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Abstract—Environmental factors that lead to the movement
and type of obstacles in and around wireless links are well-
known to directly affect channel characteristics. However, while
mobile users typically have repeatable daily or weekly patterns
with common locations being frequently visited, many protocols
along the network stack do not attempt to identify when physical
locations are revisited. If wireless channels could be recognized
as previously visited, the observance of good and bad decisions
in that particular context could dramatically improve some
network protocols. In this paper, we present a channel recognition
framework which uses the geometrical shape of the link-level
performance in a particular context across transmission modes
and channel qualities. When attempting to recognize a channel
condition, the performance of data transmissions is observed and
compared against known channel types to detect similar behavior.
The matching channel type can be used as an input to the link
adaptation training and resulting decision structure. We perform
extensive experimentation on controlled repeatable channels as
well as in-field channels to show the validity of the classification
algorithm.

I. INTRODUCTION

Channel properties have long been shown to be highly
dependent upon the environment of operation, whether from
the mobility of the sender, receiver, or reflecting obstacles,
topological and land use features, or weather conditions [1],
[2]. In spite of this well-known dependency, protocols which
adapt the modulation rate, coding scheme, multi-input, multi-
output (MIMO) configuration, or frequency band (i.e., link
adaptation mechanisms) have yet to fully leverage such a
relationship between the surrounding environmental condi-
tions and the channel type. Instead, link adaptation protocols
detect environmental changes with probes to measure the
current channel quality [3], [4], packet failure statistics on the
channel [5], [6], [7], or measuring and feeding back MIMO
channel state matrices [8], consuming precious bandwidth.
With the diverse conditions that users encounter, relying on
direct channel measurements to adapt links can cause a number
of sub-optimalities such as: goodput losses due to control
overhead [9], channel staleness [10], inappropriate training
data per context [11], and inability to converge to the most
appropriate transmission parameters [12].

Due to the observed inefficiencies of link adaptation in mo-
bile settings [13], recent work has begun to exploit knowledge
of the surrounding context to improve wireless performance.
For example, instantaneous channel quality combined with
relative velocity are used in [14], [15], pedestrian directionality
and speed as well as knowledge of indoor/outdoor settings
is used in [16], and binary classification based on machine
learning is used for rate adaptation in [17], [18]. However,
in these works, a mapping between contextual attributes and

the channel behavior has not been established nor exploited.
Nonetheless, to establish and leverage such a mapping, channel
properties must be recognizable to the link adaptation algo-
rithm to discern which prior decisions and the result thereof
have applicability in the current environment.

Mobile devices such as smart phones and laptops have
integrated sensors like GPS modules and accelerometers. The
rich information collected by these sensors allows mobile
devices to be aware of the context in which the wireless
transmissions happen. The context information includes geo-
graphical and mobility characteristics for the device along with
the instantaneous wireless channel quality. With data mining
and machine learning, the collected data can provide guidelines
for large amounts of mobile devices to improve their wireless
transmission efficiency according to observed decisions and
resulting performance in a particular context.

In this paper, we propose a channel recognition scheme
based on the geometrical shape of link-level performance ac-
cording to instantaneous channel quality, velocity of the device,
and the channel type. We extract channel features by collecting
performance data under different transmission modes and
context tuples. Then, we introduce the mechanism by which
unknown wireless environments are considered according to
the geometric shape of the link-level performance. Confidence
values are calculated to measure the similarity of the unknown
channel to previously observed channel types, which is used
to direct the channel recognition. If the unknown channel is
recognized, additional network performance observations may
add to the training. If the unknown channel is unrecognized,
then a new channel type may form from the observed network
performance. Experiments on controlled, repeatable and in-
field channels show that the device is able to distinguish
between diverse channel types based on context information
using the extracted features.

Section II briefs the related works in the literature regarding
channel recognition and other context-based channel classi-
fication approaches. Section III gives the details about how
to describe the feature of channels and Section IV explains
the proposed channel classification method. We conclude our
paper in Section VI.

II. RELATED WORKS

Wireless channels have been classified into a large number
of distinct types based upon the statistical attributes of the
transmitted signal [19]. Such qualitative classifications include:
(i) slow versus fast fading, quantifying the degree to which
channel fluctuations occur [20], (ii) frequency selectivity ver-
sus flat fading, quantifying the diversity of channel quality



across sub-carriers of a given frequency band [21], (iii) the
number of multipath components that characterize the channel,
quantifying the strength and delay spread of the reflections of
the same transmitted signal [22], [23], (iv) Doppler spread [24],
quantifying the coherence time of the channel based on the
relative velocity of the sender and receiver, and (v) large-
scale path loss, quantifying the attenuation encountered in
a given environment with or without transmission through
obstacles [25], [26]. Given the number of factors that compose
a channel model and the wide variance that can exist in each
metric, the number of channel types that exist approaches
infinity. Moreover, these existing methods for channel classifi-
cation do not help provide any direct indicator of the link-level
performance. For example, the information of a channel falling
into a fast-fading channel type will not currently assist the link
adaptation for a transmitter which plans to send data in that
channel.

According to the aforementioned metrics for defining wire-
less channels, channel modeling improves the ability to predict
performance [27]. The focus of prior work is on improving the
precision of the channel models by considering an increasing
number of parameters (e.g., antenna height and transmission
power). Most existing channel modeling methods require a
precise description of the dominant physical characteristics
of the wireless signal as it propagates through the chan-
nel [28], [29]. However, such an assumption of precise channel
knowledge is unrealistic as it is rarely possible to measure
those characteristics directly or precisely [30], [31]. Such
measurements are usually taken offline and with the help of
a channel sounder, which is often not available in the field.
Moreover, because of the channel complexity and the existence
of device-dependent factors, no well-established mapping ex-
ists between the channel description and the throughput of
certain devices in this channel. From the perspective of link
adaptation, the information that the device can benefit most
from channel classification or channel modeling is the target
rate that can give the highest throughput in the current channel.
In contrast to prior approaches, we propose that two channels
can be essentially treated as the same type if their transmission
mode performance at all possible and reasonable combinations
of contextual attributes are similar, leading to the proposed
context-based link-level adaptation.

Context-aware Collection, Decision and Distribution
(C2D2) engine [32] is designed and there are rate selection
schemes based on context-awareness [14], [11] that can fit
into the decision module in C2D2. The proposed algorithm in
the paper can also be part of the decision module to assist the
transmission rate selection.

More specifically, geometrical patterns have been used
to characterize propagation models of wireless channels. A
geometrical-based channel model is proposed in [33] and uses
three parameters of the signal to characterize a channel: the
power of the multipath component, the time-of-arrival of the
component, and the angle-of-arrival of the components. An
interference classification approach has used the angular differ-
ence between the current measurement and the stored reference
power values of the interference to identify the interfering
source [34]. Also, the authors choose the transmission channel
based on the identified interference. In contrast to prior work,
we use the geometrical-based model to recognize the channel

type based on transmission mode performance to lead to better
link adaptation decisions.

III. CHANNEL FEATURES

This section explains how to extract channel features from
the wireless performance data measured between two wireless
devices in a certain channel and how these features provide
help to rate adaptation decisions. Using experimental data, we
illustrate how the feature extraction works.

Consider a wireless transmitter and receiver pair which has
a total of Nmode different transmission modes. For example,
with M distinct modulation orders, C distinct coding rates, and
H distinct MIMO configurations, there are Nmode = MCH
available transmission modes. We consider data throughput
as the metric of wireless performance. For each transmission
mode, the achievable throughput value depends on several
different factors. These factors include not only the traditional
indicators of signal quality such as the signal strength and
the noise level. There are also some contextual attributes that
relate to performance. For example, the velocity between the
transmitter and receiver can be one of these factors since it
relates to the maximum Doppler bandwidth. Other environ-
mental parameters that potentially affect the throughput can
also be considered, depending on the algorithmic complexity
allowed in the hardware.

Assume the number of factors that we consider in the
system is Nfactor. We can construct a context space P
with Nfactor dimensions in which each point Pi (f i

1, f
i
2, ...,

f i
Nfactor

) represents a certain set of factor values. Each real
scenario that is measured/modeled in these Nfactor factors
can be mapped to one point in the space. Then, we represent
the throughput of a certain transmission mode using t i for
each point Pi in the context space. This can yield a map-
ping T : P → t. Now T contains the performance information
of one transmission mode. For a certain channel, we can find
Nmode such tables along with the context space as a whole set
of performance data D = {P , T1, T2, ..., TNmode}. D contains
the features of a wireless channel.

Like fingerprint to humans, the channel feature can be used
to identify a channel. Each channel instance has a unique D.
However, we can selectively leverage part of the features to
categorize channel instances and the methodology of feature
selection is based on the purpose of categorization. Fig. 1
depicts an example of transmission mode behavior for three
wireless channels when we only look at the transmission mode
that achieves the highest throughput at a given context point P i.
In this example, there are Nmode = 8 transmission modes and
and Nfactor = 2 context factors: velocity between transmitter
and receiver and received signal strength. P becomes a context
plane. The granularity of the signal strength in P is 5 dbm,
while the granularity for the velocity is 15 kmph. For the
representation of throughput variance, the transmission mode
with the highest throughput for each P i, is shown by differently
colored dots. The three plots depict the performance data
set from three different channels. Fig. 1 shows the exacted
features of different channel types. From the visual perspective,
Channel 1 and Channel 2 are similar in performance, while
Channel 3 is dramatically different.
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Fig. 1. Using highest throughput mode to depict channel feature.

As far as the concern of link-level adaptation, it is the
performance variance of different transmission modes that
are important in making rate decisions. The key idea behind
our proposed channel classification process is: channels that
have the same or similar variance can be categorized as a
single channel type. The variance can be evaluated in many
forms. The example in Fig. 1 leverages the top-performing
transmission mode but it is difficult to develop an algorithm
to determine visual similarity. Another example is to use the
ranking of throughput values of different modes to capture the
variance: for each Pi ∈ P , we save the order of the Tj(Pi),
where j = 1...Nmode, where having the same order for all
Pi can be classified as one channel type. The performance
order of different transmission modes in a channel is hard to
measure as it needs a rotation of all the available transmission
modes to collect performance probe data to compose a feature
point Pi. In Section IV, we introduce a scalable classification
algorithm which does not require large amount of probe points
in undetermined channel.

IV. GEOMETRY-BASED CHANNEL RECOGNITION

In this section, we introduce the proposed channel recog-
nition based on the geometric shape of the performance data
measured in the unknown channel and the previously observed
channel types. As the algorithm does not limit the number of
context information sources, for the simplicity of explanation,
we measure two context factors: (i) relative velocities of the
transmitter and the receiver and (ii) the transmitted signal
strength (or the channel attenuation) as in Section III.

The sets of pre-defined channel types, velocities, and signal
strength values in the training set can be represented by C =
{c1, c2, ..., cC}, V = {v1, v2, ..., vV }, and S = {s1, s2, ..., sS},
respectively. Similarly, the transmission modes in a system can
be represented by M = {m1, m2, ..., mNmode}. As an initial
starting point for a training set, we measure the achievable
throughput Gc,v,s,m using mode m in the channel model c with
the velocity v and signal strength s for each of the ITU channel
models (Table I) using a channel emulator. This training set
serves as a group of previously-observed wireless channels by
a given transmitter-receiver pair. For each model c, the V ·S ·
Nmode throughput values constitute the performance data d c.
A complete training set R = {d1, d2, ..., dC} contains C ·
V · S · Nmode throughput values, which describes the system
performance in these C channels.

With the aforementioned training set R, we now use

N(N ≥ 2) throughput values measured on an undetermined
channel type (e.g., a channel observed in the field). The
undetermined channel type’s contextual attributes are used to
classify the channel into one of the C channels. For each
record i(i = 1, ..., N), Ĝi denotes the measured throughput,
using mode m̂i, and v̂i, ŝi represent the corresponding velocity
and signal strength, respectively. Then, we search the training
set and find the throughput of all the channel models with
the same contextual attributes and transmission mode. In other
words, we look for Gc,v̂i,ŝi,m̂i of all the C channel models. It is
possible that V̂i is not in V (same for ŝi). In this case, a linearly
interpolated throughput G̃c,v̂i,ŝi,m̂i is calculated based on the
throughput of the nearest velocity and signal strength values.
The problem we seek to address is understanding how close or
far the behavior of an undetermined channel type is compared
to previously-observed channel types to be considered a known
or unknown channel.

If plotted in a 3-D space where the x-, y-, and z-axis
are signal strength, velocity, and throughput, respectively, the
training set for a particular channel (dc) is a family of meshes,
where each mesh represents the throughput of a certain trans-
mission mode with respect to signal strength and velocity. With
interpolation, the meshes can be filled and turned into surfaces.
By labeling all the G̃c,v̂i,ŝi,m̂i , we can draw C curves as shown
in Fig. 2, indicating the throughput variation trend is on the
order of i from 1 to N . Similarly, we can also draw the curve
of the throughput for the undetermined test channel. Let γ c,i

denote the angle between the training set vector, TSV c, as:

((ŝi+1, v̂i+1, G̃c,v̂i+1,ŝi+1,m̂i+1), (ŝi, v̂i, G̃c,v̂i,ŝi,m̂i)) (1)

and the measured vector, MV , which can be represented by:
((ŝi+1, v̂i+1, Ĝi+1), (ŝi, v̂i, Ĝi)) (2)

for channel type c. The similarity index γc is defined as:

γc =
N−1∑

i=1

γc,i. (3)

The channel recognition algorithm computes the channel
model cfit = cj0 that most likely has the same performance as
the undetermined channel. We can formally represent this as
j0 = argj min γcj ,i. In this way, we find one existing channel
type that has the most similar performance as the undetermined
channel.

Fig. 2 is a representative 3-D plot for C = 4 and N = 5. In
the figure, the surfaces in R are not plotted as their presence
blocks the inner points. We can see that the throughput of the
channel model A follows the trend of that of the undetermined
channel, which results in the minimum γc compared with
other channel models. The geometry-based channel recog-
nition exploits the channel characteristic information lying
in throughput measurement. When N grows, more features
are provided by {Ĝi} and the resulting recognition is more
accurate. Thus, there is a natural trade-off between calculation
complexity and the estimation accuracy, which is quantified in
Fig. 4(a).

V. CHANNEL RECOGNITION EVALUATION

Channel emulators can reproduce the same channel condi-
tions across multiple tests, providing a useful method to verify



Model Pedestrian A Pedestrian B Vehicular A Vehicular B Custom Channel
Tap Delay Power Delay Power Delay Power Delay Power Delay Power

(µs) (dB) (µs) (dB) (µs) (dB) (µs) (dB) (µs) (dB)
1 0 0 0 0 0 0 0 -2.5 0 0
2 .11 -9.7 .2 -.9 .31 -1.0 .30 0 .15 -4.0
3 .19 -19.2 .8 -4.9 .71 -9.0 8.9 -12.8 .38 -8.7
4 .41 -22.8 1.2 -8.0 1.09 -10.0 12.9 -0.0 .85 -12.9
5 - - 2.3 -7.8 1.73 -15.0 17.1 -25.2 1.40 -15.3
6 - - 3.7 -23.9 2.51 -20.0 20 -16.0 - -

TABLE I. POWER-DELAY PROFILES OF THE ITU CHANNEL MODELS USED ON THE CHANNEL EMULATOR.
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Fig. 2. Throughput versus SNR and velocity for different channel types in
3-D space.

the channel recognition algorithm. We use an Azimuth ACE-
MX [35] channel emulator for evaluation. Azimuth ACE-MX
has the set of pedestrian and vehicular channel models as de-
scribed in Table I. We create a custom channel model cnew /∈ C
from random choices of power and delay for five taps (see
Table I for specific values), which we use to evaluate our
geometry-based channel recognition. We use two GW2358-4
wireless router equipped with Ubiquiti XR5 radios. They are
both connected via an Azimuth ACE-MX. Fig. 3 shows the
experimental setup.

We select N sets of (cnew , si, vi, mi), measure the result-
ing throughput {Ĝi}, and check if the algorithm can choose
the model cfit ∈ C which is most similar to cnew. As
stated in Section III, we seek to select the transmission mode
that maximizes throughput. Therefore, the definition of c fit

is the channel model that, once fed into a link adaptation
decision structure along with the contextual attributes, out-
puts the transmission mode mbest ∈ M that achieves the
maximum throughput in cnew. To determine cfit, we first
find mbest by measuring the throughput of all the mk ∈
M in the undetermined channel with the same contextual
attributes. We can more formally state this as: Mbest =
arg maxMk Gcnew,vi,si,mk , k = 1, ..., R. Then, we consider C
scenarios such that cfit = cj , j = 1, ..., M . For each scenario,
we input (cj , vi, si) to the decision tree [11], [36] and check
if the output transmission mode mj matches with mbest. We
can repeat the procedure by choosing different v and s and
find the cj which has the most matching instances, which
we call the exhaustive search algorithm and compare it with
the performance of the geometry-based channel recognition

!"#$%&'(()" *)+)',)"

Fig. 3. Experiment setup

algorithm.

We have done the iterative evaluation as shown in Fig. 4(a).
The confidence of selecting channel model C is the highest out
of all channels with just two records and has a monotonically
increasing confidence level with additional records. On the
other hand, for the other channel models the confidence is
low with seven records. Fig. 4(b) shows that more training
data will lead to more accurate channel recognition. A large
training set will provide more detail about the throughput
relationships across different SNR and velocity combinations.
Thus, channel recognition can reduce the effect of errors in
angular calculation introduced by interpolation, but requires
additional samples.

It should also be noted that an incorrect channel recognition
result does not necessarily mean a lower system throughput.
Classifying an undetermined channel into other channel mod-
els besides cfit may not result in the highest throughput mbest,
but the output transmission mode of the decision structure may
still achieve a throughput improvement compared to other link
adaptation protocols.
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Fig. 4. Recognizing a custom channel type in terms of link-level throughput (left) and accuracy of channel recognition according to measurement samples
(right).

VI. CONCLUSION

We have proposed a performance-based channel feature
extraction. The channel characteristic is described by the
achieved data throughput under different transmission modes
and different environmental contexts. Then, leveraging the
collected channel features, a geometry-based channel classifi-
cation is introduced. In controlled, repeatable and in-field chan-
nels, we demonstrate the validity of the channel recognition
algorithm. In the algorithm, if the confidence of all the channel
types encountered are smaller than a certain threshold δ, then
the algorithm would flag this channel as a new environment.
We expect that the choice of the threshold will determine the
total number of different channel types observed. In the future,
we will quantify the trade-off between the number of different
channel types and the throughput improvement possible in
each of those scenarios. For instance, if there is a particular
channel condition for which the confidence of recognition falls
below the specified threshold, it would be classified as a new
channel type. However, if the additional gains in throughput
over a system when it is classified as an existing channel type
is small, then it may not be efficient to include this as a new
channel type. Increasing δ will lead to a larger number of
channel types, while decreasing δ could lead to diverse channel
conditions being grouped in the same type, resulting in reduced
throughput achieved by the link adaptation.
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