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Abstract—Key Performance Indicators (KPIs) are important
measures of the quality of service in cellular networks. There
are multiple efforts by cellular carriers and 5G standardization
to leverage the KPIs to minimize drive tests (MDT) and self-
organize the network for optimal performance via user feedback.
Such an approach accounts for user devices in the field of
their operation according to their normal usage and circumvents
a number of costs (e.g., manpower, equipment) traditionally
covered by the carrier, either directly or through a third party.
In this paper, we build a Regional Analysis to Infer KPIs (RAIK)
framework to establish a relationship between geographical data
and user data using crowdsourced measurements. To do so, we
use a neural network and crowdsourced data obtained by user
equipment (UE) to predict the KPIs in terms of the reference
signal’s received power (RSRP) and path loss estimation. Since
these KPIs are a function of terrain type, we provide a two-
layer coverage map by overlaying a performance layer on a 3-
dimensional geographical map. As a result, we can efficiently
use crowdsourced data (to not overextend user bandwidth and
battery) and infer KPIs in areas where measurements have not or
can not be performed. For example, we show that RAIK can use
only geographical information to predict the KPIs in areas that
lack signal quality data with a negligible mean squared error, a
seven-fold reduction in error from state-of-the-art solutions.

I. INTRODUCTION

Network operators use Key Performance Indicators (KPIs)
to track network performance, including the received signal
power, received signal quality, throughput, and delay. Histori-
cally, drive testing has been widely used by carriers and third
party entities to collect a sufficient density of KPI data to
accurately characterize the network performance. Despite pro-
viding detailed information at certain locations, this approach
is costly in terms of manpower, time, and equipment. Even
with the high costs associated with drive testing, carriers do
not have access to some regions and often cannot anticipate
the breadth of user devices, contexts, and functionalities with
in-field operation. Further complicating the problem, drive
testing may have to be repeated with changes to the physical
environment, such as the construction of new buildings or
highways, seasonal variations, or modifications to the spatial
distribution of users in the network [1].

An alternative and less costly way to capture such KPIs is
crowdsourcing, as outlined in the Minimization of Drive Test
(MDT) effort of LTE release 10 in 3GPP TS 37.320 [2]. MDT
allows carriers to monitor the in-situ network performance of
end users to detect variations of the provided quality of service
(QoS) to perform such actions as handover if the problem is
confined to a single user or self-organization if the problem
extends to one or more towers. For the latter problem, changes
to the antennae configuration in terms of transmit power, tilt, or
height can alleviate some issues while more persistent effects
necessitate smaller cell deployment in detected network holes.

To make efficient use of the crowdsourced data (to preserve
bandwidth and battery life of users), a natural extension of
MDT is to interpolate the region’s performance from discrete
user locations using propagation models [3], [4] and coverage
maps [5], [6]. Other studies have used crowdsourced data to
measure network metrics (e.g., [7]–[11]). However, none of
these approaches directly considers geographical features of
the environment in predicting the propagation characteristics
and resulting KPIs. In this paper, we establish the relationship
required by MDT efforts between geographical data and user-
based data, from which we build a Regional Analysis to Infer
KPIs (RAIK) framework. To do so, we predict the network
coverage using neural networks alongside crowdsourced data
collected by User Equipment (UEs) with an overlaid LiDAR
dataset in that same region. RAIK is based on a feed-
forward, back-propagation model, which employs multilayer
perceptron (MLP) with the geographical features of a region
to provide a KPI-based coverage map. To evaluate RAIK,
we perform extensive in-field measurements from urban and
suburban regions with diverse geographical features such as
type, density, and height of the buildings and trees. RAIK
forms a generalized framework that allows prediction of the
KPIs in areas that have yet to receive crowdsourced channel
quality measurements from users, relying solely on the terrain
and clutter information of a given area.

Our work consists of the following three contributions:
• We introduce the Regional Analysis to Infer Key Perfor-

mance Indicators (RAIK) framework, a learning structure
that can create interconnected relationships between ge-
ographical information and KPIs.

• To understand the impact of tile size on the prediction
results, we provide a coverage map based on the path
loss exponent using crowdsourced data. We find in all the
results that there is a tradeoff between the larger tile size
having too much area which has distinct terrain and too
small area without sufficient measurements. We show that
this tenuous relationship is magnified in the downtown
area due to the diversity from street to street.

• We consider the accuracy of predicting KPIs in areas
in which the RAIK framework lacks any signal quality
training, relying solely on the geographical features of the
area. For sub-regions that are tested without prior training
in that region, we find that the mean squared error (MSE)
of the predicted path loss and the measured one (to test
our prediction) can be as small as 0.01, which is a 7-fold
reduction from state-of-the-art algorithms.

The remainder of the paper is organized as follows. In
Section II, we present our framework, measurement set up,
and path loss evaluation using crowdsourced data. In Sec-
tion III, we present our prediction and in-field analysis of the



relationship between geographical features and our path loss
prediction model using a neural network. We present related
work in Section IV and conclude in Section V.

II. REGIONAL ANALYSIS TO INFER KPIS (RAIK)

To construct a coverage map from a region of interest,
we build a framework depicted in Fig. 1, which consists
of the following steps. (i.) We first build an Android-based
crowdsourcing infrastructure, which allows the widespread
collection of in-field signal quality data coupled with the
location of that user at the time of the measurement. (ii.) We
then infer the propagation characteristics of a given region
(regardless of the geographical features) by using the collected
signal quality measurements through that area and a sliding
square window of varying sizes. (iii.) Since the received signal
attenuation is affected by foliage and buildings surrounding the
user equipment (UE), we consider 3-dimensional geographical
data from the region of interest. For this purpose, we use Light
Detection and Ranging (LiDAR) data, which includes detailed
information of buildings and foliage such as height and
surface area (see Section. II-A for more details). (iv.) Lastly,
the prediction function will receive the estimated channel
characteristics and corresponding geographical features of an
area to construct a two-layer map consisting of: (a.) the
network performance information obtained by the UEs, and
(b.) their corresponding location information overlaid on a map
containing the foliage and buildings in the area.

Fig. 1: Regional Analysis to Infer KPIs (RAIK) Framework.

A. Data Acquisition Procedure for KPI Prediction
We now further describe the two data sets on which our

RAIK model is based: (a.) received signal quality data col-
lected by Android phones, and (b.) LiDAR, which describes
the geographical features in the area. We consider these two
data sets because the geographical features directly impact the
received signal quality in a given region.

(a) Android-Based Crowdsourced Data. We have a
crowdsourced dataset, which is built from voluntary partici-
pants that installed our publicly-available Android application
(WiEye) to collect global radio measurements. To limit the
power and bandwidth consumed by our app, signal quality
from all visible cellular and WiFi base stations are recorded
10 times per day. We have a development version of our app
that captures measurements at a frequency of 1 Hz, which we
have used to emulate a more concentrated user base in relevant
geographical regions in this paper. We specifically record
received signal strength across all available technologies, GPS
coordinates, Mobile Country and Network Codes, base station
identification (CID, LAC), device identification, and velocity
of the receiver (when locally collecting data).

We have acquired hundreds of millions of crowdsourced sig-
nal strength data points using WiEye. Locally, we collected an
additional 10 million measurements with greater densities in
three representative geographical regions in Dallas: downtown,
single-family, and multi-family residential areas. We utilized
obtained data from the downtown and single-family residential
areas to train the model. Then, we used the multi-family
residential area as a testing region, where the training from
this area was not used. Generally, the density of the foliage
in the single-family area is higher than the other two regions,
the downtown area is mainly covered by tall buildings, and the
multi-family area has a mixture of vegetation and moderately-
sized buildings (e.g., 2-3 stories).

(b) LiDAR-Based Geographical Features. To consider
the vertical and horizontal footprint of trees and buildings,
we use LiDAR (Light Detection and Ranging) data, which
creates 3-dimensional point clouds of the Earth’s surface.
LiDAR employs a remote sensing method from airplanes or
helicopters that transmits pulses of light to detect the distance
from the earth. The laser sends these pulses and measures the
time delay between the transmitted and the received pulse to
calculate the elevation. LiDAR systems are equipped with a
laser scanner that measures the angle of each transmitted pulse
and the returned pulse from the surface, high precision clocks
which record the time that the laser pulse leaves and returns to
the scanner, an Inertial Navigation Measurement unit (IMU)
to measure the angular orientation of the scanner relative to
the ground (pitch, roll, yaw), a data storage and management
system, and a GPS detector.

(a) Extracted Tree Data. (b) Extracted Building Data.

Fig. 2: 3-dimensional map from same region using LiDAR.
The LiDAR sampling rate is 400, 000 pulses per second,

which creates millions of data points. Also, the accuracy of
the collected points is about 15 cm vertically and 40 cm
horizontally. Hence, LiDAR systems provide a high-resolution
3D geometric model for the earth, clutter, and foliage, with
applicability across a broad range of fields such as geodesy,
geometrics, archeology, geography, geology, geomorphology,
seismology, forestry, atmospheric physics. [12]. Relevant to
our work, we use LiDAR to represent a three-dimensional map
of building and tree data in the three Dallas regions under test.
Each record that corresponds to a tree in our 3-D map includes
coordinates of the object, height, and area. We have the same
information for buildings. Fig. 2 shows the detected trees and
buildings in suburban region in Dallas. The background of
each figure is from OpenStreetMaps to verify the accuracy of
the LiDAR information from the same area.

KPI Metric for RAIK. From all the KPIs in the stan-
dard, we specifically target the Reference Signal’s Received
Power (RSRP) since: (i.) network providers seek to provide
coverage over an area to deliver sufficient quality of service
to customers, (ii.) a well-known relationship exists between the



(a) Downtown Region. (b) Single-Family Residential Region. (c) Multi-Family Residential Region.

Fig. 3: RSRP from Downtown (left), single-family residential (middle), and multi-family residential (right) regions.

received signal power and the throughput [13], and (iii.) UEs
regularly measure the received signal power to keep track of
visible base stations in case of the handover, even if the phone
is idle. Thus, the battery consumption to measure RSRP is low
and conducive to MDT efforts.

B. Propagation Over Three Representative Region Types

Large-scale fading refers to the average attenuation in a
given environment to transmission through and around ob-
stacles in an environment for a given distance [14]. There
are three well-known types of models to predict large-scale
fading: empirical, deterministic, and semi-deterministic. Em-
pirical models such as [3] and [4] are based on measurements
and use statistical properties. These models are widely-used
because of their low computational complexity and simplicity.
However,the accuracy of these models is not as high as
deterministic models to estimate the channel characteristics.
Deterministic models or geometrical models using the Geo-
metrical Theory of Diffraction to predict the path loss. To
consider the losses due to diffraction, detailed knowledge of
the terrain is needed to calculate the signal strength [15].
Despite the accuracy of their model, their computational
complexity is high and need detailed information about the
region of interest. The last one, semi-deterministic models,
are based on empirical and deterministic models [16]. In this
study, we use an empirical approach since it is the type of
modeling that could best leverage crowdsourced data.

Large-scale fading is a function of distance (d) between the
transmitter and the receiver where γ is the path loss exponent.
The path loss exponent typically varies between 2 in free space
and 6 indoors, depending on the environmental type. Nominal
values are in range of 2.7-3.5 in typical urban scenarios and
between 3 to 5 in heavily shadowed urban environments [14].
The large-scale path loss for an arbitrary distance di between
transmitter and receiver is defined according to:

Lp(di) = Lp(d0) + 10nlog(di/d0) (1)

Here, n is the the path loss exponent, and Lp(d0) is the path
loss at the reference distance d0. To characterize propagation
in a given region, we calculate the path loss exponent from
mobile phone measurements, where a linear regression model
is used to calculate the n. While mobile phones are not
as precise as advanced drive testing equipment, we have
shown that path loss is a recoverable parameter from UE
signal quality measurements if the appropriate calibration is
performed [17].

Fig. 3 depicts the collected RSRP in three representative
geographical regions: downtown, single-family residential, and
multi-family residential. In each region RSRP values are based
on signals received from a single base station. The variation of
the signal quality can be observed in each of the three regions.
However, sudden changes on the received signal strength in
the downtown area are more dramatic from street to street. In
particular, we observe very strong signals adjacent to dead
zones with respect to the RSRP. Since there are differing
geographical features within each region, we calculate the
path loss exponent (γ) obtained from received signal mea-
surements taken by mobile phones in smaller sub-regions. To
do so, we use a square window with an initial size of 200-
m square. There is a tradeoff in the region size considered
when considering the accuracy of the RAIK framework. If
the sub-region considered is too large, the variation in the
geographical features present imprecision in the inferred path
loss. If the sub-region considered is too small, the amount of
signal quality measurements is insufficient to infer a precise
path loss exponent.

(a) Entire downtown region. (b) 200-m square sub-region.

Fig. 4: Path loss exponent (γ) calculated over entire downtown
region (left) versus a 200 m x 200 m sub-region (right).

For example, Fig. 4 shows that the calculated γ from the
RSRP values over the entire region (3.1) is different from the
one calculated from the RSRP of a 200-m square sub-region
(3.4). Hence, we will use a filter over each region with sizes of
100-m, 200-m, and 300-m square in Section III to understand
both the role of these window sizes and the resulting path loss
exponent (γ) in each region and sub-region.

III. PREDICTION AND IN-FIELD EVALUATION OF KPIS

We now train and evaluate the RAIK framework with
our signal quality measurements from the three region types
discussed in Section II-B. To do so, we first consider a
performance metric and the impact of choosing different sizes
of sub-regions (i.e., tile size) over which to compute those
predicted metrics. We then consider homogeneous training and



testing, where the neural network is trained and tested in the
same region for the downtown and single-family residential
region. Lastly, we consider heterogeneous testing where we
use the training from these aforementioned region types but
test on a different region type: multi-family residential.

A. MultiLayer Perceptron Components Used in RAIK
Neural network algorithms have been widely applied to

predict the channel propagation in wireless networks [18]–
[21]. In our study, we use a multilayer perceptron (MLP)
artificial neural network introduced in [22], and [23]. MLP per-
forms the Levenberg-Marquardt back-propagation algorithm as
a supervised learning technique for training the network [24].
MLP consists of three layers: input, output and hidden layers.
A neural network in its general form is described as:

Z = f(ΣwTi,j .xi + b) (2)

where xi is the input vector. Each node in a layer is connected
to the nodes in the next layer with certain weights wi,j .
In neural network algorithms, the goal is finding the best
selection of weights as the inputs’ coefficients such that the
difference between the predicted values and the target values
are minimized. Here, wTi,j is the transpose vector of the
selected weights by the model associated to the inputs (xi)
and b is the bias vector.

wT = w1, w2, .., wn (3)

We employ the sigmoid function [25], which is easily dif-
ferentiable with respect to the network parameters, and this
plays an important role in training of the neural network. It is
expressed as:

S(x) =
1

1 + exp(−x)
(4)

B. Training and Performance Metrics of RAIK
The model’s performance highly depends on the selected

features for the model’s input and their accuracy. The se-
lected input features are defined as: (a.) distance between
the transmitter and the receiver, (b.) percentage of the area
covered by buildings (i.e., foot print) [26], trees (i.e., canopy or
crown), and free space (i.e., unoccupied by trees or buildings),
(c.) number of buildings and trees, (d.) average height of the
buildings and trees, and (e.) standard deviation of the heights
of the buildings and trees. All the input parameters have
been provided from a 3-dimensional LiDAR database. The
model’s output is the path loss exponent acquired from radio
measurements in each sub-region. To increase the efficiency
of the model, all features are normalized to fall in a range of
[0, 1].

Performance Metrics for Evaluating the RAIK Model.
To evaluate the model, we apply first-order statistical metrics
including the minimum and maximum difference between
observed and predicted values and the standard deviation of
the errors, denoted as emin, emax, and eσ , respectively. The
mean error, emean, shows the average error across all records,
which indicates whether there is a systematic bias (a stronger
tendency to overestimate or underestimate) in the model.
We employ the linear correlation, r, between the predicted,
γi, and actual values, γ̂i. This metric varies between -1.0
and +1.0. Linear correlation returns +1 if there is a perfect
positive correlation between the two input variables, -1.0 if

there is a perfect negative correlation, and 0.0 if there is no
correlation. Finally, the performance of the model is evaluated
by calculating the mean squared error (MSE), defined as:

min
i

N

N∑
i=1

(yi − ŷi)
2 (5)

Here, yi and ŷi are the desired output and the obtained output
calculated by the neural network, respectively [27].

The Impact of Tile Size on RAIK Performance. We
now consider the influence of tile or sub-region size on the
estimated path loss and the accuracy of the prediction model.
To this end, we train the model on data obtained from tiles
with three different sizes: 100-m square, 200-m square, and
300-m square. Table I shows the comparison between the
performance metrics of RAIK for tiles with the three different
sizes in tile’s side length. It is shown that by increasing the
tile size to a value larger or smaller than 200-m square, the
statistical metrics of the performance decrease in both regions,
gradually. Of particular note, the tile size choice most affects
the downtown area due to the diversity in height, area, and
density of trees and buildings. In both region types, we see
that the selection of too large or too small tile sizes impedes
the ability of the model to capture the correlation between
geographical characteristic changes and the resulting channel
propagation, making the KPI prediction noisy. Since the 200-
m square tile size showed the best performance in terms of
MSE, emin, emax, emean, and eσ across region types, we will
use this size for the remainder of the paper to study various
other issues related to KPI prediction.

TABLE I: Impact of tile size on RAIK performance.
Region Single-family Downtown
Tile’s Side (m) 100 200 300 100 200 300
MSE .03 .02 .02 0.07 0.02 0.05
emin -.61 -.13 -.4 -.7 -.32 -.43
emax .38 .21 .33 .-43 .23 27
eave .04 .02 .03 .1 .04 .07
σerr .21 .17 .16 .32 .23 .22
r .78 .97 .92 .63 .90 .86

TABLE II: Impact of Measurement Number in Propagation
Prediction.

Region Meas # Performance Metric
MSE emin emax emean σerr r

Single
Family

A .02 -.17 .27 .03 .21 .85
B .01 -.18 .24 .02 .2 .93
C .01 -.13 .2 .02 .13 .95

Down-
twon

A .05 -.42 .3 .08 .32 .77
B .03 -.21 .24 .06 .23 .84
C .02 -.15 .23 .02 .17 .87

Impact of the Number of Measurements on RAIK
Prediction. We now study the impact of the number of mea-
surements in a given 200-m square tile on the accuracy of the
KPI prediction using the RAIK framework. For this purpose,
we consider tiles that have different ranges of measurements:
600-800, 800-1000, and 1000-1200 depicted as ’A’, ’B’ and
’C’ respectively. A tile has to be within the range to be
considered for training the RAIK framework. Table II shows
the prediction accuracy for the single-family residential and
downtown regions when such an approach is taken for the
training. We observe that there is a trade-off that occurs.
Increasing the minimum number of measurements forces tiles



to be not considered, having fewer records for input into
RAIK. On the other hand, increasing the minimum number
allows for better accuracy of the channel characteristics for
those tiles that are considered. The latter effect can be seen
by the increase in the correlation coefficient as the minimum
number of measurements required for each tile is raised.
Overall, we see a net RAIK prediction benefit to increasing
the measurement requirement for both regions considered for
these ranges of measurement number.

Homogeneous Training and Testing But in Adjacent
Sub-Regions. Next, we study RAIK performance when train-
ing and testing in the same region type, which we refer to
as homogeneous training and testing. However, the training
(70%) and testing (30%) data come from differing sub-regions
in the same region type. As depicted in Fig. 5a, the downtown
sub-region used for testing is adjacent to the sub-region used
for training. This is emulating a crowdsourcing context in
which a carrier lacks measurements from users in a certain area
but has other users providing data nearby. Fig. 5b shows the
results from this particular training/testing data combination.
We show that the absolute error between the actual γ and the
predicted one is extremely bounded (0.18). In fact, the absolute
error of the majority of the testing sub-region is below 0.1.

(a) Adjacent sub-region. (b) Absolute Error.

Fig. 5: Prediction in downtown adjacent sub-region.

Table III depicts the results of the testing phase of ho-
mogeneous approach. In particular, it can be seen that the
model shows a better performance with collected data from
the single-family region. This can be explained because the
variation of the buildings’ height and terrain type in the
single-family region is more self-similar as compared with the
downtown area. To evaluate RAIK in the context of the most

TABLE III: RAIK with Homogeneous Training and Testing.
Region MSE emin emax emean σerr r
Single
Family .01 -.17 .19 .02 .13 .92
Down-
town .02 -.2 .24 .09 .21 .89

relevant related works in predicting γ, we compared it with
the Kriging algorithm, which is a common approach to address
the spatial propagation prediction [28]. To predict the lost data
in a region, Kriging employs regression of the surrounding
values of that region by assigning weights to these values to
capture the spatial correlation of field of interest. Many studies
have used Kriging to estimate the path loss [5], [29], [30].
For example, an empirical Okumura-Hata model with Inverse
Distance Weighting (IDW) and Kriging has been evaluated
in prior work [30]. They have shown that the approach with
Kriging shows an improved performance versus just Okumura-
Hata model and IDW. Fig. 6a shows the Kriging calculated
path loss when all signal quality measurements are used. As
we just performed for a downtown region, we introduce a

measurement hole, emulating a lack of crowdsourced mea-
surements, shown in Fig. 6b. The dots denote the available
points, and the lack of dots denotes lack of signal quality
measurements. Fig. 6c shows the Kriging prediction results
with these signal quality measurements removed and find
the MSE to be 0.07. We perform the same analysis on this
region with RAIK and find the MSE to be 0.01. The use of
geographical data to predict KPIs reduced the error seven-fold.

(a) Actual Path Loss. (b) Hole in Sub-Region. (c) Kriging Prediction.

Fig. 6: Adjacent sub-region analysis with Kriging Algorithm.
Heterogeneous Training and Testing. Since the aim is

providing a generalized RAIK model to predict the channel
characteristics based on geographical information alone, we
consider the obtained input-output pairs from different base
stations located in single-family residential and downtown
environments as our data for training. We then test in an
entirely new region (multi-family residential) but also test in
the two regions that were used for training. There are two
issues to evaluate here. First, up to this point, the training and
testing has only taken place in the same region. Here, we have
two different regions composing the training set, which may
confuse the model. Second, we would like to evaluate how
well the RAIK framework can predict in region types that
have received no training.

Table IV shows the RAIK performance across the three
regions. We observe that both the single-family residential
region and downtown region perform slightly worse from their
respective homogeneous training and testing performance de-
scribed in Table III. In particular, we observe that the variation
of error for single-family and downtown increase from .13 and
.21 to .21 and .27, respectively. Although, the MSE for single-
family increased from .01 to .03 and downtown increased from
.02 to .04, the model still shows an acceptable performance
in comparison with the homogeneous model. Furthermore,
the performance of the multi-family region that contributed
no training data to the RAIK model is 0.03. The variation
of error has increased slightly in comparison with two well-
trained regions, but it is still comparable. In summary, while
slight improvements in RAIK KPI prediction can be achieved
when training data is available from adjacent regions of similar
geographical features, RAIK can still predict KPIs across
regions with distinct geographical features.

TABLE IV: RAIK with Heterogeneous Training and Testing.
Region MSE emin emax emean σerr r
Single
Family .02 -.22 .24 .05 .21 .90
Down-
town .03 -.27 .3 .07 .27 .87
Multi

Family .03 -.3 .33 .09 .3 .82



IV. RELATED WORK

Many different propagation models have been used to pre-
dict the coverage area of a network, such as Okumura-Hata [3],
[4] and the Longley-Rice irregular terrain model [31]. In these
models, one must collect radio signal measurements from a
specific region to be able to calibrate the model for that region
to find the appropriate constants. The other method to predict
propagation coverage over an area is utilizing geostatistical
modeling techniques, where the measurements are collected
strategically and different interpolation techniques are applied
to predict the propagation model of the uncovered locations.
For example, a radio environment map of 2.5 GHz WiMax
utilized geostatistical modeling and interpolation [5]. Still
another work proposed a modified version of Kriging algo-
rithm to reduce the computational complexity of the spatial
interpolation to produce the coverage map [6]. In contrast, we
specifically target a relationship between the signal quality of
a network at a given location and the geographical features in
that area to predict the KPIs of that region and regions that
lack accessibility or crowdsourced measurements.

V. CONCLUSION

In this paper, we used the knowledge of geographical
features of a region to extend crowdsourced measurements
such as those within the MDT effort of the 3GPP standard to
predict the KPIs in that region. To do so, we built an Android-
based crowdsourcing infrastructure and performed in-field
measurements to create a high density of UE measurements
in three representative region types: downtown, single-family
residential, and multi-family residential. With these RSRP
measurements, we studied the relationship between the size of
smaller, square sub-regions under consideration with regards
to the calculated path loss exponent, showing the tradeoff of
too large and too small sub-regions. We then used LiDAR data
to extract tree and building data to build a Regional Analysis to
Infer Key Performance Indicators (RAIK) framework, which
created a relationship between these geographical features and
the received signal level in different sub-regions. Using the
RAIK framework, we showed that KPIs can be predicted with
very low error in areas that lack access or users to produce
crowdsourced measurements. We believe that this work will
serve as a fundamental step in extending the reach of MDT
measurements taken by carriers and thereby reduce the load
on users and their devices.
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