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Abstract

In vehicular networks, the propagation environment changes rapidly for mobile nodes. To achieve high throughput,
wireless devices need to be highly adaptive to these environmental changes by altering their transmission parameters
across different layers of the network stack. Sensors in mobile and vehicular nodes can be used to form an
understanding of the surrounding context. Such contextual awareness is particularly important in vehicular networks
as the frequent context switching and increased channel fluctuations can cause existing adaptation protocols to fail
to converge to the optimal transmission parameters. In this paper, we leverage information about the environmental
context to enable improved rate adaptation performance in vehicular networks. In particular, we propose a
classification-based link-level adaptation framework, which can effectively learn the relationship between context
information (such as velocity, SNR, and channel type) and the throughput of various transmission modes. We then
quantify the throughput improvement using the proposed scheme and show that our proposed framework can
significantly enhance the performance of rate adaptation. With experiments on emulated and in-field channels, we
observe that the throughput increases by up to 245% over protocols which use SNR alone to make rate decisions.
Based on an analysis of attribute importance, we identify channel type as a key parameter that affects classification
performance. Since channel type often cannot be directly obtained, we propose a multi-dimensional channel
inference method for use when knowledge about the channel type is not available. We demonstrate that the
proposed channel inference achieves an accuracy of up to 94% in previously encountered channels and can quickly
signal that a channel has not yet been encountered. The robustness of the proposed methods are demonstrated
using experimental data from two different hardware platforms and three different carrier frequency bands. Lastly, we
evaluate the most predominant Linux-based rate selection algorithm (Minstrel), study the relative rate selection
accuracy of our approach, and analyze the key role that the retry mechanism in Minstrel plays on its performance.
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1 Introduction
Mobility has a significant impact on channel charac-
teristics at the physical layer and media access layer
[1, 2]. Moreover, vehicular obstructions such as trucks,
buildings, and trees can significantly attenuate the sig-
nal compared to line-of-sight conditions [3–5]. As today’s
vehicular and mobile devices are equipped with an
increasing number of sensors, vehicular nodes in commu-
nication with one another can begin to understand the
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environment (e.g., urban, suburban, downtown, residen-
tial) and scenario (e.g., relative velocity and distance) in
which they are operating. Context awareness offers new
opportunities for performance improvement in vehicu-
lar networks. Prior work has extensively considered using
context to improve performance, but primarily in the area
of computing [6, 7]. In the area of wireless and vehicu-
lar networking, using context is still in the early stages of
development.
When nodes travel at vehicular speeds from scenario

to scenario, variations of the wireless channel exist such
as signal attenuation, channel fading, and interference
[8]. An awareness of context could give hints as to the
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likely channel state and facilitate quick convergence to
the optimal transmission parameters at many layers of the
network stack. Hence, the availability of context aware-
ness on today’s vehicular nodes provides unprecedented
opportunities for adaptation improvement when a node
transitions across environments. On the other hand, con-
text awareness poses additional challenges not present in
more traditional adaptation protocols: (1) how to incor-
porate various data streams from diverse sensors or other
system resources in vehicular environments in a context-
aware system and (2) how to leverage context information
specifically for better adaptation choices. The intrinsic
problem we seek to solve is to exploit the correlation
between the context information and the knowledge of
channel behavior to improve rate adaptation decisions.
Classification is used extensively in the machine learn-
ing community and has increasingly attracted attention
in wireless networks. Classification has been proven to
be efficient and effective in pattern extraction in wire-
less traffic classification, cognitive radio applications, and
network security [9–11]. The intelligent learning ability
of classifiers provides a new perspective for exploiting
context information and serves as a valuable tool for
context-aware rate adaptation.
Wireless performance of different transmission rates is

known to be highly dependent upon the channel condi-
tions, having a fundamental trade-off between robustness
and throughput. The high mobility of vehicular nodes
exacerbates the fluctuation of the wireless channel from
Doppler, multipath, and shadowing effects due to pass-
ing cars and structures. Thus, to remain connected and/or
improve spectral efficiency in a vehicular scenario, fre-
quent adjustments to the data transmission rate (e.g.,
modulation rate and coding scheme) is imperative. Vari-
ous mechanisms have been proposed for adapting trans-
mission parameters of a wireless link such as use of packet
statistics at the transmitter [12, 13] and direct channel
quality measurement combined with feedback [14]. The
former method has been shown to suffer from a confusion
of channel and congestion loss types (which motivated
further protocol design [15, 16]) whereas the latter can
suffer from improper and/or excessive training [17].
In this paper, we propose a classification-based context-

aware rate adaptation framework for vehicular andmobile
networks and a mechanism to recognize previously
encountered channels or trigger new training in an unen-
countered setting. The specific context information that
we consider in this paper are the measured vehicle veloc-
ity, signal-to-noise-ratio (SNR), and channel type. Chan-
nel modeling work has well established that it is not only
the direct path from sender to receiver that has impact but
also the paths that reflect from fixed and moving obsta-
cles in a given environment. Hence, channel type abstracts
the notion of being in a certain neighborhood, rural area,

downtown region, or vehicular setting and leads to the
corresponding channel characteristics of multipath, fad-
ing, and Doppler effects. A formal definition of the chan-
nel type is discussed in Section 3. We design and conduct
experiments on both emulated and in-field channels. The
experimental results demonstrate that the proposed rate
adaptation framework increases the throughput by up to
245% over traditional SNR-based rate adaptation proto-
cols and the default scheme in the Linux device driver,
Minstrel. Also, we analyze the effect of context attributes
and find the channel type to indeed be an important fac-
tor. However, the channel type is not directly known in
real scenarios, especially when vehicular nodes frequently
transition across different environments. As a result, we
propose a multi-dimensional channel inference algorithm
to predict the channel type. We also quantify the perfor-
mance of this channel inference algorithm.
The main contributions of the this paper are the

following:

1. We identify the intrinsic problem of context-aware
rate adaptation and present a context-aware
link-level adaptation framework in vehicular
environments. In particular, a classification-based
scheme is used to establish the connection between
the context information and the optimal link settings
automatically. To the best of our knowledge, we are
the first to propose a context-aware rate adaptation
framework which can be generalized to incorporate
different kinds of context information without
modifying the core algorithm.

2. We study the importance of the channel type as
context information. Since channel type is not easily
obtainable in real scenarios, we propose a
multi-dimensional channel inference algorithm that
uses context information and link-layer performance
to predict the channel type.

3. We implement our design with custom and
off-the-shelf hardware platforms. Experiments both
on emulated and in-field channels show that our
proposed framework can significantly improve the
performance of rate adaptation. For example, in
certain scenarios our approach can achieve more
than three times the throughput compared to
traditional SNR-based adaptation schemes. The
proposed channel inference algorithm can achieve a
high accuracy of up to 94%. We also compare our
algorithm with a preinstalled rate selection scheme in
the current Linux wireless framework. In-field results
indicate a significant throughput gain up to 245% in
some scenarios.

4. In addition to analyzing the most predominant
Linux-based rate selection protocol, Minstrel, we
disentangle the relationship between the optimality
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of the rate choice for a given scenario and Multi-Rate
Retry (MRR). MRR is a protocol that the rate
selection methods use when the initial transmission
fails. In doing so, we show that while Minstrel
benefits greatly from the use of MRR, our protocol
has negligible differences when MRR is employed
due to the high level of rate selection accuracy
already employed by our scheme.

The rest of the paper is organized as follows. In
Section 2, we describe the classification-based rate adap-
tation framework. Using this framework, we identify the
importance of channel type as context information and
propose the multi-dimensional channel inference algo-
rithm in Section 3. Then, in Section 4, we evaluate the
context-aware rate adaptation and channel inference on
emulated channels to directly compare with prior schemes
in repeatable conditions. In Section 5, we perform experi-
ments in the field to test the proposed framework. Finally,
we present related work in Section 6 and conclude in
Section 7.

2 Classification-based context-aware rate
adaptation

In this section, we first formulate the fundamental prob-
lem of rate adaptation studied in this paper. The prob-
lem considers choosing the transmission rate between
two nodes in wireless transmission range of one another
regardless of the end-to-end source and destination of a
particular flow (i.e., we consider the link performance of
each sender-receiver pair which could be applied to each
link in the entire network). Then, we present our solution
based on a classification-based framework.

2.1 Problem formulation
First, let us consider the case where a sender-receiver
pair attempts to choose the transmission rate according
to SNR information alone. To isolate this variable, we
compare the throughput performance across six different
transmission modes for a programmable hardware plat-
form (WARP), including the combinations of three mod-
ulation orders (BPSK, QPSK, 16-QAM) and two packet
sizes (100 B, 1000 B). The test is performed on a chan-
nel emulator with an experimental set-up as discussed
in Section 4.1. The channel model used has a power-
delay profile consisting of four taps with a relatively small
delay spread and little multipath, meaning that the direct
path from the sender to receiver predominantly charac-
terizes the channel condition. The node is moving at a
velocity of 60 kmph. Figure 1 is a visual illustration of
rate selection problem base on SNR information alone.
In the figure, we can observe that one optimal transmis-
sion mode achieves the highest throughput for a given
SNR region and would be said to be the ideal mode

choice in such region: 16QAM at the highest SNR and
BPSK at the lowest SNR. Now consider that a wire-
less node that has knowledge of not just SNR but also
potentially the vehicular velocity and the type of chan-
nel of the environment. Two different channel conditions
are said to belong to the same channel model if the
throughput of the various transmission modes are suf-
ficiently identical (formally defined in Section 3.1) in
both of those channel conditions. From this contextual
tuple of information, imagine a three-dimensional space
that has such performance curves across velocities and
SNRs per channel type. In other words, the relationship
between the throughput performance and SNR is subject
to change when the channel model or velocity changes.
Considering that multiple channel types and velocity val-
ues exist, the additional context information can help
improve the throughput performance, but searching over
the entire multi-dimensional space for the highest per-
forming regions becomes intractable. In this adaptive
system, the transmitter needs to select the desired mod-
ulation order, coding rate, and packet size based on the
available knowledge. The objective of this adaptation is to
maximize the throughput, Gth. Formally, the problem is
posed as follows:

max
m∈M,r∈C,s∈S

Gth given SNR, v, c (1)

where M, C, and S are, respectively, the set of avail-
able modulation orders, coding rates, and packet sizes
constituting different transmission modes in the system.
Further, v, c, and SNR represent, respectively, the vehicular
velocity, channel type, and SNR measured at the received
side. The vehicular velocity refers to the relative velocity
between the transmitter and receiver nodes.
We make the following remarks regarding the problem

formulated in (1):

1. We use throughput as the indicator of link
performance, although other metrics such as BER,
PER, delay, or jitter could also be used.

2. The channel type c represents a main
characterization of the propagation environment to
which the current channel belongs. We assume that
any channel can be classified into a countable number
of channel types to assist in the identification of the
optimal rate selection1. Further, we assume that the
transmitter is able to infer the current channel type
in advance. In our case, the transmitter is able to infer
the channel type with a multi-dimensional algorithm
for channel inference introduced in Section 3.

3. There are various ways in which throughput could be
calculated. For example, a traffic generator could
report the application-level throughput or a device

1Bounded only by system memory and complexity bounds.
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Fig. 1 Performance of different modes in WARP. The throughput performance for different modulation schemes and packet sizes on a 4-tap
channel with a velocity of 60 kmph

driver could count the total packets per second to
calculate the MAC-level throughput. Often, the
information available to the implementation governs
the most appropriate notion of throughput. The
exact throughput calculation in our experiment is
introduced in Section 4.1.

4. To stay in focus, we consider only SNR, v, and c as
the context information in this paper. Other
environment-related parameters or the direct use of
sensor data can be considered in future work.

2.2 Solution methodologies
We have formulated the link-level adaptation problem
using an optimization framework. Traditional analyti-
cal solutions typically require concavity of the objective
function. However, in our problem, it is difficult to find
a closed form expression for the throughput. Further,
the variables are continuously valued. Therefore, we use
a classification-based algorithm to identify the optimal
solution.

2.2.1 Decision-tree classification
Classification algorithms attempt to extract the relation-
ship between the objective class labels and features given
for classification such as various transmission modes and
different environmental contexts, respectively. The deci-
sion tree [18, 19] is one of themost popular, entropy-based
classifiers due to its ability to deduce a set of simple
rules that are easily interpreted for a complex classifica-
tion problem. In our framework, a decision-tree classifier
is used to establish the connection between the context

information and the optimal link setting. If a combina-
tion of various sensing information such as the vehicular
velocity, and channel quality can be classified into the
appropriate category, the wireless transmitter can elim-
inate poor choices for a particular setting and quickly
converge to the optimal choice.
In a decision-tree classifier, the relationship between

classes and features is represented in the form of a tree
structure. Classification starts at the root of the tree
and moves to the leaf nodes until a class is encoun-
tered. Due to its low complexity, this scheme is easy
to implement and adapts to real situations well with-
out a high computational load. To derive the classifi-
cation scheme used in our system, we use the C4.5
algorithm [20], a widely-used algorithm to generate deci-
sion trees. In the presence of large amounts of context
data, the C4.5 algorithm chooses an attribute with the
highest information gain to split the training data each
time. This splitting of the training data can be based
on either the information entropy gain or gain ratio,
until each resulting subset contains training data of a
single class. A subsequent pruning procedure then sim-
plifies the tree to avoid overfitting. Thus, the classifica-
tion scheme can streamline a large data set that contains
both the wireless performance information and contextual
information.

2.2.2 Application of the decision-tree classifier to link-level
adaptation

In order to incorporate the decision-tree classification
model into context-aware wireless systems, we use real
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RF chains over actual RF channels (emulated and in-
field). We use a combination of custom and off-the-shelf
hardware platforms in our experimentation. The custom
hardware platform we use is the Wireless Open-Access
Research Platform (WARP) [21], while the off-the-shelf
platform is a Gateworks 2358 board with three 802.11-
based Ubiquiti radios (XR2, XR5, and XR9) that operate
on different frequency bands. Each of the platform’s radios
has a physical layer based on the IEEE 802.11 standard.
The Ubiquiti platform offers a built-in GPS, increased
transmission power, physical layer coding, and fulfills the
timing requirements of 802.11, while the WARP offers
advanced programmability and observability across the
network stack.
In one setting, we compare experimentally (both in

the lab using a channel emulator for controlled, repeat-
able experimentation and in the field) the throughput
of the various transmission modes for a given SNR,
velocity, and channel type. We collect the set of SNR
S = {s1, s2, ..., sNS }, velocity V = {v1, v2, ..., vNV }, chan-
nel type C = {c1, c2, ..., cNC }, and the achieved through-
put values for all available transmission modes M =
{m1,m2, ...,mNmode}. In the training phase, we measure
the achievable throughput Gci,vi,si,mi using transmission
mode mi in the channel type ci, with the velocity vi and
signal strength si. We identify the optimal transmission
mode mbest with the highest throughput and use it along

with the context information for training. A training set
contains NC ·NV ·NS data points, which include the opti-
mal transmission mode mbest for a given channel type ci,
velocity vi, and SNR si. Then, we use the C4.5 algorithm to
derive the decision-tree classifier based on the training set
as discussed in Section 2.2.1. An example of the decision-
tree structure that we obtained with the C4.5 algorithm
based on training data for the WARP platform is shown
in Fig. 2 (see Section 4 for details about the training pro-
cess). The derived decision-tree classifier is implemented
as a look-up table in the context-aware system, so the
context-aware system could make packet-by-packet rate
decisions.
As soon as the system collects the current velocity, SNR,

and channel type information, the classification-based
adaptation scheme attempts to find the optimal trans-
mission mode mbest with the highest throughput. The
detailed process of the context-aware rate adaptation algo-
rithm is shown in Algorithm 1. In particular, we consider
the contextual information as the input (e.g., velocity and
instantaneous SNR) and attempt to output the ideal trans-
mission rate,mbest . To do so, we loop through themodula-
tion and channel types, collecting each of the throughput
values that correspond to that contextual tuple. Then,
we apply the channel inference approach as described in
Section 3.2. If a channel is recognized, we use the existing
look-up structure to find and use the optimal transmission

Fig. 2 Decision tree for WARP Measurements. A decision-tree classifier is trained for rate adaptation based on WARP measurements
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Algorithm 1 Context-Aware Rate Adaptation
Input: Context Information{v, s}
Output:mbest
1: Initializem = m0, c = c0
2: Collect Gc0,v,s,m0
3: Apply channel inference
4: if Convergent to an existing channel ci then
5: Set c = ci
6: Predictmbest with decision tree classifier
7: else
8: Add a new channel type cnew
9: Collect training data C, V , S and G for cnew of

transmission modesM
10: Adapt the decision tree classifier
11: end if

rate. If the channel is not recognized, a new channel type
is established and the decision structure begins training
for that channel to learn the optimal transmission rate.
The training phase could be completed beforehand to
avoid introducing computational load to the inter-vehicle
communication.

3 Multi-dimensional channel inference
Channel modeling is an area with a rich history, and
several models have been proposed that offer a trade-
off between complexity and accuracy. The International
Telecommunication Union (ITU) has standardized chan-
nel models that are relevant for pedestrian and vehicular
scenarios [22]. For example, the channel model Pedestrian
A in the ITUChannelModel suite reflects a possible chan-
nel representation in a case where the relative velocity
between the transmitter and the receiver is low, and the
channel has a relatively small delay spread [22].
However, the channel type information is difficult to

directly obtain in practice. In this section, we first moti-
vate the importance of channel type. Then, we introduce a
multi-dimensional channel inference algorithm that clas-
sifies an unknown channel into one of the channel models
in the training set or detects if the channel type has yet
to be encountered and should be added as a new channel
type.

3.1 Importance of channel type
First, we assume a multi-dimensional pattern that relates
the throughput performance of a given set of rate choices
over a number of contextual parameters. The dimensions
are composed of the contextual attributes that the link
performance depends. Then, the modulation and coding
scheme has a certain throughput per contextual tuple.
This multi-dimensional link performance-based shape
that forms can be compared against other shapes from

other contextual tuples. Two different measurement sets
from two different channel conditions could be said to
belong to the same channel type if their effective perfor-
mance (as measured by the throughput) of the available
transmission modes, exhibit similar behavior restricted
by a pre-defined threshold on the similarity metric for
all values of the various contextual attributes. Standard-
ization bodies (e.g., ITU) have produced representative
power-delay profiles that are representative of different
environments. However, two different power-delay pro-
files could form a similar multi-dimensional shape and be
similar for our purposes. Hence, we define a similarity
index that allows the ability to distinguish the multi-
dimensional link performance-based shape that forms
from environment to environment. We elaborate the con-
cept in Section 3.2. The experimental validations are in
Section 4.6 and Section 5.1.
The decision tree in Fig. 2 indicates the relative impor-

tance of the attributes, where the relative importance of an
attribute (signified by branches) is denoted by its relative
distance from the root of the tree. For example, velocity
is more important in making decisions in Channel D than
in the other channel types. The channel type turns out
to be more informative than other attributes in the tree-
building process and is selected as the first level of the
tree which is the closest to the root. We thoroughly quan-
tify the importance of different context information via
experimentation in Section 4.2.

3.2 Multi-dimensional classification for channel inference
The performance of wireless systems has long been known
to depend on the channel conditions. In particular and
as it specifically relates to this work, each transmission
mode’s achievable throughput depends on several differ-
ent factors including the power-delay profile of a given
environment. These factors go beyond the traditional
indicators of signal quality such as the signal strength and
the noise level. Specifically, we pointed out in a previous
work that coherence time affects the SNR-rate thresh-
olds [17]. Hence, since velocity directly affects Doppler
and coherence time, velocity is also performance related
since it affects the maximum Doppler bandwidth. From
the perspective of rate selection, the important informa-
tion from channel inference or channel modeling is the
target rate that can give the highest throughput in the
current channel. In other words, where the underlying
channel parameters are sufficiently similar to allow two
channels to have the same multi-dimensional pattern of
the available transmission modes, these two channels can
be treated as the same. This leads to the proposed channel
inference technique based on link-level performance.
Figure 3a presents an example of the best transmission

modes for various velocity and SNR values and differ-
ent channel types. In this example, there are 8 available
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Fig. 3 Throughput performance comparison of transmission modes. a The transmission mode with highest throughput in the context space. Dots
of the same color represent that the context share the common optimal transmission mode. b The variance of the throughput performance with
the SNR and velocity for 4 known channels and an unknown channel

transmission modes (Nmode = 8). The granularity of
the SNR is 5 dBm and that of the velocity is 15 kmph.
For the representation of the throughput variance, we
visualize the optimal transmission mode with the high-
est throughput for the context. In Fig. 3a, different colors
represent different optimal transmission modes for the
context, and dots of the same color represent the com-
mon optimal transmission mode. The three plots depict
the performance data set from 3 different channels. As can
be seen in Fig. 3a, Channel 1 and Channel 2 are similar
in terms of common optimal transmission modes, while
Channel 3 is dramatically different. We now propose a
more formal approach to channel type inference based on
the multi-dimensional representation of the throughput
of all transmission modes on a given channel, which more
efficiently utilizes in-field measurements.

The sets of channel types, velocities, and signal
strength values in the training set are represented by
C = {c1, c2, ..., cNC }, V = {v1, v2, ..., vNV }, and S =
{s1, s2, ..., sNS }, respectively. Similarly, the transmission
modes available in a system can be represented by M =
{m1,m2, ...,mNmode}. The achievable throughput Gc,v,s,m is
measured using transmission mode m in the channel
model c, with the velocity v and signal strength s. For each
channel model c, the NV · NS · Nmode throughput values
constitute the performance data dc. A complete training
set R = {d1, d2, ..., dC} contains NC · NV · NS · Nmode
throughput values, which describes the system perfor-
mance in these NC channels.
With the training set R, we now use N throughput val-

ues (where N ≥ 2) measured in the field on an unknown
channel type and its related context information to classify

the unknown channel into one of the known channels
in C. Each record i(i = 1, ...,N), Ĝi denotes the mea-
sured throughput using mode m̂i, and v̂i, ŝi represent the
corresponding velocity and signal strength, respectively.
Then, we search the training set and find the throughput
of all the channel models with the same context informa-
tion and transmission mode. In other words, we look for
Gc,v̂i,ŝi,m̂i of all the NC channel models. It is possible that
V̂i is not in V (the same holds for ŝi). In this case, bi-linear
interpolation is used to calculate the throughput G̃c,v̂i,ŝi,m̂i
based on the throughput of the nearest velocity and signal
strength values.
As an example of a multi-dimensional space, if the rate

performance of the contextual parameters were plotted in
a 3-D space where the x, y, and z axis are signal strength,
velocity, and throughput, respectively, the training set for
a particular channel (dc) is a family of meshes, where each
mesh represents the throughput of a certain transmission
mode with respect to signal strength and velocity. With
interpolation, the meshes can be filled and turned into
surfaces. By labeling all the G̃c,v̂i,ŝi,m̂i , we can plot the data
as shown in Fig. 3b corresponding to NC known chan-
nel types, indicating the throughput variation trend on
the order of i from 1 to N. Similarly, we can also plot the
throughput for the unknown testing channel. Let TSVc
denote the training set vector as:

(
ŝi+1− ŝi

)
Ix+

(
v̂i+1− v̂i

)
Iy+

(
G̃c,v̂i+1,ŝi+1,m̂i+1− G̃c,v̂i,ŝi,m̂i

)
Iz

(2)

where Ix, Iy, Iz are unit vectors in the x, y, and z directions.
Likewise for the unknown channel type c, the measured
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vector,MVc, can be represented by:

(
ŝi+1− ŝi

)
Ix+

(
v̂i+1− v̂i

)
Iy+

(
Ĝc,v̂i+1,ŝi+1,m̂i+1− Ĝc,v̂i,ŝi,m̂i

)
Iz

(3)

Let γc,i denote the angle between TSVc and MVc for
channel type c. The similarity index γc is defined as

γc =
∑N−1

i=1 γc,i
N − 1

. (4)

The channel inference algorithm computes the channel
model cfit = cj0 that most likely has the same performance
as the unknown channel. We can formally represent this
as j0 = argj min γcj ,i. In this way, we find one existing
channel type that hasmost similar performance compared
to the unknown channel in terms of throughput variation
in different context. Subsequently, the decision structure
for channel model cj0 can be used for the unknown chan-
nel. If the similarity index γc is sufficiently large, then
the behavior is not guaranteed to converge to an exist-
ing channel type and should form a new channel type
which has not been previously encountered. One might
seek to form an exact threshold for γc (which could be
done in future work). However, we take a more practi-
cal approach in leveraging γc to perceive if over a number
of in-field measurements, the channel type is converging
to the behavior of a previously observed channel or not.
The formulation of similarity index γc reflects both rea-
sonable complexity and affordable convergence. Adding
more terms or constraints, such as the absolute through-
put value into the similarity index is feasible depending on
required precision of the application scenarios. To evalu-
ate whether we are correct in inferring the channel type to
a previously observed channel, we use an accuracy met-
ric as discussed in Section 4.6. In Section 5.2, we show
experimental examples of both converging and diverging
from previously encountered channels, which forms a new
channel type.
Figure 3b is a representative 3-D plot for NC = 4

and N = 5. In the figure, the surfaces are not shown
because they would block the inner points. We can see
that the throughput of the channel model A follows the
trend of that of the unknown channel, which results
in the minimum γc compared with other channel mod-
els. The multi-dimensional channel inference approach
exploits the channel characteristic information lying in
the throughput measurements. When N grows, more fea-
tures are provided by {Ĝi}, and the resulting inference is
more accurate. Thus, there is a natural trade-off between
computation complexity and estimation accuracy, which
is quantified in Fig. 8a and discussed in Section 4.6. The
context-aware system could collect adequate data sam-
ples in a limited time andmake a timely channel-inference
decision.

4 Experimental results and discussion on
emulated channels

We now evaluate our context-aware link-level adapta-
tion by performing a wide range of in-lab tests using
both WARP and Ubiquiti platforms. Using both plat-
forms, we show that our algorithm (i) accurately selects
the best transmission mode, (ii) precisely infers chan-
nel characteristics, and (iii) outperforms existing rate
adaptation mechanisms. We design a testbed imple-
mentation over both in-field and emulated channels.
We focus on emulated channels so that we could
replay them to test the different algorithms in a
fair manner.

4.1 Emulator-based experimental settings
As an initial analysis of the proposed adaptation which
selects data rates according to various pieces of context
information, we use a channel emulator for controlled,
repeatable channels to quantify the gains we could expect
over existing schemes. Hence, in our experiments, we
connect the transmitter and the receiver via an Azimuth
ACE-MX [23]. The Azimuth ACE-MX has a set of pre-
defined and widely-used ITU pedestrian and vehicular
channel models. Table 2 describes the power-delay pro-
file for ITU channel models implemented on the emulator.
We now briefly describe each of the channels to relate
them to actual environments. Channel A represents a
channel that lacks a strong multipath component (e.g., an
environment that lacks tall buildings or structures) and
corresponds to ITU Pedestrian A. Channel B represents
an environment where there is some multipath and cor-
responds to ITU Pedestrian B. Channel C has multiple
strong multipath reflections (e.g., a downtown environ-
ment with a line-of-sight component) and represents ITU
Vehicular A. Channel D actually has a multi-path com-
ponent that is stronger than the line-of-sight component
and represents ITU Vehicular B. The custom channel was
created from randomly generated power and delay values
and will be used for experimentation purposes later in the
paper.
Figure 4 shows the set-up of the experiment on emu-

lated channels. A PC controls the emulator (over Ether-
net) and allows configuration of the channel characteris-
tics such as model type, path loss, Doppler, and input or
output attenuation. The Ubiquiti radios on the Gateworks
boards match the physical layer coding rates and mod-
ulation orders of IEEE 802.11a/g whereas WARP lacks
physical layer coding, currently allowing only uncoded
BPSK, QPSK, and 16-QAM. With two packet sizes, there
are 18 total transmission modes that we study with the
Ubiquiti radios and six total modes with WARP. In both
cases, the platforms send packets over emulated channels
that have predefined attenuation levels and velocities, as
shown in Table 1.
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Fig. 4 Set-up of the emulator-based experiment. This figure shows the set-up of the emulated environment for experiments, including the
equipments and the connections between equipments

On the WARP platform, the traffic consists of pack-
ets with pre-determined content. Therefore, the BER and
PER information is available at the receiver side, and the
throughput, Gth, can be calculated as:

Gth = (1 − PER) ∗ Rth ∗ lpayload
lpacket (5)

where Rth is the physical data layer rate, and lpayload and
lpacket are the lengths of the payload and the entire packet,
respectively. On the Ubiquiti platform, we use iperf to
generate traffic. Thus, the original payload of a packet in
error is unknown at the receiver, precluding BER calcula-
tion. However, the time duration of a packet transmission
can be calculated based on the specification in the IEEE
802.11 standard and data rate. The probability of success-
ful transmissions can be obtained via investigating the
response from the receiver (i.e., the reception of an ACK
packet). Therefore, the throughput, Gth, can be calculated
as:

Gth = P ∗ lpayload
tSIFS + tpre + lpacket/Rth

(6)

where P is the probability of a successful transmission,
tSIFS and tpre are, respectively, the duration of the short
interframe space (SIFS) and preamble. The latter two
terms are specified in the 802.11 standard [24].

4.2 Performance of context-aware rate adaptation
For training the decision tree, the five velocities and eight
attenuations shown in Table 1 are used, composing a set of
40 measurement points per channel type in Table 2. Each
measurement is approximately 1minute in duration to get
an accurate throughput value. The well-trained decision

tree functions as a look-up table in a real-time implemen-
tation for the practical application without much compu-
tational load. Using this training, we first evaluate the
performance improvement of using our classification-
based scheme on randomized channel scenarios. In
particular, we randomize the velocity and attenuation
attributes so as to create different values from our train-
ing set to form a testing set on each channel type. We
then compare the throughput achieved by the rate deci-
sion given by the classification against both the decision
of an SNR-based scheme and the decision which achieves
maximum throughput found via exhaustive search. For
the SNR-based scheme, the thresholds are defined by the
highest performing rate on a particular SNR in a static
topology. Results in Table 3 include the performance of
the proposed rate adaptation framework.With the trained
decision structure, the proposed framework outperforms
the SNR-based method by 40.2% on WARP and 60.8% on
the Ubiquiti platform, respectively.
The decision-tree structure forms the primary decision

engine for context-aware link adaptation. The decision

Table 1 Transmission modes and channel emulator parameters

Parameter Values

Channel models Ch. A, Ch. B, Ch. C, Ch. D

Attenuations (dB) 0, 6, 12, 18, 24, 30, 36, 42

Velocities (kmph) 0, 30, 60, 90, 120

Ubiquiti 802.11a/g rates (Mbps) 6, 9, 11, 12, 18, 24, 36, 48, 54

Packet size (B) 100, 1000

WARP modulation schemes BPSK, QPSK, 16QAM
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Table 2 Power delay profiles of the channel models used on the emulator

Model Channel A Channel B Channel C Channel D Custom Channel

Tap Delay (μs) Power (dB) Delay (μs) Power (dB) Delay (μs) Power (dB) Delay (μs) Power (dB) Delay (μs) Power (dB)

1 0 0 0 0 0 0 0 − 2.5 0 0

2 .11 − 9.7 .2 − .9 .31 − 1.0 .30 0 .15 − 4.0

3 .19 − 19.2 .8 − 4.9 .71 − 9.0 8.9 − 12.8 .38 − 8.7

4 .41 − 22.8 1.2 − 8.0 1.09 − 10.0 12.9 − 0.0 .85 − 12.9

5 - - 2.3 − 7.8 1.73 − 15.0 17.1 − 25.2 1.40 − 15.3

6 - - 3.7 − 23.9 2.51 − 20.0 20 − 16.0 - -

tree in Fig. 2 implies that the channel type is more impor-
tant than other attributes in making rate decisions. To
validate this observation, we solve the optimization prob-
lem of rate adaptation given only knowledge of (i) SNR
and velocity, (ii) SNR and channel type, or (iii) velocity and
channel type. This experiment is equivalent to the case
in a real system where one attribute cannot be obtained
or the system receives erroneous sensor information for
that attribute, which cannot be used. The experiment
has been done on both the WARP and Ubiquiti plat-
forms. Table 3 lists the classification performance with
onemissing attribute along with the performance when all
attributes are present. The experiments are performed on
a channel emulator for repeatability and control. Hence,
the gap is the percentage of throughput difference from
the maximum achievable, which is computed via exhaus-
tive search after channel conditions are repeated for all
modes.
As shown in Table 3 for both platforms, the classifica-

tion accuracy and the throughput drops if one attribute
is missing, and the gap between the throughput of the
selected transmission mode and the maximum achievable
throughput increases. Note that a missing channel type
causes a more severe performance loss than the other two
attributes. For example, on the WARP platform, a 32%
reduction in throughput occurs if the channel type infor-
mation is missing, while missing SNR or velocity only
leads to 7 or 5% throughput reduction, respectively. These

Table 3 Classification-based context-aware performance:
(A)ccuracy is percentage of time classification choosing ideal
rate, (I)mprovement is its throughput gain over a SNR-only
method, and (G)ap is its throughput percentage from the
maximum achievable

Missing attributes
WARP Ubiquiti XR2

A I G A I G

No missing attributes 76.3% 40.2% 4.2% 51.9% 60.8% 66.0%

Channel type 53.8% 7.4% 36.7% 35.6% 14.3% 75.8%

Velocity 72.2% 32.6% 9.3% 50.0% 58.0% 66.5%

SNR 62.8% 29.7% 11.3% 48.1% 52.9% 67.6%

results demonstrate that knowledge of the channel type is
the greatest contributing factor of the three attributes in
making rate decisions.
To verify the performance algorithm in a real-time sce-

nario, we implement the proposed classification-based
rate adaptation protocol under the Linux wireless frame-
work mac80211 [25]. In the original framework, Minstrel
is the rate selection algorithm that is enabled by default. It
is themost powerful algorithm compared with other avail-
able options in the Linux framework [26]. Minstrel will
attempt to select the rate with highest historical through-
put at the point when the packet is transmitted. In addi-
tion, for hardware that supports multi-rate retry (MRR),
Minstrel will choose up to two other candidate rates in
case the first choice fails. We load our trained decision-
structure-based rate control module onto the Ubiquiti
platform and compare its performance in the four emu-
lated channels withMinstrel with and without MRR.
We simulate a typical process in a vehicular scenario

by altering the parameters of the channel emulator. The
parameters that fed into the emulator are listed in Table 4.
We use a script to control the emulator in each round dur-
ing the experiment to ensure that every time the system
is experiencing the same channel variance and experi-
ment duration. Table 5 shows the throughput comparison
between Minstrel and the proposed classification-based
algorithm. Channel A has fewer number of taps and lower
tap delay compared with the other three, which means
that it represents a simpler channel with almost no obsta-
cles between the transmitter and the receiver. In this case,
the rate selection logic needs not be as adaptive in order to
achieve high throughput. Hence, the two algorithms per-
form similarly. This result can be attributed to the lack
of a strong multipath component that experiences far less

Table 4 Transition of attributes in the emulated channels

Index 1 2 3 4 5 6

Power attenuation (db) 10 18 20 30 11 0

Velocity (kmph) 0 10 15 30 18 0

Duration (s) 20 10 10 10 10 10
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Table 5 Performance comparison in the emulated channels

Algorithms
Throughput (Mbps)

Channel A Channel B Channel C Channel D

With MR Minstrel 20.83 4.64 7.65 5.56
Context-aware 20.39 5.66 8.83 6.15

Without MR Minstrel 20.18 2.42 2.90 3.02
Context-aware 20.14 6.05 7.59 6.03

channel fluctuations in a mobile context than the remain-
ing three channels. With the use of Channels B through D,
the performance of our rate adaptation using our decision
structure significantly improves. For now, we focus on the
accuracy of rate choices made by each scheme. Later, we
will explore the effect of MRR on the performance of rate
selection in Section 4.4
To more easily observe the aforementioned behavior,

we have plotted the rate selection process. Figure 5 a and
b show the variation of signal strength and throughput
reported by hardware across time. Figure 5 c and d plots
the rate selection behavior and corresponding through-
put performance when the channel condition fluctuates.
The Channel A graph reveals that both algorithms are per-
forming well and constantly choosing the best rate when
the channel condition is good. The throughputs shown in
Table 5 indicate that there is nearly identical performance
across both algorithms with and without MRR (approxi-
mately 20Mbps). However, the Channel C graph indicates
that the decision structure is able to accurately choose the
best rate as the first rate choice whereas Minstrel cannot
quickly adapt to the channel variation and has to try a
large number of rates. The advantage of our algorithm is
twofold: it achieves a higher throughput, and it does not
rely on MRR. Figure 5 e and f describes the rate selection
progress of the two algorithms in Channel C. In Table 5,
we observe that in both Channels B and D, similar effects
hold as Channel C. Namely, Minstrel has a dramatic per-
formance degradation without MRR, whereas the use of
MRR has almost no influence on our context-aware rate
selection.

4.3 Effect of training set size
In this subsection, we evaluate the effect of training set
size on the proposed classification-based context-aware
rate adaptation. We use the same training data and testing
data as we used in Section 4.2. For each channel type, we
have 40 data points in total and evaluate the effect of the
training set size by varying the number of data points in
the training set. In Fig. 6a and b, we show the effect of the
training set size on the accuracy of rate prediction and the
gap from the maximum achievable throughput by gradu-
ally increasing the number of data points in the training
set. We can observe that:

• As the size of the training set increases, the accuracy
of the rate prediction first increases and then
decreases. Before reaching the best performance,
enlarging the training set size can provide more
information for learning the embedded pattern.
Increasing the training set also includes wrong
information from sensor errors, which can make the
classifier confused in selecting the right transmission
mode for a given context. Also, the overfitting
problem exists with an increasing training set size
[27].

• The same size of the training set has different
performance on different channel types. The main
characteristics (e.g., the multipath effect and resulting
delay spreads) are different in the four channel
models. Thus, to achieve the same prediction
performance, the learning process needs differing
amounts of training data to extract the embedded
patterns of channel complexity. Also, the training
data collection process might introduce incorrect
information, which is implemented independently for
the four channel types. Hence, the four training sets
provide differing amounts of useful information for
training the decision tree.

4.4 Effect of MRR
Multi-rate retry (MRR) relies on functionality that is
available in only some wireless chipsets. The perfor-
mance of MRR-based rate selection algorithms decays
when MRR is not enabled [28]. Also MRR is not avail-
able on all the wireless devices and hardware, for exam-
ple, BCM43XX, Rt2x00, RTL8180 (Realtek)/RTL8185,
RTL8187, and RT2800 (RaLink). There are works inves-
tigating the performance of Minstrel [29]. However, to
the best of our knowledge, no work has isolated how
MRR affects Minstrel. In this section, we evaluate the
impact of MRR on Minstrel and show that the proposed
classification-based context-aware rate adaptation does
not rely on MRR.
In Fig 7, without MRR, Minstrel suffers severe per-

formance degradation because Minstrel is a trial-based
algorithm and relies on the multiple rate choices to ensure
successful transmission. Minstrel is sensitive to changes
in the channel condition and keeps trying a broad range
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Fig. 5 Signal strength (SS), throughput (TH), and rate selection comparison on emulated channels. Rate selection behavior varies with the signal
strength and the multi-rate setting. c, d The top is Minstrel, and the bottom is context-aware. e, f The top is with MR, and the bottom is without MR

of rates. In most cases, Minstrel’s first rate choice is not
correct. The classification-based context-aware scheme
selects the best rate with the consideration of context
information, which leads to a more precise result: the first
choice is the correct choice in most cases and thus, not
having MRR has little impact on performance.
As discussed in Section 4.2, Table 5 shows the through-

put comparison between Minstrel and the context-aware
framework. By comparing the throughput performance
with and without MRR, we can see that the performance
of Minstrel relies heavily on MRR, since its rate choices
are based on historical data. When experiencing a chan-
nel that fluctuates dramatically, its first rate choice for the

next packet is already obsolete. On hardware that does not
support MRR, its throughput will rapidly decay in such
scenarios. The context-aware rate adaptation makes the
rate selection based on the real-time environmental con-
dition. Therefore, our context-based scheme can quickly
adapt to the environmental variations.
Table 6 shows the performance comparison between the

Minstrel and the context-aware framework with and with-
out MRR in in-field experiments. Minstrel relies more on
MRR and its performance decreases significantly without
MRR. The context-aware framework has a higher percent-
age of selecting the most appropriate rate upon the first
rate selection without the reliance on MRR.
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Fig. 6 Effect of training set size on rate prediction performance. a The impact of the training set size on prediction accuracy. b the impact of the
training set size on throughput performance

4.5 Multiple frequency bands adaptation
To further demonstrate the utility of context information
in next-generation multiband cognitive networks, we dis-
cuss the following scenario. Consider a particular node
that is operating at a particular frequency band and has
developed a decision tree for determining the best operat-
ing mode for each context. Now, if the node were to shift
transmissions to a different band for which it has no a
priori training information, can it make coarse estimates
of the performance of the various transmission modes in
the new frequency band based on the decision tree of the
prior band? Our results indicate that, indeed, significant

gains are possible in several cases. Table 7 shows the
results when we train the decision tree for a particu-
lar band and test the performance on another frequency
band (and the same band for comparison). Here, we use
Ubiquiti radios on 900MHz, 2.4GHz, and 5.8GHz, cor-
responding with XR9, XR2, and XR5, respectively. The
experiments are performed with randomized velocities
and attenuations of the channel types described above.
From Table 7, we find classification across different

bands has higher throughput in most scenarios as com-
pared to the throughput when making rate decisions
based on SNR alone. For instance, training the tree at

Fig. 7 Effect of MRR. The comparison of the effect of MRR on the throughput performance of Minstrel and the proposed context-aware framework
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Table 6 In-field performance comparison

Place MRR
Throughput (Mbps)

Minstrel Context-aware Improvement

Bishop With 5.53 5.77 4.34%
Without 4.74 5.25 10.75%

Park With 5.00 5.54 10.80%
Without 3.35 4.68 39.70%

900MHz and using this training to make rate adaptation
decisions at 2.4GHz results in a 52% improvement over
SNR-based schemes. The channels of different frequency
bands share similar behavior with respect to transmission
modes, throughput, and context information. Thus, clas-
sification across different bands can achieve large gains
versus using the SNR-based method across frequency
bands. In Table 7, when we use the testing set of one fre-
quency band and the training set of the same frequency
band, the gap from the optimal performance is smaller
than the gap when training is performed at other fre-
quency bands. The improvement over SNR-based meth-
ods does not show a similar trend because when we
use the training set from a different frequency band, the
SNR-based selection is from the training frequency band.
Otherwise, the SNR-based selection could have a poorer
performance than the selection of the same frequency
band as that of the testing set, which would make the
improvements larger than that from training with the set
of the same frequency band.

4.6 Performance of channel inference
We implement two different types of tests to validate our
channel inference algorithm. In the first test, we select N
sets of (ci, vi, si,mi) where ci = c0, c0 ∈ C for all i =
1, ...,N , mi ∈ M but vi /∈ V , si /∈ S . We measure the
throughput Gi = Gci,vi,si,mi , and using {Gi} and the corre-
sponding {vi}, {si}, {mi} as the input to the algorithm, we
check if the inferred value equals c0.
In the second test, we generate a new channel cnew /∈ C

with a randomized power-delay profile and infer which
channel type it resembles in terms of link-level perfor-
mance. To do so, we select N sets of (cnew, si, vi,mi),
measure the resulting throughput {ηi}, and check if the

algorithm can choose the model cfit ∈ C that is most sim-
ilar to cnew. As stated in Section 2.1, we seek to select the
transmission mode that maximizes throughput. There-
fore, the definition of cfit is the channel model that, once
fed into the decision tree along with the context infor-
mation, outputs the transmission mode mbest ∈ M that
achieves the maximum throughput in cnew. Next, we will
introduce the proposed method to determine cfit and then
discuss the evaluation results.
To determine cfit, we first find rbest by measuring the

throughput of all the mk ∈ M in the unknown channel
with the same context information. We can more formally
state this as:

mbest = argmax
Mk

Gcnew,vi,si,mk , k = 1, ...,Nmode. (7)

Then, we consider NC scenarios such that cfit = cj, j =
1, ...,NC . For each scenario, we input (cj, vi, si) to the deci-
sion tree and check if the output transmission mode mj
matches with mbest. We can repeat the procedure by
choosing different v and s and find the cj which has
the most matching instances. In fact, the method stated
above can also be recognized as one example of a channel
inference algorithm. We will call it the exhaustive search
algorithm and compare it with the performance of the
multi-dimensional channel inference algorithm.
We use the same training set and the decision tree in

Section 4.5 where four channel models are involved (i.e.,
C = 4 in both evaluations). In the first type of evaluation,
for the exhaustive search algorithm, we choose N = 16
records to investigate the effectiveness of the algorithm.
The inference accuracy is 40%, on average. Since our chan-
nel inference algorithm can work with N records (where
N ≥ 2), and it has better performance with more records,
we have done an iterative evaluation while increasing the
record number. Table 8 shows the result of the evalua-
tion. The superiority of the proposed multi-dimensional
channel inference algorithm is clearly evident from the
accuracy of 74.8% with only two testing points and over
94% accuracy with just seven testing points. As a practi-
cal note, a lower number of testing points translates to less
training data required when entering an unknown region
in the field to perform channel inference.
In the second evaluation, among 24 results that are given

by the exhaustive search algorithm, 66.7% select channel

Table 7 Training across frequency bands: (A)ccuracy is percentage of time classification chooses ideal rate, (I)mprovement is its
throughput gain over a SNR-based method, and (G)ap is its throughput percentage from the maximum achievable

Band
Training, 900MHz Training, 2.4 GHz Training, 5.8 GHz

A I G A I G A I G

Testing, 900MHz 73.1% 17.1% 16.6% 47.1% − 2.4% 28.2% 22.1% − 20.2% 44.9%

Testing, 2.4 GHz 45.2% 52.7% 67.2% 51.9% 60.8% 66.0% 26.9% 46.6% 70.2%

Testing: 5.8 GHz 20.9% 55.1% 19.6% 16.3% 67.1% 22.8% 60.5% 99.8% 6.75%
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Table 8 Geometry-based channel inference in known channels

N 2 3 4 5 6 7

Accuracy (%) 74.8 81.9 87.5 90.0 91.7 94.3

model C in C as cfit. For our channel inference algorithm,
we have done the iterative evaluation as shown in Fig. 8a.
The confidence of selecting channel model C is the high-
est out of all channels with just two records and has a
monotonically increasing confidence level with additional
records. On the other hand, the other channel models
have low confidence for seven records.
Figure 8b shows that more training data will lead to

more accurate channel inference. A large training set will
provide more detail about the throughput relationships
across different SNR and velocity combinations. Thus,
channel inference can reduce the effect of errors in angu-
lar calculation introduced by interpolation.

5 In-field experimental results and discussion
In this section, we evaluate the rate adaptation framework
by performing experiments on in-field wireless channels.

5.1 Channel inference evaluation with in-field trials
We perform an in-field evaluation of the channel infer-
ence algorithm and the classification-based context-aware
scheme using data collected from experiments at two
different fixed locations. The context-aware algorithm is
trained as in Section 4.2. At each location, we vary the
distance between the transmitter and receiver to alter
the signal attenuation levels at the receiver, which will be
reflected in the receiver’s SNR. The antennas are either on
the top of cars (2 m in height) or on tops of buildings or

parking garages as pictured in Fig. 9, where the four anten-
nas (each approximately 5 dBi) are spaced approximately
a third of a meter apart. For each attenuation, we measure
the SNR and achievable throughput in each transmission
mode. With the complete set of throughput data, we are
able to monitor and evaluate the performance of channel
inference algorithm. We pick several sets of SNR values
and their corresponding throughput and apply our chan-
nel inference algorithm. Since we have the throughput of
all the transmission modes and can find the best perform-
ing mode via exhaustive search, we can compare it with
the output of the rate adaptation framework.
Our first location is a residential apartment complex.

Two WARP nodes operating at 2.4 GHz are used to mea-
sure the achievable throughput across the established link.
One node sends fully backlogged packets to the other
node, which logs SNR and throughput. Figure 10a shows
the channel inference performance. We can see the confi-
dence of the classification as Channel A quickly converges
to 1, while others remain at a much lower level. With this
channel inference result as the input of channel type to
our decision tree trained as in Section 4.2, the throughput
improvement over the SNR-based mechanism is 24.15%.
The second location is in downtown Dallas. This time

we use a 5.8-GHz radio (XR5) on the Gateworks board
to see if our scheme can operate in a different frequency
band. The result of channel inference is shown in Fig. 10b
and indicates that Channel type A is closer to the channel
in downtown than other models. Although the confi-
dence is not as high as in the residential area, the infer-
ence of Channel A as the channel type into the decision
tree achieves an even higher throughput improvement of
245%. The reason for this large improvement is that the

Fig. 8 Effect of data volume on channel inference performance. a The impact of number of available samples on channel-inference confidence. b
The effect of training set size on channel inference accuracy
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Fig. 9 Gateworks board with four Ubiquiti radios and antennas at
900 MHz, 2.4 GHz, and 5.8 GHz on top of a parking garage on campus.
This figure shows the in-field experiment set-up

SNR-based algorithm cannot perform as well as in the res-
idential area, showing that context-aware scheme tends to
do better as the complexity of the environment increases.
Figure 10c shows the channel inference performance at

the same location but at a 900-MHz carrier frequency
(XR9). The confidence indices of all the channel models
are similar and below a threshold of 40%. This result indi-
cates that the current channel should be considered as a
separate, newly encountered channel type needing train-
ing for the decision tree and channel inference algorithm.

5.2 In-field mobility: context-aware link-level adaptation
Wenow use the same verificationmethod as in Section 4.1
in the field to compare our algorithm with Minstrel. Our
results indicate that the proposed algorithm can outper-
form Minstrel in the outdoor environment similar to the
performance over emulated channels.
We use the Gateworks 2358 with our algorithm imple-

mented in the mac80211 module. The experiment is per-
formed on a 2.412-GHz channel and iperf is used for
traffic generation. We place an omni-directional, 2.4-GHz
antenna on top of two cars. During the experiment, one
vehicle’s location is fixed and the other vehicle traverses
a fixed route. We attempt to maintain a constant speed
across different experiment with respect to the traffic laws
(approximately 20 mph).
The context-aware rate adaptation learns about the

environment during the transmission the first time the
node enters an area. According to our protocol a pre-
knowledge (training set) of the channel should be avail-
able. Here, we assume that we have the training set around
the regions where we perform the experiment. Building up
such historical training knowledge is possible if the trans-
mitter saves the context information of a region and uses
the trained decision structure the next time that it enters
the same region.
As shown in Fig. 11, one experiment location is on

Bishop Boulevard, the main street of our university cam-
pus. The maximum distance of the two nodes is 180 m
(based onGPSmeasurements at the two nodes). There are

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

1
A. Apartment 2.4GHz Test

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

1
C. Downtown 900MHz Test

Channel A
Channel B
Channel C
Channel D

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

1
B. Downtown 5.8GHz Test

Fig. 10 Confidence of inference at different locations. The confidence of selecting a known channel for in-field channels is calculated with the
channel inference algorithm
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Fig. 11 Experiment locations. A screen shot of the Google map
shows an experiment location

some trees on the grassy median inside the route, but the
two nodes predominantly have line-of-sight links. There
is light vehicular traffic but many pedestrians. The other
location is a public park surrounded by a parking lot. The
maximum distance of the two nodes is 190 m. Due to
many other parked vehicles between the two nodes, there
is a greater degree of multipath and path loss as com-
pared to on Bishop Boulevard. The vehicular traffic is also
heavier since the park is off campus.
Table 9 shows the performance comparison between

the two algorithms. Similar to what we have seen on
the emulator (Section 4.1), the advantage of the context-
aware framework over Minstrel becomes apparent when
the channel conditions worsen,mainly in the form ofmore
severe channel fluctuations.
From Fig. 12, it appears that our algorithm can fill the

“rate selection gap” compared with Minstrel. In fact, as
shown in Fig. 12 a and c, our algorithm can quickly adapt
to channel fluctuations. For example, at the tenth sec-
ond, a lower rate choice is made which achieves higher
throughput. Such downward transitions of the channel

Table 9 In-field performance comparison

Place MR
Throughput (Mbps)

Minstrel Context-aware Improvement

Bishop Enabled 5.53 5.77 4.34%
Disabled 4.74 5.25 10.75%

Park Enabled 5.00 5.54 10.80%
Disabled 3.35 4.68 39.70%

are where our context-aware approach achieves the most
gains over a historical algorithm such asMinstrel.
In addition to the results shown, we have captured data

in several other scenarios and they all demonstrate similar
improvements in performance.

6 Related work
6.1 Context-aware wireless systems
In the computing area, the notion of using context
information to improve performance is well-established
[30, 31]. However, applying context awareness to wireless
systems is still a developing area of study [6, 32]. As sys-
tems become more complex, such as multi-user MIMO,
performance of the protocol will heavily rely on knowl-
edge of the environment of propagation [33]. In particular,
works have considered the file size and whether to use
cellular or IEEE 802.11 to reduce energy [34], application
requirements, spectral activity and bandwidth available
[35] or user directionality and speed and knowledge of
indoor/outdoor [8]. Furthermore, relative distances and
speeds have been considered in [36, 37] for the pur-
poses of link adaptation. Other work has shown that by
utilizing user location and movement, channel state infor-
mation is predictable enough to improve power control
[38]. Vehicular networks have historically used several
channel metrics such as fading, delay spread, and Doppler
spread to characterize the channel [39]. In contrast, we
consider how to infer wireless channels based on link-level
performance for use with classification algorithms based
on SNR, velocity, and channel type to choose the most
appropriate rate for the particular setting.

6.2 Classification algorithms
Decision-tree classification [18] and its variants [19] are
used in many diverse areas such as sensor networks [40],
traffic classification [10], radar signal classification, and
speech recognition. In recent years, machine learning
techniques have improved the classification ofmodulation
schemes in complex environments leading to increased
spectral efficiency [41]. In contrast to prior work using
decision-tree classification, we use it as a means to classify
wireless performance of different environmental contexts
and transmissionmodes to lead to better decisions for rate
adaptation protocols.

6.3 Rate adaptation algorithms
Adjusting modulation and/or coding rate to increase the
performance of a link has used various mechanisms for
adapting the link from packet statistics at the transmitter
[12, 13] to direct channel quality measurement combined
with feedback [14]. The former method has been shown
to suffer from a confusion of channel and congestion
loss types, whereas the latter can suffer from improper
and/or excessive training [17]. Other work has studied rate
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Fig. 12 In-field signal strength, throughput, and rate selection comparison. The rate selection performance is analyzed in in-field experiments

adaptation for MIMO systems using both window-based
methods [42, 43] and SNR directly [44]. Other work has
studied the accuracy of throughput estimation using rate
adaptation with Minstrel and multi-rate retry under vari-
ous channel conditions in 802.11WLAN [45]. In contrast,
we leverage a multi-dimensional channel inference algo-
rithm that uses link-layer performance and classification
to perform rate selection.

6.4 Geometrical channel characterization
The patterns in geometrical representation has been used
to characterize propagation models of wireless channels.
A geometrical structure based channel model proposed
in [46] uses three parameters of the signal to character-
ize a channel: the power of the multipath component,
the time of arrival of the component, and the angle of
arrival of the components. An interference classification
approach using the angular difference between the cur-
rent measurement and the stored reference power values
of the interference to identify interference is introduced
in [12]. Also, the authors choose the transmission channel
based on the identified interference. In contrast to prior

work, we use amulti-dimensional model to infer the chan-
nel type to lead to better decisions for link adaptation
protocols.

7 Conclusion
In this work, we presented a context-aware framework for
link-level adaptation that leveraged decision-tree classifi-
cation and geometry-based channel inference. With cus-
tom and off-the-shelf hardware platforms, we evaluated
the framework across emulated and in-field channels and
showed that the proposed adaptation can achieve more
than three times the throughput of SNR-based adaptation
in certain conditions. We evaluated the effectiveness of
training across multiple frequency bands and found that
the training from one band can lead to informed decisions
on another band.
There are three immediate implications from our work.

First, while we place the context-aware link-level deci-
sion in a protocol similar to SNR-based rate adaptation,
the decision could be broadly used in various types of
rate adaptation including loss-based mechanisms. Sec-
ond, since our mechanism has been implemented using
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MadWifi drivers and Atheros chipsets, which is a com-
mon set-up with 802.11 hardware, our scheme can be used
by practitioners as well as researchers. Finally, while we
study how to infer channels and add channels via train-
ing, a separate work would examine the tradeoff in a
perfunctory versus exhaustive set of known channels.
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