ii.) Nexus 5, (iii.) Google Pixel, and (iv.) Samsung S8.
While the former two phones are not the latest models, they provide
a comparison across multiple generations, and the Samsung S5 is the
phone that allows a firmware-based tool that we will now discuss.

Firmware-level phone data. At the firmware level, we have purchased
a software tool called Qualipoc from Rohde & Schwarz, which allows
signal strength measurements to be reported directly from the chipset.
Qualipoc can receive the channel quality information from many diverse
technologies, such as LTE, GSM, and WCDMA. The sampling rate of
the Qualipoc is approximately 3 Hz. Unlike the channel scanner, the
mobile phones continuously search for the best visible base station
by measuring the signal power received from multiple base stations,
affecting both the API-level and firmware-level measurements.

Channel scanner data. To replicate the measurement process typically
performed by drive testers, we use a commonly-used Rohde & Schwarz
TSMW Channel Scanner for obtaining detailed signal quality measure-
ments. The TSMW can passively and continuously monitor numerous
technologies in 30 MHz - 6 GHz frequency range, with a sampling rate
of 500 Hz. The scanner is controlled by Romes software (version 4.89),
which is installed on a laptop connected via an Ethernet cable to the
TSMW.

In-field measurement setup and calibration. We conduct a measurement
campaign across three diverse regions of Dallas, Texas with respect
to terrain type: single-family residential, multi-family residential, and
downtown. All five device types are connected to the same network
operator for direct comparison and perform measurements in parallel
on a co-located roof of a car. In each region, we observe cellular
transmissions and record data from 11 total base stations.

We first quantify the signal quality sensitivities of each device for
measurements taken at the same time and location. To do so, we
applied a post-processing procedure on the entire collected data set.
Since the sampling rate of the channel scanner is higher than that

Table 1
Field-tested range of reported signal quality (dBm) from channel scanner (TSMW),
Qualipoc, and WiEye.

Device Min Max Range

Channel scanner −134 −56 77
Qualipoc phone −129 −55 74
WiEye phone −128 −57 71

Table 2
Average signal quality offsets (dBm) reported from Qualipoc and WiEye with matched
channel scanner measurement.

Device Qualipoc WiEye
Location dBm Diff. (Mean) dBm Diff. (Mean)

Downtown −1.5 (−75.6) −4.4 (−78.5)
Single-family −1.3 (−82.5) −3.8 (−85.0)
Multi-family −1.9 (−78.4) −4.1 (−80.3)

of Qualipoc (firmware) or WiEye (API), we extract the samples from
the channel scanner data set, which are the closest in time to that of
WiEye and Qualipoc. The matching process consists of two steps: (i.)
grouping measurements based on the transmitting base station, and
(ii.) downsampling channel scanner data to have the same number of
samples as the Qualipoc and WiEye’s data set, where each mobile phone
sample has a corresponding channel scanner measurement in time. If the
channel scanner did not report a measurement within one second of the
mobile phone measurement, we do not consider that data point in our
comparison.

Table 1 shows the minimum, maximum, and range of the received
signal power for all of these measurements across all cell towers in each
region. As it is seen from the results, the widest range (77) and greatest
sensitivity (−134 dBm) is captured by the channel scanner with the least
range (71) and sensitivity (−128 dBm) captured by WiEye. The reduced
range experienced by the mobile phone will cause some clipping on
the extreme ends of the connectivity ranges, especially with poor signal
quality.

Next, we again consider this downsampled data set which matches
the time stamps across devices to consider the difference in reported
signal quality per signal quality sample across devices. Table 2 shows
the difference of WiEye compared to the matched channel scanner
measurement and Qualipoc compared to the matched channel scanner
measurement across the three region types. This measurement shows
the dBm offsets that mobile phones could induce on a crowdsourced
data set as compared to more advanced equipment. We also report the
mean reported signal strength per region for completeness.

We observe that the difference in reported received signal level is on
average 1.57 dBm higher on the channel scanner versus Qualipoc across
the three regions with a range of 1.3 to 1.9. In contrast, the difference
in reported received signal level is on average 4.43 dBm higher on the
channel scanner versus WiEye across the three regions with a range of
4.1 to 4.8. These dBm offsets could affect the path loss characterization
as a higher reported channel quality could lower the path loss exponent
versus a lower reported channel quality which could raise the path loss
exponent. In the following section, we will consider the role of these
dBm offsets as well as multiple other mobile phone imperfections.

4. Leveraging mobile phone based measurements on path loss
prediction

One of the most common metrics which drive testers use to evaluate
a given region is path loss. Since we ultimately want to use mobile phone
measurements in a crowdsourcing manner to obtain this metric, we need
to understand the role of mobile phone imperfections on evaluating the
path loss of a given environment. In particular, reported signal quality
from mobile phones will have the following effects: averaging, uniform
and non-uniform downsampling, and different resolutions caused by
quantization. In this section, we first provide some background on path
loss modeling and then experimentally evaluate the role of these mobile
phone imperfections on path loss estimation.
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4.1. Modeling large-scale fading: Path loss

Large-scale fading refers to the average attenuation in a given
environment for transmission through and around obstacles in an
environment for a given distance [30]. Path loss prediction models
are classified into three different categories: empirical, deterministic,
and semi-deterministic. Empirical models such as [31] and [32] are
based on measurements and use statistical properties. However, the
accuracy of these models is not as high as deterministic models to
estimate the channel characteristics. These models are still widely-
used because of their low computational complexity and simplicity.
Deterministic models or geometrical models consider the losses due to
diffraction, and detailed knowledge of the terrain is needed to calculate
the signal strength [33,34]. These models are accurate. However, their
computational complexity is high, and they need detailed information
about the region of interest. Semi-deterministic models applied in [35]
and [36] are based on empirical models and deterministic aspects.

In our study, we use empirical methods since it is the type of mod-
eling that would be most appropriate to leverage crowdsourcing. The
large-scale fading is a function of distance (𝑑) between the transmitter
and the receiver, and 𝛾 is the path loss exponent, where the path loss
exponent varies due to the environmental type from 2 in free space to 6
in indoor environments. Some typical values are 2.7–3.5 in typical urban
scenarios and 3–5 in heavily shadowed urban environments [30]. In this
work, we focus on the inferred path loss exponent from mobile phone
measurements and use a linear regression model to calculate the path
loss exponent.

4.2. In-field analysis of inferred path loss across region and device types

As discussed in Section 3, our experimental analysis spans three
region types (single-family residential, multi-family residential, and
downtown) with multiple mobile phone types at the API-level (WiEye),
with mobile phones at the firmware level (Qualipoc), and with a channel
scanner (TSMW). All of these devices report which base station sector
is transmitting the received signal. We performed the measurements
while the car speed was maintained at approximately 20 mph. To avoid
stopping at the traffic lights, we observed traffic light patterns, and we
drove each route many times to record data regarding our requirements.
In the future, we could consider predicting the future received signal
strength concerning the UE speed and direction regarding the base
station. To do so, we can record the compass data from the phone along
with the signal strength, location information, and time stamp.

Since prior works have shown per region performance [30] and per
sector performance can differ [15], we first analyze the variation of the
path loss exponent from each region and each sector in three regions
from the channel scanner to show some examples of the 𝛾 diversity. We
consider the following three types of areas:

(1) A downtown region containing tall buildings and trees, which
are non-uniformly distributed over the region.

(2) A single-family area that is covered by a high density of foliage
and mostly two-story buildings.

(3) A multi-family area that has a mixture of vegetation and buildings
of two stories or more in height.

Since path loss is not only a function of distance but is also affected by
obstacles between the transmitter and receiver and environment type,
we consider the geographical features in different areas to explain the
variation of the observed path loss exponents (even within the same
region type). For a more thorough investigation on the relationship
between the geographical features and the role they play on propagation
effects please refer to our recent work [37,38]. Here, we make the
following observations:

(i) Path loss slope varies in different region types: To study the path
loss exponent’s variation in each region, we inferred all available 𝛾s
corresponding to different sectors in each region. We eliminated the
sectors with a low number of measurements as defined by the results

Table 3
Minimum and maximum observed path-loss exponent per region and corresponding
geographical features.

Region 𝛾 𝐵ℎ 𝐵ℎ𝜎
#B 𝑇ℎ 𝑇ℎ𝜎

#T 𝑅𝐺𝐸 𝑅𝐺𝐸𝜎
𝐵𝑇𝑆𝐺𝐸 𝛥𝛾

Single-family Min 3.2 8.34 2.7 209 10 2.9 1846 176 2 180 .5
Max 3.7 8.6 2.6 470 11 3.5 2300 186 7 180

Multi-family Min 2.9 10.4 15.3 21 8.7 3.1 230 184 1.9 186 1
Max 3.9 11.8 11.5 98 12 14 500 184 3 176

Downtown Min 2.8 35 35 36 9.7 7.8 197 135 2 136 1
Max 3.8 37 32 41 14 10 233 136 2.8 127

in Fig. 10. We performed linear regression on each sector’s signal
strength measurements independently to find the path loss exponent
for that sector. Then, in each region, we select the sectors containing
the minimum and maximum 𝛾.

A received signal is a combination of transmitted signals, composed
of reflected or scattered transmissions that are obscured by buildings
or trees. Thus, the propagation environment is profoundly influenced
by the path loss and affects the network performance. The impact of
the buildings would be more visible in an urban environment where
a diversity in building height surrounds the UE. In this work, we
considered three different area types to measure. Table 3 shows the
minimum and maximum path loss exponent obtained using channel
scanner measurements for a particular sector in each region. As we
can see, there are differences between the path loss exponent readings
from different regions. To enhance our understanding about these
differences, we provide detailed information of the buildings and foliage
corresponding to each region. To provide 3-dimensional geographical
features of a region, we used a database of Light Detection and Ranging
(LiDAR) information from that region. This dataset contains detailed
information of buildings and trees as we discussed extensively in our
recent work [37].

The height of surrounding objects plays an important role on the
signal attenuation, because the receiver height is typically lower than
the clutter height. Therefore, we provide the average and standard
deviation of object heights in that area. Here, 𝐵ℎ and 𝑇ℎ depict the
average height of the buildings and trees and the standard deviation
of these object heights for and 𝛾𝑚𝑎𝑥 and 𝛾𝑚𝑖𝑛 are depicted as 𝐵ℎ𝜎
and 𝑇ℎ𝜎 , respectively. Furthermore, we consider the number of objects
(scatterers and reflectors) and ground elevation information of an area.
The ground elevation information of the receiver and the transmitter
would ultimately influence the difference between the clutter height
and transmitter height.

We observe that downtown and multi-family regions report the
highest variation range of the path loss slope. In the single-family area,
there is not as big of a difference in the average and standard deviation
of the object heights for 𝛾𝑚𝑎𝑥 and 𝛾𝑚𝑖𝑛. However, the number of the trees
(#𝑇 ) and buildings (#𝐵) located in the sector corresponding to 𝛾𝑚𝑎𝑥 is
much higher than the others. Furthermore, the ground elevation of the
area is about 7 m higher than the ground elevation of the base station
in the 𝛾𝑚𝑎𝑥 case. The range of the observed path loss exponent in each
environment is depicted by 𝛥𝛾 , and the results show that the variation in
the path loss exponent of multi-family and downtown regions are higher
than the single-family area.

ii. 𝛾 varies in different sectors of a particular base station (even in
the same region type). We consider a particular base station consisting
of three sectors in each region and the corresponding geographical
characteristics of each sector. Fig. 3a depicts the spatial distribution
of signal strength measurements obtained from a channel scanner
for a base station located in a single-family residential region. The
measurement locations across the three sectors are represented by red
dots. In Fig. 3b, we see that the path loss exponent of sector (a) to sector
(c) ranges from 3.1 to 3.4, even from the same base station.

To generalize this behavior over multiple region types, Table 4
depicts the path loss exponent of three sectors of a particular base
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Fig. 3. Signal quality data from three sectors around a base station (left) related path loss exponents of each (right).

Table 4
Field-tested path-loss exponent per cell from channel scanner (TSMW) and corresponding
geographical features.

Region Sector 𝛾 𝐵ℎ 𝐵ℎ𝜎
#B 𝑇ℎ 𝑇ℎ𝜎

#T 𝑅𝐺𝐸 𝑅𝐺𝐸𝜎

Single-family
𝑆𝑒𝑐𝑡𝑜𝑟3 3.6 8.6 2.7 330 10.7 3.2 2760 186 6
𝑆𝑒𝑐𝑡𝑜𝑟2 3.5 8.3 2.8 270 10 2.9 2572 186 2
𝑆𝑒𝑐𝑡𝑜𝑟1 3.2 8.34 2.7 190 10 2.9 1846 182 2

Multi-family
𝑆𝑒𝑐𝑡𝑜𝑟1 3.7 10.3 2.7 130 8.8 3 1117 182 3.5
𝑆𝑒𝑐𝑡𝑜𝑟2 3.6 11 5 276 10.5 4.5 1400 180 2.5
𝑆𝑒𝑐𝑡𝑜𝑟3 3.4 9.7 3 230 9.7 4.6 1960 184 2.5

Downtown
𝑆𝑒𝑐𝑡𝑜𝑟1 3.5 60 53 38 16 10 305 134 2.6
𝑆𝑒𝑐𝑡𝑜𝑟2 3.2 43 30 56 12.5 9 300 133 3.6
𝑆𝑒𝑐𝑡𝑜𝑟3 2.8 35 35 36 9.7 7.8 147 135 2

station in three different areas (downtown, single-family, and multi-
family residential areas). The 𝛾 in the downtown area shows a higher
variation (0.7) than two other regions with the multi-family and single-
family areas having a value of 0.3 and 0.4, respectively. Furthermore,
we can see that the small variations in average height of the objects
in each region account for small changes in estimated 𝛾 because the
taller objects around the receiver or in between the base station and the
UE are more likely to scatter or reflect the signal. Also, in single- and
multi-family areas, the number of objects located in a sector and near
to the receiver has an impact on the path loss slope [39].

The 𝛾 in the downtown area shows a higher variation (0.7) than two
other regions with the multi-family and single-family areas having a
value of 0.3 and 0.4, respectively. We can see that the small variations in
average height of the objects in each region accounts for small changes
in estimated 𝛾. Also, in single- and multi-family areas, the number of
buildings and trees located in a sector has an impact on the path loss
slope.

iii. RSRP samples form diverse statistical distributions based on device and
region types. To depict the difference in received signal power between
the channel scanner, firmware, and API level, we plot the distribution
of the Reference Signal Received Power (RSRP) values obtained by each
tool for a specific base station sector in Fig. 4a. We observe that the
difference between the CDF’s median of the channel scanner (−77 dBm),
Qualipoc (−78.8 dBm), and WiEye (−79.5 dBm) are about 1.8 dB and 2.5
dB, respectively. This difference is similar to that discussed in Table 1,
especially for the firmware measurements but shows that the API level
samples are subject to other effects such as averaging of samples, which
will be explored in greater depth in Section 4.3.1.

To evaluate the viability of a measurement sample size for each
region, we use the Kolmogorov–Smirnov test (KS test), which attempts
to determine if the samples come from the same distribution. There are
two metrics with the test, ℎ and 𝑝, which are the results of the hypothesis
test at the default 5% significance level. In particular, ℎ determines if

the test is passed or failed, and 𝑝 is the estimated significance for the
specific test evaluated. An ℎ flag will be reported as 0 (false) if the null
hypothesis that the two distributions have a common distribution and
cannot be rejected at the chosen significance level and concurrently does
not have enough evidence to support the similarity.

In our application, if the number of measurements is too small to
be representative of the region, the 𝑝 value will be above a threshold
of 0.05. Conversely, if 𝑝 ≤ 0.05, it signifies that there are a sufficient
number of measurements to be confident in the path loss exponent
prediction. In Fig. 4b, we show the 𝑝 value of the KS test based on
the measurement number per region type. In our case, when 𝑝 ≤ 0.05,
then ℎ is always 1, which means the test passes for these values of
𝑝. When the threshold is crossed, the number is approximately 600
samples for each region. Furthermore, the figure shows that decreasing
the number of measurements in a single-family area has a lower impact
on the KS value as compared to multi-family and downtown areas. This
effect can be credited to the relative homogeneity of the geographical
features in the single-family area as opposed to the more heterogeneous
multi-family or downtown regions. We will extend this investigation on
measurement number size in Section 4.3.2, where we focus on the role
of downsampling in both time and space from a very large number of
measurements taken by the channel scanner.

iv. Matching the mobile phone samples in time to the channel scanner
samples provides precise path loss exponent prediction. We now focus on
a single mobile phone (Samsung Galaxy S5) to directly compare the
path loss exponent inferred from the received signal quality reported at
the API and firmware levels to that reported by the channel scanner in
the same environment. We consider the most densely-measured sector
from each region type in our comparison and calculate three different
path loss exponents. First, we consider the path loss exponent 𝛾𝑋 as
calculated from all measurements in the chosen sector for device 𝑋,
where 𝑋 is 𝑇 for TSMW, 𝑄 for Qualipoc, or 𝑊 for WiEye. Second,
we downsample the TSMW measurements according to the matching
process mentioned in Section 3, where the TSMW measurement with
the closest time stamp to the mobile phone measurement is chosen for
Qualipoc and then for WiEye. This second calculated path loss exponent
is represented by 𝛾𝑄′ and 𝛾𝑊 ′, respectively, and allows the path loss
exponent to be considered for the same number of measurements as
Qualipoc and WiEye but with the signal strength readings from the
TSMW. This approach inherently controls for the number of samples,
which we later evaluate extensively.

These two 𝛾 values are shown in Table 5. By comparison across these
path loss exponents, 𝛾𝑇 with 𝛾𝑄′ and 𝛾𝑊 ′, we observe that even when
the same device is used (TSMW) to capture the signal strength measure-
ments, downsampling the number to match the mobile phones raises
the estimate of the path loss exponent in every environment. This effect
could be explained by the inclusion of lower quality measurements (i.e.,
considering the measurements that were clipped from the mobile phone
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Fig. 4. Statistical distribution properties of RSRP based on device (a) and region type (b).

Table 5
Path loss exponents inferred from mobile phone signal quality reported at the firmware (Qualipoc) and API level (WiEye) from total measurements
versus those matched closest in time to that of the channel scanner (TSMW).

Region TSMW Qualipoc WiEye

Samples 𝛾𝑇 △Q&T (dB) Samples 𝛾𝑄 𝛾𝑄 ′ △W&T (dB) Samples 𝛾𝑊 𝛾𝑊 ′

Single-family 2 063 3.1 1.4 620 3.23 3.17 3.8 293 3.31 3.19
Multi-family 1 961 3.41 0.9 970 3.48 3.42 3.1 350 3.51 3.38
Downtown 11 634 3.85 1.2 512 3.97 3.87 3.5 225 4.00 3.89

measurements), which in turn lowers slightly increases the value of the
path loss exponent. Despite the consistently positive path loss exponent
error in prediction, the matched 𝛾 values of 𝛾𝑄′ and 𝛾𝑊 ′ are within 0.06,
0.06, and 0.1 for the firmware level measurements and 0.12, 0.13, and
0.11 for the API-level measurements for the single-family, multi-family,
and downtown regions, respectively. Therefore, matching the mobile
phone measurements in time to the channel scanner measurements
allowed highly-effective path loss exponent prediction, especially at the
firmware level.

4.3. Mobile phone and crowdsourcing impact on path loss estimation

In this section we study the impact of different shortcomings with
mobile phone measurements (averaging, temporal downsampling, and
quantization) and imperfections that arise with crowdsourcing wireless
signal strengths (non-uniform downsampling in both time and space)
as opposed to drive testing in a known physical pattern with a known
periodic sampling frequency in a particular region under test. In this
Sections 4.3 and 4.4, we use signal strength samples from the channel
scanner exclusively in our analysis and emulate each mobile phone
imperfection in isolation to evaluate the impact of that effect.

4.3.1. Averaging of the received signal power
Network interfaces often use some form of hysteresis to suppress

sudden fluctuations in channel state that might lead to overcompen-
sation in adaptive protocols. Many times this hysteresis is performed by
averaging multiple received signal qualities before reporting it to the
higher layers (e.g., within the firmware) and/or the user (e.g., within
the operating system in support of API calls). Each device uses its own
policy (often proprietary) to take a specific number of samples over a
certain period of time. In particular, a mobile phone in an LTE network
is required to measure the Reference Signal Received Power (RSRP)
and Reference Signal Received Quality (RSRQ) level of a serving cell
at least every Discontinuous Reception (DRX) cycle to see if the cell
selection criteria is satisfied [40]. To do so, a filter is applied on the
RSRP and RSRQ of the serving cell to continually track the quality of the
received signal. Within the set of measurements used for the filtering,
two measurements shall be spaced by no longer half of DRX cycle [41].

On the other hand, a mobile phone receives multiple resource elements
and measures the average power of resource elements. However, the
number of resource elements in the considered measurement frequency
and period over which measurements are taken to determine RSRP by
the mobile phone depends on the manufacturer.

As a result, even if two devices are in the same environment in
close proximity and experience virtually the same channel quality
fluctuations, differences in averaging window sizes could be interpreted
as diverse fading behaviors. More importantly, when crowdsourcing
signal strengths, we are forced to accept the averaging behavior of a
broad range of devices. Hence, there is a question as to the degree
to which an MDT update should be filtered. Since we are focused on
large-scale path loss in this paper, we assume that applying a filtering
mechanism on the measurements to average out the effect of the fast
fading avoids misinterpretation of extreme instantaneous behavior. In
other words, the eNodeB does not want to misinterpret the channel
condition due to uncharacteristic spurs in the measurement, which could
lead to erroneous actions such as excessive handover.

Hence, we seek to empirically quantify the degree to which a range
of averaging windows (i.e., the number of samples used in the average
reported) affects the calculation of the path loss exponent parameter.
We depict the variation of the 𝛾 parameter in Fig. 5 when we vary the
averaging window from 0.25 to 6 s on the collected measurements by
the channel scanner, which corresponds to a window size of 0 to 200
samples. We averaged the RMSE corresponded to each window size over
multiple base stations in each region. As we see, by increasing the filter
size, the maximum error in three regions is about 0.1. In other words,
we show that decreasing the window size does not improve the results
dramatically.

Also, we represent the average and standard deviation of the esti-
mated errors in 𝛾 estimation caused by averaging for each region via
a box plot in Fig. 6. The 𝑥-axis shows a period of 6 s with a step size
of one second. We see that the average error for the averaging window
size varies between 1 to 6 s and is approximately 0.12 RMSE of the
path loss exponent, on average, among the three regions. In addition,
we observe that by increasing the averaging window size, the absolute
error in all the three regions increases. However, the variation of the
error decreases because of the fluctuations of the signal is flattened by
applying a large averaging window size.
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Fig. 5. Averaging impact on path loss exponent (𝛾) prediction.

4.3.2. Non-Continuous measurement periods
When crowdsourcing information from willing participants, we must

be sensitive to their data usage and battery consumption issues, pre-
cluding prolonged, continuous measurements of detailed signal strength
values. One option may be to uniformly reduce the number of samples
per unit time for a given user over an extended period. Another option
could be to aggregate small numbers of samples at different time periods
and space from one or more users to compose an aggregate channel
effect. We now study both the former (uniform downsampling) and
latter (non-uniform downsampling).

Uniform downsampling impact. The channel scanner samples the
channel quality at approximately 500 times per second as opposed to
about 3 and 1 Hz with the Qualipoc and WiEye, respectively. In this
scenario, as the mobile phone preserves energy and/or data usage the
question becomes: how would the 𝛾 parameters further diverge from the
results shown in Table 5? In other words, the previous result showed the
extreme cases of either matching the same number of samples or having
a very different number of samples.

To study the role of differing numbers of measurements on path
loss estimation, we first examine the calculated 𝛾 parameter from a
particular sector of a base station in each region, when using uniform
and non-uniform down-sampling. We gradually reduce the number of
samples obtained by channel scanner to eventually reach the same
number of samples recorded by WiEye. At each step, we calculate the
error in path loss exponent calculation with respect to our reference
value, which is obtained by considering the highest resolution in channel
scanner data set. To do so, we reduce the number of samples by 𝑖, where
𝑖 ∈ 1,… , 𝑛 and 𝑛 = #𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑠𝑐𝑎𝑛𝑛𝑒𝑟 𝑟𝑒𝑐𝑜𝑟𝑑𝑠

#𝑃ℎ𝑜𝑛𝑒 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 . As we reduce the data set by 𝑖

samples, we are able to leverage 𝑖 data sets for a given 𝑖 to increase the
confidence in the result and study the variation of error.

Fig. 7a shows the error in path loss estimates by reducing the
signal samples received from a cell sector of a base station in the

downtown area. By increasing the time interval between samples, the 𝛾
and resulting variation thereof are affected. We observe that the error
caused by uniformly downsampling can reach up to 0.03 in this specific
cell, which means the predicted value is very close to the reference 𝛾.
Although the RMSE over each 10 steps has some variation, it does not
increase the error dramatically. Furthermore, by decreasing the number
of samples, the variation of channel characteristic estimation is not as
stable as when we have more data points.

Fig. 7b shows the impact of uniformly downsampling the channel
characteristics on each of the three different regions (single-family
residential, multi-family residential, and downtown). The maximum
variation over all three regions is depicted as the variation of the RMSE
at each point. Of particular note in this result is that downtown shows
more sensitivity to downsampling, and the single-family residential
region shows the least sensitivity.

Non-uniform downsampling impact. In a second scenario, perhaps
the crowdsourced measurements are not coming from a single user
which has uniformly throttled the number of measurements recorded
or reported but from multiple users in the same area. Controlling for
device differences for now (we will study this issue in Section 4.5), the
newly composed data set for mobile phone measurements 𝑌 has a non-
uniform sampling period in time and space compared to drive testing
the region with a channel scanner. As before, we quantify the accuracy
of the estimate of 𝛾𝑌 to the estimated 𝛾 when mobile phone signal
strength readings are dispersed through time and space. We assume that
a sufficiently large number of users in a similar area have crowdsourced
measurements. We also assume that the number of measurements from
the non-uniformly sampled data set matches that of the uniformly
sampled data set.

The non-uniform distributed measurements are studied in two do-
mains: (a) temporal and (b) spatial. For non-uniform temporal down-
sampling, we reduce the number of samples randomly based on the
time stamp of the received signal measurements from the channel
scanner data set. Fig. 8a depicts the impact of the non-uniform temporal
downsampling on the path loss exponent from a cell sector in downtown
and shows that by increasing the number of samples, the error with
respect to the reference value decreases. However, in general, the non-
uniform temporal downsampling has caused a higher value in terms of
RMSE for the same number of measurements as compared to uniform
downsampling.

For non-uniform spatial downsampling, we select the most populated
sector in each region. Then, we chose the measurements based on
three clusters which are randomly distributed over the region. Then,
we increase the number of the selected measurements in each cluster.
Finally, we compare the 𝛾 of the aggregated samples from non-uniformly
distributed clusters with the 𝛾 computed from all measurements from
the channel scanner in the same region. A comparison between the
uniform downsampling and non-uniform distributed measurements in
space for three regions is depicted in Fig. 8b. The clustered scenario
shows a higher error than the uniformly-distributed one. In addition,

Fig. 6. Impact of averaging on the 𝛾 estimation in terms of mean and standard deviation in a period of 1 to 6 s.
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Fig. 7. Uniformly downsampling the measurements of a sector in downtown (left) and across all three regions (right).

Fig. 8. Non-uniform downsampling of a sector in downtown (left) and non-uniformly downsampling in space compared to uniformly (right)..

we observe that the error in the downtown region is higher than two
other regions.

We have found that the location of the selected clusters in the non-
uniform scenario is significant, as depicted in Fig. 9. To do so, we again
select the most populated sector in a region. Then, we determine the
location of three clusters of measurements based on Fig. 9. We start
by choosing 50 measurements in each cluster and we increase it by 50
until we have 3000 measurements. The left figure shows a model which
is more dispersed through a sector. The middle scenario covers the left
and top left area of the sector. In the right scenario, all measurements
have a grouping on the left of the sector. We measured the average of the
RMSE for each scenario. The results show the 0.083, 0.15, and 0.3 as the
average of the RMSE for each aforementioned scenario. In other words, a
spatially well-distributed group of user measurements would contribute
to a better result to predict the path loss exponent. Also, the type of
cluster distribution has an impact on the number of measurements that
are needed to estimate the channel condition. With this result and the
current developments in the LTE standard (10) about the Minimization
of Drive Test function [20], a carrier could more strategically poll users
in a given area and/or at a certain time to reduce the resources necessary
for their users to crowdsource and increase the likelihood of success of
such an effort.

What is the required number of measurements? The number of
measurements plays an important role in path loss prediction accuracy.
Hence, we seek to find a sufficient number of measurements to provide
a certain level of accuracy in channel characteristics prediction among
three regions. To do so, we repeated the same procedure as before
with our analysis with the following exception: we perform uniform
downsampling, but his time, we consider more than one base station
in each region and we select the sectors that contain the same number
of signal measurements (about 4000 to 5000). We reduced the number

of signal quality measurements and compared the path loss exponent
results obtained from the new data set with the reference value. As we
can see in Fig. 10, by decreasing the sampling size the averaged error is
increased with greater fluctuations.

We depict three areas in each figure, where each area shows a
certain level of accuracy in path loss prediction. The area on the far
left of each graph shows the number of measurements that provides
poor accuracy. The area towards the middle of each graph shows the
range of the required number of measurements to obtain an acceptable
error corresponding to the 𝛾 estimation. Finally, the area on the far right
of each graph represents a range of measurements where the error is
monotonically decreasing with each additional measurement providing
improved accuracy. As depicted across all the graphs of Fig. 10, the
required number of measurements to provide an accurate estimation of
channel characteristics is between 700 and 1500. We explain in Section
5 that an error in path loss exponent estimation, result in overestimation
or underestimation in the probability of coverage of a targeted region.
Overestimating and underestimating in network performance prediction
result in gaps in coverage area and redundancy or even unwanted self-
interference within the same network deployment, respectively.

4.3.3. Quantization of the received signal power
Android reports the quality of the common pilot channel received

signal quality for LTE in terms of Arbitrary Strength Units (ASU) with
98 quantized levels. The received signal level has a range of −44 dBm
to −140 dBm and is mapped to ‘‘0 to 97’’ with the resolution of 1 dBm.
Since the obtained signal strength by a channel scanner has much
greater granularity, the question becomes: what role does quantization
have on the path loss exponent? We have considered the quantization
impact on path loss estimation as defined as the difference between the
estimated 𝛾 compared to the highest resolution setting as measured by
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Fig. 9. Impact of spatial non-uniformly downsampling.

Fig. 10. Required number of measurements in uniformly and non-uniformly downsampling case.

the channel scanner. To do so, we round each element of the received
signal strength from the channel scanner to its upper bound or lower
bound value. By comparing the result with the reference 𝛾, we found
the absolute error to be negligible (e.g., 0.0003). We show this effect in
Fig. 11a of the following subsection, which considers the joint effect of
all of these imperfections.

4.4. Joint analysis of mobile phone factors on path loss

Up to this point, we applied each of the challenges with phone
measurements individually. We now jointly consider the mobile phone
imperfections impact (averaging, uniform and non-uniform downsam-
pling in space and time, and quantization) on the 𝛾 estimation. To do
so, we extract the collected data by the channel scanner obtained from
a specific cell sector from three regions. Then, we apply the averaging
on signal samples which are quantized already. Then, we downsampled
(uniformly and non-uniformly in time and space) from the averaged
and quantized values. At each step, we obtain the RMSE from the path
loss exponent calculated from the channel scanner’s samples with the
highest resolution. Fig. 11a depicts the relative error caused by each
shortcoming in comparison with the other studied issues for all 11 of
our base stations. Fig. 11b shows the percentage of RMSE caused by
each individual issue with respect to the reference 𝛾 for data from
all base stations. Here, we observe that non-uniformly downsampling
has a dramatic effect on the results. However, each base station has a
diverse measurement number, which could contribute to these results.
Hence, we analyze the impact of each imperfection with mobile phone
measurements individually on a data set for a single sector in each region
with a comparable number of measurements (4000 to 5000). As before,
we applied averaging, uniform and non-uniform (spatial and temporal)
downsampling, and quantization to the data. Fig. 12a shows the RMSE of
the path loss prediction due to each effect as compared to the prediction
with all measurements of that sector.

There are two interesting findings from these result: (i) either form
of non-uniformly downsampling is clearly the most dominant effects

considered when predicting the path loss exponent, and (ii) the two
non-uniform downsampling techniques (time and space) have approx-
imately equivalent performance (despite the noise of non-uniformly
downsampling noted earlier). The latter finding offers great hope for
crowdsourced data sets to be influential in characterizing the path loss
characteristics of an environment.

4.5. Impact of heterogeneous mobile phones and users on path loss charac-
terization

When crowdsourcing signal quality from mobile phone users, there is
a diversity in hardware and software of the devices. Even two co-located
mobile phones at the same time may report very different signal qualities
due to different RF front ends. In this section, we study the impact
of heterogeneous devices on the estimated path loss exponent. Up to
this point, we have considered a single type of mobile phone, Samsung
Galaxy 5S, due to its ability to support both Qualipoc and WiEye. Here,
we use WiEye across three other mobile phones (4 total) with a two-
phase approach. First, we consider the signal strength samples from
all the devices to calculate the path loss exponent and evaluate the
accuracy compared to the path loss exponent from the channel scanner
signal quality samples. Second, we consider the differences in reported
signal strength from each device introduced by each mobile phone in
terms of dBm as compared to the raw measurements of the channel
scanner. Lastly, we calculate the path loss exponent based on strictly
crowdsourced data from WiEye users in different regions around the
world and examine the geographical features of these areas.

4.5.1. Calibrating diverse phone models and setup
In this experiment, four Android phones described in Table 6 are

used to collect signal strength data from the three aforementioned
areas in Dallas (single-family residential, multi-family residential, and
downtown). We installed our development version of WiEye, which logs
signal strength samples at 1 Hz, on the following four phones: Samsung
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Fig. 11. Joint impact of mobile phone imperfections relatively (left) and per effect (right).

Fig. 12. Impact of each mobile phone imperfection.

Table 6
Measurement tools configuration and field-tested range of reported signal quality (dBm)
from channel scanner (TSMW) and WiEye of four phones.

Tool Model/OS Chipset Min Max Range

Channel scanner TSMW/- – −130 −52 78
𝑊1 Samsung GS5/A5 MSM8974AC −118 −54 64
𝑊2 Nexus 5X/A5 MSM8974 −119 −58 61
𝑊3 Google Pixel/A7 MSM8996 −120 −57 63
𝑊4 Samsung GS8/A7 MSM8996 −121 −54 67

GS5, Nexus 5X, Samsung S8, and Google Pixel. Each phone was co-
located alongside the channel scanner on the roof of a car. The duration
of the experiment was 360 min.

We first analyze the RSRP differences of the four phones in terms of
the minimum, maximum, and resulting range of dBm reported across all
measurements to understand the relative sensitivities. While a few hours
of driving does not guarantee the full range of signal strengths, during
this time, we observe that the greatest range of values is achieved by
the Samsung S8 (67 dBm) as reported by WiEye and the least range of
values belonged to the Nexus 5X (61 dBm). As a point of comparison, the
TSMW Channel Scanner achieved a range of 78 dBm for the temporally-
matched samples.

4.5.2. Inferring path loss across devices
We now use each phone to predict 𝛾 for four observed base stations

in aforementioned regions. The dBm offset bias between the average
received signal level by each phone and the channel scanner is shown
in Table 7 per region.

We observe that on average the difference in reported received
signal level by the scanner is 3 dBm higher versus the phones across

the three regions with a range of 1.46 to 4.1 dBm. As we depicted
before, the biases directly affect the path loss characterization. The
lower reported channel quality corresponds to a higher value in obtained
path loss exponent, while a higher reported channel quality corresponds
to a lower path loss exponent. We now consider the calculated path
loss exponent from the signal strength samples of each of the four
phones, the calculated path loss exponent from the aggregated data set
of the reported signal strength samples from all phones, and then the
calculated 𝛾 from the compensated signal strength samples of all phones,
considering the bias.

Table 8 shows the obtained path loss characteristics of one specific
sector in three different regions, when we consider only a single phone’s
RSRP and all phones’ RSRP. As a point of reference, we also include the
𝛾 from the channel scanner RSRP data. We observe that the obtained 𝛾
using the data set of each phone are relatively close to one another.
We see that the Samsung S8 phone has the closest 𝛾 value between
all four phones to the channel scanner. In other words, the device that
receives the larger range is more accurate in terms of the 𝛾 estimation.
The comparison shows that considering all RSRP data across device
types actually increases the accuracy as compared to any given phone
against the path loss exponent calculated from the channel scanner
RSRP. Hence, we find that 𝛾 is predicted by using the RSRP from a
diverse set of mobile phones. In addition, we compensated the signal
strength of the aggregated data set by using the 3 dBm obtained in the
previous section. We find that the compensated results in terms of 𝛾
are extremely close (with 2.7%, 0.3%, and 0.6% error for single-family
residential, multi-family residential, and downtown, respectively) to the
obtained results by the channel scanner.

4.5.3. Inferring the path loss from crowdsourcing
We now use crowdsourced measurements taken from our widely-

distributed WiEye application on the Google Play store. We estimate the
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Table 7
Average signal quality bias reported from heterogeneous phones as reported by WiEye with matched channel scanner measurement.

Device 𝑊1 (GS5) 𝑊2 (N5X) 𝑊3 (Pixel) 𝑊4 (GS8)

Location dBm Diff. (Mean) dBm Diff. (Mean) dBm Diff. (Mean) dBm Diff. (Mean)
Downtown 4.4 (−78.5) 2.1 (−76.2) 3.2 (−77.3) 1.6 (−75.7)
Single family 3.8 (−85.0) 2.4 (−83.6) 2.5 (−83.7) 1.7 (−82.9)
Multi family 4.1 (−80.3) 2.7 (−79.1) 3.5 (−80) 1.1 (−77.6)

Table 8
Path loss characteristics obtained by four devices in three modes: matched, aggregated,
compensated mode.

Device Single family Multi-family Downtown

Channel scanner 3.01 3.33 3.61
𝑊1 (GS5) 3.21 3.50 3.80
𝑊2 (N5X) 3.18 3.54 3.78
𝑊3 (Pixel) 3.38 3.58 3.90
𝑊4 (GS8) 3.19 3.47 3.75
Aggregated 3.27 3.53 3.83
Compensated 3.09 3.34 3.63

path loss exponent of regions around the world without physically drive
testing those areas. Based on some of our highest user density, we have
selected four environments with diverse geographical features: (i) tall
buildings and trees in Dresden, Germany, (ii) low buildings and no trees
in Artesia, New Mexico, (iii) mostly trees with a few homes in Macon,
Georgia, and (iv) mostly free space in Thiersheim, Germany. The aerial
view of each of these environments can be seen in the top figures of
Fig. 13.

In Fig. 13, the bottom figures show the number of crowdsourced
signal strength samples and their spatial location as captured by our
Android application overlayed on a more basic map of the same area
displayed in the aerial view on the top. Using these signal quality
measurements from each region, we have computed the path loss
exponent 𝛾, which can be seen in the caption of each subfigure. We
have ordered the figures from left to right where we see the path loss
exponent is decreasing from left to right. In particular, 𝛾𝑎 equals 3.3
with the most diverse and complex environment with tall buildings and
trees, 𝛾𝑏 equals 2.7 with an environment that has similar, small building
types but no trees, 𝛾𝑐 equals 2.5 with mostly trees and a few homes, and
𝛾𝑑 equals 2.1 with mostly free space.

Therefore, the geographical features and complexity in the environ-
ment match the 𝛾 behavior we would expect, and the channel factors
were derived strictly using crowdsourced measurements. Of particular
note that in these measurements alone we saw a fairly dramatic change
in the 𝛾. In fact, we observed a range of 2.1 to 4.0 of the path loss
exponent throughout this paper, which would constitute extremely
different network designs across this range of propagation scenarios.

We find that a well-distributed signal measurement throughout a
region would provide an accurate 𝛾. Yet, we seek to achieve an accept-
able accuracy level with less total measurements. In this experiment, we
considered signal quality measurements obtained from various locations
within a sector corresponding to a base station. The minimum and
maximum distances from captured measurements regarding to a base
station are 84 m and 2.5 km respectively. We divide the signal quality
measurements into 3 groups for a particular sector based on distance:
near, middle, and far (Fig. 14). We then perform the analysis on all
combinations of two different regions of the three available, studying
the role of distance away from the base station and its impact on our
path loss prediction.

Table 9 shows the path loss slope for each cluster. As we expect,
the variation of the 𝛾 over a homogeneous region is less than a
heterogeneous environment due to the difference between the geograph-
ical characteristics of each region. In addition, we aggregate signal
measurements from different clusters and compare the results with our
reference path loss slope. The results show that aggregating the signal
measurements from the near and edge region results in a path loss
exponent closest to our reference 𝛾.

In next step, we apply the same approach on our crowdsourced data
set, depicted in Fig. 13. We select the case with a slope 𝛾𝑎 = 3.3 because
of its complex environment with tall buildings and trees. The results
show that the aggregated data sets from near and far regions (𝛾 = 3.29)
are the closest result to the reference slope (𝛾 = 3.3).

5. Coverage estimation impact from prediction error

In the previous sections, we evaluated the path loss exponent pre-
diction accuracy using RMSE and the total difference in the 𝛾 value.
However, it is hard to interpret such error in terms of operational
network performance. To build such intuition, we examine the role of
this prediction error on coverage estimation and Bit Error Rate (BER).
Since the received signal level randomly varies due to shadowing effects,
network operators must determine the probability that the received
signal strength crosses the specified threshold at the cell edge, which
is calculated according to [28]:

𝑃𝑥0(𝑅) = 𝑃𝑟𝑜𝑏[𝑥 > 𝑥0] = ∫

inf

𝑥0
𝑃 (𝑥)𝑑𝑥

= 1
2
− 1

2
𝑒𝑟𝑓 (

𝑥0 − 𝑥

𝜎
√

2
)

(1)

Here, 𝑥0, is the receiver sensitivity, which is a function of the UE
hardware design and the required service quality. 𝑥 is the receive signal
level at distance 𝑑, which can be obtained by applying a log-distance
propagation model. It is a common approach to estimate the mean of
the received signal level over a specific distance 𝑑 from the base station.
The variation of the received signal level due to shadowing, represented
here by 𝜎.

Knowing 𝑃𝑟𝑜𝑏[𝑥 > 𝑥0], we can determine the percentage that the
received signal level exceeds a certain threshold in an area with radius
𝑅 around the center of a base station, as shown in [42]:

𝐹 𝛾
𝑢 = 1

𝜋𝑅2 ∫ 𝑃 (𝑥0)𝑑𝐴 (2)

The simplified version of the previous equation could lead to:

𝐹 𝛾
𝑢 = 1

2
[

1 − erf(𝑎) + exp( 1 − 2𝑎𝑏
𝑏2

)(1 − erf 1 − 𝑎𝑏
𝑏

)
]

(3)

Here, 𝑎 and 𝑏 are obtained from (4):

𝑎 =
𝑥0 − 𝛼
√

2𝜎

𝑏 =
10𝛾 log10(𝑒)

√

2𝜎

(4)

where 𝛼 is determined from the transmitter power, antenna heights and
gains. To investigate the impact of the path loss error prediction on the
probability of cell area coverage estimation, we assume that the mobile
network provider has a restriction on the receiver sensitivity 𝑥0 at a
certain distance 𝑅 to provide a particular service level. With respect
to the above assumptions, we achieve the probability of exceeding the
sensitivity level 𝑥0 with probability 𝑃𝑟𝑜𝑏𝑥0 = 𝑝𝑟𝑜𝑏[𝑥𝑅 > 𝑥0]. Knowing
this, we obtain the percentage of the useful area covered with a cell
boundary of 𝑅 and the received signal level 𝑥0.

We consider the case where the actual path loss exponent is 3.0.
Then, we consider a error in path loss exponent value from −1.0 to
+1.0 for a range between 2.0 and 4.0 for the predicted value. We assume
the receiver sensitivity is fixed due while providing a particular service
level at the cell edge. Then, we obtain 𝐹𝑢 corresponding to each 𝛾,
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Fig. 13. Path loss analysis for crowdsourced data sets in four different regions.

Fig. 14. Variation of 𝛾 in homogeneous region (single-family residential) at varying distance from base station.

Table 9
Field-tested path-loss exponent per cell from channel scanner (TSMW) and corresponding geographical features.

Region 𝑅𝑒𝑓𝛾 𝑁𝑒𝑎𝑟𝐶𝑒𝑙𝑙𝛾 𝑀𝑖𝑑𝑑𝑙𝑒𝐶𝑒𝑙𝑙𝛾 𝐸𝑑𝑔𝑒𝐶𝑒𝑙𝑙𝛾 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝛾 𝐴𝑔𝑔𝛾1,3 𝐴𝑔𝑔𝛾1,2 𝐴𝑔𝑔𝛾2,3
Single-family 3.55 3.58 3.59 3.5 3.55 3.52 3.6 3.61
Downtown 3.57 3.63 3.54 3.46 3.54 3.56 3.6 3.5
Dresden (Germany) 3.3 3.4 3.34 3.3 3.34 3.29 3.37 3.27

and we compare the estimated probability of coverage over the cell
area with the reference 𝛾. Fig. 15a shows the impact of the error in
path loss exponent prediction on the probability of cell area coverage
estimation when we are overestimating and underestimating the path
loss exponent.

As we can see, in the case that a greater path loss exponent than
actual is predicted (𝛾 ≥ 3.0), the coverage area probability drops from
79% to 20% by increasing the predicted 𝛾 from 3.0 to 4.0. In this case,
with a fixed transmission power, the network operator would cover 59%
more than expected, thereby creating unwanted redundancy and self
interference. In the case that a lower path loss exponent than actual is
predicted (𝛾 ≤ 3.0), the coverage area probability rises from 79% to
99% as early as 2.6 and remains at 100% to 2.0. While this might seem
like a positive effect for network operators, it could be an even greater
problem. Namely, the network operator will think that the propagation
environment is better than actual and so increase the spacing between
nodes, thereby creating coverage holes. For example, in the environment
where an actual path loss exponent is 3.0 and the predicted path loss
exponent is 2.6, there will be around 20% of the network that is not
covered from the targeted area.

Lastly, we study the impact of the error in path loss exponent
prediction on the network performance in terms of BER. Fig. 15b shows
the variation of BER by changing the predicted path loss exponent from
2.0 to 4.0 with a step of 0.5 while the SNR is in a range of 8 to 24. We
compare the BER of the estimated path loss exponents with our reference
one (𝛾 = 3.0). We observe that an error about 0.5 in path loss exponent

prediction causes an order of magnitude change in the BER at an SNR
of 20.

6. Conclusion

In this work, we take a first step towards crowdsourcing wireless
channel characteristics in LTE cellular networks (and later generations
of cellular technology) by considering the relationship between re-
ceived signal strength measurements of diverse mobile phones at the
firmware and API level versus advanced drive testing equipment. In
particular, we performed extensive experimentation across four mobile
phone types, two pieces of software, and a channel scanner in three
representative geographical regions: single-family residential, multi-
family residential, and downtown. With these devices and in-field
measurements, we evaluated the effects of averaging over multiple
samples, uniform and non-uniform downsampling (in time and space),
quantization, and crowdsourcing on the path loss exponent estimation.
We showed that both types of non-uniform downsampling have the most
dramatic effects on path loss calculation. Conversely, we showed the
quantization impact can largely be ignored since it showed a negligible
influence on our estimation. One key result of note stems from the
spatial non-uniformity of clusters of measurements observed within
our crowdsourcing database, which required far more measurements
than more uniformly spaced measurements. Also, we addressed the
required number of measurements to have a sufficient understanding
about the average of the signal attenuation in a specific environment.
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Fig. 15. Impact of the 𝛾 estimation’s error on the cell area coverage probability estimation.

Using the MDT specification of LTE release 11, carriers could request
specific measurement locations and times from users to be far more
efficient in polling signal quality. Furthermore, we showed four regions
around the globe and predicted the channel characteristics of these
regions from our crowdsourced data. In summary, we lay a strong
foundation for intuitively understanding a large majority of the issues
involved with crowdsourcing channel characteristics. For example, we
found that even a prediction error of 0.4 for the path loss exponent
would cause a 40% redundancy in the covered area or coverage holes
for 25% of the targeted area based on whether the error was above
or below the actual value, respectively. In summary, we lay a strong
foundation for understanding a large majority of the issues involved
with crowdsourcing channel characteristics. In future work, we will
study the impact of the various contexts on the received signal quality
and path loss estimation to precisely characterize the role of each
geographical feature on the large- and small-scale fading effects.
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