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Abstract— Precise air-to-ground propagation modeling is im-
perative for many unmanned aerial vehicle (UAV) applications
such as search and rescue, reconnaissance, and disaster recovery.
Furthermore, directionalization via MIMO-based beamforming
can boost the transmission range by utilizing Channel State
Information (CSI). However, the high mobility and flight con-
ditions of drones can threaten the ability to receive accurate
CSI in time to achieve such gains. In this work, we design a
UAV-based software defined radio (SDR) platform and perform
a measurement study to characterize the air-to-ground channel
between the aerial platforms and a terrestrial user in practical
scenarios such as hovering, encircling, and linear topologies. Our
experiments cover multiple carrier frequencies, including cellular
(900 MHz and 1800 MHz) and WiFi (5 GHz) bands. Furthermore,
we address three baseline issues for deploying drone-based
beamforming systems: channel reciprocity, feedback overhead,
and update rate for channel estimation. Numerical results show
that explicit CSI feedback can increase throughput by 123.9%
over implicit feedback and the optimal update rate are similar
across frequencies, underscoring the importance of drone-based
beamfoming design. We additionally analyze the reciprocity error
and find that the amplitude error remained steady while the
phase error depends on mobility. Since our study spans many
critical frequency bands, these results serve as a fundamental
step towards understanding drone-based beamforming systems.

Index Terms—Air-to-ground Channels, UAVs, Drones, Beam-
forming, Multiple Bands, Channel Estimation

I. INTRODUCTION

Commercial drones are taking the world by storm - the
global market for drones is expected to reach $22.15 billion by
2022 [1]. Recently, the deployment of low altitude platforms
(LAPs) or UAVs has enabled wireless communication for
ground-based terminals in applications such as disaster relief
systems, public safety, and military communications. Drones
can play a significant role in search and rescue operations,
communication system recovery, and damage assessment for
natural disasters like earthquakes, volcanoes, floods, or wild-
fires [2], due to rapid deployment and access to “hard-to-
reach” geographic regions such as rivers, mountains and
forests. In the public safety sector, UAVs have delivered
broadband data rates in emergency and public safety situa-
tions, such as law enforcement and fire rescue [3]. Another
emerging application is military communications where the
role of drones has expanded from conventional missions like
surveillance and reconnaissance to special forces for such
applications as electronic interference, node swarms, and long-
haul communication relays, each of which has traditionally
relied upon soldiers or terrestrial-based vehicles [4], [5].

The future development of airborne wireless communica-
tion necessitates precise channel characterization and system-
level performance analysis due to increasing deployments of
aerial communication systems and their resulting data services.
Theoretical studies that have characterized air-to-ground radio

propagation for aircrafts have been widely conducted but
mainly limited to simulation works that lack experimental
validation [6]–[10]. Although these works have simulated
air-to-ground channels in urban environments, most of the
aforementioned works lack in-field data with real geographical
features, which are crucial to drone-based applications.

While one work conducted in-field experiments with 970
MHz and 5.6 GHz with a single antenna, none of these works
housed a software defined radio (SDR) platform on a drone
to implement and evaluate beamforming techniques, which
are gaining ever-increasing relevance for future generations
of wireless networks. Beamforming plays a significant role
in the spectral efficiency and data transmission in wireless
systems, especially for orthogonal frequency division (OFDM)
systems, which have been successfully implemented in widely-
deployed wireless infrastructures, including IEEE 802.11 wire-
less LAN standards (WiFi), IEEE 802.16 Wireless MAN stan-
dard (WiMax), and 3GPP Long-Term Evolution (LTE). Many
works have studied the benefits of beamforming [12], but the
vast majority of these works focus on terrestrial networks
which are not completely applicable to practical drone-based
networks. For example, the cellular tower will always be fixed
in location and lack the vibrations of a hovering drone. Lastly,
many works assume ideal channel knowledge or error-free,
instantaneous feedback [13], motivating the need for an in-
field analysis of air-to-ground channel characterization and
feedback analysis for UAV-based beamforming systems.

In this work, we design a prototyping testbed, UABeam,
which implements drone-based beamforming using a USRP-
based SDR platform (a battery-powered 2 × 2 MIMO Ettus
E312) mounted via 3D printing to a DJI Matrice 100 drone.
We develop an IEEE 802.11-based mechanism to support the
channel feedback required for beamforming. Then, we conduct
variable-range propagation experiments and characterize air-
to-ground links as a function of distance, frequency, and drone
altitude by analyzing the dominant propagation parameters
(e.g., the path loss and shadowing) on a wide range of
frequency bands. We additionally evaluate the system-level
performance of beamforming in terms of Bit Error Rate
(BER) and throughput with in-field measurements. To evaluate
the channel feedback required for drone-based beamforming
gains, we use the three distinct scenarios of hovering, encir-
cling, and linear: (i.) in the hovering case, the drone is hovering
at a fixed altitude and location, (ii.) in the encircling case, the
drone moves at a steady speed around a circle with the user
equipment (UE) in the center, and, (iii.) in the linear case, the
drone is passing by the ground receiver in a straight line.

The main contributions of this paper are as follows:
• We propose UABeam, the first prototyping system on

drones that realizes air-to-ground communication using
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beamforming techniques across three commonly-used
frequency bands (900 MHz, 1800 MHz, and 5 GHz).

• We implement UABeam on a USRP-based SDR platform
by developing a physical (PHY) and media access control
(MAC) design that allows explicit feedback for beam-
forming using IEEE 802.11-like signaling.

• We propose a relay-based feedback approach that expe-
dites CSI feedback and saves computation cost at the
receiver compared to existing feedback approaches.

• We conduct experiments within a repeatable variable-
range scenario to characterize the air-to-ground channel
and link performance of airborne beamforming, showing
significant performance improvement over the conven-
tional IEEE 802.11 scheme as a baseline for comparison.

• We evaluate channel reciprocity with three in-the-field
scenarios to compare explicit and implicit feedback for
drone-based beamforming, demonstrating that implicit
feedback can largely degrade system performance.

• We investigate the optimal update rate for channel estima-
tion in airborne communications and find that the optimal
rate is mostly independent of carrier frequency.

The rest of this paper is organized as follows. We introduce
the system model of UABeamin Section II. In Section III,
we discuss the experimental setup and procedure. We conduct
variable-range link experiments in Section IV. We evaluate
channel feedback with hovering and encircling scenarios in
Section V and a linear scenario in Section VI. Finally, we dis-
cuss related work in Section VII and conclude in Section VIII.

II. UABEAM SYSTEM AND FEEDBACK ANALYSIS

In this section, we discuss the challenges that beamforming
presents to UAVs, the 802.11-based signaling mechanism that
allows CSI feedback in our UABeam system, and quantify the
feedback overhead that exists in such a system.

A. Challenges of Drone-Based Beamforming
Beamforming systems are particularly suitable for air-to-

ground wireless communications due to the following abilities:
(i.) combating high levels of channel fluctuations introduced
by hovering and flying the aircraft, (ii.) overcoming the limited
range of omni-directional antenna patterns, and (iii.) leverag-
ing spatial diversity to improve wireless transmissions [14]–
[16]. The performance of beamforming can be further en-
hanced in terms of BER and throughput if CSI is obtained
in a timely and efficient manner, assuming multiple antennas
can be mounted and sufficiently spaced at the transmitter.
However, there are three major uncertainties to evaluate when
it comes to deploying beamforming systems on a UAV. First,
will the overhead induced by feeding back the CSI consume
any beamforming gain, especially in highly mobile scenarios
common to drones? Second, can channel reciprocity be as-
sumed or exploited in some capacity to minimize feedback
overhead? Third, how frequently does CSI have to be fed
back to the transmitter to support various drone topologies and
mobility patterns and what relationship does this update rate
have with the carrier frequency? To address these uncertainties,
we first analytically evaluate the feedback overhead before we
experimentally investigate it in Sections V and VI.

We implement a completely real-time OFDM beamforming
system with flow control, synchronization, signal processing,

and performance analysis functionalities by means of GNU
Radio. Consider a typical beamforming system with M trans-
mit antennas, one single receive antenna, and K subcarriers.
At the kth subcarrier, the same copies of signal symbol s(k)
(E

[
|s|2

]
= 1) is coded by the beamformer prior to being sent

to the UE from the mth transmit antenna. For the purpose
of eliminating inter-symbol interference (ISI) introduced by
frequency-selective multipath channel, the cyclic prefix (CP)
is added at each OFDM symbol. We represent hm(k) as the
complex channel information obtained in the path from the
mth transmit antenna to the single receive antenna at the kth
subcarrier. The length of one OFDM data frame is assumed to
contain a fixed number of L OFDM symbols. The preamble
has two OFDM symbols with known training data. Therefore,
the received symbol at the kth subcarrier and lth OFDM
symbol interval (l = 1, ..., L) can be written as:

r(k, l) =

M∑
m=1

hm(k)wm(k)s(k, l) + n(k, l) (1)

Here, wm(k) represents the beamforming vector at the kth
subcarrier, and n(k, l) denotes the additive noise. Empirically,
hm(k) can be assumed to be constant within one epoch (a brief
period of message exchange consisting of training, feedback,
and beamforming) and changes independently from other
epochs with velocities less than 8 m/s when timely feedback
schemes and proper packet lengths are configured [17]. A
short packet length will lead to excessive header overhead and
resulting low throughput, while a long packet length could
cause relatively high BER due to outdated CSI. Hence, we
experimentally examine these independence assumptions and
the impact of the packet length for drone-based systems.

In this work, we choose conjugate beamforming at the
beamformer due to its simplicity and efficiency [13]. However,
the above beamforming model can also be applied with other
beamforming techniques like Zero-Forcing or Singular Value
Decomposition. The conjugate beamformer is given by:

wm(k) =
h̃m(k)

∗

∥h̃m(k)∥
(2)

Here, ()∗ is the conjugate transpose operation, and h̃m(k) is
the estimated channel information based on training symbols.

B. IEEE 802.11 Frame Structure
We use the IEEE 802.11 PHY frame as the frame structure

in this work, as shown in Fig. 1. One frame is composed of
a preamble, a header symbol, and OFDM-based data symbols
of payload length L. The preamble consists of short training
sequences (STS) and long training sequences (LTS). Both
the STS and LTS have the duration of two training OFDM
symbols, and the header has a duration of one OFDM symbol.

Fig. 1. IEEE 802.11 PHY frame Structure

In the conventional IEEE 802.11 standard, a CTS packet
is required when the receiver successfully decodes an RTS
packet. In this work, RTS and CTS frames are assumed to have
zero-sized data payloads. The preamble serves two purposes:



synchronization and channel estimation. The receiver detects
the existence of a frame based on the correlation of the
received stream with the known information in the time
domain. The preamble of the RTS sent by the transmitter is
also used for channel estimation in the frequency domain.

C. Feedback Overhead
In order to efficiently achieve beamforming, the receiver

broadcasts back its estimate of CSI to the transmitter via the
time division duplex (TDD) schedule. Considering aerial com-
munication, one challenge is trying to expedite the feedback
procedure at minimal loss, since a large feedback overhead
will greatly degrade the throughput rate. However, existing
works that have attempted to optimize the CSI feedback have
not directly addressed air-to-ground situations [18]–[23]. A
previously proposed criterion is used to determine the matrix
in this precoder codebook out of which to choose. By means
of Grassmannian subspace packing, [18] proposed an efficient
method to determine the optimal codebook. In [19], the OFDM
subcarriers are divided into clusters, and only the Karcher
mean vector is used. [20] allows feedback compression with
fewer bits for MIMO systems. However in these works, the
receiver still needs to process the CSI and prepare the feedback
with extra computational cost.

Fig. 2. Timeline of CSI Feedback for proposed beamforming scheme.

The MAC layer operation of our proposed CSI feedback
method is shown in Fig. 2. In each epoch, CSI information
is “relayed” to the transmitter by fully eliminating CSI pro-
cessing at the receiver, which greatly expedites the feedback
as well as limits power consumption. In particular, the trans-
mitting antenna takes turns sending M RTS training messages
to the receiver. Instead of performing CSI estimation on these
received messages, the receiver directly attaches the received
LTS to the end of the CTS feedback message to be sent.
Note that the CTS contains M + 1 LTSs, including M LTSs
processed in the downlink direction, and one original LTS in
the preamble. When the receiver sends back the CTS, all the
LTSs are then processed by the uplink path. Assuming one
training symbol from the LTS at the kth subcarrier is denoted
as st, then the received symbols for M LTSs are given by:

r(st) = hmhmst (3)

The received symbol for the preamble LTS is given by:

r(st) = hmst (4)

where hm is the uplink channel gain. Then, it is straightfor-
ward to obtain the downlink CSI by dividing r(st) by r(st).
Then, the data symbols are precoded by the beamformer at
the transmitter prior to being sent to the receiver.

We compare our proposed feedback method with three
previously-discussed approaches via simulation: (i.) G-
subspace Codebook Index [18], (ii.) K-means Clustering [19],
and (iii.) Vector Quantization [20]. For the convenience of
this evaluation, we assume the transmitter and receiver are

perfectly synchronized. We also assume the CSI can be
perfectly obtained at the receiver. Now, the problem becomes
how to feed back the CSI to the transmitter. For practical
channel relevance, we implement the IEEE 802.11 Channel
Model B with 11 taps [21]. We also implement conjugate
beamforming at the transmitter equipped with two antennas
but vary the transmission power. We evaluate the BER of the
different feedback approaches as a function of SNR sensed by
the receiver. We use QPSK as the data constellation order and
calculate the BER for each method.
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Fig. 3. BER Simulation under different feedback approaches.

Fig. 3 shows the simulation results of BER values for a
2 × 1 beamforming system employing our proposed approach,
G-subspace Codebook Index, K-means Clustering, and Vector
Quantization. Note that our proposed approach completely
eliminates the feedback overhead at the receiver without sac-
rificing beamforming gain, while all other feedback schemes
require various computational costs. A perfect feedback sce-
nario is one where the receiver is assumed to feed back
the CSI without any CSI loss with zero overhead cost. Our
proposed approach has a BER improvement of 1.63 dB on
average over that of K-means Clustering and 2.35 dB over
that of Vector Quantization, respectively. At the low SNR, our
proposed approach still provides the lowest BER of all four
feedback schemes and comparable BER to perfect feedback.
This can be explained by the channel quality having more
impact on the conventional feedback schemes, which introduce
extra feedback overhead and compression loss.

III. HARDWARE AND EXPERIMENTAL SETUP

To build UABeam for drone-based beamforming experimen-
tation, we have designed and printed mounts for an Ettus E312
and two antennas to be secured on a DJI Matrice 100 (1-
kg load capability), as shown in Fig. 4. To do so, we have
used a ROBO 3D printer and CAD software to ensure that
a 10-cm separation exists between two antennas for diversity
purposes and allows repeatability in testing to position them
in the same location. For a given experiment with a carrier
frequency of 900 MHz and 1800 MHz, we mount two dual-
band VERT900 omni-directional antennas, and for a given
experiment at 5 GHz, we mount two dual-band VERT2450
antennas. Both antenna types provide a gain of 3 dBi. We have
designed and implemented PHY and MAC layers that carry out
the IEEE 802.11-like channel feedback signaling discussed in
the previous section (Section II) using GNU Radio [24]. The
receiver configuration is matched for the USRP hardware, but
is housed on a tripod at a height of 1 m above the ground.
The received signals are amplified and down modulated to



baseband. The digital samples are processed by GNU Radio
blocks running on a Linux-based laptop.

(a) (b)
Fig. 4. Equipment settings for experiments. (a) Beamformer USRP mounted
on a drone (b) UE USRP mounted on a tripod.

TABLE I
IEEE 802.11 BASED FRAME PARAMETERS

Parameters Preamble Data
Modulation Schemes BPSK QPSK
Total Subcarriers 52 52
Occupied Subcarriers 52 48
Pilot Subcarriers 0 4
FFT size 64 64
CP Interval 0.25 0.25

Our experiments are conducted over three carrier frequen-
cies: 900 MHz, 1800 MHz, and 5 GHz. At the PHY layer,
we implement an OFDM scheme with 64 subcarriers oper-
ating with 20-MHz bandwidth, which is common for 802.11
systems. The preamble and header OFDM symbols use BPSK
modulation but the data OFDM symbols use QPSK. The pay-
load length is set to 256 bytes. At the MAC layer, we follow
the periodic timeline schedule described in Fig. 2. We measure
both BER and throughput to evaluate the beamforming system
performance in the transmission environment. While many
works use the Shannon Capacity to map the SNR or BER
to the ideal information rate [25], for a practical frame-based
system, the throughput depends closely on the hand-shaking
overheads and successful decoding of the received frames [17].
In this work, the throughput (Mbps) is defined as the number
of payload bits successfully recovered from the successfully
decoded packets over the transmission time.

We conduct two different sets of experiments in the field. In
the first set, we design experiments to evaluate the propagation
and link performance at various transmitter-receiver separation
distances, ranging from 10 to 100 m with 10-m granularity,
and different drone hovering altitudes, ranging from 10 to 30
m with 10-m granularity. At each measurement position, the
recording lasted 15 s, collecting 20M samples/s for each of
the three carrier frequencies and in the 2 × 1 beamforming
configuration. After the signal processing occurs, the received
signal strength (RSS), BER, number of successfully decoded
packets, and transmission period are extracted and then ex-
ported into a comma-separated format for post-processing.

(a) (b)

Fig. 5. Channel Feedback Evaluation Topologies: (a) Hovering (b) Encircling

In the second set of in-field experiments, we first evaluate
channel feedback approaches with both hovering and encir-

cling scenarios to address the issues of channel reciprocity and
update rate for channel estimation, as shown in Fig. 5. During
our experiments, the average daily wind speed is reported to be
approximate 5.7 m/s. In the hovering case, the drone maintains
a height of 10 m and has a horizontal distance of 10 m from
the receiver on the ground. In the encircling case, the drone
follows a circular pattern at a horizontal radius of 10 m from
the ground node in the middle of the circle with velocities
reaching 6 m/s (this is full throttle in GPS mode due to
the 500-g payload). To account for representative drone-based
applications, we further evaluate the linear case, in which the
drone is flying in a straight line approaching and leaving the
ground node location. Additional details for the latter scenario
can be found in Section VI.

IV. IN-FIELD LINK ANALYSIS WITH VARIABLE-RANGE
HOVERING EXPERIMENTS

In this section, we perform in-field measurements to char-
acterize the air-to-ground propagation channel and evaluate
the link performance of beamforming. The transmitter and
receiver have an unobstructed path as depicted in Fig. 6 with
variable distances, carrier frequencies, and drone altitudes.

Fig. 6. Physical location of UABeam propagation experiments.

A. Baseline Path Loss Experiments: SISO Transmissions
For reference purposes, we first conduct SISO-based omni-

directional experiments when the transmitter is on the ground
(see Fig. 7(a) below) and hovering in the air (see Fig. 5(a))
at altitudes of 10 m, 20 m, and 30 m. With each transmitter
location, the receiver is mounted on a tripod at a 1-m height
at the specified ground-based distances from the transmitter’s
location. Based on the signal level at the receiver, we calculate
the path loss exponent and shadowing component for each
carrier frequency and transmitter altitude. The channel model
from the transmitter to receiver can be described by the widely-
used log-distance path loss model [29]–[31], given by:

PRX = PTX − PLd0 − 10γlog10(
d

d0
) +Xs (5)

Here, PLd0 is the path loss at a reference distance d0, PRX

is the received signal strength, and PTX is the transmission
power. The term 10γlog10(d/d0) corresponds to the log-
distance path loss, where d denotes the transmitter-receiver
separation distance. Lastly, Xs is the shadow-fading parameter
that follows a normal distribution with zero-mean and standard
deviation σ. We use linear regression fitting to estimate the
path loss exponent γ and the standard deviation σ.

We use a close-in (e.g., 1 m) free-space reference distance
to linearly fit the path loss (dB) as a function of distance
(m) [17]. Assuming λ is the carrier wavelength, the path loss
at the free space reference distance d0 is given by:

PLd0 = 20log10(
4πd0
λ

) (6)
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Fig. 7(b) shows the path loss for the ground-based experi-
ment after linearly fitting the measured values as a function of
distance and frequency. We see that the 5-GHz path has the
least path loss exponent of 1.85, which is less than free space.
This can be explained by the existence of scatters that produce
strong signal reflections in that frequency band. However,
other frequency bands, such as 1800 MHz, show relatively
larger path loss exponents.

Then, we repeat our experiments with different drone alti-
tudes, ranging from 10 m to 30 m to investigate practical air-
to-ground links influenced by the operation of drones. Fig. 8(a)
presents the 900-MHz path loss behavior in the air-to-ground
scenario. Surprisingly, the path loss exponents are far less
than the expected free space value. Actually, this phenomenon
happens in all of the frequency bands. Table II gives the
estimated result of path loss exponent λ and shadowing
standard deviation σ for each frequency band.

TABLE II
ESTIMATED LOG-DISTANCE PATH LOSS MODEL PARAMETERS

Parameter (Altitude) 900 MHz 1800 MHz 5 GHz
γ(10 m) 1.91 1.99 0.68
γ(20 m) 1.15 1.7 0.45
γ(30 m) 0.364 1.59 0.07
σ (10 m) 4.47 3.56 1.30
σ (20 m) 5.34 4.13 2.21
σ (30 m) 6.12 5.25 2.34

To dive deeper on why this odd phenomenon is occurring,
Fig. 8(b) shows the 900-MHz band propagation results of the
signal reception with the measurement data and resulting curve
fit depicted as the solid lines. The signal reception based on
the measurement position seem to follow the expected pattern
when the drone is on the ground and at 10-m altitude: the
received signal strength decreases as the distance increases.
However, a curious pattern emerges at the higher altitudes: the
received signal strength increases with distance at the shorter
distances, and then decreases from the maximum value at
greater distances. For example, 900 MHz has a peak value
of -78 dBm at the distance of 50 m when the drone altitude
is 30 m, and then the RSS value decreases when the distance

increases, as you would expect from the log-distance path loss
model. A similar effect occurs for 1800 MHz and 5 GHz. The
reason is that the metal body of the drone is blocking the
transmission at higher altitude and shorter distances. As the
distance increases, the omni-directional transmission pattern is
no longer blocked by the body. Additionally, Table II shows
that the shadowing standard deviation increases as the altitude
increases. In addition to the blocking problem already noted,
the increase in shadowing at greater altitude could also be
due to the increasing effect of the wind for the same weather
conditions at increasing altitudes above the tree and building
heights. In order to better describe the air-to-ground channel,
we consider higher-order polynomials as shown in Fig. 8(b).
The results at 20 m and 30 m of drone altitude are fit with
a third-order polynomial function, creating a parabolic shape.
However, the results at 10-m altitude still match a linear fit.

B. Beamforming-Based Link Performance Experiments

We now move to understanding the link performance of
beamformed (2 × 1) transmissions that are housed on a drone
at various heights (0-30 m) with a receiver at a 1-m height on a
tripod and horizontal distances from 10-100 m. Fig. 9(a)(b)(c)
and Fig. 9(d)(e)(f) present the BER and throughput, respec-
tively, as a function of drone altitude, distance, and carrier
frequency (900 MHz, 1800 MHz, and 5 GHz). Regarding
BER, the two greatest altitudes (20 and 30 m) have a parabolic
shape where the BER is initially reduced by increasing the
distance and then increases with increased distance. This has
a parallel to the SISO-based path loss experiments presented
in the previous subsection, where the body of the UAV appears
to be a blocking the signal at high altitude and short distances.
Another interesting observation can be seen in Fig. 9(c), where
there is a sizable difference in BER between the lower and
higher altitudes as the distance increases. Unlike 900 and 1800
MHz, the hypotenuse of the triangle that forms between the
altitude and the horizontal distance from sender to receiver is
substantial in the 5 GHz case and causes substantially more
loss. Regarding throughput, the increased height of 10 m has
advantages at the greatest distances over the ground across all
carrier frequencies. However, the throughput decreases from
the ground-based transmission in all other cases except the
20-m altitude for 900 MHz (Fig. 9(d)). In particular, the 10 m
altitude provides higher throughput at beyond around 75 m
horizontal distance for 900 MHz and 1800 MHz, and around
50 m at 5 GHz, with an average throughput improvement of
89.3%, 76.5%, and 21.1%, respectively.

To quantify the throughput improvement compared with the
conventional IEEE 802.11 SISO scenario without beamform-
ing, we plot the normalized throughput gain of beamform-
ing versus the SISO case under different drone altitudes in
Fig. 9(g)(h)(i). We observe that beamforming always produces
gains over SISO for 900 MHz at distances from 10-100 m
(Fig. 9(g)), with at most a 39% throughput improvement. As
the carrier frequency increases, the beamforming gains are
restricted to a shorter range for the highest altitude with 1800
MHz (Fig. 9(h)) and for all altitudes with 5 GHz (Fig. 9(i)).
The most air-to-ground gains across each carrier frequency
occurs at a hovering altitude of 10 m, where beamforming
provides improvements of up to 31%, 29%, and 21%, respec-
tively, from lowest to highest carrier frequency.
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Fig. 9. BER vs. Distance plot of the air-to-ground channel: (a) 900 MHz (b) 1800 MHz (c) 5 GHz; Throughput vs. Distance plot of the air-to-ground channel:
(d) 900 MHz (e) 1800 MHz (f) 5 GHz; Normalized Throughput Gain vs. Distance plot of the air-to-ground channel: (g) 900 MHz (h) 1800 MHz (i) 5 GHz.

V. IN-FIELD CHANNEL FEEDBACK EVALUATION WITH
HOVERING AND ENCIRCLING EXPERIMENTS

In this section, we use drone mobility to experimentally
evaluate the specific issues of channel reciprocity and esti-
mation update rate. The two forms of mobility include: (i.) a
UABeam transmitter hovering in place and sending to a ground
node and (ii.) a UABeam transmitter encircling a ground node
with differing linear velocities (1 m/s, 3 m/s, and 6 m/s).

A. Channel Reciprocity
In the current IEEE 802.11 standard, two CSI feedback

methods are defined: implicit feedback and explicit feedback.
In both cases, CSI is estimated from the known training
symbols in the preamble. For implicit feedback, the receiver
sends the training symbols to the transmitter so that the trans-
mitter can estimate the uplink channel. Since the downlink and
uplink channels are assumed to be reciprocal, the transmitter
implicitly obtains an estimate of the downlink channel by
taking the transpose of uplink CSI. For explicit feedback, the
transmitter first sends the training symbols to the receiver.
After decoding the received signal, the receiver sends back

the CSI to the transmitter. While explicit feedback can provide
more accurate CSI, it introduces overhead in terms of time and
feedback control bits.

The channel reciprocity assumption could be ill-suited for
air-to-ground channels due to the severe mismatch in height
of the communicating nodes and the susceptibility to severe
channel fading with high levels of mobility. Therefore, we
design baseline experiments using the UABeam system to ex-
plore and validate the performance of both feedback methods.
To clearly demonstrate the effect of channel reciprocity, we
first evaluate the relationship between the downlink and uplink
channel information hm and hm. Then, we investigate the
throughput performance in both the hovering and encircling
scenarios introduced in Section III. We capture the information
mismatch between the uplink and downlink channel measured
on consecutive forward and reverse traffic exchanges by defin-
ing the channel reciprocal error (CRE). The CRE at a specific
subcarrier k is given by:

Ecre =
hm

hm

(7)



Previous works [27], [28] modeled the CRE as Ecre =
eenv · esyn, where eenv denotes the propagation reciprocity
error component contributed by hardware factors such as RF
gain mismatch and antenna imperfections and environmental
factors such as humidity, temperature, and altitude differences.
esyn denotes the reciprocity error component introduced by
imperfect synchronization between the transmitter and re-
ceiver. The lack of synchronization stems primarily from
the difference of arrival time between uplink and downlink
channels (for TDD systems) and the frequency mismatch of
the local oscillators, since OFDM signals are much more
sensitive to frequency offsets [28]. The propagation reciprocity
error can be expressed as:

eenv = Aenve
jθenv (8)

Here, Aenv and θenv are modeled as normally-distributed
and uniformly-distributed random variables, respectively. The
synchronization reciprocity error esyn can be expressed as:

esyn = ej4πkδp/N (9)

Here, δp is the the slope of the phase error denoted by the
phase gradient, k is the subcarrier index, and N is the number
of occupied subcarriers. Then, Eq. 7 is equivalent to:

Ecre = Aenve
j(θenv+4πkδp/N) (10)
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Fig. 10. Distribution Analysis for CRE. (a) Amplitude (b) Phase Gradient

TABLE III
STATISTIC PARAMETERS OF CHANNEL RECIPROCITY ERROR RESULTS

Case Frequencies Mean(Aenv) Std(Aenv) Mean(δp) Std(δp)

Hovering
900 MHz 1.19 0.016 0.031 0.13

1800 MHz 1.06 0.029 -0.045 0.17
5 GHz 0.85 0.038 -0.034 0.19

1 m/s
900 MHz 1.20 0.029 -0.026 0.14

1800 MHz 1.07 0.033 -0.034 0.19
5 GHz 0.85 0.039 -0.028 0.26

3 m/s
900 MHz 1.23 0.033 -0.019 0.20

1800 MHz 1.10 0.036 0.028 0.25
5 GHz 0.81 0.043 -0.026 0.26

6 m/s
900 MHz 1.22 0.048 0.027 0.24

1800 MHz 1.16 0.057 -0.026 0.26
5 GHz 0.79 0.059 0.016 0.29

During our experiments, the measured CRE results, such as
amplitude error and phase error, are calculated as a function of
the subcarrier obtained from every single sample measurement
in both hovering or encircling experiments. The extraction of
major parameters in the reciprocal error expression (10) are
based on the minimum mean-square error (MMSE) criterion
along obtained CRE results. Fig. 10 depicts a histogram in
the form of four lines (superimposed to compare them) for
each experiment for the different transmitting-drone velocities
at 900 MHz. To form the histograms, the statistical distribution
of parameters Aenv and δp have bins of 0.005 and 0.02,

respectively. These bins are extracted from 10000 channel
samples for hovering and encircling experiments at 900 MHz.
The solid line is a normally-distributed curve fit based on
their mean and standard deviation. We found that Aenv has a
relatively narrow spike around an amplitude value. However,
the width of various δp depends on the velocity of the drone,
allowing either a positive or negative slope in the phase error.
Similar results can also be found in other frequencies, as
shown in Table III. Therefore, our analysis shows that while
the amplitude error is approximately constant for both hov-
ering and encircling experiments, the phase error for channel
reciprocity highly depends on velocity.

Fig. 11. Timeline of Implicit Feedback.

Beamforming systems will experience severe throughput
degradation if imprecise channel feedback is obtained. As a
result, we explore the impact of the reciprocity error on the
throughput of the downlink conjugate beamforming system.
We maintain the same experimental setup as before and have
distinguished the downlink data transmissions with downlink
CSI (explicit feedback) from the downlink data transmissions
with uplink CSI (implicit feedback). Since implicit feedback
does not necessarily require an RTS and CTS exchange,
experiments with implicit feedback obtain CSI estimates based
on the ACK message from the previous epoch, as shown in
the timeline schedule in Fig. 11.
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Fig. 12. Throughput results of beamforming system with channel reciprocity.

We have conducted an extensive set of experiments with
the following traffic pattern: a packet payload of 256 bytes
and average epoch interval of 200 ms over an experimental
duration of 300 s. Fig. 12 shows the throughput results from
a wireless experiment using downlink and uplink CSI for
beamforming data transmissions at different frequencies and
velocities. The beamforming throughput using explicit feed-
back (labeled Downlink CSI) can increase the throughput by
67.8%, 93.2%, and 103.9% over that using implicit feedback
(labeled Uplink CSI) for 900 MHz, 1800 MHz, and 5 GHz in
the hovering cases, respectively. The gains of explicit feedback
are even greater when it comes to the encircling cases with
a throughput improvement over implicit feedback of up to
92.6%, 111.6%, 123.9% for the aforementioned frequencies,
respectively. We expect even greater throughput improvement
for explicit feedback with higher velocities.

B. Update Rate for Channel Estimation
We investigate the update rate for airborne communications

in terms of the number of OFDM symbols in a single data



frame, denoted by L. First, we explore the influence of the
data length on the performance of BER and throughput for a
given scenario and estimate the optimal length that leads to the
maximum throughput for a given carrier frequency. This also
corresponds to the optimal update rate for channel estimation.
Second, we examine the optimal data length across different
frequencies under the same experimental context.

We now test the hovering and encircling scenarios with
the complete feedback signaling timeline shown in Fig. 3. As
previously discussed, the downlink CSI is fed back using our
proposed approach for every data frame, but the frame data
length varies. We generate the packet source with the following
packet lengths: L ∈ {32,64,128,256,512,1024,2048,4096} and
maintain the same transmission bandwidth. Note that 4096
is the maximum payload allowed in a single data frame
according to the IEEE 802.11 standard.
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Fig. 13. Throughput for various frame lengths: (a) Hovering (b) Encircling

The optimal packet length for the hovering scenario can be
found in Fig. 13(a). For 900 MHz and 5 GHz the optimal
rate is less than 512 bytes per data frame, while for 1800
MHz, the optimal rate is approximately 256 bytes per frame. In
Fig. 13(b), the throughput decreases for the encircling scenario
as drone velocity increases. However, the optimal update rates
of 512 and 256 hold for their respective carrier frequencies
regardless of the velocity. Based on these results, a reasonable
universal packet size for UABeam communications would be
256 bytes across carrier frequencies.

VI. IN-FIELD INSTANTANEOUS PERFORMANCE
EVALUATION WITH LINEAR EXPERIMENTS

In the previous section, we kept the physical distance
constant between the transmitter and receiver in a hovering and
encircling scenario to maintain a fixed average received power,
but allow channel fluctuations according to the vibrations and
mobility of a drone in flight. In this section, we consider the
scenario where the drone is flying in a straight line from one
edge of the range, coming closer to the ground station, and
then on to the other edge of the range. The reason for doing
this experiment is to introduce an additional variable beyond
the channel fluctuations: a change in the average channel
quality over the course of the experiment.

To do so, we design this linear experiment (see Fig. 14(a)
below) where the drone maintains a height of 10 m, beginning
at a distance of approximately 30 m from the ground station,
progressing in a straight line toward the ground station, and
ending at a distance of 30 m from the ground station. We then
iterate over three different speeds (1 m/s, 3 m/s, and 6 m/s)
and the aforementioned two different feedback mechanisms of
explicit (labeled Downlink CSI) and implicit (labeled Uplink
CSI). We seek to investigate the impact of channel reciprocity

on beamforming performance when there is movement in the
average channel quality coupled with the previously tested
channel fluctuations. In other words, this scenario accounts for
the comprehensive impact of channel fluctuation introduced
by both changing velocities and ranges. We feel that the
experiments now cover a wide range of scenarios that would be
representative for various applications such as public safety,
package delivery, and search and rescue. In these particular
cases, the drone is rapidly approaching or moving away
from the destination node while trying to maintain reliable
communication links.
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Fig. 14. Instantaneous Throughput vs. Distance. (a) Setup (b) 900 MHz

Fig. 14(b) shows the in-field experimental results of instan-
taneous throughput for 900 MHz for the six iterations previ-
ously mentioned. The three velocities are indicated by different
colors and markers of the same shape (blue circles for 1 m/s,
green triangles pointing up for 3 m/s, and red triangles pointing
down for 6 m/s). The solid lines represent the Downlink CSI,
and the dotted lines represent the Uplink CSI. The relative
distance is defined as the horizontal distance between drone
and receiver UE. The instantaneous throughput is calculated
over each 1 second window period of the experiment. The first
observation is that compared to the hovering and encircling
experiments (approximately 25 Mbps), the peak throughput
values are lower for the linear topology (approximately 17
Mbps) even though the drone actually comes closer to the
ground station. There are two factors contributing here: (i)
the optimal beamforming weights are challenging to find even
though the mobility is only 1 m/s and (ii) there is reduced
received power directly below the drone (see Fig. 8). Second,
we observe that explicit outperforms implicit feedback again
in the linear topology with average throughput increases of
37.8%, 88.1%, and 105.1% for 1, 3, and 6 m/s, respectively.
We see the greatest distinction occur at a relative distance of
17 m, which has a gain of 177.3% for explicit versus implicit.

VII. RELATED WORK

Statistical models for predicting the air-to-ground path loss
in urban environments have been proposed (e.g., [6]). At the
same time, simulation works have been performed to optimize
the position of aircrafts to maximize the radio coverage in
urban environments [7], [8]. A fading model that includes



rain attenuation, cloud attenuation, and gaseous absorption
attenuation was proposed to characterize the realistic air-to-
ground channel but only addressed High Altitude Platform
(HAP) links [9]. System-level simulations also utilized path
loss models to evaluate the performance of LTE and WiFi [10].

For in-field experimentation, the closest work to ours per-
formed a measurement study of air-to-ground propagation at
970 MHz and 5.6 GHz with a single-antenna, omni-directional
transmission pattern to characterize large-scale path loss mod-
eling [11]. Various theoretical works focusing on beamforming
techniques have been proposed to improve the performance
(see [12] and references therein). Since the optimal beam-
former obtained from eigen-decomposition that maximizes the
average signal to noise ratio (SNR) along all UEs, there have
been significant works concentrating on designing the optimal
beamforming coding/decoding, improving the current channel
estimation efficiency, and reducing the feadback payloads.
However, most of these approaches focus on conventional
ground-to-ground communication (common in Ad Hoc and
WiFi scenarios) or tower-to-ground communication (common
in cellular scenarios), which have severe limitations in their
applicability to air-to-ground scenarios. For example, the tower
will always be fixed in location and even lack the vibration of
a hovering drone. In addition, current works either assume that
both the receiver and transmitter have full channel knowledge
or presume an ideal error-free feedback link [13]. However,
both of these critical aspects cannot be ignored in any practical
beamforming system. In contrast to these works and to the best
of our knowledge, none of current published works perform in-
field measurements on drone-based, air-to-ground communica-
tion over a wide range of critical frequency bands at transmitter
distances typical for WiFi and cellular technologies.

VIII. CONCLUSION

In this work, we designed a system to evaluate propaga-
tion, link performance, and channel feedback mechanisms for
drone-based beamforming in representative practical scenarios.
To do so, we built a complete IEEE 802.11-like signaling
mechanism across the MAC and PHY layers using a SDR
platform. Then, we conducted in-field, variable-range hov-
ering experiments to characterize the air-to-ground channel
and link performance at various heights and distances. Next,
we investigated implicit and explicit feedback with hovering,
encircling, and linear experiments as well as reciprocity error
evaluation. Our assessment covers a wide range of UAV
communication bands, and numerical results demonstrate that
a properly optimized drone-based beamforming system can
provide significant throughput improvement using explicit
versus implicit feedback. We believe these results will have
far-reaching impact on the future design of real-world UAV
MIMO communications.
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